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200 models all dimension four and five proton decay violating operators are forbidden by

the additional U(1) symmetries.
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1 Introduction

Compactifications of the heterotic string on Calabi-Yau manifolds, despite being the oldest

approach to string phenomenology [1, 2], remains one of the most promising and well-

understood paths to obtaining realistic string vacua. These models can combine the at-

tractive ideas of grand unification with a large top Yukawa coupling, features which have

proved to be difficult to realize in other types of models, particularly those based on type

II string theory. In essence, this leaves the heterotic string, F-theory and the lesser studied

G2 compactifications of M-theory as primary starting points for string phenomenology.

Traditionally, heterotic Calabi-Yau model building has been based on the standard

embedding [3–5] whereby the Bianchi identity is solved by setting the internal gauge bundle

V equal to the tangent bundle, TX, of the Calabi-Yau manifolds X. However, over the past

decade it has been realized that this approach is too restrictive and the focus has shifted

to the wider class of non-standard embedding models [6]–[18], where V is a more general

bundle over X. Only a relatively small number of models exhibiting a realistic massless

spectrum have been constructed in this way, some with [6] and some without [5, 11, 18]

antibranes, reflecting the considerable technical problems associated with vector bundles

on smooth Calabi-Yau manifolds. They are complemented by models found in related

heterotic constructions such as those based on orbifolds [19–28], on the free fermionic

strings [29–31], and on Gepner models [32–34].

This situation has changed with the results published in ref. [35] where 200 heterotic

Calabi-Yau GUT models were presented. By verifying a number of general criteria it was

shown that each of these models leads to heterotic standard models upon suitable quoti-

enting by discrete symmetries and including Wilson lines. This progress has been possible

for two main reasons. Firstly, rather than following a “model building approach” by trying

to fine-tune individual models for the right phenomenological properties, systematic scans,
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using methods of computational algebraic geometry, have been performed over large classes

of models and unsuitable candidates have been successively filtered out. The considerable

mathematical and computational tools necessary for such systematic scans have been built

up over a number of years [16–18, 36–45]. The second reason is related to the nature of the

vector bundles V used in the construction. Previous model building attempts [6–18] have

mostly focused on vector bundles V with a non-Abelian structure group. However, once

we move away from the standard embedding, the complexity of the constructions rather

motivates studying the simplest bundle choices, that is, bundles with Abelian structure

groups. Using such Abelian bundles is one of the key ideas underlying the work in ref. [35]

and the present paper. The technical simplifications which arise in the case of Abelian bun-

dles greatly facilitate the systematic scanning and the construction of a sizeable number of

promising models.

The 200 models given in ref. [35] were essentially constructed at the “upstairs” GUT

level. The structure group of the bundle V on the Calabi-Yau manifoldsX was chosen to be

S(U(1)5) ⊂ E8 so that the low-energy gauge group is SU(5)×S(U(1)5), with the additional

U(1) symmetries being Green-Schwarz anomalous (and hence, spontaneously broken) in

most cases. The GUT matter spectrum for all models consists of 3|Γ| 10 and 5̄ multiplets,

some number of 5–5̄ vector-like pairs and a number of SU(5) singlets. Here |Γ| is the order

of a freely-acting discrete symmetry Γ on X. It is clear that quotienting these models by Γ

and including Wilson lines in order to break SU(5) can lead to a low-energy theory with the

standard model group (times anomalous U(1) symmetries with massive associated gauge

bosons) and three families of quarks and leptons. Further, provided certain constraints on

the number of 5–5̄ pairs hold one can ensure that all Higgs triplets can be projected out

and at least one pair of Higgs doublets can be kept. In ref. [35] it was shown that these

constraints are indeed satisfied, so that all 200 models lead to heterotic standard models

without any exotic fields charged under the standard model group.

In the present paper we go one step further and construct the downstairs standard

models which result from the 200 GUT models of ref. [35] explicitly. We compute the

complete spectrum, including Higgs multiplets and gauge singlet fields, for each model,

thereby determining the S(U(1)5) charges for all multiplets. Taking into account all differ-

ent choices of quotienting the bundle and including the Wilson lines, this leads to tens of

thousands of downstairs models. In this paper we focus on the four-dimensional spectrum

of particles and operators and, hence, we identify models which descend from the same

upstairs theory if they lead to the same four-dimensional fields. After removing these and

some other redundancies we find about 400 models, each with the standard model gauge

group times S(U(1)5), precisely three families of quarks and leptons, between one and three

pairs of Higgs doublets and no exotic fields charged under the standard model group of

any kind. In addition, we have a number of standard model singlet fields, Sα, which are

charged under S(U(1)5). To the best of our knowledge, this is the largest set of string

models with precisely the standard model spectrum found to date. Details of all models

can be found in the standard model database [46].

From a 10-dimensional point of view the singlet fields Sα can be interpreted as bun-

dle moduli, where vanishing vacuum expectation values for Sα correspond to the original
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Abelian gauge bundle and non-zero vacuum expectation values indicate a deformation to

a bundle with non-Abelian structure group. We would like to stress that, despite the

presence of the additional S(U(1)5) symmetry, there is no problem with additional mass-

less vector bosons. For most models, all additional U(1) symmetries are Green-Schwarz

anomalous [2, 47–52] and, hence, the associated gauge bosons are super-heavy. If one of the

U(1) symmetries remains non-anomalous (and the associated gauge boson is massless), as

happens in some cases, it can easily be spontaneously broken by turning on vacuum expec-

tation values for the singlet fields Sα. As discussed above, this corresponds to deforming

the gauge bundle to a one with a non-Abelian structure group.

Despite the similarity of their low-energy field content our models are distinct in a

number of ways. Most importantly, the S(U(1)5) charges of matter and Higgs multiplets

can vary between models. In addition, the numbers and S(U(1)5) charges of the singlets Sα

are model-dependent, as is the number of Higgs doublet pairs. Taking this into account,

we find 74 different spectra among the 400 models. However, even models with an identical

four-dimensional spectrum have a different higher-dimensional origin and can, therefore, be

expected to differ at a more sophisticated level, for example in the values of their coupling

constants. For this reason, we have kept all 400 models in our database [46].

Our models fall within a general class of four-dimensional N = 1 supergravity theories

obtained from heterotic line bundle compactifications which we would like to refer to as

line bundle standard models. From a four-dimensional point of view, these models are

characterized by an NMSSM-type spectrum (however, with generally many rather than

just one singlet field), the presence of an additional Green-Schwarz anomalous S(U(1)5)

symmetry and a specific pattern of charges under this symmetry. The presence of these

additional (spontaneously broken) symmetries constrains the allowed operators in the four-

dimensional theory and thereby facilitates the study of phenomenological properties beyond

the computation of the matter spectrum. They can be phenomenologically helpful, for

example by forbidding proton decay violating operators, or phenomenologically dangerous,

for example if they force all Yukawa couplings to vanish. A wide range of phenomenological

issues, including flavour physics, proton decay, the µ term, R-parity violation and neutrino

masses can be addressed in this way. In ref. [35] this was carried out for a particular

example. In the present paper, we compute the allowed set of operators in the four-

dimensional theory for all 400 models and the results are listed in the database [46]. These

results allow for a more detailed study of the models’ phenomenology and we discuss

a number of generic features based on these results. For example, we find that 45 of

our models allow for an up Yukawa matrix with non-vanishing rank, before switching on

singlet vacuum expectation values. For about 200 of our models, all dimension four and five

proton-decay violating operators are forbidden by the S(U(1)5) symmetry. We have 259,

72 and 63 models, respectively, with one, two and three pairs of Higgs doublets. Requiring

precisely one pair of Higgs doublets, the absence of all dimension four and five proton decay

violating operators, an up-Yukawa matrix with non-zero rank and no massless U(1) vector

boson (in the absence of singlet VEVs), 13 models remain.

Because of the somewhat technical nature of the underlying 10-dimensional construc-

tion we have split the paper into two parts which can largely be read separately. The first
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part, which consists of sections 2 and 3, describes heterotic line bundle models purely from

the perspective of the four-dimensional N = 1 supergravity theory. In section 2, we set

up the general structure of these four-dimensional models. Section 3 presents an example

model from the database [46]. This chosen example is not selected for its phenomenologi-

cal viability, but simply used as a explicit case to discuss various phenomenological issues

and explain the structure of the data files. We end the section with an overview of basic

phenomenological properties among our 400 standard models. The remainder of the pa-

per describes the construction of the models starting with the 10-dimensional theory. In

section 4, we set up the general formalism for heterotic Calabi-Yau compactifications in

the presence of vector bundles with split structure groups. We also explain our scanning

criteria and procedure in general. Section 5 describes our specific arena for the construction

of models, that is, complete intersection Calabi-Yau manifolds (CICYs) and line bundles

thereon, as well as details of the scanning procedure. A number of specific issues which

arise in heterotic Calabi-Yau models with split bundles is discussed in section 6. Our

summary and outlook is presented in section 7. Appendices A and B contain additional

technical information on the construction of equivariant structures and the computation of

equivariant cohomology.

2 Line bundle standard models

In this section, we introduce the general class of four-dimensional N = 1 supergravity

theories with a standard model spectrum, derived from heterotic line bundle compactifica-

tions on Calabi-Yau manifolds. We will refer to this class of supergravities as line bundle

standard models. This sets the scene for the discussion in section 3, where we present

an explicit example from our standard model data base and a general phenomenological

overview of our models. In addition, this class of supergravities provides a general frame-

work for string phenomenology within a purely four-dimensional setting. Indeed, we expect

many more line bundle models to exist than are currently available in our database [46],

constructed by considering more general line bundles and other Calabi-Yau manifolds. All

of these models will be described by a supergravity of the type introduced below.

2.1 The gauge group

The gauge group of line bundle standard models is given by the standard model group

GSM = SUc(3) × SUW (2) × UY times the additional gauge symmetry J = S(U(1)5).

We can think of the elements of J as given by five phases (eiη
1
, . . . , eiη

5
) subject to the

“determinant one” condition
∑5

a=1 η
a = 0. Although J ∼= U(1)4 it will be more convenient

for our purposes to work with J rather than U(1)4. Irreducible J representations can

be labelled by an integer vector q = (qa)a=1,...,5. However, due to the determinant one

condition two such vectors, q and q̃ refer to the same representation and, hence, have to

be identified iff

q− q̃ ∈ Z(1, 1, 1, 1, 1) . (2.1)

In particular, this means that a four-dimensional operator is J invariant precisely if the

five entries in its charge vector are identical. All standard model multiplets carry J charges
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which follow a specific pattern originating from the underlying string construction. This

structure of charges will be introduced below.

We stress that the four gauge bosons associated to J do not cause a phenomenological

problem. In most cases, all U(1) symmetries are Green-Schwarz anomalous and, hence, the

gauge bosons receive a super-heavy Stueckelberg mass. In cases where some of the U(1)

symmetries are non-anomalous masses for the associated gauge bosons can be generated

by spontaneously symmetry breaking through VEVs of standard model singlet fields. This

will be discussed in more detail in the section on U(1) vector boson masses below.

2.2 The matter field sector

Matter fields transform linearly under J , that is,

Φ → exp(iq.η)Φ (2.2)

for a matter field Φ with J charge Q(Φ) = q. Although there is no four-dimensional SU(5)

GUT symmetry it turns out that the J charge is always identical for all fields in a given

SU(5) multiplet. For this reason, it is useful to combine the three standard model families

into SU(5) multiplets and introduce the notation (10p) = (Qp, up, ep) and (5̄p) = (dp, Lp),

where p, q, . . . = 1, 2, 3 are family indices. Their pattern of J charges is given by

Q(10p) = eap , Q(5̄p) = ebp + ecp , (2.3)

where ap, bp, cp = 1, . . . , 5 and bp < cp. Here ea denotes the ath standard unit vector in

five dimensions. Hence, 10 families have charge one under precisely one of the five U(1)

symmetries in J , while 5̄ multiplets have charge one with respect to two of the U(1)

symmetries. Apart from these rules, the precise pattern of charges across the three families

is model dependent. For example, for the three 10 families, there are models with all three

J charges the same, two charges the same and the third one different or all three charges

different. To specify explicit models it will be convenient to introduce a simple notation

for the J charge. We do this by adding a charge label as a subscript to the multiplet’s

name so that, for example 102 denotes a 10 multiplet with charge e2 = (0, 1, 0, 0, 0) and

5̄1,4 denotes a 5̄ multiplet with charge e1 + e4 = (1, 0, 0, 1, 0).

In addition, we have one (or, in some cases, more than one) pair of Higgs doublets H,

H̄ with J charges of the type

Q(H) = eh + eg , Q(H̄) = −eh̄ − eḡ , (2.4)

where h, g, h̄, ḡ = 1, . . . , 5 and h < g, h̄ < ḡ. As before, we attach the J charge as a

subscript so that, for example, a down Higgs H2,3 has charge e2 + e3 = (0, 1, 1, 0, 0) and

an up-Higgs H̄3,5 has charge −e3 − e5 = (0, 0,−1, 0,−1).

Finally, line bundle standard models come with standard model singlet fields, which we

denote by Sα. Their number is model-dependent and, for typical examples, varies between

a few and a few ×10. Their J charges have the form

Q(Sα) = edα − efα , (2.5)
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where dα, fα = 1, . . . , 5. Following the convention for the other fields we append this

charge as a subscript so that, for example, S2,5 has charge e2 − e5 = (0, 1, 0, 0,−1) and

S4,1 has charge e4 − e1 = (−1, 0, 0, 1, 0). As mentioned in the introduction, from a 10-

dimensional point of view, these singlet fields can be interpreted as gauge bundle moduli.

Vanishing VEVs for all singlets correspond to Abelian gauge bundles while non-vanishing

VEVs indicate a deformation to non-Abelian structure groups. The singlets also play an

important role from the viewpoint of the four-dimensional theory since they always carry

a non-trivial J charge. This means that non-vanishing singlet VEVs can spontaneously

break U(1) symmetries in J , thereby giving mass to the vector bosons associated to non-

anomalous U(1) factors which have not received a mass from the Stueckelberg mechanism.

In summary, the matter spectrum of line bundle standard models is that of a general-

ized NMSSM, typically with a number of singlet fields rather than just a single one, and

with a specific pattern of J = S(U(1)5) charges, as explained above.

2.3 The moduli sector

The gravitational moduli of the models consist of the dilaton, S = s+iσ, a certain number of

Kahler moduli, denoted by T i = ti+2iχi, and complex structure moduli generically denoted

by Z. All the moduli are singlets under the standard model group. The complex structure

moduli are also singlets under the U(1) symmetries in J but the Kahler moduli and the

dilaton have non-linear transformations, acting an their respective axionic components χi

and σ as

δχi = −kiaη
a , δσ = −2kiaβiη

a . (2.6)

Here, ka = (kia) and β = (βi) are numbers which are fixed for a given string construction

and can be determined from the underlying topology, as will be discussed in section 4. The

special unitarity of the gauge group J = S(U(1)5) means that the vectors ka are subject

to the constraint
5
∑

a=1

ka = 0 . (2.7)

The 10- or 11-dimensional origin of our theories implies certain constraints on the moduli

fields which are necessary for the validity of the four-dimensional effective theory. In

particular, it is necessary that

ti ≫ 1 ,
βit

i

s
≪ 1 . (2.8)

The first of these constraints ensures that the internal Calabi-Yau volume and the volume of

cycles therein is sufficiently large for the supergravity approximation to be valid. The sec-

ond constraint is necessary for the strong coupling expansion [53, 54] of the 11-dimensional

theory to be valid.

In addition, the model can have moduli associated to the hidden E8 sector and to

five-branes (if present in the construction), all of which are standard model singlets. They

will not play an essential role for the subsequent discussion.
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2.4 The effective action

We begin by writing down the generic form for the superpotential which we split up as

W =WY +WR +W5 +Wsing +Wnp . (2.9)

The first four terms are perturbative while Wnp contains the non-perturbative contribu-

tions. The standard Yukawa couplings and the µ-term are contained in WY, WR consists

of the R-parity violating terms and W5 consists of the order five terms in standard model

fields. The pure singlet field terms are collected inWsing. Schematically, these perturbative

parts can be written as

WY = µHH̄ + Y (d)
pq H5̄p10q + Y (u)

pq H̄10p10q (2.10)

WR = ρpH̄L
p + λpqr5̄

q5̄q10r (2.11)

W5 = λ′pqrs5̄
p10q10r10s (2.12)

Wsing = ταβγS
αSβSγ . (2.13)

For simplicity, we have expressed the operators in terms of GUT multiplets, wherever

possible. Since the U(1) charges in J commute with SU(5) this will be sufficient to discuss

the pattern implied by J -invariance, which is our main purpose. It should, however,

be kept in mind that the precise values of the allowed couplings will, in general, break

SU(5). This means, for example, that the standard SU(5) GUT relation between tau and

bottom Yukawa couplings may not be satisfied. All couplings above should be thought of as

functions of moduli. As usual, they cannot depend on the dilaton, S, and the Kahler moduli

T i thanks to their axionic shift symmetries (some of which are even gauged according to

eq. (2.6)). However, they are, in general, functions of the complex structure moduli Z and

the singlet fields (bundle moduli) Sα.

In this paper, for the most part, we will be interested in studying the theory for the

locus in moduli space where all singlet fields are small, so |Sα| ≪ 1. From a 10-dimensional

point of view this means we are considering gauge bundles with Abelian structure group

or small non-Abelian deformations thereof. On this locus, all couplings above can be

expanded in powers of Sα around the “Abelian locus” Sα = 0. For example, for the µ-term

we can write1

µ = µ0 + µ1,αS
α + µ2,αβS

αSβ + . . . , (2.14)

and similarly for all other couplings. In general, the expansion coefficients µ0, µ1,α,

etc. should still be considered functions of the complex structure moduli. Their pattern is

restricted by the J charges of the standard model fields and the singlet fields Sα and it

is this structure which we will mainly analyze in the following. Also note that the zeroth

order µ-term, µ0, in eq. (2.14) vanishes even if the Higgs pair is vector-like under J since

all our models have an exactly massless Higgs pair at the Abelian locus Sα = 0.

In the rest of the paper, we will not consider the non-perturbative superpotential Wnp

but a few remarks concerning its structure may be in order. Generally, one expects two

1For models with multiple pairs of Higgs doublets the µ-term of course generalizes to a matrix of µ-terms.
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types of non-perturbative effects to contribute: string instanton effects leading to terms

of the form P (Z, Sα) exp(−niT
i), and gaugino condensation leading to terms of the form

Q(Z, Sα) exp(−c(S ± βiT
i). Here, c and ni are positive constants (related to the beta

function of the condensing gauge group and the instanton number, respectively) and P ,

Q are functions, typically rational, of the moduli Z and Sα. The main point is that

the presence of the U(1) gauge symmetries in J significantly constrains the allowed non-

perturbative terms, in view of the transformations (2.6) and (2.2). Specifically, the phase

change of the non-perturbative exponentials due to the axion transformations (2.6) has to

be cancelled by the phase change of the pre-factors P , Q due to the linear transformations

of the singlet fields Sα. In ref. [55] this has been analyzed for the special case when singlet

fields Sα are absent. The more general case with singlets remains to be considered in detail

and this will clearly be central for the discussion of moduli stabilization and supersymmetry

breaking in heterotic line bundle models.

Let us now move on to the general structure of the Kahler potential. As usual, it can

be written as a sum

K = Kmod +Kmat (2.15)

of the moduli superpotential Kmod and the matter superpotential Kmat. For the former,

we have

Kmod = − ln(S + S̄)− ln(κ) +Kcs + . . . , (2.16)

where Kcs is the standard special geometry Kahler potential for complex structure mod-

uli [56], and the dots stand for contributions from other moduli. The quantity κ is defined as

κ = dijkt
itjtk , (2.17)

with numbers dijk. From a 10-dimension viewpoint κ is proportional to the Calabi-Yau

volume and dijk are the triple intersection numbers of the Calabi-Yau manifold. It is also

useful to introduce the Kahler metric for the T i moduli which follows from the above Kahler

potential. It is given by

Gij ≡ −
1

4

∂2

∂ti∂tj
lnκ = −

3

2

(

κij
κ

−
3

2

κiκj
κ2

)

. (2.18)

with κi = dijkt
jtk and κij = dijkt

k.

The matter field Kahler potential has the structure

Kmat = K
(10)
pq̄ 10p10q̄† +K

(5̄)
pq̄ 5̄p5̄q̄† +K(u)H̄H̄† +K(d)HH†

+
(

µ̃HH̄ + ρ̃pL
pH̄ + ρ̂pL

pH† + c.c
)

+Ksing , (2.19)

where Ksing is the singlet superpotential which depends on the singlets Sα and their con-

jugates but not on the other matter fields. The couplings in Kmat should be considered as

functions of the moduli, more specifically of S + S̄, T i+ T̄ i, Z, Z†, Sα and Sα†. As before,

for small Sα we can expand all couplings around the locus Sα = 0, for example

K(u) = K
(u)
0 +

(

K
(u)
1,αS

α + c.c.
)

+ · · · , (2.20)
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and similarly for the other couplings. The expansion coefficients are still functions of the

other moduli and, as for the superpotential, they are restricted by J invariance.

Some general remarks about the constraints implied by J invariance are in order.

Of course we know that J non-invariant terms must be absent from the action. A J

invariant term will typically be present with a coupling which is of order one for generic

values of the complex structure moduli. However, it is still possible that this coupling

vanishes for specific values of the complex structure moduli. The term might even be

forbidden altogether for reasons unrelated to the J symmetry, for example, because of the

presence of an additional discrete symmetry in the model. We can, therefore, safely draw

conclusions from the absence of certain terms due to J non-invariance, but we have to keep

this limitation in mind when we rely on the presence of J -invariant operators. In principle,

we can improve on this point since many of the couplings can be explicitly computed from

the underlying string theory [42]. This task is beyond the scope of the present paper and

will be addresses in future publications.

The gauge kinetic function for the standard model group is universal, as is usually the

case in heterotic theories, and given by

f = S + βiT
i , (2.21)

with the topological numbers βi identical to the ones which appear in the transforma-

tions (2.6) of the axions. In view of these, the gauge kinetic function transforms non-

trivially under a the U(1) symmetries in J , namely

δf = −4ikiaβiη
a . (2.22)

As we will see, this non-trivial classical variation cancels the mixed JGSMGSM triangle

anomaly in a four-dimensional realization of the Green-Schwarz mechanics. The gauge

kinetic function for the U(1) vector fields in J is given by [48]

fab = fδab +
2

3
dijkk

j
ak
k
bT

i . (2.23)

Note that the second term represents a kinetic mixing between the U(1) symmetries. In the

presence of anomalous U(1) symmetries in the hidden sector this kinetic mixing becomes

more complicated and involves cross terms between hidden and observable U(1) symme-

tries. Since we are here focusing on the observable matter field sector we will not consider

this explicitly. The general form of the gauge kinetic function, including hidden-observable

mixing, can be found in ref. [48]. The variation of (2.23) leads to a cancellation of the J 3

triangle anomaly.

This concludes our general set-up of heterotic line bundle models. It remains to discuss

a number of generic features of these theories which are all related to the presence of the

additional U(1) symmetries in J .

2.5 D-terms

In this subsection we would like to discuss the D-terms associated to the U(1) gauge

symmetries in J . They can be computed from the linear matter fields transformations (2.2)
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and the non-linear transformations (2.6) of the dilaton and the T-moduli using standard

supergravity methods [57]. Explicitly they are given by

Da =
3kiaκi
κ

+
βik

i
a

s
−
∑

P,Q̄

qPaKPQ̄C
P C̄Q̄ . (2.24)

Here, CP collectively denote all matter fields with J charges qPa and KPQ̄ is their Kahler

metric as computed from eq. (2.19). In particular, these matter fields include the singlets

Sα. Since the gauge group J is special unitary there are in fact only four-independent D-

terms. Indeed, as a consequence of eq. (2.7) and the structure of the matter field charges

the above D-terms satisfy the relation

5
∑

a=1

Da = 0 . (2.25)

For a supersymmetric vacuum at or near the locus Sα = 0 we need to solve the D-term equa-

tions Da = 0 along with the F-term equations which follow from the singlet superpotential

Wsing in (2.9). In general, this requires specific knowledge of the singlet superpotential and

the matter field part in the D-term (2.24). For a given model in our database both will

normally be highly constrained by J invariance so that this analysis can be carried out

explicitly on a case-by-case basis. However, since we think of our models as being defined

near Sα = 0 we should first ensure that a supersymmetric vacuum exists at this Abelian

locus. In this case, the F-term equations for Sα are automatically satisfied and the matter

field contributions to the D-terms vanish. In other words, we have to ensure that the FI

terms, corresponding to the first two terms in eq. (2.24), vanish. Evidently, this imposes

restrictions on the dilaton and the T-moduli. To this end, let us introduce the corrected

T-moduli t̃i = 3κi/κ+ βi/s. Note that in view of the constraints (2.8) on the moduli, the

second term in this definition is indeed a small correction. Then the D-term equations can

be written as

Da = kiat̃i = 0 . (2.26)

A non-trivial solution to these equations exists only if

(number of lin. independent ka) < (number of T-moduli) . (2.27)

Hence, for models with less than five Kahler moduli further linear dependencies, in addition

to (2.7), must exist between the charge vectors ka. This implies a significant model-building

constraint for models with a small number of Kahler moduli.

2.6 Green-Schwarz anomaly cancellation

The U(1) symmetries in J are generically anomalous in our models. In particular, this

means that the mixed JGSMGSM triangle anomalies between a J gauge boson and two

standard model gauge bosons as well as the cubic J 3 anomaly between three J gauge

bosons are typically non-vanishing. The Green-Schwarz mechanism, in its four-dimensional
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version, implies that these triangle anomalies are cancelled due to the non-trivial J -

transformations (2.21), (2.23) of the gauge-kinetic functions.

We begin, by discussing this explicitly for the mixed JGSMGSM anomalies. Using

the charges (2.3) for the 10 and 5̄ families the coefficients of these triangle anomalies are

given by

A =
3
∑

p=1

(

3eap + ebp + ecp
)

. (2.28)

For these to be cancelled by the transformation (2.22) of the gauge kinetic function we

have to require that
(

Aa − kiaβi
)

a=1,...,5
∈ Z(1, 1, 1, 1, 1) . (2.29)

For the models in our database these relations are automatically satisfied due to the Green-

Schwarz mechanism in the underlying 10-dimensional theory. However, from a bottom-up

point of view this constitutes a significant constraint, relating the charge choices for the

matter fields and the moduli fields with the parameters βi which determine the size of the

threshold correction to the gauge kinetic function.

Similarly, the J 3 triangle anomaly must be cancelled by the variation of the U(1)

gauge kinetic functions (2.23). This leads to constraints analogous to eq. (2.29) which,

however, also depend on the spectrum of singlet fields Sα. For this reason they are of less

practical importance and we will not present them explicitly.

2.7 Masses of U(1) gauge bosons

The mass terms for the U(1) vector bosons arise from the kinetic terms for the axions

σ and χi as a consequence of the non-linear transformations (2.6) and, for non-vanishing

VEVs for the singlets Sα, also from the kinetic terms of those fields. At the Abelian locus,

Sα = 0, only the former contribution is present and results in a mass matrix

Mab = kTa G̃kb where G̃ij = Gij +
βiβj
4s2

(2.30)

is the corrected Kahler metric for the T-moduli. Since G̃ij is non-degenerate this means

that the number of massless U(1) vector bosons at the locus Sα = 0 is given by

(number of massless U(1) vector bosons) = 4− rank(kia) . (2.31)

Such a massless linear combination of vector bosons, characterized by a vector va satisfying

kav
a = 0, corresponds to a non-anomalous U(1) symmetry, as can be seen, in the case of the

mixed anomaly, from eq. (2.29). Combining the above result with eq. (2.27) we learn that

(number of massless U(1) vector bosons) > 4− (number of T-moduli) . (2.32)

In particular, for models with less than five Kahler moduli, there necessarily exists at least

one massless U(1) vector boson at the Abelian locus. On the other hand, for five or more

Kahler moduli all U(1) vector bosons will be generically massive.

Non-anomalous U(1) symmetries can of course be easily broken spontaneously, thereby

giving masses to the associated vector bosons, by switching on Sα VEVs. For this reason,
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there is no serious phenomenological problem with the presence of additional massless U(1)

symmetries at the Abelian locus and we have included such models in our database. In a

detailed analysis it has of course to be checked that this spontaneous breaking is consistent

with supersymmetry, that is, that it can be achieved for vanishing F- and D-terms.

3 The model database

After this general set-up we will now present the line bundle standard models from heterotic

compactifications which are accessible from the database [46]. This will be done mainly

from the viewpoint of the four-dimensional effective theories, following the set-up of the

previous section. The underlying 10-dimensional construction will be explained in the

following section. We begin by presenting one specific example model from the database.

There is no implication that this particular model is phenomenologically favoured or even

viable. It has merely been chosen as a useful example to explain the contents of the database

and to illustrate the possible phenomenological applications of heterotic line bundle models.

In the second part of this section, we will discuss the distribution of basic phenomeno-

logical properties in our database. For example, we will count the number of models with

one, two and three pairs of Higgs doublets, the number of models with vanishing dimension

four and five proton-decay inducing terms and similar properties.

3.1 An example model

We will now present an example model from the database [46], namely model number 7 on

the Calabi-Yau manifold with number 6732. First we discuss the gravitational sector and

then move on to the matter fields and the detailed spectrum of allowed operators in the

four-dimensional effective theory.

3.1.1 The gravitational sector

The database entry for the Calabi-Yau manifold underlying our example model is shown in

figure 1. The data given in the figure defines a Calabi-Yau three fold X with a freely-acting

symmetry group Γ. The actual Calabi-Yau manifold underlying the model is the quotient

space X̂ = X/Γ. The details of the construction will be explained in the next section. Here

we merely mention the properties which are required to extract the relevant information

about the four-dimensional theory. We first note that the freely-acting symmetry for our

example is Γ = Z2, so that the symmetry order is |Γ| = 2. For the number of Kahler

moduli, T i, we have2

#(Kahler moduli) = h1,1(X̂) = h1,1(X) . (3.1)

The number of complex structure moduli, Z, is then given by

#(complex structure moduli) = h2,1(X̂) = h1,1(X)−
η(X)

2|Γ|
. (3.2)

2The number of Kahler moduli is given by the Hodge number h1,1(X̂) of the quotient manifold. It turns

out that for all models in the database this number equals h1,1(X), although this is not true in general.
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ü Cicy 6732,  Symmetry 1

X =

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 0 0 0 2 0

1 1 1 1 1 1

hHXL = -64 h1,1HXL = 5 h2,1HXL = 37 c2HTXL = 824, 24, 24, 24, 56<

k = 12 t1 t2 t3+12 t1 t2 t4+12 t1 t3 t4+12 t2 t3 t4+12 t1 t2 t5+24 t1 t3 t5+24 t2 t3 t5+24 t1 t4 t5+24 t2 t4 t5+24 t3 t4 t5+12 t1 t5
2+12 t2 t5

2+24 t3 t5
2+24 t4 t5

2+8 t5
3

symmetry: 1 order: 2

Abelian: True block diagonal: True factors: 82<

Action on coordinates: :

-1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

>

Action on polynomials: :

-1 0 0 0 0 0

0 1 0 0 0 0

0 0 -1 0 0 0

0 0 0 1 0 0

0 0 0 0 -1 0

0 0 0 0 0 1

>

Figure 1. Example database entry for complete intersection Calabi-Yau three-fold 6732.

From figure 1 we have η(X) = −64 and together with h1,1(X) = 5 and |Γ| = 2 this implies

that the model has 21 complex structure moduli. Another relevant quantity which can be

read off from figure 1 is κ, defined in eq. (2.17), which determines the Kahler potential (2.16)

for the Kahler moduli T i = ti + 2iχi. For our example it is given by

κ = 12t1t2t3 + 12t1t2t4 + 12t1t3t4 + 12t2t3t4 + 12t1t2t5 + 24t1t3t5 + 24t2t3t5

+24t1t4t5 + 24t2t4t5 + 24t3t4t5 + 12t1t
2
5 + 12t2t

2
5 + 24t3t

2
5 + 24t4t

2
5 + 8t35 . (3.3)

The database entry for our model which defines the vector bundle is shown in figure 2. As

before, we defer the details of the construction to later and focus on how to extract the

relevant low-energy quantities. The charge vector ka which determine the J transforma-

tions (2.6) of the axions are given by the column vectors of the matrix V in figure 2. For

our example this means

(k1, . . . ,k5) =















1 1 0 0 −2

1 1 0 −2 0

1 −1 −2 1 1

0 1 1 −1 −1

−1 −1 0 1 1















. (3.4)
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ü Model number 7,   Identifier {6732, 2, 1}

ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 2 c2HVL = 812, 12, 12, 12, 32<

V: HkiaL =

1 1 0 0 -2

1 1 0 -2 0

1 -1 -2 1 1

0 1 1 -1 -1

-1 -1 0 1 1

Cohomology of V:

L3 = 80, 0, -2, 1, 0< h@L3D = 80, 2, 0, 0< h@L3,RD = 880, 0<, 81, 1<, 80, 0<, 80, 0<<
L4 = 80, -2, 1, -1, 1< h@L4D = 80, 2, 0, 0< h@L4,RD = 880, 0<, 81, 1<, 80, 0<, 80, 0<<
L5 = 8-2, 0, 1, -1, 1< h@L5D = 80, 2, 0, 0< h@L5,RD = 880, 0<, 81, 1<, 80, 0<, 80, 0<<
L1µL2 = 82, 2, 0, 1, -2< h@L1µL2D = 80, 2, 0, 0< h@L1µL2,RD = 880, 0<, 81, 1<, 80, 0<, 80, 0<<
L3µL4 = 80, -2, -1, 0, 1< h@L3µL4D = 80, 1, 1, 0< h@L3µL4,RD = 880, 0<, 81, 0<, 81, 0<, 80, 0<<
L3µL5 = 8-2, 0, -1, 0, 1< h@L3µL5D = 80, 1, 1, 0< h@L3µL5,RD = 880, 0<, 81, 0<, 81, 0<, 80, 0<<
L4µL5 = 8-2, -2, 2, -2, 2< h@L4µL5D = 80, 4, 0, 0< h@L4µL5,RD = 880, 0<, 82, 2<, 80, 0<, 80, 0<<
L1µL2

*
= 80, 0, 2, -1, 0< h@L1µL2*D = 80, 0, 2, 0< h@L1µL2*,RD = 880, 0<, 80, 0<, 81, 1<, 80, 0<<

L2µL4
*

= 81, 3, -2, 2, -2< h@L2µL4*D = 80, 0, 8, 0< h@L2µL4*,RD = 880, 0<, 80, 0<, 84, 4<, 80, 0<<
L2µL5

*
= 83, 1, -2, 2, -2< h@L2µL5*D = 80, 0, 8, 0< h@L2µL5*,RD = 880, 0<, 80, 0<, 84, 4<, 80, 0<<

L3µL4
*

= 80, 2, -3, 2, -1< h@L3µL4*D = 80, 0, 4, 0< h@L3µL4*,RD = 880, 0<, 80, 0<, 82, 2<, 80, 0<<
L3µL5

*
= 82, 0, -3, 2, -1< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0<, 80, 0<, 82, 2<, 80, 0<<

L4µL5
*

= 82, -2, 0, 0, 0< h@L4µL5*D = 80, 3, 3, 0< h@L4µL5*,RD = 880, 0<, 81, 2<, 81, 2<, 80, 0<<
Wilson line: 880<, 81<< Equivariant structure: 880<, 80<, 80<, 81<, 81<< Higgs pairs: 2

Downstairs spectrum: :103, 104, 105, 51,2, 2 54,5, H3,4, H3,4, H3,5, H3,5, S2,1, 4 S4,2, 4 S5,2, 2 S4,3, 2 S5,3, S4,5, S5,4> Phys. Higgs: :H3,5, H3,4>

Transfer format: 888, 2, 3, 4, 7, 0, 9, 9, 18, 1, 11, 13, 15, 17, 19<, 87, 7, 8, 8, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 81, 1< dim. 4 operators absent: 8False, False< dim. 5 operators absent: 8False, False<

Figure 2. Example database entry specifying basic properties of a line bundle standard model on

the three-fold in figure 1.

The transformation of the dilatonic axion, σ, in eq. (2.6) also depends on the numbers βi
which enter the gauge kinetic function (2.21). They can be computed from

βi =
1

|Γ|

(

c2i(V )−
1

2
c2i(TX)

)

. (3.5)

From figure 1 we read off c2(TX) = (24, 24, 24, 24, 56) and from figure (2) we have c2(V ) =

(12, 12, 12, 12, 32). With |Γ| = 2 this means that for our example

β = (0, 0, 0, 0, 2) . (3.6)

3.1.2 The matter field sector

All of the models in the database have a massless spectrum which includes the gauge and

matter spectrum of the MSSM. However, some models have additional massless fields at

the Abelian locus, Sα = 0, which can include additional vector-like pairs of Higgs doublets

and one additional massless U(1) gauge boson, related to the non-anomalous part of the

J gauge symmetry. Masses for these fields may be generated by non-vanishing Sα VEVs

and for this reason such models have been included in the database.

Our example model has one additional massless U(1) vector field as stated at the top

of figure 2. Alternatively, this follows from the general result (2.31) and the fact that only
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three of the vectors ka in eq. (3.4) are linearly independent. The matter field spectrum at

the Abelian locus, Sα = 0, can be read off from the database entry entitled “Downstairs

spectrum” and, from figure 2, for our example model it is given by

103,104,105, 5̄1,2, 25̄4,5, H3,4, H̄3,4, H3,5, H̄3,5, S2,1, 4S4,2, 4S5,2, 2S4,3, 2S5,3, S4,5, S5,4 . (3.7)

Here, we follow the notation introduced in the previous section. In particular, we have

grouped the standard model particles into their standard SU(5) representations for ease of

notation. We recall that the subscripts indicate the J charge of a multiplet. For example,

103 denotes a 10 multiplet of SU(5) with J charge Q(103) = e3, while 5̄1,2 denotes a 5̄

multiplet of SU(5) with J charge Q(5̄1,2) = e1 + e2. The J charge for a down Higgs is,

for example, Q(H3,4) = e3 + e4 while we have Q(H̄3,4) = −e3 − e4 for an up Higgs. The

standard model singlet fields are denoted by S and their J charge pattern is exemplified

by Q(S2,1) = e2 − e1.

The mixed JGSMGSM triangle anomaly can be computed from eq. (2.28). For the

above spectrum we easily find

A = (1, 1, 3, 5, 5) . (3.8)

Further, using the values of the charge vectors (3.4) and of β in eq. (3.6) it follows that

(kiaβi)a = (−2,−2, 0, 2, 2) . (3.9)

Therefore, the anomaly constraint (2.29) is indeed satisfied for our example model, as it

must be due to the Green-Schwarz mechanism. This simple calculation provides a useful

consistency check for our models.

The spectrum (3.7) shows that the example model contains two massless pairs of Higgs

doublets at the locus Sα = 0. In cases such as these a physical pair of Higgs doublets is

chosen and separate models are generated for each possible choice. For the case at hand,

the choice is H3,5, H̄3,4, as the “Phys. Higgs” entry in figure 2 indicates. For consistency,

the other Higgs doublet should then obtain a mass from non-zero singlet VEVs if we are to

recover exactly the standard model charged spectrum with the chosen Higgs doublet. The

relevant mass operators will be discussed in section 3.1.5. Another possibility is, of course,

to consider phenomenological models with two or three Higgs doublets. In the following,

we will discuss the various types of J invariant operators allowed in the effective action and

their possible phenomenological relevance. For our example model, the relevant database

entry listing these operators is shown in figure 3.

3.1.3 The D-terms

The general form of the D-term has been given in eq. (2.24). The first term in this

expression is the leading part of the FI term. Since we have already specified κ, for our

example model given by eq. (3.3), it suffices to provide the expressions kiaκi in order to fix

this first term. In our database, these expressions are listed under the heading “FI-terms”
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ü Operators

basic superpotential terms:

H10p10q: YHuL =

9S5,3, S4,3 S5,4, S4,5 S5,3 S5,4, S4,3 S4,5 S5,42 , S4,5
2 S5,3 S5,4

2 = 9S5,4, S4,5 S5,42 , S4,5
2 S5,4

3 = 91, S4,5 S5,4, S4,52 S5,4
2 =

9S5,4, S4,5 S5,42 , S4,5
2 S5,4

3 = 80< 80<
91, S4,5 S5,4, S4,52 S5,4

2 = 80< 80<

H5
p
10q: YHdL =

9S5,3, S4,3 S5,4, S4,5 S5,3 S5,4, S4,3 S4,5 S5,42 , S4,5
2 S5,3 S5,4

2 = 80< 80<
9S5,4, S4,5 S5,42 , S4,5

2 S5,4
3 = 80< 80<

91, S4,5 S5,4, S4,52 S5,4
2 = 80< 80<

HH: m = 9S5,4, S4,5 S5,42 , S4,5
2
S5,4
3 =

HiHj: m =

91, S4,5 S5,4, S4,52 S5,4
2 = 9S4,5, S4,52 S5,4, S4,5

3 S5,4
2 = 80<

9S5,4, S4,5 S5,42 , S4,5
2 S5,4

3 = 91, S4,5 S5,4, S4,52 S5,4
2 = 80<

80< 80< 80<

Wsing = 9S4,52 S5,4
2 =

R-parity violating terms in superpotential:

HLp: r =
0

0

0

10p5
q
5
r
: l = 9999S2,1 S4,2 S5,2, S2,1 S4,22 S5,4, S2,1 S4,5 S5,2

2
, S2,1 S4,2 S4,5 S5,2 S5,4=, 91, S4,5 S5,4, S4,52 S5,4

2 =, 91, S4,5 S5,4, S4,52 S5,4
2 ==, 991, S4,5 S5,4, S4,52 S5,4

2 =, 80<, 80<=, 991, S4,5 S5,4, S4,52 S5,4
2 =, 80<, 80<==,

8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<=

Dimension 5 operators in superpotential:

5
p
10q10r10s: l' =

99999S4,3 S5,3, S4,32 S5,4, S4,5 S5,3
2
, S4,3 S4,5 S5,3 S5,4=, 9S5,3, S4,3 S5,4, S4,5 S5,3 S5,4, S4,3 S4,5 S5,42 =, 9S4,3, S4,5 S5,3, S4,3 S4,5 S5,4, S4,52 S5,3 S5,4==, 99S5,3, S4,3 S5,4, S4,5 S5,3 S5,4, S4,3 S4,5 S5,42 =, 9S5,4, S4,5 S5,42 =,

91, S4,5 S5,4, S4,52 S5,4
2 ==, 99S4,3, S4,5 S5,3, S4,3 S4,5 S5,4, S4,52 S5,3 S5,4=, 91, S4,5 S5,4, S4,52 S5,4

2 =, 9S4,5, S4,52 S5,4===, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<=,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<=

D-terms:

FI-terms: kiaki =

-4 t1 t3 - 4 t2 t3 + 4 t1 t5 + 4 t2 t5 + 8 t4 t5 + 8 t5
2

-4 t1 t2 - 8 t1 t4 - 8 t2 t4 - 4 t1 t5 - 4 t2 t5 + 8 t3 t5 - 8 t4 t5

-4 t1 t2 + 4 t1 t3 + 4 t2 t3 - 8 t1 t4 - 8 t2 t4 - 8 t1 t5 - 8 t2 t5 + 8 t3 t5 - 16 t4 t5 - 8 t5
2

4 t1 t2 - 4 t1 t3 + 4 t2 t3 + 4 t1 t4 + 12 t2 t4 + 8 t2 t5 - 8 t3 t5 + 8 t4 t5

4 t1 t2 + 4 t1 t3 - 4 t2 t3 + 12 t1 t4 + 4 t2 t4 + 8 t1 t5 - 8 t3 t5 + 8 t4 t5

singlet D-terms: qaaS
aS

b
=

-S2,1 S
†
2,1

S2,1 S
†
2,1 -S4,2 S

†
4,2 -S5,2 S

†
5,2

-S4,3 S
†
4,3 -S5,3 S

†
5,3

S4,2 S
†
4,2 +S4,3 S

†
4,3 +S4,5 S

†
4,5 -S5,4 S

†
5,4

-S4,5 S
†
4,5 +S5,2 S

†
5,2 +S5,3 S

†
5,3 +S5,4 S

†
5,4

Kinetic terms:

GM term: m
è
= :S†4,5, S5,2 S†4,2, S5,3 S†4,3, IS†M4,5

2
S
†
5,4>

5
p
5
q †
: KH5L = 9991, S4,5 S5,4, S†4,5 S†5,4, S4,5 S5,2 S†4,2, S4,2 S†4,5 S†5,2, S4,2 S5,4 S†5,2, S5,2 S†4,2 S†5,4, S4,5 S5,3 S†4,3, S4,3 S†4,5 S†5,3, S4,3 S5,4 S†5,3, S5,3 S†4,3 S†5,4=, 9S†2,1 S†4,2 S†5,2=, 9S†2,1 S†4,2 S†5,2==,

99S2,1 S4,2 S5,2=, 91, S4,5 S5,4, S†4,5 S†5,4, S4,5 S5,2 S†4,2, S4,2 S†4,5 S†5,2, S4,2 S5,4 S†5,2, S5,2 S†4,2 S†5,4, S4,5 S5,3 S†4,3, S4,3 S†4,5 S†5,3, S4,3 S5,4 S†5,3, S5,3 S†4,3 S†5,4=,
91, S4,5 S5,4, S†4,5 S†5,4, S4,5 S5,2 S†4,2, S4,2 S†4,5 S†5,2, S4,2 S5,4 S†5,2, S5,2 S†4,2 S†5,4, S4,5 S5,3 S†4,3, S4,3 S†4,5 S†5,3, S4,3 S5,4 S†5,3, S5,3 S†4,3 S†5,4==,

99S2,1 S4,2 S5,2=, 91, S4,5 S5,4, S†4,5 S†5,4, S4,5 S5,2 S†4,2, S4,2 S†4,5 S†5,2, S4,2 S5,4 S†5,2, S5,2 S†4,2 S†5,4, S4,5 S5,3 S†4,3, S4,3 S†4,5 S†5,3, S4,3 S5,4 S†5,3, S5,3 S†4,3 S†5,4=,
91, S4,5 S5,4, S†4,5 S†5,4, S4,5 S5,2 S†4,2, S4,2 S†4,5 S†5,2, S4,2 S5,4 S†5,2, S5,2 S†4,2 S†5,4, S4,5 S5,3 S†4,3, S4,3 S†4,5 S†5,3, S4,3 S5,4 S†5,3, S5,3 S†4,3 S†5,4===

10p10q †: KH10L =

:991, S4,5 S5,4, S†4,5 S†5,4, S4,5 S5,2 S†4,2, S4,2 S†4,5 S†5,2, S4,2 S5,4 S†5,2, S5,2 S†4,2 S†5,4, S4,5 S5,3 S†4,3, S4,3 S†4,5 S†5,3, S4,3 S5,4 S†5,3, S5,3 S†4,3 S†5,4=, 9S4,3, S4,5 S5,3, S5,3 S†5,4, S4,2 S5,3 S†5,2, S4,3 S4,5 S5,4,

S4,3 S
†
4,5 S

†
5,4=, 9S5,3, S4,3 S†4,5, S4,3 S5,4, S4,3 S5,2 S†4,2, S4,5 S5,3 S5,4, S5,3 S†4,5 S†5,4==, :9S†4,3, S†4,5 S†5,3, S5,4 S†5,3, S5,2 S†4,2 S†5,3, S4,5 S5,4 S†4,3, S†4,3 S†4,5 S†5,4=,

91, S4,5 S5,4, S†4,5 S†5,4, S4,5 S5,2 S†4,2, S4,2 S†4,5 S†5,2, S4,2 S5,4 S†5,2, S5,2 S†4,2 S†5,4, S4,5 S5,3 S†4,3, S4,3 S†4,5 S†5,3, S4,3 S5,4 S†5,3, S5,3 S†4,3 S†5,4=, :S†4,5, S5,4, S5,2 S†4,2, S5,3 S†4,3, IS†M4,5
2
S
†
5,4, S4,5 S5,4

2 >>,

:9S†5,3, S4,5 S†4,3, S†4,3 S†5,4, S4,2 S†4,3 S†5,2, S4,5 S5,4 S†5,3, S†4,5 S†5,3 S†5,4=, :S4,5, S†5,4, S4,2 S†5,2, S4,3 S†5,3, S4,52 S5,4, S
†
4,5 IS†M5,4

2 >,

91, S4,5 S5,4, S†4,5 S†5,4, S4,5 S5,2 S†4,2, S4,2 S†4,5 S†5,2, S4,2 S5,4 S†5,2, S5,2 S†4,2 S†5,4, S4,5 S5,3 S†4,3, S4,3 S†4,5 S†5,3, S4,3 S5,4 S†5,3, S5,3 S†4,3 S†5,4=>>

LpH†: r
`
=

80<
9S4,5 S†4,3, S4,2 S†4,3 S†5,2, S4,5 S5,4 S†5,3=
9S4,5 S†4,3, S4,2 S†4,3 S†5,2, S4,5 S5,4 S†5,3=

Figure 3. Example database entry specifying operators for the line bundle standard model in

figure 2.

and, from figure 3, for our example are given by

(kiaκi)=















−4t1t3 − 4t2t3 + 4t1t5 + 4t2t5 + 8t4t5 + 8t25
−4t1t2 − 8t1t4 − 8t2t4 − 4t1t5 − 4t2t5 + 8t3t5 − 8t4t5
−4t1t2+4t1t3+4t2t3−8t1t4−8t2t4−8t1t5−8t2t5+8t3t5−16t4t5−8t25
4t1t2 − 4t1t3 + 4t2t3 + 4t1t4 + 12t2t4 + 8t2t5 − 8t3t5 + 8t4t5
4t1t2 + 4t1t3 − 4t2t3 + 12t1t4 + 4t2t4 + 8t1t5 − 8t3t5 + 8t4t5















. (3.10)
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In order to specify the dilaton-dependent correction to the FI-term, which corresponds to

the second term in eq. (2.24), we need to provide the vector (kiaβi)a. For the example

model, this vector has already been determined from other database entries and is given

in eq. (3.9). Finally, we need the last term in eq. (2.24) which represents the matter

field contribution. Here, we write down the parts of these matter field D-terms which

depend only on the singlet fields Sα. In the database it is listed under the heading “singlet

D-terms”. Figure 3 shows that for our example model it is given by





∑

α,β̄

qaαS
αS̄β̄



 =

















−S2,1S
†
2,1

S2,1S
†
2,1 − S4,2S

†
4,2 − S5,2S

†
5,2

−S4,3S
†
4,3 − S5,3S

†
5,3

S4,2S
†
4,2 + S4,3S

†
4,3 + S4,5S

†
4,5 − S5,4S

†
5,4

−S4,5S
†
4,5 + S5,2S

†
5,2 + S5,3S

†
5,3 + S5,4S

†
5,4

















. (3.11)

In writing these expressions, we have omitted the Kahler moduli space metric of the singlet

fields which should appear but is not explicitly known. However, for the analysis of D-flat

directions with Sα 6= 0 is it usually sufficient to know that this metric is positive definite.

At the locus Sα = 0 where all singlet VEVs vanish, the systems we consider in this

paper admit a solution to the D-term equations. A necessary condition for this to be

possible is that the basic constraint (2.27) holds, that is, that we have more Kahler moduli

than linearly independent charge vectors ka. For our example model, which has five Kahler

moduli and three linearly independent charge vectors, this is certainly satisfied. Note also

that, since the overall scaling of the Kähler moduli does not enter the D-term equations,

such a solution can always be scaled to the large volume regime (that is, the regime where

all values of the Kahler moduli ti are large).

For non-vanishing singlet VEVs, Sα 6= 0, the existence of D-flat directions depends on

the details of the above singlet matter field terms in the D-term and has to be analyzed

case by case. Of course, for supersymmetric vacua with Sα 6= 0 we also need to check the

F-term equations which follow from the singlet superpotential Wsing in eq. (2.9). We now

turn to a discussion of this singlet superpotential.

3.1.4 The singlet superpotential: F-terms and neutrino Majorana masses

In the database, the singlet superpotential is denoted by Wsing. A quick glance at figure 3

shows that for the example model it is given as

Wsing ∼ S2
4,5S

2
5,4 , (3.12)

with possible higher dimension operators omitted. It is important to note that the singlet

fields with a given J charge can appear with multiplicity greater than one, as is evident from

the spectrum (3.7). For simplicity, the sum over these multiplicities has been suppressed

in the above expression. We also re-iterate from our general discussion in the previous

section, that J -invariance of singlet operators does not necessarily imply their presence in

Wsing, as they might be forbidden for other reasons. An example of this is provided by

the gauge-invariant quadratic terms in the singlets, S4,5S5,4 for our example model. We

– 17 –



J
H
E
P
0
6
(
2
0
1
2
)
1
1
3

know these terms must vanish since the underlying string construction shows that all of

the singlets are indeed massless at the locus Sα = 0 (see section 4.7 for the geometric

discussion). Given the uncertainty in the exact coefficients of the terms it is not possible

to give an explicit solution to the F-terms where the contribution of one operator cancels

against another. However, one can argue for the existence of such a solution assuming

generic coefficients. It is also possible to show that, for a given combination of singlet

VEVs, the contribution of each operator to the F-terms vanishes separately. For the above

example (3.12) it is clear that the (global) singlet F-terms vanish as long as the VEVs of

either S4,5 or S5,4 are zero.

The standard model singlet fields are also attractive candidates for right-handed neutri-

nos (RHNs). In this context, the role of the singlet superpotential is to generate Majorana

masses for the RHNs due to non-vanishing singlet VEVs. For example, for the superpo-

tential (3.12) a non-zero VEV for S5,4 (with the VEV of S4,5 still vanishing to satisfy the

F-term equations) generates a Majorana mass term for S4,5 which might then play the role

of a RHN. Of course a realisation of the see-saw mechanism also requires the presence of

an associated Dirac mass. This will be discussed in section 3.1.8.

3.1.5 The Higgs sector

The only part of the spectrum charged under the standard model that varies within the

database is the Higgs sector - some examples contain more than one set of Higgs doublets.

For such models we identify a particular pair of weak doublets to play the role of the Higgs

fields. This pair will then be used to calculate all of the relevant phenomenological operators

such as the Yukawa couplings. The remaining doublets will be considered as exotic fields

which must obtain a large mass. Another option would be to consider theories with multiple

light Higgs doublet pairs. To cover all possibilities, we have generated a separate database

entry for each possible choice of a Higgs doublet pair among the available doublets. The

most straightforward way for the additional doublets to obtain a mass is through couplings

of the form µij(S)H
iH̄j . To study these couplings, for models with multiple doublet pairs,

the database contains the 3× 3 mass matrix µij for up to 3 pairs of Higgs fields. For our

example model in figure 3 this matrix is given by

µij =







{

1, S4,5S5,4, S
2
4,5S

2
5,4

} {

S4,5, S
2
4,5S5,4, S

3
4,5S

2
5,4

}

{0}
{

S5,4, S4,5S
2
5,4, S

2
4,5S

3
5,4

} {

1, S4,5S5,4, S
2
4,5S

2
5,4

}

{0}

{0} {0} {0}






. (3.13)

For the case at hand one row and one column vanish because the model only contains two

doublet pairs. Our notation is such that each matrix entry (i, j) lists singlet operator which

can couple to H iH̄j in a J -invariant way. The indices i, j run over the massless doublet

pairs in the order in which they are given in the spectrum (3.7). For a given singlet VEVs it

is possible to study if the additional doublets can indeed obtain a large mass while keeping

the chosen Higgs pair light. The diagonal entries in the above matrix contain entries 1,

consistent with the J -invariance of the operator H iH̄ i. However, these entries should be

ignored since, by construction, all doublets are indeed exactly massless at the locus Sα = 0.

This is another example of a set of operators absent for reasons unrelated to J -invariance.
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Keeping models with multiple Higgs pairs in the database (while we did not keep

models with additional massless matter which could similarly be made massive by GUT

singlets) is primarily motivated by the possibility of realising an approximate UPQ(1) sym-

metry. As will be discussed in detail in section 4.1, for the simplest cases which we have

scanned over, a single Higgs pair is always vector-like under J so that the J -symmetry

does not contain a U(1)PQ symmetry. However, such a symmetry may be useful for forbid-

ding proton decay operators, for generating attractive flavour structures, and for additional

control over the Higgs mass. Given two pairs of doublets, where each pair has different J

charges, it is possible to identify an off-diagonal combination as the Higgs fields thereby

inducing a U(1)PQ. Indeed, this has been done for the example model in figure 2 where

H3,5, H̄3,4 has been chosen as the physical Higgs pair. Of course the remaining doublets,

H̄3,5 and H3,4 in the example, must obtain a mass due which breaks the U(1)PQ symmetry.

If this breaking is sufficiently controlled, for example due to a breaking scale well below

the string scale, the remaining approximate U(1)PQ symmetry might still be useful.

For the example model, a VEV for S4,5 gives mass to the additional doublets while

keeping the physical Higgs fields massless.

3.1.6 Yukawa couplings

The database contains the Yukawa couplings under the headings Y (u) and Y (d). For the

example model in figure 3 they are given by

Y (u) =







{S5,3, S4,3S5,4, S4,5S5,3S5,4}
{

S5,4, S4,5S
2
5,4

}

{1, S4,5S5,4}
{

S5,4, S4,5S
2
5,4

}

{0} {0}

{1, S4,5S5,4} {0} {0}







Y (d) =







{S5,3, S4,3S5,4, S4,5S5,3S5,4} {0} {0}
{

S5,4, S4,5S
2
5,4

}

{0} {0}

{1, S4,5S5,4} {0} {0}






, (3.14)

where we have dropped terms higher than cubic in Sα. For each model we also list the

generic rank of these Yukawa matrices as in figure 2. For the above matrices we have

rk
(

Y (u)
)

= {2, 2} and rk
(

Y (d)
)

= {1, 1}. Here, the first (second) entry denotes the generic

rank if all Sα = 0 (if all Sα are non-zero). We note that a non-vanishing top Yukawa

coupling of order one is possible in these models, even at the Abelian locus Sα = 0.

3.1.7 Proton decay

Proton decay forms one of the classic constraints on extensions of the standard model.

Dimension four proton decay operators are tightly constrained by experiments to have

coefficients less that 10−6 for any combination of generation indices [58]. Often these are

forbidden by imposing the R-parity of the MSSM. However, within the context of top-

down model building from string theory, such an R-parity does not necessarily have to be

realized. It is, therefore, important to consider whether such operators can be forbidden

using the U(1) symmetries of our models. The dimension four and five proton decay

operators in (2.11) and (2.12) are denoted by λpqr and λ′pqrs, respectively, and are listed

under those headings in the database. For our example model they can be found in figure 3.
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3.1.8 Bilinear R-parity violating operators and superpotential neutrino Dirac

masses

An important set of operators which relates directly to neutrino physics are operators of the

type ρpH̄L
p which appear in the superpotential (2.11). Such R-parity violating operators,

among other things, lead directly to large neutrino masses through mixing with the Higgs

fields and so are constrained to be very small (around 10−22 in Planck units). For the

example model in figure 3 these coefficients vanish

ρ =







0

0

0






. (3.15)

Therefore, in this case non-vanishing singlet VEVs cannot generate any R-parity violating

operators. As ever, a bare quadratic term in the superpotential is forbidden by construction

in these models.

If we take some of the standard model singlets to be RHNs then these same terms also

play the role of the superpotential neutrino Dirac masses. These may then be combined

with the pure singlet terms discussed in section 3.1.4 to realize the see-saw mechanism.

For the example model no such superpotential Dirac masses are allowed.

3.1.9 Neutrino Kähler potential Dirac masses

In the absence of superpotential Dirac or Majorana neutrino masses there is a natural

way to induce neutrino masses of the correct magnitude through a Kähler potential oper-

ator [59]. The relevant operator in the matter Kahler potential (2.19) is

ρ̂pL
pH† . (3.16)

When the up-type Higgs develops a VEV, v, it induces an F-term for the down-type Higgs

which, from the above operator, leads to Dirac neutrino masses. For our example model

in figure 3 these couplings are given by

ρ̂ =









{0}
{

S4,5S
†
4,3, S4,2S

†
4,3S

†
5,2, S4,5S5,4S

†
5,3

}

{

S4,5S
†
4,3, S4,2S

†
4,3S

†
5,2, S4,5S5,4S

†
5,3

}









. (3.17)

Following the discussion in section 3.1.4 we may consider S4,5 as a RHN. Then giving a

VEV to S4,3 induces Dirac neutrino mass. Note that we allow for conjugates of the singlets

to appear since we are dealing with a Kähler potential operator.

3.1.10 The Giudice-Masiero term

A well-known way to induce a µ-term within gravity mediated supersymmetry breaking

is through the Giudice-Masiero mechanism [60]. The relevant operator in the matter field

Kahler potential (2.19) is

µ̃HH̄ . (3.18)
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If µ̃ depends on the conjugate, Sα†, of a singlet field which breaks supersymmetry, a µ-

term of the right order of magnitude is generated. Hence, we should list all gauge invariant

operators of the above form which involve at least one singlet appearing as a conjugate.

For the example model in figure 3 this leads to the operators

µ̃ ⊃

{

S†
4,5, S5,2S

†
4,2, S5,3S

†
4,3,
(

S†
4,5

)2
S†
5,4

}

. (3.19)

3.1.11 Kinetic terms and soft masses

One of the useful properties of the U(1) symmetries is that they allow us to gain a handle on

the form of the kinetic terms of the matter fields. The kinetic terms enter the determination

of the physical Yukawa couplings from the Yukawa couplings in the superpotential and are

therefore of great importance. However, due to their non-holomorphic nature, they are

rather difficult to calculate from first principles. For our example model in figure 3 we have

K(5̄) =







1 S†
2,1S

†
4,2S

†
5,2 S

†
2,1S

†
4,2S

†
5,2

S2,1S4,2S5,2 1 1

S2,1S4,2S5,2 1 1






,

K(10) =







1 S4,2 S5,3

S†
4,3 1 S†

4,5

S†
5,3 S4,5 1






. (3.20)

For simplicity we have only displayed the leading term for each operator while figure 3

shows the full list including terms involving up to 3 standard model singlets.

The same gauge invariant combinations are also relevant for constraining the possible

soft supersymmetry breaking masses that can appear in the potential. Understanding their

flavour structure is important, especially within gravity mediation, due to the possibility

of inducing flavour changing neutral currents (FCNCs). It is well known that it is possible

to use U(1) global symmetries to constrain the flavour off-diagonal terms of such soft

masses [82] and the structure of the operators in eq. (3.20) will be conductive to realizing

such a scenario.

3.2 General phenomenology overview of database

Having described the output data for an individual model it is interesting to consider how

various basic phenomenological properties are distributed within the database as a whole.

To this end, we present some statistics of models in the database. The given numbers

are not meant as a comprehensive statistical analysis of heterotic line bundle models but

merely as a rough indication of how difficult it might be to achieve certain phenomenological

properties within this class.

The models presented in the database [46] descend from the 202 SU(5) GUT models

constructed in ref. [35] by quotienting the Calabi-Yau three-fold and Wilson line breaking.

This process breaks the GUT group to the standard model group and projects out certain

unwanted states, in particular the Higgs triplets still present in the GUT theory. Depending

on the symmetry by which we divide (either Z2 or Z2 × Z2 in all cases) there are between
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standard no mass- 1 Higgs 2 Higgs 3 Higgs rk(Y (u)) proton decay 1 Higgs, rk(Y (u)) > 0,

models less U(1) pair pairs pairs > 0 operators λ=λ′=0 λ=λ′=0, U(1)s massive

399 233 259 72 63 45 195 13

Table 1. Statistics of basic properties in the standard model database [46].

order 100 and 1000 choices per GUT model on how to realize this breaking. Not all of these

choices lead to a phenomenologically viable spectrum (for example, in some cases Higgs

triplets are still present) and, for a given model, many choices result in the same spectrum.

In our scan, we have only kept the cases which lead to an acceptable spectrum and we have

chosen one representative model per spectrum generated. This leads to a total of 2113 line

bundle standard models which originate from the 202 GUT models. A list of these models

is available as a data file at [46]. Upon inspection it turns out that many of these models

are closely related in that they have the same spectrum and are based on the same (or

equivalent) Calabi-Yau manifolds and the same bundle. Two models related in this way

look identical for the purposes of this paper, although, since they are generally based on

different symmetries of the Calabi-Yau manifold, they may differ at a more detailed level.

We have eliminated these redundancies in the explicit printout of the models, in order to

keep the size manageable. This results in 399 models available in the printed lists at [46].

The statistics of phenomenological properties below is based on these 399 models.

The results are summarized in table 1 below. A few comments on what precisely is

being counted are in order. The number of massless U(1) vector fields and the number of

Higgs pairs is determined at the Abelian locus Sα = 0 where all singlet VEVs vanish. As

discussed earlier, massless U(1) vector bosons can acquire a mass when singlet VEVs are

switched on. This means that the 166 models with such a massless vector boson are not

necessarily ruled out but have to be analyzed in more detail. A similar remark applies to

models with more than one Higgs pair. The rank of the up Yukawa matrix Y (u) in column

six of the table has also been determined for vanishing singlet VEVs. It can be shown that

the U(1) symmetries in J never allow an up Yukawa matrix with rank one and, it turns out

there are no examples with rk(Y (u)) = 3 in our list. This means all 45 models mentioned in

column six have Y (u) = 2 while all remaining models have an entirely vanishing up Yukawa

matrix for vanishing singlet VEVs. A positive rank for Y (u) is, of course, desirable since

we would like a top Yukawa coupling of order one, however, it would be preferable to have

rk(Y (u)) = 1. This can, in fact, be achieved for related constructions, to be discussed in the

second part of the paper, which lead to fewer U(1) symmetries in the low-energy theory.

The second last column in the table gives the number of models for which all proton

decay operators in (2.11) and (2.12) vanish, that is, λpqr = 0 and λ′pqrs = 0 for all values of

the family indices and in the presence of generic singlet VEVs. Evidently, this is a fairly

strong condition which is sufficient but not necessary to guarantee that such operators do

not destabilize the proton. For example, some terms for the second and third family might

be allowed, particularly if they are suppressed by small singlet VEVs. This has to be studied

in detail on a case-by-case basis. At any rate, it is encouraging that we remain with 13

models even when all conditions are imposed simultaneously, as in the last column of table 1.
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4 The geometry of split heterotic models

In this section, we introduce the necessary formalism to study compactifications of the

E8 × E8 heterotic theory on smooth Calabi-Yau manifolds [2] and the associated low-

energy particle physics. In particular, we will discuss split bundles, that is, bundles with

a direct product structure group. Bundles of this type, with the simplest splitting into a

structure group S(U(1)5), underly the standard models presented in the first part of this

paper. For reason which will become clear we will keep our discussion more general to

cover all splittings into unitary factors. The construction of specific models based on this

formalism will be presented in the next section.

4.1 General formalism

We begin by briefly reviewing the structure and constraints of generic heterotic Calabi-Yau

compactifications. The geometric data required to specify a heterotic Calabi-Yau compact-

ification which preserves four-dimensional N = 1 supersymmetry consist of a Calabi-Yau

three-fold, X, two holomorphic, poly-stable vector bundles, V and Ṽ , with zero slope over

X and a holomorphic curve C with second homology class [C]. The two vector bundles are

associated to the observable and hidden E8 sectors of the theory and their structure groups,

H and H̃, must be sub-groups of E8. In the present paper we will take these structure

groups to be SU(n) (hence c1(V ) = 0), typically with n = 5 for the observable sector, or

sub-groups thereof. The holomorphic curve C is wrapped by five-branes (NS five-branes

in the weakly coupled limit, M five-branes in the 11-dimensional strong-coupling picture)

whose other directions stretch across the four-dimensional uncompactified space-time.

This data has to satisfy a series of consistency conditions in order to obtain a well-

defined vacuum. We will outline the conditions briefly here and study them in more depth

in the following subsections. The first condition on the geometry is the well-known heterotic

anomaly cancellation condition [2],

c2(TX)− c2(V )− c2(Ṽ ) = [C] . (4.1)

In the subsequent discussion, we will focus on the observable bundle V . The hidden bundle

Ṽ and the five-brane curve C will not be constructed explicitly but we will ensure, by an

appropriate choice of V , that a consistent completion of the model exists. Usually, we will

do this by requiring c2(TX)− c2(V ) to be an effective class, [C] ∈ H2(X). Hence, in this

case we can obtain a consistent completion of the model by adding an appropriate amount

of five-branes while choosing the hidden bundle Ṽ to be trivial.

The presence of the vector bundle V (that is, the presence of non-trivial gauge field

VEVs over the Calabi-Yau three-fold, X) breaks the visible sector E8 symmetry to a sub-

group, G ⊂ E8. The gauge group, G, is given by the commutant of H in E8. For example,

choosing the structure group to be H = SU(5) produces the commutant of G = SU(5)

so that we obtain a minimal GUT theory in four dimensions. If H is a proper rank four

sub-group of SU(5), as we will consider in this paper, the low-energy gauge group enhances

to G = SU(5) × J , where J ∼= U(1)f−1 consists of a product of U(1) factors. As will be

reviewed in the following sections, it is well-known, that some or all of these U(1) factors
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are anomalous in the Green-Schwarz sense and are, consequently, spontaneously broken

at a high scale with associated massive vector bosons. The various types of low-energy

multiplets in the GUT theory are obtained by decomposing the 248 adjoint representation

of E8 into representations of H × G and the number of each multiplet can be computed

from the bundle-valued cohomology of V and its tensor powers.

In order to produce realistic four-dimensional models, it is necessary to further break

the GUT group to the Standard Model. To this end, we will also introduce Wilson lines.

However, Wilson lines can only be defined over a Calabi-Yau manifold, X, which is not

simply connected (i.e. π1(X) 6= 0). Since there are few known Calabi-Yau geometries which

have a non-trivial fundamental group by construction, we shall explicitly construct such

manifolds from simply connected ones, by forming quotient manifolds X/Γ where Γ is a

discrete group. To this end, we require the existence of a symmetry Γ acting freely on the

Calabi-Yau three-fold X, so that the quotient X̂ = X/Γ is smooth and has a non-trivial

first fundamental group (for example, for X/Zn, π1(X) = Zn). In order for the bundle, V ,

to descend to a bundle, V̂ , on the quotient Calabi-Yau X̂ the group Γ must act consistently

on the bundle. This means, there must be a group action of Γ on V which commutes with

the projection π : V → X and satisfies a certain co-cycle condition. Such a group action

is referred to as an “equivariant structure” and a bundle that admits such a structure is

called “equivariant” with respect to Γ. In summary, the “downstairs” Calabi-Yau manifold

X̂ is defined by a multi-sheeted cover q : X → X/Γ and all vector bundles on X̂ can

be pulled back to equivariant bundles V = q∗V̂ on X. That is, if V is equivariant, V̂ is

well-defined on X̂.

With the addition of non-trivial Wilson lines, the full “downstairs” bundle on X̂ is

V̂ ⊕ W, where W is a flat rank one bundle representing an Abelian Wilson line. Its

structure group can be embedded into hypercharge UY (1) ⊂ SU(5) in order to break SU(5)

into the standard model group. The downstairs zero-mode spectrum can be obtained from

the bundle cohomology of V̂ ⊕W which, in practice, can be computed from the cohomology

of the upstairs bundle V and its equivariant structure.

With this framework in hand, we turn now to the central point of this paper. We will

consider vector bundles V with a split structure group of the form

H = S(U(n1)× · · · ×U(nf )) , (4.2)

where na ≥ 1 are integers. In order to ensure that the non-Abelian part of the low-

energy gauge group is given by the GUT group SU(5) we will demand that
∑f

a=1 na =

5. We will be especially interested in the case of “maximal splitting” when na = 1 for

all a. In this case, V is simply a direct sum of five line bundles, and SU(5) splits as

H = S(U(1)5). However, other patterns will be of interest as well so that we keep the

formalism general for now and characterize a particular pattern by the integer vector

n = (n1, . . . , nf ). We will now explain in detail how the general formalism for heterotic

Calabi-Yau compactifications outlined above applies to such split bundles. We begin with

some simple group theoretical considerations.
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H Hs J f n

S(U(4)×U(1)) SU(4) U(1) 2 (4, 1)

S(U(3)×U(2)) SU(3)× SU(2) U(1) 2 (3, 2)

S(U(3)×U(1)2) SU(3) U(1)2 3 (3, 1, 1)

S(U(2)2 ×U(1)) SU(2)2 U(1)2 3 (2, 2, 1)

S(U(2)×U(1)3) SU(2) U(1)3 4 (2, 1, 1, 1)

S(U(1)5) 1 U(1)4 5 (1, 1, 1, 1, 1)

Table 2. The six splittings H of SU(5) considered in this paper, together with the maximal semi-

simple sub-groups Hs ⊂ H, the maximal Abelian sub-groups J ⊂ H, the number f of factors and

the split vector n.

4.2 Group theory

In this section we lay down the necessary notation to discuss both the gauge symmetries

of the four-dimensional theory, as well as the structure group of the visible sector bundle,

V . We will find it convenient to introduce two sub-groups of the bundle structure group

H, namely the maximal semi-simple subgroup Hs and the maximal Abelian sub-group J .

Explicitly, they are given by

Hs = SU(n1)× · · · × SU(nf ) , J ∼= {(eiη
1
, . . . , eiη

f

)|
∑

a

naη
a = 0} ∼= U(1)f−1 , (4.3)

where ηa are the U(1) group parameters and the sum condition in the definition of J

accounts for the fact that H consists of special unitary matrices. The different possible

splittings of SU(5), together with the sub-groups Hs and J are listed in table 2. For the

subsequent discussion it will be useful to label representations of the group H by the Hs

and J representations they induce. We denote by Fa (Adja) the representation of Hs which

transforms as a fundamental (adjoint) of the SU(na) factor in Hs and as a singlet under

all other factors. Representations of J are specified by a charge vector q = (q1, . . . , qf ).

As a consequence of the constraint in the definition (4.3) of J , in order to get a one-to-one

correspondence between charge vectors and J representations, we have to identify two such

vectors q and q̃ if

q− q̃ ∈ Zn . (4.4)

Finally, an H representation which transforms under the representation R of Hs and carries

J charge q is denoted by Rq. Using this notation we can write down rules for the branching

of SU(5) representations into H representations. For the SU(5) representations relevant to

our discussion these branching rules read explicitly

10 → (
⊕f

a=1(∧
2Fa)2ea)⊕ (

⊕

a<b(Fa ⊗Fb)ea+eb) 5̄ →
⊕f

a=1(F̄a)−ea

1̄0 → (
⊕f

a=1(∧
2F̄a)−2ea)⊕ (

⊕

a<b(F̄a ⊗ F̄b)−ea−eb) 5 →
⊕f

a=1(Fa)ea

24 →
⊕

a(Adja)0 ⊕
⊕

a 6=b(Fa ⊗ F̄b)ea−eb

(4.5)

where ea denotes the ath standard unit vector.

– 25 –



J
H
E
P
0
6
(
2
0
1
2
)
1
1
3

H ∼= Hs × J repr. Rq SU(5)×J ass. bundle GSM × J repr. symbol name

repr. rq URq

Adj0 10 Ua ⊗ U∗
a (1, 1)0,0 Sa bundle modulus

(Fa⊗F̄b)ea−eb , a 6=b 1ea−eb Ua ⊗ U∗
b (1, 1)0,ea−eb Sab bundle modulus

(∧2Fa)2ea 5̄2ea ∧2Ua (3̄, 1)2,2ea da, Ta RH d quark/Higgs triplet

(1, 2)−3,2ea La, Ha LH lepton/d Higgs

(Fa ⊗Fb)ea+eb 5̄ea+eb Ua ⊗ Ub (3̄, 1)2,ea+eb dab, Tab RH d quark/Higgs triplet

a < b (1, 2)−3,ea+eb Lab, Hab LH lepton/d Higgs

(Fa)ea 10ea Ua (1, 1)6,ea ea RH electron

(3̄, 1)−4,ea ua RH u quark

(3, 2)1,ea Qa LH quarks

(∧2F̄a)−2ea 5−2ea ∧2U∗
a (3, 1)−2,−2ea d̃a, T̄a RH mirror d/Higgs triplet

(1, 2)3,−2ea L̃a, H̄a LH mirror lepton/u Higgs

(F̄a ⊗ F̄b)−ea−eb 5−ea−eb U∗
a ⊗ U∗

b (3, 1)−2,−ea−eb d̃ab, T̄ab RH mirror d/Higgs triplet

a < b (1, 2)3,−ea−eb L̃ab, H̄ab LH mirror lepton/u Higgs

(F̄a)−ea 1̄0−ea U∗
a (1, 1)−6,−ea ẽa RH mirror electron

(3, 1)4,−ea ũa RH mirror u quark

(3̄, 2)−1,−ea Q̃a LH mirror quark

Table 3. Representation content of the 248 adjoint of E8 under the subgroup H × SU(5). The

first column provides the representation of the bundle structure group H in terms of Hs × J ,

the second column the representation under the low-energy GUT gauge group SU(5) × J , with

the subscripts indicating the J charge. The bundle associated to each representation is given in

column three. Column four provides the break-up into representations of standard model group

GSM = SUc(3) × SUW (2) × UY (1) × J , with the first subscripts denoting the charge 3Y and the

second subscripts the J charge.

Let us now embed H into E8 via the embedding chain H ⊂ SU(5) ⊂ E8. The com-

mutant of the so-embedded H within E8, that is the low-energy gauge group, is given

by G = SU(5) × J . As discussed before, the U(1) factors in J may be Green-Schwarz

anomalous in which case their associated gauge bosons are massive. In order to find the

multiplet types in the resulting SU(5) GUT theory we need to decompose the 248 ad-

joint representation of E8. We begin with its well-known branching under SU(5) × SU(5)

given by

248 → (1,24)⊕ (24,1)⊕ (10, 5̄)⊕ (5,10)⊕ (1̄0,5)⊕ (5̄, 1̄0) . (4.6)

Here, we think of the first SU(5) as the internal and the second SU(5) as the external gauge

group. If we replace the internal SU(5) representations with the branching rules in (4.5)

we immediately obtain the desired branching of 248 into representations of H × SU(5).

The resulting multiplets together with other relevant information are listed in table 3.
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4.3 Split bundles and stability

We would like to construct vector bundles V with the required structure group H =

S(U(n1)× · · · × U(nf )). Starting with vector bundles Ua on the Calabi-Yau three-fold X,

each with structure group U(na), we set

V =

f
⊕

a=1

Ua . (4.7)

In order to ensure that the structure group is special unitary we also impose the vanishing

of the first Chern class3

c1(V ) =

f
∑

a=1

c1(Ua)
!
= 0 . (4.8)

Relative to a basis {ωi} of harmonic two-forms on X, where i = 1, . . . , h1,1(X), we expand

the first Chern classes as c1(Ua) = ci1(Ua)ωi and, in order to make contact with the four-

dimensional discussion in the previous section, introduce the vectors ka by setting

kia = ci1(Ua) . (4.9)

Now we need to discuss the conditions on such bundles V which follow from the requirement

of preserving four-dimensional N = 1 supersymmetry. As discussed above, in order for this

bundle to be supersymmetric, it needs to be poly-stable with zero slope.

To understand these conditions, we must define the notions of slope, stability and

poly-stability which we introduce in turn. The slope µ(G) of a coherent sheaf, G, on the

Calabi-Yau three-fold X is defined by

µ(G) =
1

rk(G)

∫

X
c1(G) ∧ J ∧ J =

1

rk(G)
dijkc

i
1(G)t

jtk , (4.10)

where J is the Kahler form of X. For the second equality we have expanded J = tiωi and

c1(G) = ci1(G)ωi and introduced the triple intersection numbers dijk =
∫

X ωi ∧ ωj ∧ ωk of

X. A holomorphic vector bundle V is now called (slope-) stable if

µ(G) < µ(V ) for all coherent sub-sheaves G ⊂ V with 0 < rk(G) < rk(V ) . (4.11)

Note that due to the restriction on the rank in this definition line bundles are always stable.

Further, V is called poly-stable if

V =
⊕

a

Va such that Va stable and µ(Va) = µ(V ) ∀a . (4.12)

Hence, a poly-stable bundle consists of a direct sum of stable bundles, each with the same

slope. Since supersymmetry also requires that µ(V ) = 0 (which is automatic in our case

3If there are additional conditions between the first Chern classes of the Ua the structure group might

reduce further and become a proper sub-group of one of the structure groups given in table 2. In this case,

the non-Abelian part of the low-energy gauge group might be larger than SU(5). We will not consider this

case explicitly in our general set-up and avoid models of this type in our discussion of examples later on.
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since we consider bundles V with c1(V ) = 0) this means that the slope of all constituent

bundles Va must vanish. A poly-stable bundle V with zero slope has no global sections since

the trivial line bundle OX has slope zero and is, hence, a potentially de-stabilising sub-

bundle. Therefore, OX cannot inject into V and we must have H0(X,V ) ∼= Hom(OX , V ) =

0. If V is poly-stable, its dual V ∗, is also poly-stable with zero slope, so that on a Calabi-

Yau manifold H3(X,V ) ∼= H0(X,V ∗) = 0. In conclusion, poly-stable bundles with slope

zero on a Calabi-Yau manifold have vanishing zeroth and third cohomology.4

Let us now apply these general statements to the bundle V in (4.7). For V to be

supersymmetric it needs to be poly-stable with zero slope which is equivalent to saying

that all Ua must be stable with zero slope, µ(Ua) = 0. Stability is automatic if Ua is a line

bundle but has to be checked explicitly for higher-rank bundles (this can be carried out

explicitly following the procedure outlined in ref. [50, 73]). For the full bundle V to be poly-

stable, the stable loci for the various Ua must have a non-trivial intersection in the Kahler

cone. On this intersection V is poly-stable. The second condition for supersymmetry, the

vanishing of the slope for each Ua, can from eq. (4.10) be expressed as

µ(Ua) ∼ kiaκi = 0 ∀a , (4.13)

where κi = dijkt
jtk are “dual” Kahler moduli space coordinates. Hence, the vanishing slope

conditions lead to additional constraints on the Kahler moduli space of X which have to

be combined with the ones following from stability. As can be seen from eq. (2.24), in the

four-dimensional effective theory all these constraints are enforced via D-terms associated

to the anomalous U(1) symmetries in J and additional anomalous U(1) symmetries which

may appear at particular loci in Kahler moduli space when one or more of the bundles Ua
split up further [63]. The bundle is supersymmetric only in the part of the Kahler moduli

space where all of these conditions are satisfied simultaneously. As is clear from eq. (4.13),

in order for a common solution to the zero slope conditions to exist it is necessary that

(number of lin. independent ka) < h1,1(X) . (4.14)

In the context of the four-dimensional discussion we have seen the same condition (2.27),

for the case of purely Abelian splittings, appear from the D-term equations.

For Calabi-Yau three-folds with a small Hodge number h1,1(X), the slope zero condi-

tions (4.13) are an important model building constraint on the bundle, V . For example,

for h1,1(X) = 1 there are no solutions at all, while for h1,1(X) = 2 all first Chern classes

ka must be multiples of each other.

4If a line bundle appears in the sum (4.12) the above argument breaks down. However, in this case, one

can still conclude that a poly-stable, zero slope bundle V satisfies H0(X,V ) = H3(X,V ) = 0 by invoking

the vanishing Theorem (1.24) in ref. [61]. It states that a line bundle L has no global sections if µ(L) < 0

(and, on a Calabi-Yau manifold, it has vanishing third cohomology if µ(L) > 0) somewhere in the Kahler

cone of X. Since we require that µ(L) = 0, all line bundles except the trivial one have points in the Kahler

cone where µ(L) > 0 and µ(L) < 0, so that the theorem applies and H0(X,L) = H3(X,L) = 0. The one

exception is the trivial bundle OX which has vanishing slope everywhere in the Kahler cone and satisfied

H0(X,OX) = H3(X,OX) = 1. However, we are not interested in cases for which OX appears in the direct

sum in (4.7) since this leads to the case of enhanced symmetry described in footnote 3. Hence, for our

considerations, all line bundles L will indeed have vanishing zeroth and third cohomology.

– 28 –



J
H
E
P
0
6
(
2
0
1
2
)
1
1
3

As we have seen, stability and vanishing slope of each Ua implies that H0(X,Ua) =

H3(X,Ua) = 0. This means the chiral asymmetries associated to the bundles Ua (that

is the chiral asymmetry of the 10 and 1̄0 multiplets with charges ±ea) can be computed

from the index, so that ind(Ua) = −h1(X,Ua) + h2(X,Ua).

An analogous argument holds for ∧2V and its index. To see this, note that if V

is a poly-stable bundle with slope zero then it follows that ∧2V (and V ⊗ V ∗) are also

poly-stable with slope zero [74]. As a result, each indecomposable term, ∧2Ua, Ua ⊗ Ub in

∧2V is a properly stable bundle with slope zero. Following the same line of argument once

again, such a term either has vanishing zeroth and third cohomology, or consists of a trivial

bundle in which case its zeroth and third cohomologies are equal. Either way we have that

ind(∧2Ua) = −h1(X,∧2Ua) + h2(X,∧2Ua) (and similarly for Ua ⊗ Ub), so that the index

counts the chiral asymmetry of 5̄ and 5 multiplets with charges ±(ea + eb).

4.4 Spectrum of GUT theory

As discussed above, the four-dimensional gauge group is SU(5) × J , where J ≃ U(1)f−1

consists of U(1) factors which are normally Green-Schwarz anomalous. From table 3, the

multiplets rq under this gauge group are given by

1ea−eb , 5̄ea+eb ,10ea ,5−ea−eb ,10−ea (4.15)

where we recall that the sub-script indicates the J charge, an integer vector subject to

the identification (4.4). The corresponding internal H representation, Rq, for each of these

multiplets is listed in the first column of table 3. Given that the bundles Ua are associated to

the H-representations (Fa)ea , the associated bundles for each of the multiplets rq in (4.15)

are easily worked out by first identifying the corresponding H representation Rq and then

taking appropriate tensor products of (Fa)ea . The result for the associated bundles URq

is listed in the third column of table 3. The number, n(rq) of multiplets with SU(5) × J

representation rq is then given by the first cohomology, H1(X,URq
), of these associated

bundle. Serre duality on a Calabi-Yau manifold implies that H1(X,U) ∼= H2(X,U∗) for

any bundle U . Hence, the chiral asymmetries N(rq) = n(rq)− n(r̄−q) can be expressed in

terms in terms of the topological index of each respective bundle as

N(1ea−eb) = n(1ea−eb)− n(1eb−ea) = −ind(Ua ⊗ U∗
b ) (4.16)

= −rk(Ub)ind(Ua) + rk(Ua)ind(Ub)− ch1(Ua)ch2(Ub) + ch2(Ua)ch1(Ub)

N(5̄2ea) = n(5̄2ea)− n(5−2ea) = −ind(∧2Ua) (4.17)

= (4− rk(Ua))ind(Ua)− ch1(Ua)

(

ch2(Ua) +
1

4
c2(TX)

)

(4.18)

N(5̄ea+eb) = n(5̄ea+eb) + n(5−ea−eb) = −ind(Ua ⊗ Ub) (4.19)

= −(rk(Ub)ind(Ua) + rk(Ua)ind(Ub) + ch1(Ua)ch2(Ub) + ch2(Ua)ch1(Ub))

N(10ea) = n(10ea)− n(10−ea) = −ind(Ua) . (4.20)

The total chiral asymmetry of 5̄ and 10 multiplets, summed over all J charges, is given

by the usual formula

N(10) = −ind(V ) = −ind(∧2V ) = N(5̄) (4.21)

for poly-stable rank five bundles with c1(V ) = 0.
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4.5 Discrete symmetries, equivariance and downstairs spectrum

As in generic heterotic compactifications, in order to break the visible GUT symmetry to

GSM = SU(3)×SU(2)×UY (1), we must introduce Wilson lines, on a non-simply connected

space. To this end, we will quotient the Calabi-Yau three-fold and bundle by a freely-acting

discrete symmetry Γ. A bundle U over X descends to a bundle Û on the quotient X̂ = X/Γ

if and only if it is equivariant, that is, if the symmetry Γ can be “lifted” to the bundle. The

mathematical definitions and the details on how to construct equivariant structures are

described in appendix A. Here we will merely need a few facts about such bundles. First,

the indices of an equivariant bundle U and its downstairs counterpart Û are related by

ind(Û) = ind(U)/|Γ| . (4.22)

Also the cohomologies, Hq(X,U), of an equivariant bundle U form representations under

the group Γ. It is therefore useful to define the “graded” cohomologies Hq(X,U,R) which

are the subspaces of Hq(X,U) which transform under the Γ representations R. Further,

hq(X,U,R) = dim(Hq(X,U,R)) is the corresponding graded dimension and the graded

index is defined by

ind(U,R) =
∑

q

(−1)qhq(X,U,R) . (4.23)

As explained earlier, we focus on models where each constituent bundle Ua has an

equivariant structure on its own. The obvious ambiguity in choosing such equivariant struc-

tures consists of an overall phase for each Ua which can be encoded in Γ-representations or

characters, denoted by χ∗
a. We should now discuss how to obtain the downstairs spectrum.

Eq. (4.22) applied to each Ua means that the downstairs spectrum consists of a certain

number of complete 5̄ and 10 representations plus vector-like multiplets. In particular,

each downstairs 5̄ (10) multiplet descends as a whole from a specific sector of J charge.

This means that the constituents of each such multiplet carry the same charge under the

anomalous U(1) symmetries in J .

In order to find the vector-like spectrum downstairs one has to study the equivariant

structure in more detail. To do so, we must choose a Wilson line W (that is, a flat rank one

bundle on X̂, embedded into UY (1) in order to break the GUT symmetry to the standard

model) which induces a representation of the discrete group Γ contained in UY (1). Each

standard model multiplet, ψ, in table 3 is, therefore, associated to an Wilson line bundle

Wψ and carries a Γ representation Rψ which is determined by its weak hypercharge. If we

focus on a particular such multiplet, ψ, contained within the GUT multiplet associated to

U then we have the following relation between cohomologies.

H1(X̂, Û ⊕Wψ) ∼= (H1(X,U)⊗Rψ)inv (4.24)

That is, the downstairs spectrum in the presence of the Wilson line can be computed from

the upstairs cohomology by tensoring with the various Γ representations of the standard

model multiplets and extracting the Γ invariant part from this tensor product.
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Let us now explain this procedure in more detail, focusing on our models with split

structure group. Here we will only discuss Abelian discrete symmetries

Γ =
⊗

r

Zmr , (4.25)

typically with either a single or with two Zm factors. We define αr = exp(2πi/mr) and the

Zmr representations R
(mr)
pr (g) = αprgr , where g ∈ {0, . . . ,mr − 1}. Then, an embedding of

Zmi
into UY (1) ⊂ SU(5) can be written as

g → diag(αprgr , αprgr , αprgr , αp̃rgr , αp̃rgr ) , (4.26)

where pr, p̃r are integers satisfying 3pr+2p̃r = 0 mod mr. Further, to actually break SU(5)

to GSM we need that pr 6= p̃r for at least one r. So in summary, the viable SU(5) breaking

Wilson lines can be obtained by solving

3pr + 2p̃r = 0 mod mr for all r , pi 6= p̃r for at least one r , (4.27)

where pr, p̃r ∈ {0, . . . ,mr − 1}. In particular, this means that a single Zm can break SU(5)

to the standard model provided that n 6= 5. If Γ is a direct product of Zm factors is it

sufficient that one of the factors is different from Z5. For a solution of the above equations,

we define the two Γ representations W =
⊗

r R
(mr)
pr and W̃ =

⊗

r R
(mr)
p̃r

. The relevant

SU(5) representations decompose under Γ×GSM as

5 → (W̃ ,1,2)3 ⊕ (W,3,1)−2 (4.28)

5̄ → (W̃ ∗,1,2)−3 ⊕ (W ∗, 3̄,1)2 (4.29)

10 → (W̃ ⊗ W̃ ,1,1)6 ⊕ (W ⊗W, 3̄,1)−4)⊕ (W ⊗ W̃ ,3,2)1 (4.30)

1̄0 → (W̃ ∗ ⊗ W̃ ∗,1,1)−6 ⊕ (W ∗ ⊗W ∗,3,1)4)⊕ (W ∗ ⊗ W̃ ∗, 3̄,2)−1 . (4.31)

Then, the downstairs cohomology can be expressed in terms of graded cohomologies with

respect to the Γ representations W , W̃ , which describe the Wilson line and the charac-

ters χa, which encode the freedom in choosing the equivariant structure. The result is

summarized in table 4.

For the “physics” models we consider in this paper not all of the graded cohomologies

in table 4 need to be computed explicitly. The upstairs spectrum of such models consists

of 3|Γ| 10 multiplets and has no 1̄0 multiplets. By virtue of eq. (4.22) this will guarantee

precisely three 10 multiplets downstairs so there is no need to check graded cohomologies

in this sector. Further, from eq. (4.21) we know that the chiral asymmetry of 5̄ and 5

multiplets is also 3|Γ|, so that we are guaranteed three chiral 5̄ multiplets downstairs. In

addition, we have to check that all Higgs triplets can be projected out and at least one pair

of Higgs doublets remains in the spectrum. This can be done by computing the number of

T̄a,b and H̄a,b multiplets from the associated cohomologies in table (4). The details of how

to compute graded cohomologies for line bundles on the particular Calabi-Yau manifolds

used in our constructions are explained in appendix B.
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SU(5) repr. GSM repr. name cohomology

10ea (3,2)1 Qa h1(X,Ua, χa ⊗W ∗ ⊗ W̃ ∗)

(3̄,1)−4 ua h1(X,Ua, χa ⊗W ∗ ⊗W ∗)

(1,1)6 ea h1(X,Ua, χa ⊗ W̃ ∗ ⊗ W̃ ∗)

5̄ea+eb (3̄,1)2 da,b, Ta,b h1(Ua ⊗ Ub, χa ⊗ χb ⊗W )

(1,2)−3 La,b, Ha,b h1(Ua ⊗ Ub, χa ⊗ χb ⊗ W̃ )

5̄2ea (3̄,1)2 da, Ta h1(∧2Ua, χa ⊗ χa ⊗W )

(1,2)−3 La, Ha h1(∧2Ua, χa ⊗ χa ⊗ W̃ )

5−ea−eb (3,1)−2 T̄a,b h2(Ua ⊗ Ub, χa ⊗ χb ⊗W )

(1,2)3 H̄a,b h2(Ua ⊗ Ub, χa ⊗ χb ⊗ W̃ )

5−2ea (3,1)−2 T̄a h2(∧2Ua, χa ⊗ χa ⊗W )

(1,2)3 H̄a h2(∧2Ua, χa ⊗ χa ⊗ W̃ )

1ea−eb (1,1)0 Sa,b h1(Ua ⊗ U∗
b , χa ⊗ χ∗

b)

Table 4. Cohomologies which compute the downstairs spectrum. The Wilson line is characterized

by the two representations W and W̃ of the freely-acting Abelian symmetry Γ and χ∗

a are the

characters of Ua. The number of mirror particles is obtained by the second cohomology of the same

bundle and the same representation.

4.6 Anomalies

A characteristic feature of our split models is the presence of the Green-Schwarz anomalous

U(1) symmetries in J . For the case of line bundle sums and from a four-dimensional

perspective this has already been discussed in section 2.6. Here, we will provide a general

discussion, valid for all splitting types and from a geometric viewpoint.

We begin by computing the anomaly coefficients in the GUT model, focusing on the

mixed J SU(5)2 contribution. With the group theoretical indices c(5̄) = 1 and c(10) = 3

for the relevant SU(5) representations the J SU(5)2 triangle anomaly is proportional to

A =

f
∑

a=1

(2N(5̄2ea) + 3N(10ea)) ea +
∑

a<b

N(5̄ea+eb)(ea + eb) . (4.32)

Here, we recall that N(rq) = n(rq) − n(r̄−q) is the chiral asymmetry of a certain repre-

sentation rq. The above anomaly coefficient is an f -dimensional vector which is defined

only up to the identification (4.4) of J charges, so we should explain how to extract un-

ambiguous anomaly coefficients from this result. Any particular U(1) symmetry within

J can be represented by a vector Q = (Q1, . . . , Qf ) satisfying n · Q = 0. The anomaly

coefficient for this U(1) symmetry is then given by Q ·A and is, hence, independent of the

identification (4.4).

We can use the results (4.16)–(4.20) for the chiral asymmetries to rewrite the above

expression for A in terms of topological data. This leads to

(Aa − βik
i
a)a=1,...,f ∈ Zn , βi = c2i(V )−

1

2
c2i(TX) , (4.33)
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where β is the coefficient which appears in the one-loop correction to the four-dimensional

gauge-kinetic function (2.21). We have phrased the above results for the upstairs Calabi-

Yau X and the upstairs bundle V . However, analogous equations, with the chiral asym-

metries in (4.32) interpreted as the downstairs chiral asymmetries and the replacements

Ua → Ûa, V → V̂ and X → X̂ in (4.33) hold on the quotient Calabi-Yau X̂, provided all

bundles Ua are equivariant individually, as we are assuming here. The subsequent inclusion

of a Wilson line does, of course, not affect the chiral asymmetries and, hence, leaves the

anomaly coefficients unchanged.

It is important to also consider the masses of the f − 1 vector fields associated to the

potentially anomalous U(1) symmetries in J . They are given by eq. (2.30), but with the

more general definition (4.9) of the first Chern classes. The mass matrix (2.30) has size f

while we only have f − 1 vector fields. As usual, this mismatch is corrected by imposing

the constraint n · v = 0 on f dimensional vectors v = (va) representing gauge bosons in

this basis. Hence, following the discussion in section 2.7, massless vector U(1) bosons are

characterized by the equation

f
∑

a=1

kav
a = 0 for n · v = 0 . (4.34)

Comparison with eq. (4.33) shows that a U(1) symmetry with a massless vector boson is

necessarily anomaly-free. Conversely, while a U(1) symmetry with a massive vector boson

can generically be expected to be anomalous, it may be anomaly-free in special cases. This

happens if kiav
aβi = 0 while kiav

a 6= 0. This means the number of massless U(1) vector

bosons is given by

(number of massless U(1) vector bosons) = f − 1− rank(kia) , (4.35)

and combining this result with (4.14) we learn that

(number of massless U(1) vector bosons) ≥ f − h1,1(X) . (4.36)

This means that for Calabi-Yau manifolds with small h1,1(X) < f we necessarily have at

least one massless U(1) vector boson. However it is frequently still possible to spontaneously

break these symmetries by giving a vacuum expectation value to appropriate singlet fields.

The phenomenological implications of such choices were explored in section 3. In the next

section, we will explore the geometric meaning of such singlet VEVs.

4.7 Connecting different splitting types

Split bundles of the type considered in this paper typically arise at a special locus in

Kahler and bundle moduli space and, provided certain fields exist, one can move away

from this special locus to obtain a less-split bundle or even recover a full SU(5) structure

group. This process corresponds to moving upwards in the list of structure groups given

in table 2. Conversely, setting certain moduli to zero one can go back to the special locus

and obtain a finer splitting of the structure group. Such movement in moduli space has

– 33 –



J
H
E
P
0
6
(
2
0
1
2
)
1
1
3

been studied in detail in recent literature [50–52, 62–64] and here we will simply review

some of the relevant facts as they apply to the models under investigation.

The moduli of the split bundle, V , in eq. (4.7) are described by

H1(X,V ⊗ V ∗) =
⊕

a,b

H1(X,Ua ⊗ U∗
b ) . (4.37)

The a = b terms on the right-hand side clearly correspond to moduli of the bundle Ua.

It is suggestive (and in fact correct) to relate the terms for a 6= b to deformations away

from the split bundles Ua ⊕ Ub. To see this in more detail, let us focus on two constituent

bundles Ua, Ub with structure groups U(na), U(nb). Possible bundles U which correspond

to moving away from the split bundle Ua ⊕ Ub can be described by the following two

extension sequences

0 → Ua → U → Ub → 0 . (4.38)

0 → Ub → Ũ → Ua → 0 (4.39)

Any infinitesimal smooth, slope-stable deformation of Ua⊕Ub can be described by a combi-

nation of the bundles U and Ũ above [65]. For example, the space of inequivalent bundles

U (respectively Ũ) described by this sequence is given by Ext1(Ub, Ua) ∼= H1(X,Ua ⊗ U∗
b )

(respectively Ext1(Ua, Ub) ∼= H1(X,Ub ⊗ U∗
a )), so precisely the terms for a 6= b in the

sum (4.37). Comparing with table 3 we see that these cohomology groups are associated to

the SU(5) singlet fields Sab which carry charge ea − eb under the anomalous U(1) symme-

tries in J . Hence, once we have computed the complete spectrum of a given split bundle

V we can immediately decide which deformations are possible.

If H1(X,Ua ⊗ U∗
b ) = H1(X,Ub ⊗ U∗

a ) = 0 then no relevant singlet fields exist

and the split bundle U = Ua ⊕ Ub is the only bundle possible in the extension se-

quences (4.38), (4.39). On the other hand, if at least one of H1(X,Ua ⊗ U∗
b ) and

H1(X,Ub ⊗ U∗
a ) is non-zero, non-trivial extensions U whose structure group is “larger”

than U(na)×U(nb) and is contained in U(na + nb) exist.

In the four-dimensional effective theory these infinitesimal deformations are described

by the D-terms associated to the anomalous U(1) symmetries. For the case of line bundle

sums this has been discussed in section 2.5. For general splittings and after setting all

non-singlet fields to zero, the schematic structure of these D-terms is

Da =
3µ(Ua)

κ
+

1

na

∑

b

b 6=a

(

|Sab|
2 − |Sba|

2
)

, (4.40)

where Sab are bundle moduli singlets, κ = dijkt
itjtk is the Calabi-Yau volume and the

slope, µ, has been defined in (4.10).5 Given these expressions for the D-terms, we can now

interpret the geometric discussion above from a four-dimensional point of view.

5For simplicity of notation we have dropped possible Kahler metrics in front of the singlet matter field

terms. Also, note that, in order to keep our notation more “covariant”, we have written down f D-terms for

only f − 1 anomalous U(1) symmetries. This does not lead to an additional constraint since
∑

a
naDa = 0,

as a consequence of c1(V ) =
∑

a
c1(Ua) = 0. The actual four-dimensional D-terms are f − 1 linearly

independent combinations of the Da.
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For a split bundle U = Ua⊕Ub all the relevant singlet fields (if they even exist) should

be zero in vacuum, that is, 〈Sab〉 = 〈Sba〉 = 0. In this case, in order to satisfy the D-term

equations, we should require that µ(Ua) = µ(Ub) = 0. This corresponds precisely to the

zero-slope poly-stability conditions (4.13) on the split bundle which constrain the Kahler

moduli. If no fields Sab or Sba exist this is the only way to satisfy the D-term equations.

In this case, some of the Kahler moduli are stabilised and the bundle is necessarily split.

On the other hand, if fields Sab or Sba do exist they may be given a vacuum expectation

value, provided this is consistent with D- and F-flatness of the four-dimensional theory.

This corresponds to a non-trivial extension U (respectively, Ũ) of Ua ⊕ Ub, with structure

group U(na + nb). Solving the D-term equations then typically requires that µ(Ua) 6= 0

and µ(Ub) 6= 0, that is, at the same time as moving in the bundle moduli space one is

forced to move in the Kahler moduli space away from the special zero-slope locus. Due

to the non-trivial singlet VEVs some or all of the anomalous U(1) symmetries are broken

spontaneously. While this merely generates an additional breaking for the U(1) symmetries

which are anomalous this can give masses to the U(1) symmetries which have remained

massless at the split locus. Also, note that the direction in which one can move away from

the slope-zero locus is dictated by which singlet fields are present. If there are fields Sab
with a < b only, then one can only leave the locus in directions characterised by µ(Ua) < 0

and µ(Ub) > 0. For fields Sba only we have the opposite inequalities and, finally, if both

types of fields are present there need not be a restriction in Kahler moduli space.

One must also be careful in this context to consider the constraints arising from bundle

holomorphy. While these conditions are satisfied automatically by ensuring that the compo-

nent bundles Ua are holomorphic, it is not automatic that all choices of singlet VEVs lead to

holomorphic bundles. These obstructions to the deformations appear as non-trivial F-terms

in the four-dimensional theory, as discussed in sections 2.4 and 3.1.4. Such F-term obstruc-

tions must be explored on a case-by-case basis (see [52, 63, 66–68] for further discussions).

In summary, depending on the choice of bundle V , various or possibly all of the different

splitting types in table 2 may be connected by deformations and may, hence, be part of the

same moduli space. Whether bundles can be connected in such a way, that is, whether one

can move away from a given zero-slope locus in Kahler moduli so that the U(1) symmetries

are spontaneously broken, is of obvious relevance for the phenomenology of our models. It

is important that we can answer these questions, not only by exploring the effect of singlet

VEVs in the four-dimensional effective theory, but also explicitly by a direct calculation of

the cohomology groups H1(X,Ua ⊗ U∗
b ).

With this brief overview of deformation theory in place, we have completed our explo-

ration of the consistency conditions on split gauge bundles in heterotic compactifications.

We briefly summarize these conditions below, before turning to phenomenologically inter-

esting examples.

4.8 The conditions imposed on the geometry

4.8.1 Consistency conditions on the bundles

Here we will concisely summarize the conditions for a consistent heterotic compactification

discussed in the previous section. We assume that we have given a Calabi-Yau manifold
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X with a freely-acting discrete symmetry Γ. In order to be able to break SU(5) to the

standard model group, for Γ = Zn we should have n 6= 5 and for Γ given by a product

of Zn factors at least one factor should be different from Z5. As discussed earlier, such

a Wilson line can be characterized by two Γ representations W and W̃ , subject to the

constraints (4.27). Further, on the Calabi-Yau manifold X, we have a vector bundle V =

⊕f
a=1Ua with c1(V ) = 0, where Ua are bundles with structure group U(na) and first Chern

class kia = ci1(Ua). Then, the full structure group is given by H = S(U(n1)× · · · × U(nf ))

and will frequently be referred to by the split vector n = (n1, . . . , nf ). On this data we

impose the following conditions.

(C1) There should be an anomaly-free completion of the model, that is we should be able

to satisfy eq. (4.1). In practice, we will guarantee this by requiring that

c2(TX)− c2(V )
!
∈ Mori cone of X , (4.41)

so that a complete model can be obtained by adding a suitable number of five-branes

and choosing the hidden bundle to be trivial.

(C2) The bundle V must be holomorphic and poly-stable with zero slope, somewhere in

the Kahler cone of X. As discussed, the second of these constraints means that every

constituent bundle Ua is stable with vanishing slope and that the resulting constraints

on the Kahler moduli have a common solution. In particular, all of the zero slope

conditions

µ(Ua) ∼ dijkk
i
at
jtk = kiaκi

!
= 0 (4.42)

should have a common solutions. This necessarily means that the number of linearly

independent Chern classes ka is less than h1,1(X), the number of Kahler moduli.

(C3) The bundle V needs to be equivariant under the discrete symmetry Γ for it to descend

to a bundle V̂ on the quotient manifolds X̂ = X/Γ. In order to preserve the splitting

type, we realize this by asking all Ua to be Γ-equivariant individually. Hence, they

descend to bundles Ûa, so that V̂ = ⊕f
a=1Ûa. In such cases, we can characterize the

Ua equivariant structures by Γ-representations χ∗
a.

4.8.2 Conditions on spectrum of GUT theory

In preparation for considering specific examples, we list here a set of conditions that we

must impose on split heterotic models that could lead to standard model-like physics in the

associated four-dimensional theory. Some of the physical conditions on the spectrum can

already be formulated in terms of the underlying GUT theory and are, therefore, somewhat

easier to check.

(S1) In order to have a chiral asymmetry of three families we require that

− ind(V ) =
∑

a

N(10ea)
!
= 3|Γ| . (4.43)
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Since the index divides by the group order, |Γ|, as we descend to the downstairs

bundle V̂ this guarantees a chiral asymmetry of three 10 multiplets. The total chiral

asymmetry of 5̄ multiplets equals −ind(∧2V ). However, since ind(∧2V ) = ind(V ) for

an SU(5) bundle no additional condition is needed for the 5̄ multiplets.

(S2) We would like to exclude any mirror families originating from 1̄0 multiplets. It is

possible (although perhaps not likely) that an entire 1̄0 multiplet is projected out by

the Wilson line. Also, 10-1̄0 pairs might be lifted away from the split locus, when

singlet VEVs are switched on. However, we would like to use a cleaner approach and

remove 1̄0 multiplets completely at the GUT level and on the split locus. Hence, we

require that
∑

a

n(1̄0−ea) = h2(X,V )
!
= 0 . (4.44)

(S3) In the downstairs spectrum we would like to have at least one pair of Higgs doublets.

A necessary condition for this is the existence of at least one 5–5̄ pair in the GUT

theory. This means that

∑

a

n(5−2ea) +
∑

a<b

n(5−ea−eb) = h2(X,∧2V )
!
> 0 . (4.45)

If all conditions above are satisfied we are guaranteed a model with the standard model

gauge group (times U(1) symmetries, possibly anomalous) and precisely three families of

quarks and leptons (and no mirror families). The only additional multiplets are whatever

remains from the 5–5̄ pairs after including the Wilson line. We need to ensure that the

Higgs triplets are projected out and at least one pair of Higgs doublets survives.

(H1) In order to remove all Higgs triplets we demand that

n(T̄a) = h2(X,∧2Ua, χa⊗χa⊗W )
!
= 0 , n(T̄a,b) = h2(X,Ua⊗Ub, χa⊗χb⊗W )

!
= 0 .

(4.46)

As mentioned earlier, for an Abelian group Γ, a sufficient (although not strictly

necessary) condition for the Higgs triplets to be projected out in a particular sector

∧2Ua or Ua ⊗ Ub is

h2(X,∧2Ua)
!
< |Γ| , h2(X,Ub ⊗ Uc)

!
< |Γ| . (4.47)

(H2) In order to keep at least one pair of Higgs doublets we demand that

n(H̄a) = h2(X,∧2Ua, χa⊗χa⊗ W̃ )
!
> 0 n(H̄a,b) = h2(X,Ua⊗Ub, χa⊗χb⊗ W̃ )

!
> 0

(4.48)

in at least one sector ∧2Ua or Ua ⊗ Ub.

If these two further conditions are satisfied, we have a standard model spectrum, that

is a standard model gauge group (times U(1) factors), precisely three families of quarks

and leptons, one or more pairs of Higgs doublets and no exotic fields charged under the

standard model group.
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5 Heterotic line bundle models on CICYs

In this section, we will begin a systematic and algorithmic search for split heterotic model

with a standard model particle spectrum, that is, models which satisfy the constraints

(C1)–(C3), (S1)–(S3) and (H1), (H2) described in the previous section. As our starting

point, we will focus on “maximally split” models defined by a sum of five line bundles

V =
5
⊕

a=1

La . (5.1)

That is, we consider purely Abelian internal gauge fields such that all higher-rank factors

Hs in the split structure group given in (4.3) vanish. This choice is motivated by starting

with the most basic splitting type and by the relative technical simplicity of line bundles.

In particular, the slope-stability conditions of section 4.3 reduce to the straightforward

zero-slope condition of (4.13) in this case. Starting from line-bundle models we still have

a window into a larger moduli space of geometries via the bundle deformations discussed

in section 4.7. Moreover, as described in section 3, it is frequently of phenomenological

interest to turn on singlet VEVs, thereby continuing to other splitting types.

In order to systematically construct a large-scale data set of line bundle models, we

must specify an explicit class of Calabi-Yau geometries and the available line bundles over

them. In this paper, we will take as our arena perhaps the simplest set of Calabi-Yau

three-folds, namely complete intersections in products of projective spaces (CICYs), and

line bundles defined over them. The set of CICYs have been completely classified [69, 70]

and there exists a list [71] of 7890 such spaces together with their basic properties.

In addition, the two main technical issues relevant for the construction of heterotic

line bundle models have been resolved for CICYs. First, freely acting discrete symmetries

of CICY manifolds have been classified recently in ref. [72].6 Secondly, efficient meth-

ods to compute line bundle cohomology on CICYs have been described and implemented

by the authors in ref. [16, 17, 73]. Our constructions will heavily rely on both of these

technical results.

We begin by reviewing the relevant properties of CICYs and line bundles over them

before we move on to the construction of models. Since the Picard number, that is, the

dimension of the space of available line bundles, is given by the Hodge number h1,1(X)

of the underlying three-fold, X, one expects the number of models and their complexity

to increase with h1,1(X). We will, therefore, start with CICYs with the smallest possible

Picard number h1,1(X) = 2 (recall that the vanishing slope constraint (4.13) cannot be

satisfied for h1,1(X) = 1) and work our way up to and including h1,1(X) = 5 (the smallest

Picard number for which models free of massless U(1) vector fields can be constructed).

Of course, on each of those CICYs we must study a large number of line bundle sums in

order to find those with a phenomenologically interesting particle spectrum.

6This classification covers discrete groups which can be constructed via a linear action on the coordinates

of the ambient projective spaces.
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5.1 Complete intersection Calabi-Yau three-folds

Complete intersection Calabi-Yau manifolds X are defined as the common zero locus of K

homogeneous polynomials on the ambient space A = P
N1 × . . .× P

Nm , given by a product

of m projective spaces with dimensions Ni. To obtain three-folds from such complete

intersections we obviously need
∑m

i=1Ni − K = 3. The defining polynomials, pα, are

characterised by their multi-degrees qj = (q1α, . . . , q
m
α ), where qiα specifies the degree of pα

in the coordinates of the factor P
Ni in A. This information can be summarised by the

configuration matrix












P
N1 q11 q12 . . . q1K

P
N2 q21 q22 . . . q2K
...

...
...

. . .
...

P
Nm qm1 qm2 . . . qmK













m×K

. (5.2)

whose columns are the multi-degrees of the defining polynomials. In order to obtain a

Calabi-Yau manifold, that is, a manifold with vanishing first Chern class, the conditions
∑K

α=1 q
i
α = Ni+1 need to be satisfied for all i, so that each row of the configuration matrix

sums up to the dimension of the associated projective space plus one.

As stated above, the classification of CICYs has led to a list of 7890 such configuration

matrices (although not all of them correspond to different Calabi-Yau three-folds [17]). For

the purpose of this paper, we will only be interested in the low Picard number cases within

this set, satisfying 2 ≤ h1,1(X) ≤ 5, which, in addition have at least one symmetry of the

form classified in [72]. There are 65 such configurations although only 39 of them turn out

to be inequivalent.7 These 65 manifolds, together with their main properties are available

at the website listed in ref. [71].

We need to collect a few general properties of these manifolds which will be used

in the following. It turns out that all of the 65 manifolds relevant to our initial scan are

“favourable” in the sense that their complete second cohomology descends from the ambient

space. Hence, if we introduce the standard Kahler forms Ji, normalised as
∫

P
Ni
JNi

i = 1,

on the projective factors of the ambient space their restriction to X (which we denote

by the same symbol) spans the complete second cohomology of X. If we introduce the

forms ρX = ∧Kα=1(
∑

i q
i
αJi) the triple intersection numbers in the basis {Ji} can be easily

computed from the formula

dijk =

∫

X
Ji ∧ Jj ∧ Jk =

∫

A

Ji ∧ Jj ∧ Jk ∧ ρX . (5.3)

Elements of the fourth cohomology (and, by Poincaré duality, the second homology) of X

will often be given relative to a basis {νi} of four forms dual to {Ji}, satisfying
∫

X Ji∧ν
j =

δji . For example, we expand the second Chern class of X as c2(TX) = c2i(TX)νi and

the values of the coefficients c2i(TX) are explicitly given in the data available from the

database [46]. Kahler forms J on X can be expanded as J = tiJi, where t
i are the Kahler

7It is still useful valuable to have the same Calabi-Yau three-fold represented by different CICY config-

urations since the classification of discrete symmetries, which are restricted to act linearly on the ambient

space, can depend on the representation used.
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moduli. For favourable CICYs, the Kahler cone is given by ti > 0 for all i and effective

classes in the second homology of X corresponds to positive linear combinations of the

four-forms νi.

5.2 Line bundles on favourable CICYs

Line bundles on Calabi-Yau three-folds are classified by their first Chern class (modulo dis-

crete torsion which determines Wilson Lines) and, on favourable CICYs, they can therefore

be labelled by an integer vector k = (k1, . . . , km). We denote by L = OX(k) the line bundle

with first Chern class c1(OX(k)) = kiJi. This line bundle can also be thought of as the

restriction of the ambient space line bundle OA(k) = O
PN1 (k

1) ⊗ · · · ⊗ OPNm (km) to X.

Its dual, L∗, is simply given by L∗ = OX(−k). With the Todd class of a Calabi-Yau three

fold given by Td(TX) = 1 + c2(TX)/12 it is straightforward to find the index

ind(L) ≡
3
∑

q=0

(−1)qhq(X,L) =

∫

X
ch(L) ∧ Td(X) =

1

6

(

dijlk
ikjkl +

1

2
kic2i(TX)

)

(5.4)

of L. However, computing the line bundle cohomology groups Hq(X,L) individually is

more involved. One useful relation is provided by Serre duality [76, 77] which, for Calabi-

Yau three-folds, states that Hq(X,L) ∼= H3−q(X,L∗). Positive (ample) line bundles in

the present context are those for which all ki > 0. To such positive line bundles we can

apply Kodaira’s vanishing theorem [76, 77] which states that Hq(X,L) = 0 for q > 0.

Hence, for positive line bundles the zeroth cohomology is the only non-vanishing one which

can be computed from the above index formula alone. Similarly, negative line bundles are

those for which all ki < 0. Their only non-vanishing cohomology is the third which again

can be computed from the index. Unfortunately, positive and negative line bundles are

not useful for our model building purposes. In fact, for such line bundles the zero slope

condition (4.13) cannot be satisfied, given that the Kahler cone for our three-folds is given

by ti > 0. Hence, we need to understand the cohomology of “mixed” line bundles. In

this context, there exist weaker vanishing theorems which can sometimes be helpful. For

example, the vanishing condition mentioned in footnote 4, which states that if the slope

µ(L) = dijkc
i
1(L)t

ktk is negative somewhere in the Kahler cone, then H0(X,L) = 0 [61],

can be useful in determining the cohomology of many line bundles of interest to us.

To extract further information about line bundle cohomology one can consider Koszul

resolutions combined with Bott-Borel-Weil representations [78] of ambient space cohomol-

ogy, as described in ref. [73]. These methods, combined with the above vanishing theorems,

allow us to calculate the vast majority of line bundle cohomology groups and underlie most

of the cohomology results in this paper. For a small number of line bundles these methods

do not lead to a complete answer and one has to resort to more explicit methods, such

as computing Cech cohomology [76, 77]. The method for computing graded line bundle

cohomology on CICYs is outlined in appendix B.

In our systematic scans for heterotic line bundle standard models on CICYs, we will

construct rank five bundles V with structure group S(U(1)5) by considering sums (5.1)

of five line bundle La = OX(k
i
a), satisfying c1(V ) =

∑

a c1(La) = 0. This corresponds
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to the splitting type n = (1, 1, 1, 1, 1) with f = 5 from the general set-up in section 4.1

and all basic results from this section, in particular the content of tables 3 and 4, apply

with the identification Ua = La. In addition, one special feature of line bundle models has

to be taken into account, namely the vanishing of the bundles ∧2Ua, ∧
2U∗

a and, hence,

the absence of the corresponding 5̄2ea , 5−2ea multiplets given in table 3. For the Chern

characters and the index of such a sum of line bundles one has

ch1(V ) =
∑

a

kia
!
= 0 (5.5)

ch2(V ) =
1

2
dijl

∑

a

kjak
l
a (5.6)

ind(V ) =
1

6
dijl

∑

a

kiak
j
ak
l
a . (5.7)

5.3 The scan

With the methods described above, we were able to perform the scan described in previous

sections, over approximately 1012 different line bundle sums kia, to build line bundle stan-

dard models over CICYs. The GUT models from this scan have already been presented

and discussed in ref. [35]. They were obtained by considering all favourable CICYs with

h1,1(X) ≤ 5 and with freely-acting symmetries. No phenomenologically viable model were

found for h1,1(X) = 2, 3. The scan, which ranged over −3 ≤ kia ≤ 3 for h1,1(X) = 4 and

−2 ≤ kia ≤ 2 for h1,1(X) = 5, led to 202 GUT models on 13 CICYs. Here, we have calcu-

lated the explicit downstairs models with standard model gauge group from all these GUT

models and the results are presented in the database [46]. Phenomenological properties of

these models have already been discussed in section 3.

6 Further consequences of split heterotic geometry

In this section we explore the possibility of more complicated equivariant structures on the

bundle V , such that not every constituent bundle Ua is equivariant by itself. Such models

are relatively rare at least among line bundle models. For example, the scan in ref. [35]

which led to 202 phenomenologically promising GUT models, only produced four models

with non-trivial equivariant building blocks. Nevertheless, such constructions might be of

interest for a number of phenomenological reasons, in particular in relation to the up-type

Yukawa matrix and the possibility of a Peccei-Quinn symmetry. We begin by outlining the

theoretical issues which arise in these constructions and discuss possible phenomenological

applications towards the end of the section.

6.1 Line bundle models with non-trivial equivariant blocks

In this section, we explore sums of line bundles V =
⊕

a La, for which not all of the La admit

an equivariant structure. Such sums can still descend to the quotient manifold, X̂, if V

splits into equivariant blocks, that is, into non-trivial line bundle sums which are equivariant

as a whole even thought their constituent line bundles are not. A simple example of this
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type of non-trivial structure can be found by considering the line bundle O(1) on the quintic

hypersurface in P
4. This manifold admits a well-known Γ = Z5 × Z5 freely acting discrete

symmetry. On the homogenous coordinates of P4, Γ can be represented as

Z
1
5 : xk → xk+1 , Z

2
5 : xk → αkxk (6.1)

where α is a fifth root of unity, so α5 = 1. It is straightforward to verify that O(1) is not

equivariant with respect to the symmetry (6.1). Indeed, not only is ind(O(1)) = 5 which

is clearly not divisible by |Γ| = 25, but it is straightforward to show that, for the induced

action of (6.1) on H0(X,O(1)), the two Z5 symmetries do not commute and instead form

a representation of the order 125 Heisenberg group [75] (see appendix A for mathematical

details on equivariance). However, a sum of five such line bundles

V = O(1)⊕5 (6.2)

does admit an equivariant structure. The required morphisms φ ∈ Hom(V, V ) are no longer

a simple group character (as was the case for individually equivariant line bundles), but

instead are generated by the following two matrices acting fiber-wise on the sum in (6.2)

φ1 =















0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0















, φ2 =















1 0 0 0 0

0 α2 0 0 0

0 0 α4 0 0

0 0 0 α1 0

0 0 0 0 α3















. (6.3)

It can be verified that under the combined action (A.3) of (6.1) and (6.3) the sections

H0(X,O(1)⊕5) carry a representation of Γ = Z5 × Z5.

In this example, it is clear that V in (6.2) is indeed an equivariant bundle and equal to

the pull-back of some rank five bundle, V̂ on X̂ = X/Γ. However, in this case the “down-

stairs” bundle, V̂ , is not a sum of line bundles, rather is some generically indecomposable

rank five vector bundle on X̂. Since H0(X, V̂ ∗⊗V̂ ) = 1, V̂ is in fact a simple bundle (in the

algebro-geometric sense) [76, 77]. In other words, given the covering map q : X → X/Γ,

the operation of pulling back, q∗(V̂ ), need not preserve the structure group. In particular,

a non-split bundle may pull-back to a split one.

Such bundles are of interest to us in the present context. Although they represent more

complicated, higher-rank objects over X̂, their properties are completely determined by a

sum of line bundles over X and, hence, are easily analyzed using the techniques we have

described in this work. Although we expect relative few models with non-trivial equivariant

building blocks they may have several features of phenomenological interest, as we will see.

Before we begin to explore these features in detail, however, it should be noted that for

such models the number of Green-Schwarz anomalous U(1) symmetries will be different in

the “upstairs” and “downstairs” theories. For example, consider a sum of two line bundles

L1⊕L2 ⊂ V =
⊕5

a=1 La which are equivariant as a pair but not individually. If c1(V ) = 0

there will be four U(1) symmetries upstairs, but only three associated to the downstairs

bundle, which has the split form

V̂ = U1 ⊕ L3 ⊕ L4 ⊕ L5 (6.4)
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with U1 an indecomposable, U(2) bundle. In the extreme case where all five line bundles

form an equivariant block (as in the above toy example on the quintic), there would in

fact be no enhanced U(1) symmetries left in the downstairs theory. It seems in such cases

one has lost not only all additional U(1) symmetries but also the constraints they normally

imply for the structure of the four-dimensional theory. However, since the downstairs theory

associated to (X̂, V̂ ) is derived as the Γ-invariant part of the theory on (X,V ), the U(1)

symmetries which appear in the upstairs theory can still constrain the theory. For example,

the downstairs Yukawa couplings λ
(u)
pqr for 10p10q5r (see eq. (2.10)) are determined by the

Yoneda pairing

Ydownstairs =

∫

X̂
H1(X̂, V̂ ) ∧H1(X̂, V̂ ) ∧H1(X̂,∧2V̂ ∗) . (6.5)

This can be written in terms of the invariant part of the upstairs Yukawa couplings as

InvariantΓ,φ

(∫

X
H1(X, q∗(V̂ )) ∧H1(X, q∗(V̂ )) ∧H1(X, q∗(∧2V̂ ∗))

)

. (6.6)

WhileH1(X, q∗(V̂ )) need not be the cohomology of a simple line bundle L onX, the integral

in (6.6) will in general be constrained to be U(1) gauge invariant for all the anomalous U(1)

symmetries which arise in the upstairs theory. With this observation in hand we turn now

to look at some of the phenomenological features which arise in models with non-trivial

equivariant blocks.

6.2 Up-type Yukawa couplings

As discussed in section 2 (see eq. (2.10)), for line bundle models with V =
⊕

a La, the

up-type Yukawa couplings

λ(u)pq H̄10p10q (6.7)

are allowed only if the Higgs charge −Q(H̄) = eh̄+eḡ equals Q(10p)+Q(10q) = eap +ebq .

For pure line bundle models, we always have h̄ < ḡ since the sector H1(X,∧2Ua) which may

lead to up-type Higgs doublets with charge −2ea is absent for line bundle models. Since the

Yukawa terms in (6.7) are symmetric in family space it follows that up Yukawa couplings

for such models without equivariant blocks cannot have rank one. This conclusion can

obviously change away from the Abelian locus when singlet VEVs are switched on or when

multiple Higgs pairs are considered.

Another possibility to generate phenomenologically desirable rank one up Yukawa ma-

trices at the perturbative level is to consider line bundle models with non-trivial equivariant

blocks. For example, consider the case where two line bundles, L1 ⊕ L2 are associated to

the pull-back of a non-Abelian rank two bundle, Û on the quotient space, X̂. Then the

downstairs Yukawa couplings may contain a terms of the form

Ydownstairs ∼

∫

X̂
H1(X̂, Û)ea ∧H

1(X̂, Û)ea ∧H
1(X̂,∧2Û∗)−2ea (6.8)

which can lead to a rank one mass matrix. Such a term is possible since each of the

downstairs cohomology groups above, pulls back not to a single line bundle cohomology on
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X but a sum of two line bundles. That is, Y (u) is given by the invariant part of

∫

X

(

H1(X,L1)

H1(X,L2)

)

∧

(

H1(X,L1)

H1(X,L2)

)

∧H1(X,L∗
1 ⊗ L∗

2) (6.9)

where the 2×2 matrices schematically represent the group invariant elements of cohomology

that are obtained from non-trivial combinations of H1(X,L1) and H
1(X,L2).

6.3 Realizing a Peccei-Quinn symmetry

Peccei-Quinn U(1) symmetries, denoted by UPQ(1), may be used to explain some of the

more puzzling aspects of supersymmetric GUTs. Of particular interest is their role in

addressing the µ problem, that is, the problem of why the superpotential Higgs mass term

is so small given that it is a super-renormalizable operator. The class of models explored

in this work, perhaps point at least in the right direction since the Higgs doublets are

precisely massless at the split locus of the bundle. However this feature is not guaranteed to

persist away from the split locus when non-trivial singlet VEVs are switched on and moduli

stabilization might well drive some models to such a region in moduli space. However, if

the µ term is forbidden by a UPQ(1) symmetry it is more robustly protected. Peccei-

Quinn symmetries can also be motivated from proton stability. Assuming neutrality of

the Yukawa-couplings it is the easy to show that any U(1) symmetry which forbids the

dimension five proton decay operators 5̄p10q10r10s (see eq. (2.12)) must in fact be a

UPQ(1) symmetry. For these reasons, it is important to study whether such a symmetry

can be realized in split heterotic models.8

We will now argue that in split models with bundle V =
⊕

a Ua and each Ua equivariant

individually, no UPQ(1) can arise. For such models, each constituent bundle Ua descends

to a bundle Ûa on the quotient space X̂ = X/Γ and it follows that ind(Ûa ⊗ Ûb) =

ind(Ua ⊗Ub)/|Γ| (and similarly for ∧2Ua), that is the index is divisible by the group order

|Γ| in each sector of 5̄ea+eb and 5−ea−eb multiplets. Of course, the chiral asymmetry in

each such sector must be zero or negative, ind(Ûa ⊗ Ûb) ≤ 0, or else this sector leads to

complete 5 multiplets downstairs which contain phenomenologically unacceptable Higgs

triplets. The 5̄ excess in each sector will contribute towards the families, while divisibility

of the index implies that any remainders from the 5̄–5 pairs have to come in vector-like

pairs. In conclusion, if all constituent bundles Ua are equivariant individually and we

require Higgs triplets to be projected out by Wilson-line breaking, then the Higgs doublets

can always be grouped into vector-like pairs under the U(1) symmetries.

We would now like to argue, for the case of line bundle sums V =
⊕

a La, that this

statement does not necessarily hold any more in the presence of non-trivial equivariant

blocks. Suppose that the line bundle sum L1⊕L2 ⊂ V constitutes a non-trivial equivariant

block and is the pull-back of a non-decomposable rank two bundle U on X̂, that is L1⊕L2 =

q∗(Û). Now consider a third line bundle, La in V such that ind((L1 ⊕ L2) ⊗ La) < 0 and

h2((L1 ⊕ L2) ⊗ La) < |Γ|. The Higgs multiplets which arise from (L1 ⊕ L2) ⊗ La can be

obtained from the up-stairs cohomology by extracting the part which corresponds to the

8For analyses of similar issues in an F-theory context see for example [79–81].
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appropriate Γ-representation, along the lines of section 4.5. If this process leads to Higgs

multiplets

H ∈ H1(X,L2 ⊗ La) , H̄ ∈ H1(X,L∗
1 ⊗ L∗

a) , (6.10)

a pattern which presumably can be arranged for appropriate model building choices, then

it is clear that a linear combination of the upstairs U(1) symmetries will behave as a

UPQ(1) symmetry and forbid the µ-term as well as dangerous dimension five proton decay

operators. It is worth noting that in this case, although the µ-terms of the final four-

dimensional theory are effectively forbidden by the U(1) invariance described above, there

is no corresponding U(1) gauge symmetry in the four-dimensional theory.

It should be clear from the above discussion that many features of the four-dimensional

theory can be affected by non-trivial equivariant blocks, often in subtle and surprising ways.

We hope to explore the consequences of such behaviour in more detail in future work. For

now, it should be noted that, unfortunately, the interesting features described above do

not arise in the four models with non-trivial equivariant blocks in our current data set.

All four models suffer from the problem that the color triplets cannot be projected out. If

desired, one could modify the scanning criteria we have employed to generate models with

a UPQ(1) using the methods described in this paper.

7 Summary

In this paper, we have developed the formalism for heterotic models with split vector

bundles, with particular emphasis on the maximal splitting into line bundle sums. We

have shown that such heterotic line bundle models are a promising arena for building

particle physics models within string theory and we have presented a database [46] of

about 400 heterotic line bundle standard models. All of these models have a standard

model gauge group times four additional and frequently Green-Schwarz anomalous U(1)

symmetries, the exact matter spectrum of the MSSM, one or more pairs of Higgs doublets,

a spectrum of bundle moduli which are standard model singlets and no exotics charged

under the standard model group of any kind.

The additional U(1) symmetries constrain the allowed operators in the four-

dimensional theory and provide an interesting tool for low-energy phenomenology. For

our line bundle standard models we have worked out the spectrum of U(1) invariant four-

dimensional operators, including operators with insertions of the bundle moduli singlets.

The results which are presented in the database [46] can be used to discuss a large variety

of phenomenological issues, including the structure of Yukawa couplings, proton stability,

the µ-term and neutrino masses. In section 3 these issues have been illustrated for a par-

ticular example model from the database. We have emphasized that this specific model

has not been put forward as the most attractive one, but merely as an example to demon-

strate the phenomenological possibilities of heterotic line bundle models. We hope that the

database [46] provides a starting point for exploring these phenomenological questions in

depth and, eventually, to isolate a true string standard model which reproduces all known

features of low-energy physics.
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The present work is merely the first step in this direction. First and foremost we need

to extend the current scans for line bundle standard models. The present models, collected

in the database [46] are defined on a relatively small set of Calabi-Yau three-folds and rely

on line bundles with a fairly restricted range of integer entries. Both of these restrictions

can be lifted, at least to a certain extent, and we expect to find many more line bundle

standard models in this case. Ideally, this should eventually lead to a classification of all

line bundle standard models on the known sets of Calabi-Yau three-folds. Such a data

set, which will likely contain tens of thousands or possibly even more models, would be a

legitimate starting point for the search for a true string standard model.
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A Equivariant structures and Wilson lines

One of the requirements we impose on line bundles sums U is that it respects the freely-

acting symmetry, Γ, by which we quotient our Calabi-Yau three-folds. More precisely, we

need that our bundle U
π

−→ X descends to a bundle Û on X/Γ, in the sense that U ∼= q∗Û .

For a bundle to descend to the quotient space it is necessary that the automorphisms Γ of

X “lift” to automorphisms of the bundle U over X. In other words, for each g ∈ G there

must exist a bundle morphism, φg : U → U which commutes with the projection π : U → X

and covers the action g : X → X on the base. Such a lifting of the group action is known

as an invariant structure on U . We can express this concisely by the commutativity of the

following diagram for all g ∈ Γ.

U
φg
−→ U

π ↓ ↓ π

X
g

−→ X

(A.1)

In addition to invariance we must require that the φg satisfy what is called the co-cycle

condition, namely that ∀ g, h ∈ Γ,

φg ◦ φh = φgh . (A.2)

An invariant structure which satisfies the cocycle condition is called an equivariant structure

on U . If U admits such a set of morphisms it is said to admit an equivariant structure and,

in this case, it descends to a bundle Û on X/Γ. Indeed, the set of vector bundles on X/Γ

is in one-to one correspondence with the set of equivariant vector bundles on X.
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How does one decide whether a sum of line bundles admits such an equivariant

structure? The bundle morphisms φg induce linear maps Φg on the global sections,

s ∈ H0(X,U), of U which are defined by

s→ Φg(s) = φg ◦ s ◦ g
−1 . (A.3)

From eq. (A.2), these induced actions on the sections satisfy

Φg ◦ Φh = Φgh , (A.4)

that is, they form a Γ representation on the sections of U . If the bundle U is globally

generated by its sections this provides a practical way of checking equivariance (see ref. [18]

for a more detailed discussion of this point). In such a case one can reconstruct the bundle

morphisms φg from the action on section Φg and so U is equivariant if and only if such

linear maps on the sections exist. Since the sections of U are usually given by polynomials

in the ambient space homogeneous coordinates, checking for the existence of such maps

on the sections is a practical possibility. If the bundle U is not globally generated, as will

frequently be the case for our examples, this method does not immediately apply. However,

in this case, one can consider the twisted bundle U ⊗ Lp, where L is an ample line bundle

known to be equivariant and p > 0 is a sufficiently large integer such that the twisted

bundle is globally generated. Equivariance of U ⊗ Lp can then be checked on its sections

as described above and it is equivariant if and only if the original bundle U is.

To consider the actions of symmetries on sections, we shall start by considering sym-

metry actions on homogeneous polynomials. The two cases of interest to us here are where

Γ is a single Zm factor, or a direct product of two such groups. In the discussion to follow

much of the complication which will occur is only relevant for the case where we have more

than one Abelian factor, and even then only for line bundles which must appear with a

non-trivial multiplicity if they are to admit an equivariant structure. Here, we will discuss

the general case as, once this is understood, specializing to the more straightforward ex-

amples is trivial. In particular it is very easy to see, by simplifying the following analysis,

that for Γ = Zm all line bundles admit an equivariant structure.

Consider a group Γ = Zm1 × Zm2 acting on the ambient space A = P
N1 × . . . × P

Nm .

We will use indices i, j, . . . to label projective space factors and r, s, . . . to label the Abelian

factors in Γ. For such an action to be well defined on the product of projective spaces

we have,

Mmr
r







ai0
...

aiNi






= λir







ai0
...

aiNi






∀a, i , (A.5)

where the ai are the homogeneous coordinates on the i’th projective space and Mr is the

action of the Zmr factor in Γ. In addition, we have the following to ensure that the Abelian

factors commute when considered as an action on the projective spaces.

MrMs







ai0
...

aiNi






= ΓirsMsMr







ai0
...

aiNi






(A.6)
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Note that by definition we have Γisr = (Γirs)
−1. Given such an action on the homogeneous

coordinates one can compute the action on a vector of polynomials of multi-degree dα =

[dα1 , . . . , d
α
m], which we denote Pdα (note here that α labels the polynomial and i = 1, . . . ,m

the projective spaces).9

MrMsPdα = γαrsMsMrPdα (A.7)

Mmr
r Pdα = Λαr Pdα (A.8)

γαrs = Πmi=1

(

Γirs
)dαi (A.9)

Λαr = Πmi=1

(

λir
)dαi (A.10)

Now that we have understood the action of our symmetries on vectors of polynomials

we can proceed to consider such polynomials to be the sections of globally generated sums

line bundles on the products of projective spaces. Using the global generation property to

induce the group action on the fibres from those of the sections we see that, in general,

the naive induced action given in (A.7) and (A.8) need not give rise to an equivariant

structure on the bundle. Equivalently, because of the possibility of projective rescalings,

equations (A.7) and (A.8) do not obey a cocycle condition such as (A.4) when considered as

an action on sections. In order to “fix up” these transformations we include an additional

bundle morphism M̂r for each group action, which acts as a GL(N) transformation on

the sum of N line bundles.10 Note that in the case of a single Zm we would only have

equation (A.8), and as such we could always lay down an equivariant structure on any single

line bundle, simply by taking the associated bundle morphism to be Λ
1/mr
r multiplied by

the identity map.

Returning to the case of two Abelian factors in Γ, we then find the following require-

ments on the bundle morphisms from (A.4).

(M̂rMr)
mrPd = Pd (A.11)

⇒ M̂mr
r =







Λ1
r

Λ2
r
. . .






and (A.12)

(M̂rMr)(M̂sMs)Pd = (M̂sMs)(M̂rMr)Pd (A.13)

⇒ M̂rM̂s







γ1rs
γ2rs

. . .






MsMrPd = M̂sM̂rMsMrPd (A.14)

Thus demanding a good group action on the sum of line bundles on the ambient space,

we obtain the conditions on our bundle morphisms M̂r, determined purely in terms of the

9Strictly, we should use a different symbol for the action on vectors of polynomials and the homogenous

coordinates. In this appendix, however, we will use Ma for both in order to induce a less cluttered notation.

Which action is meant is unambiguous from context.
10To make a connection to the notation in our general discussion, the Mr actions correspond to the g−1

factor in (A.3) and the M̂r correspond to the bundle morphisms φg which we must choose such that a

cocycle condition of the form (A.4) is satisfied.
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original action on the homogenous coordinates, which follow.

M̂mr
r







Λ1
r

Λ2
r
. . .






= 1 ∀ a , M̂rM̂s







γ1rs
γ2rs

. . .






= M̂sM̂r ∀ r 6= s . (A.15)

In this paper we restrict ourselves to the case of individually equivariant line bundles or

non-trivial equivariant blocks composed from a sum of the same line bundle.11 Specializing

to one such sum of identical line bundles for simplicity, we can set dα = dβ ∀ α, β. This

simplification allows us to write Λαr
∼= Λr and γαrs

∼= γrs ∀ α. Equations (A.15) then

simplify to,

M̂mr
r Λr = 1 and M̂rM̂sγrs = M̂sM̂r (A.16)

It is easy to show that if the equations (A.16) are to have a solution then γ l̂rs = 1 where l̂ =

LCM(mr,ms). We can, without loss of generality, choose M̂1 to be diagonal. Combining

these two observations, it is then possible to show that a solution to equations (A.16),

giving rise to a good group action, only exists if there we have a sum of m̂ identical line

bundles, where m̂ is the minimal integer such that γm̂ = 1 (where γ = γ12). In such a case

the solution to the system takes the following form

M̂1 =







M̃1

M̃1

. . .






where M̃1 = Λ

− 1
N1

1













1

γ
. . .

γm̂−1













M̂2 =







M̃2

M̃2

. . .






where M̃2 =













0 X1 0 0 . . .

0 0 X2 0 . . .
...

...
...

...
...

Xm̂ 0 0 0 . . .













, (A.17)

with (Πm2
i=1Xi)

m2
m̂ = Λ−1

2 . The above discussion allows us to lay down an equivariant

structure on any sum of globally generated line bundles on products of projective spaces

which admits an equivariant structure. Non-globally generated line bundles can be dealt

with using this formalism by employing the technique of twisting by an ample equivariant

line bundle as discussed earlier in this section. Finally we should consider equivariant

structures on the restriction of these line bundles to the Calabi-Yau three-fold, defined as

a complete intersection in the ambient space A. Fortunately, for our favourable manifolds,

due to the structure of the Koszul sequence and thanks to the fact that the normal bundle

to the Calabi-Yau itself admits an equivariant structure, equivariant line bundle sums on

the three-fold are in one-to-one correspondence with their ambient space counterparts.

11In fact for the situation at hand, due to the structure of zeroth cohomologies of line bundles on projective

spaces, this simplification is true in generality. It is easy to show that, if one has a morphism φg which

mixes different line bundles, its inverse φg−1 can not exist as one of the required homomorphism groups

between line bundles will vanish. This of course means that we can not construct an equivariant structure

on such a mixed sum of line bundles.
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B Representation content of cohomology

Based on the method to find an explicit equivariant structure on U discussed in the previous

appendix, we must now explain how to extract the representation content for cohomologies

of U . If a bundle admits a Γ-equivariant structure, then the cohomology groups Hq(X,U)

form Γ-representations. We can then define the cohomology groups Hq(X,U,R), the sub-

spaces of Hq(X,U) which transform under the Γ-representation R, and their dimensions

hq(X,U,R) = dim(Hq(X,U,R)). As in table 4, the physical properties of our models can

then be expressed in terms of these “graded” cohomologies.

How do we compute these cohomologies? First of all, we relate the bundle U to its

ambient space counterpart U by the Koszul resolution. For illustration purposes let us

consider a co-dimension one Calabi-Yau manifolds X so that the Koszul resolution is given

by a short exact sequence

0 → N ∗ ⊗ U → U → U → 0 , (B.1)

where N is a bundle whose restriction to X is the normal bundle of the Calabi-Yau man-

ifold. The cohomologies of the ambient space bundles U and N ∗ ⊗ U (and of bundles

∧pN ∗ ⊗ U for higher co-dimensions) can be expressed in terms of polynomials, using the

Bott-Borel-Weil representation of cohomology on projective spaces [78]. On those poly-

nomial representatives we can explicitly act with the symmetry transformations in Γ and,

together with the equivariant structure on U , determined as explained in appendix A, the

Γ-characters χp,q of Hq(A,∧pN ∗ ⊗ U) can be computed. These characters are related to

the characters χqU of Hq(X,U) by the long exact sequence in cohomology, associated to

the Koszul resolution (B.1). As an example, if H1(A,N ∗ ⊗ U) = H2(A,N ∗ ⊗ U) = 0, so

that H1(X,U) ∼= H1(A,U), then we have χ1
U = χ0,1. In general, the characters χqU can

be expressed in terms of the ambient space characters χp,q by an obvious generalization of

spectral sequence methods to characters.12

The multiplicity of representations can, in general, be computed from the scalar prod-

uct between two characters χ and ψ defined as

(χ, ψ) =
1

|Γ|

∑

g∈Γ

χ(g)ψ̄(g) . (B.2)

Under this scalar product, the characters χα of the irreducible Γ-representations form an

orthonormal system, that is, (χα, χβ) = δαβ . This means that the multiplicity nqα of the

αth irreducible representation in Hq(X,U) can be extracted by

nqα = (χα, χ
q
U ) . (B.3)

For Abelian groups Γ, the case considered in this paper, all irreducible representations are

one-dimensional so that the graded cohomologies are simply given by these multiplicities,

that is hq(X,U,Rα) = nqα.

12In general, to get complete results, one needs to calculate the characters of images or kernels of maps

in the spectral sequence. However, given the knowledge of the total cohomology dimensions hq(X,U), and

the relative simplicity of our examples after imposing the relevant physical constraints, this is frequently

unnecessary.
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