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lates cell growth and differentiation by directly altering mi-
crotubule stability. Further studies are needed to fully estab-
lish a structural mechanism of this interaction and its role in 
synaptic plasticity.  Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 The classical G-protein-signaling pathway involves 
receptor activation leading to functional G �  and G �  �  
dissociation, causing activation of effectors such as ade-
nylyl cyclase, phospholipase C, and ion channels. Our 
understanding of this pathway has become refined by 
such concepts as RGS proteins, receptor coupling, G-pro-
tein-coupled receptor (GPCR) dimerization, and poten-
tially novel guanine-nucleotide exchange factors. The 
 ultimate effect is to promote alterations in cellular pro-
cesses such as neurite outgrowth or formation, cellular 
differentiation, vesicle release and cell division. Many of 
these processes involve the interface between G-protein 
and the microtubule cytoskeleton.

  Cytoskeletal elements – microtubules, microfilaments 
and intermediate filaments – play a role in determining 
cell shape, and processes such as neuronal outgrowth and 
formation involve alterations of these structures. There is 
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 Abstract 

 A large percentage of current drugs target G-protein-cou-
pled receptors, which couple to well-known signaling path-
ways involving cAMP or calcium. G-proteins themselves may 
subserve a second messenger function. Here, we review the 
role of tubulin and microtubules in directly mediating ef-
fects of heterotrimeric G-proteins on neuronal outgrowth, 
shape and differentiation. G-protein-tubulin interactions 
appear to be regulated by neurotransmitter activity, and, in 
turn, regulate the location of G �  in membrane microdo-
mains (such as lipid rafts) or the cytosol. Tubulin binds with 
nanomolar affinity to Gs � , Gi   � 1 and Gq �  (but not other G �  
subunits) as well as G �  1  �  2  subunits. G �  subunits destabilize 
microtubules by stimulating tubulin’s GTPase, while G �  �  
subunits promote microtubule stability. The same region on 
Gs �  that binds adenylyl cyclase and G �  �  also interacts with 
tubulin, suggesting that cytoskeletal proteins are novel G �  
effectors. Additionally, intracellular Gi � -GDP, in concert with 
other GTPase proteins and G �  � , regulates the position of the 
mitotic spindle in mitosis. Thus, G-protein activation modu-
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a symbiotic relationship between GPCR signaling and 
cytoskeletal elements, as microtubules and microfila-
ments may help to ‘corral’ signaling molecules in mem-
brane microdomains [reviewed in  2 ] and G-proteins can 
directly modulate microtubule function. Note that G 12  �  
and G 13  �  indirectly, through rho, alter microfilament 
stability [see Suzuki et al., this issue]. The focus of this 
review will be the direct effects of heterotrimeric G-pro-
teins on microtubules, and the resulting changes in cel-
lular morphology and physiology.

  A brief introduction to the cytoskeleton, and especial-
ly microtubules, is in order. Microtubules are hollow cyl-
inders of tubulin about 20 nm in diameter, and up to hun-
dreds of micrometers long, and are concentrated in axo-
nal and dendritic shafts of neurons. Dendritic spines, and 
the growth cone itself, do not contain long microtubules, 
but are richly endowed with heterodimeric tubulin  [67] . 
Tubulin is a physiologically inseparable heterodimer ( �  
and  �  subunits), each of which bind GTP. Whereas  � -tu-
bulin binds GTP irreversibly,  � -tubulin shows both re-
versible binding and intrinsic GTPase activity.  � -Tubulin 
does not require a guanine exchange factor (it binds cy-
tosolic GTP), but its intrinsic GTP hydrolysis rate is very 
slow  [13–15] . This rate is accelerated by another tubulin 
molecule (during the microtubule polymerization pro-
cess), as well as myriad microtubule-disrupting agents or 
proteins (e.g., colchicine, taxol, vinblastine and G-pro-
teins)  [19, 42, 43, 62] . Tubulin-GTP binds to, and dissoci-
ates from, microtubules much faster than tubulin-GDP. 
This difference establishes an inherent polarity in micro-
tubules that affects their polymerization. The minus end 
of a microtubule (composed of tubulin-GDP) is typically 
oriented towards the soma of a neuron, while the more 
dynamic plus end (containing tubulin-GTP) is located 
towards the growth cone  [58] . Thus, microtubules un-
dergo active polymerization and depolymerization in re-
gions of active synaptic plasticity, and this is modulated 
by tubulin’s GTP hydrolysis rate.

  Heterotrimeric G-Proteins Bind Tubulin:

A Regulated Process 

 The first evidence of functional interaction between 
cytoskeleton and G-proteins came about 25 years ago. 
Initial studies showed that microtubule disruption by 
colchicine or vinblastine potentiated isoproterenol- or 
fluoride-stimulated adenylyl cyclase activity  [29, 41, 50] . 
Later, tubulin was shown to specifically and tightly bind 
to Gs � , Gq �  and Gi � 1 (K D  = 115–130 n M ), but not Gt �  

or Gi � 2  [60] . Moreover, tubulin and Gs �  co-immunopre-
cipitate from rat brain synaptic membranes  [63] . Consis-
tent with G � -tubulin association, tubulin specifically 
binds some GPCRs (metabotropic glutamate receptors 
and melatonin receptors)  [12, 27] . More recent studies 
have identified the molecular interface involved in G � -
tubulin interactions. Initial studies using Gi � -Gt �  chi-
meras revealed a requirement for residues 219–295 on 
Gi �  in binding tubulin, and residues 237–270 for func-
tional Gi � -tubulin interactions  [11] . Peptide array studies 
suggested that homologous regions on Gs �  were involved 
in the interaction with tubulin as well  [31] . Functional 
studies (see below) indicated the involvement of  � -tubu-
lin, rather than  � -tubulin.

  To further identify interacting regions, the Gs � -tubu-
lin complex structure was computationally modeled  [31] . 
Processed PDB structure files of Gs �  (‘ligand’) and  � -tu-
bulin (‘receptor’) were entered into ZDOCK software  [76] , 
resulting in 2,000 complexes. Using ClusPRO software 
 [77] , these complexes were grouped into similar sets based 
on three-dimensional structural similarity (pairwise 
RMSD criterion), and the largest sets were retained. Thir-
ty final complexes were analyzed for interface regions, in-
teracting residues, electrostatic charge, hydrophobicity 
and shape fit, and the best 5 complexes were retained. The 
complex that best fit biochemical data is shown in  figure 1  
(see legend and Layden et al.  [31]  for details).

  Consistent with the chimera studies, this model of the 
Gs � -tubulin complex demonstrated that the interaction 
regions include the adenylyl cyclase/G �  �  interaction re-
gions of Gs �  and the exchangeable nucleotide-binding 
site of tubulin  [31] . Specifically, a portion of the amino 
terminus,  � 2- � 4 (the region between switch II and switch 
III) and  � 3- � 5 (just distal to the switch III region) do-
mains of Gs �  are important for interaction with tubulin 
( fig. 1 ). The interaction of Gs �  at the exchangeable nucle-
otide-binding site of tubulin explain the ability of G �  to 
increase intrinsic tubulin GTPase activity and increasing 
microtubule dynamics  [47] .

  In order to regulate microtubules, G-proteins must 
translocate from the membrane to cytosol. NGF treat-
ment of PC-12 cells promotes colocalization of Gs �  and 
tubulin in the cytosol  [52] . Similarly, agonist activation 
causes Gs �  internalization, and possibly microtubule as-
sociation, via lipid raft-derived vesicles  [3, 66] . Moreover, 
Gs � -tubulin interactions may occur in lipid rafts (see
below). Consistent with these results, the Gs � -tubulin in-
teraction is sensitive to nocodazole (depolymerizes mi-
crotubules) but not latrunculin (depolymerizes microfil-
aments)  [52] . Additionally, functional Gs � -tubulin inter-
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actions appear to involve activated Gs �   [46] . Note that 
although Gi � , Gs �  and Gq �  bind tubulin, Gs �  is the only 
heterotrimeric G-protein known to internalize. There-
fore, Gs � -tubulin interactions are likely regulated by re-
ceptor activation, which causes Gs �  to internalize and 
interact with microtubules. G �  �  subunits also translo-
cate and associate with microtubules subsequent to ago-
nist activation  [40] .

  Lipid Rafts: Potential Sites of Tubulin-Gs �  

Interactions 

 There is mounting proteomic  [1, 18, 32, 65] , biochem-
ical  [22, 33, 35, 36] , and fluorescent  [22, 26]  evidence for 
the localization of G-proteins and tubulin to detergent-

resistant lipid raft membrane domains both in vivo and 
in vitro. Lipid rafts have been shown to be scaffolds for 
many cell-signaling molecules [for reviews, see  2, 56 ]. Re-
cent studies have focused on the function of raft-associ-
ated tubulin and microtubules  [6, 22, 26, 28, 30, 35, 36] .

  Proteomics data from a variety of cell types including 
HeLa cells  [18] , monocytes  [32] , Akt-1 cells  [1] , and neo-
natal mouse brain neurons  [65]  have clearly demonstrat-
ed the presence of both tubulin and G-proteins in lipid 
rafts using different analytical techniques. In fact, in 
these membrane microdomains, G-proteins may be con-
centrated up to 10-fold compared to the rest of the plasma 
membrane  [18] . Furthermore, proteomic studies have re-
vealed that many other tubulin-binding proteins (includ-
ing tubulin-specific chaperone A, KIF13, MAPs 1A, 1B, 
and 2, and stathmin) have been found in lipid rafts via 

C
o

lo
r v

er
si

o
n 

av
ai

la
b

le
 o

n
lin

e

  Fig. 1.  Molecular model of Gs �  complexed to tubulin. Molecular 
modeling was used to visualize the Gs � -GTP  �  tubulin-GDP 
complex. Tubulin is in green (top); Gs �  is in blue (bottom). The 
C-terminus of tubulin is indicated by an arrow, and N-terminal 
residues on Gs �  are shown in orange. Note that the guanine nu-
cleotide on tubulin (orange spheres) is located near Gs � , thereby 
allowing Gs �  stimulation of tubulin GTPase activity. Also, the 
 � 3- � 5 loop (red), but not the  � 3 helix (yellow), on Gs �  is in close 
proximity to tubulin. The former region undergoes a large con-
formational change upon G-protein activation, and is also in-
volved in the interface with adenylyl cyclase and G �  �  subunits. 
This model was generated using ZDOCK and ClusPro  [31] . The 
crystal structure of bovine Gs � -GTP � S was solved as a dimer 
(resolution 2.30 Å, short form)  [78] . One Gs �  was deleted along 
with its corresponding ligands. In the remaining Gs �  molecule, 
the Mg 2+  and PO 4  4–  molecules were deleted while GTP � S was in-
cluded for the final docking structure. Since the sulfur of GTP � S 
is not included in the GNP (part of the CHARM file), the param-
eters for the sulfur in Cys were used. ClusPro parameters were
9 Å radius and 1,500 electrostatic hits. Interface residues were de-
fined as any two residues (on different proteins) being within 5 Å 
of each other. Interacting residues were less than 4 Å apart. 
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proteomic analysis  [32, 65] . One possibility is that tubulin 
scaffolds Gs �  in lipid rafts.

  A subpopulation of tubulin is localized to lipid rafts, 
but its role there is unclear. Currently, there are a number 
of ongoing studies to determine the function/s of lipid 
raft localized tubulin. Neuronal tissue and cell lines have 
been a great source for studying tubulin/raft associations. 
In fact, there is evidence for two distinct types of deter-
gent-insoluble raft-like domains in myelin with only one 
of them containing tubulin  [6] . The neuron-specific 
stathmin, SCG10, is a neuronal growth-associated, mi-
crotubule-destabilizing factor that has been localized to 
lipid rafts in postnatal rat brain  [33] . It has been shown 
that SCG10 binds to tubulin heterodimers and plays a 
role in microtubule dynamics  [17, 44] . The fact that SCG10 
has been shown to localize to rafts suggests that neuronal 
rafts are potential sites of cytoskeletal and membrane re-
organization. Other studies in an oligodendrocyte model 
of multiple sclerosis have shown that antibody crosslink-
ing of myelin oligodendrocyte glycoprotein (MOG) leads 
to repartitioning of MOG into lipid rafts, decreased Fyn 
signaling, and dephosphorylation of raft-associated  � -
tubulin  [35, 36] . This sequence of events resulted in re-
traction of oligodendrocytic processes and loss of my-
elination  [35, 36] . These data suggest an organizational 
role for raft-associated tubulin, but also allows for a role 
in a MOG-induced signaling cascade. Another potential 
role for raft tubulin may be in G-protein signaling associ-
ated with antidepressant action. It has been shown in C6 
glioma cells that the microtubule-disrupting agent col-
chicine decreases Gs �  raft localization similar to chron-
ic antidepressants and either treatment augments the 
coupling between Gs �  and adenylyl cyclase  [16] .

  Non-neuronal cell types have also been a good medi-
um for studying tubulin and lipid raft associations. A 
CLIP-170-related protein, CLIPR-59, localizes to lipid 
rafts in mouse embryonic fibroblasts and is the first raft-
associated CLIP to be identified  [30] . CLIPR-59 has a mi-
crotubule-binding domain (MTB) similar to CLIP-170, 
however this MTB preferentially binds unpolymerized 
tubulin or small tubulin oligomers and actually prevents 
microtubule polymerization, again suggesting a role in 
microtubule dynamics and reorganization at the raft do-
main  [30] . Lipid rafts have also been implicated in the 
spread of HIV type 1 and it has recently been shown that 
disruption of the microtubule cytoskeleton with colchi-
cine or nocodazole can disrupt the spread of HIV-1 in T 
cells  [28] . HIV-1 assembly and budding occurs at lipid 
raft domains on the T-cell plasma membrane and the po-
larization of the Gag and Env proteins at the rafts is cru-

cial to this process. Disruption of microtubules inhibits 
the incorporation of Env into virions and viral assembly 
and budding is blocked  [28] . Finally, cardiac myocytes 
have been used to study the association of adenylyl cy-
clase-signaling components with rafts  [22] . In that study, 
the microtubule cytoskeleton has been shown to main-
tain raft/caveolae structure, which serves to inhibit cAMP 
signaling via the activation adenylyl cyclase. Disruption 
of the microtubule cytoskeleton with colchicine or the 
raft structure with methyl- � -cyclodextrin increases  � -
adrenergic-stimulated cAMP production, suggesting 
that microtubules and rafts act in concert to tonically in-
hibit  � -adrenergic signaling  [22] . Other studies have also 
implicated lipid rafts as inhibitors of G-protein signaling 
by demonstrating increased cAMP activity after raft dis-
ruption  [37, 51]  and internalization of activated Gs �  via 
lipid rafts  [3] . From all of the studies mentioned it is clear 
that tubulin and microtubules play a role in maintaining 
lipid raft structure and function.

  Heterotrimeric G-Proteins Modulate Microtubule 

Dynamics 

 Although initial studies showed alterations in adenyl-
yl cyclase activity in response to microtubule-disrupting 
agents, it remained unclear whether this was due to a di-
rect interaction between Gs �  and tubulin, or the result of 
disruption of cellular architecture  [41] . In vitro, and in 
permeabilized cells, tubulin-GPPNHP (tubulin cova-
lently liganded to a non-hydrolyzable GTP analogue) ac-
tivates Gs �  independently of receptor  [64] . However, this 
has not been seen in living cells. Rather, microtubule-dis-
rupting agents may affect a scaffolding or organizing role 
of membrane tubulin, which can alter the stability of G-
protein-signaling complexes. Indeed, treatment of car-
diomyocytes with colchicine causes AC activation and 
promotes translocation of Gs �  and its effector adenylyl 
cyclase into similar membrane domains (non-lipid raft 
membrane fractions)  [22] . Similar effects were seen in 
S49 cells, which lack lipid rafts, suggesting that Gs �  acti-
vation of AC occurs outside of these regions. In summary, 
alterations in cAMP formation due to microtubule-dis-
rupting agents may be a result of alterations in cytoskel-
etal organization of the membrane rather than direct 
Gs � -tubulin interactions.

  What are the functional consequences of direct G � -
tubulin interactions? Gi �  was observed to destabilize mi-
crotubules by stimulating the tubulin-GTP hydrolysis 
rate  [47] . This effect persisted even if a GTPase-deficient 
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Gi �  Q204L  mutant was used to prevent Gi �  from hydrolyz-
ing GTP on tubulin. This could not be reversed by ad-
dition of exogenous non-hydrolyzable GTP analogues. 
Consistent with the effect on tubulin GTPase activity, 
Gi �  affected microtubule dynamics by increasing the fre-
quency of catastrophes (number of rapid microtubule 
shortening per second) without affecting rescue frequen-
cy or growing or shortening rate  [47, 49] . This has the net 
effect of converting long microtubules into a greater 
number of shorter microtubules.

  Gs �  appears to work by a similar mechanism. In re-
sponse to agonist, Gs �  internalizes through caveolae/lip-
id raft-derived vesicles, thereby facilitating interaction 
with the plus ends of microtubules that are rich in tubu-
lin-GTP  [3] . There, active Gs �  stimulates hydrolysis of 
tubulin-GTP, and likely increases microtubule dynamics 
and decreases microtubule stability  [31, 46] . Moreover, 
active Gs �  may sequester newly released tubulin-GDP to 
prevent repolymerization. After some time, Gs �  hydro-
lyzes its own GTP to GDP, adopts the inactive conforma-
tion, and releases tubulin. In cells, the result is an increase 
in process formation in response to G � -activation  [11] .

  One issue that arises is why Gs �  and Gi �  have similar, 
rather than opposing, effects on microtubule polymer-
ization. One must keep in mind that the designations 
‘stimulatory’ and ‘inhibitory’ are somewhat simplistic, 
and were generated to refer to the activities of these G-
proteins on adenylyl cyclase. Indeed, Gs � - and Gi � -me-
diated signaling pathways interact fruitfully with each 
other in a complex manner. For example, the  �  2 -AR can 
couple to both Gs �  and Gi �  to regulate airway reactivity 
in asthma, and Gs � -coupled  � -ARs can heterodimerize 
with Gi � -coupled opioid receptors  [69–71] . Furthermore, 
while Gi �  and Gs �  interact with different surfaces of ad-
enylyl cyclase, the two proteins probably interact with a 
similar surface on tubulin  [31] . The presumed interface 
of both Gi �  and Gs �  with tubulin on the G-protein in-
cludes the region between switch II and switch III, a re-
gion also involved in binding G �  �  and effectors such as 
adenylyl cyclase ( fig. 1 ). Finally, the effects of G �  subunits 
on tubulin are direct and independent of adenylyl cy-
clase.

  Recent studies have revealed a role for G �  �  subunits 
in modulating microtubule polymerization as well. 
G �  1  �  2 , but not G �  1  �  1  or a prenylation-deficient G �  1  �  2  
mutant, promotes microtubule polymerization, both in 
vitro and in cells  [40, 46] . This occurs even in the absence 
of microtubule associated proteins, suggesting a direct 
interaction between G �  �  and tubulin. Gq � -agonist stim-
ulation of cells causes receptor, G �  � , and tubulin (but not 

Gq � ) to internalize in clathrin-coated vesicles  [68] . Once 
inside the cell, G �  �  binds along the length of microtu-
bules (but not to dimeric tubulin) to increase microtu-
bule stability  [38, 46, 48] . Gi �  also interferes with the 
ability of G �  �  to stabilize microtubules, as the latter pro-
tein is inactive when preincubated with heterotrimeric 
Gi �  �  �   [46] . Since the active tubulin-binding interfaces 
for G �  and G �  �  are probably occluded in the heterotri-
mer, the heterotrimer may bind tubulin via an alternate 
binding site on G �  or G �  �   [53] . In conclusion, G �  �  and 
G �  subunits have opposite effects on microtubules 
through distinct mechanisms.

  Gq �  also binds to tubulin with 130 n M  affinity, but its 
effects on tubulin are very different from Gs �  and Gi � . 
Stimulation of Gq � -coupled receptors recruits tubulin to 
the membrane  [12, 72–74] . This interaction involves GTP-
tubulin, and occurs on a time course similar to PLC- �  1  
activation  [40] . Microtubule stabilization appears to in-
hibit this process and microtubule depolymerization 
mimics it. Activation of Gq � -coupled mGluRs promotes 
microtubule depolymerization in cells. This may be due 
to Ca 2+  released from intracellular stores as a result of IP 3  
generation.

  Another relationship between G-proteins and cyto-
skeleton is the role of microtubule and actin filament on 
translocation of transducin or Gt �  translocation in rod 
photoreceptor cells. Analogous to Gs � , Gt �  undergoes a 
light (‘agonist’)-dependent translocation from the rod 
outer segment to the inner segment within minutes, and 
the reverse slowly occurs in the dark  [9] . The two seg-
ments of rods are connected by a non-motile cilium. Al-
though initial studies proposed the translocation to oc-
cur via diffusion, the cytoskeleton also plays a role in this 
process  [44] . Gt �  colocalizes with microtubules in dark-
adapted retinas. Light-dependent translocation of Gt �  
did not depend on microfilaments (cytochalasin-D inde-
pendent) or microtubules (thiabendazole treatment). In 
contrast, the reverse translocation of Gt �  in the dark de-
pends on both microfilaments and microtubules  [57] . 
Note, however, that Gt �  does not bind tubulin or micro-
tubules directly  [60] . Thus, the mechanisms of ‘agonist’-
induced Gs �  and Gt �  translocation are likely divergent.

  Interaction of G-Protein with Microtubules and 

Cellular Morphology 

 It seems that G-proteins exert different roles in cells 
when they associate with specific binding partners. While 
the interplay of G-proteins with microtubules and tubu-
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lin have been studied for decades, its biologic role is not 
clear. However, recent studies have indicated a role in cel-
lular morphologic change and neuronal differentiation. 
Overexpression of cytosolic His 6 -Gi 1  �  in COS-1 cells in-
creases the number and length of cellular processes. Con-
versely, overexpression of a Gi �  mutant dominant nega-
tive for functional tubulin interactions inhibits process 
formation in COS-1 cells  [11] . In PC-12 cells, NGF treat-
ment promotes translocation of G �  subunits in a micro-
tubule-dependent manner, and promotes colocalization 
of Gs �  with microtubules  [52] . G �  and G �  �  subunits 
have opposing effects on microtubule stability, and both 
localize to cytosol upon agonist treatment  [23, 24, 40, 66] . 
These observations raise the possibility that, in response 
to agonist, Gs �  internalizes to destabilize microtubules 
to promote process formation.

  Activation of Go � - and Gs � -coupled receptors pro-
mote neurite outgrowth  [4, 5, 10, 21] . This process may be 
Go � -dependent, as activated Go �  can promote neurite 
outgrowth, perhaps by releasing G �  �  subunits that stabi-
lize microtubules  [25] . Conversely, destabilization of mi-
crotubules by G �  subunits may increase microtubule dy-
namics and may be permissive for the formation of new 
processes. Indeed, the microtubule-destabilizing pro-
teins, stathmin and SCG10, appear to be required for 
neurite outgrowth  [34, 39] . It has been proposed that mi-
crotubule destabilization may be necessary for growth 
cone guidance and neuronal pathfinding  [8] . In conclu-
sion, a dynamic interaction between heterotrimeric G-
proteins (both  �  and  �  �  subunits) and microtubules al-
ters microtubule stability and may be involved in neuro-
nal differentiation, outgrowth and plasticity.

  G-Protein-Microtubule Interactions Modulate Cell 

Division 

 In addition to the conventional effect of G-proteins 
that play a role in signal transduction of extracellular sig-
nals from GPCR to their effectors, some G-proteins ap-
pear to play important roles in cell division. Various stud-
ies in  Caenorhabditis elegans, Drosophila  and mamma-
lian cells demonstrated the importance of intracellular 
functions of G-proteins, such as spindle positioning and 
microtubule pulling force generation. These functions 
have been found to be independent of GPCRs. GoLoco-
containing proteins such as GPR1/2 (in  C. elegans ), Pins 
and Loco (in  Drosophila ) and LGN (in mammalian cells) 
bind to G � -GDP, promote release of G �  �  and act as GDIs 
for G � , therefore stabilizing G � -GDP  [54, 61] . The com-

plex of Gi � -GDP and GoLoco protein bind to the micro-
tubule-binding protein such as Lin5 (in  C. elegans ), Mud 
(in  Drosophila ), and NuMA (in mammalian cells). This 
trimeric complex binds astral microtubules to orient the 
mitotic spindle  [55] . Ric-8 (also known as synembryn) is 
an intracellular protein that can activate the G-protein  �  
subunit independently of GPCR. Like GPCRs, Ric-8 be-
haves as a guanine exchange factor for the G �  subunit 
that promotes the association of Gi �  with GTP when it is 
complexed with GoLoco proteins and microtubule-bind-
ing proteins (Lin5, NuMA and Mud)  [59] . Since Gi � -
GTP does not bind NuMA, this complex becomes desta-
bilized and the effects on microtubule stabilization are 
prevented. Conversely, RGS protein (RGS-7 in  C. elegans ) 
acts as a GTPase-activating protein which catalyzes the 
conversion of Gi � -GTP to Gi � -GDP. The net effect is an 
oscillation of Gi �  between GTP and GDP states, leading 
to cycles of astral microtubule stabilization and destabi-
lization that orient the mitotic spindle during mitosis 
 [75] .

  In addition to G � , G �  �  has also been reported to play 
a role in these processes. Studies in  C. elegans  show that 
G �  �  regulates migration of the centrosome around the 
nucleus and the orientation of the mitotic spindle  [20] . 
GPB-1 (a G �  subunit) is required for the positioning of 
early cell division axes in  C. elegans  embryos, while GPC-
2 (a G �  subunit) is required for spindle orientation in the 
early embryo. Depleting both subunits (by RNAi) results 
in defective spindle orientation. In human cell lines, G �  �  
colocalizes with centrosomes and  � -tubulin in living 
cells  [38] . This association is resistant to nocodoazole, 
and G �  �  subunits may play a role in stabilizing microtu-
bules at centrosomes during mitosis  [38, 48] .

  Conclusion: A Biologic Rationale for Functional 

Tubulin-G-Protein Interactions 

 In this article, we have delineated a novel role for het-
erotrimeric G-proteins in regulating microtubule stabil-
ity, process outgrowth and cellular division. These effects 
appear to be independent of classical effectors – such as 
adenylyl cyclase, phospholipase C, or ion channels – and 
appear to involve direct interactions between G �  and 
G �  �  subunits with tubulin and microtubules. Thus, it 
should not be surprising that different classes of G �  sub-
units have similar effects on microtubules, while G �  �  
and G �  appear to have opposing effects on microtubule 
stability.
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  Upon activation of a GPCR, Gs �  functionally dissoci-
ates from G �  �  subunits, and internalizes in lipid raft-de-
rived vesicles to interact with tubulin at the plus end of a 
microtubule ( fig. 2 ). Tubulin may play a scaffolding role, 
as Gs � -tubulin interactions may occur in lipid rafts. Ac-
tivated Gs �  promotes GTP hydrolysis on tubulin, caus-
ing destruction of the microtubule GTP-cap, and micro-
tubule destabilization. This process is likely limited by 
the autohydrolysis of GTP on Gs � . In contrast, some G �  �  

subunits stabilize microtubules by binding along the fila-
ment. The interplay between active G �  and G �  �  remains 
unclear, and, under physiologic conditions, it is possible 
that these two subunits act on different subsets of micro-
tubules. In vitro, inactive Gs �  in a heterotrimer interferes 
with functional G �  � -tubulin interactions. The end result 
is an increase in microtubule dynamics, resulting in pro-
cess outgrowth in multiple cell types, including PC-12 
cells and primary hippocampal neurons. Cytosolic Gi �  
behaves similarly to Gs � , but internalization of Gi �  has 
not been observed  [6] . A corollary of these studies is that 
the Gs � -tubulin interface may be a novel target to modu-
late synaptic plasticity and neuronal morphology. To-
wards this end, Gs �  mimetic peptides have been devel-
oped and the functional effects of these peptides in neu-
rons are currently being evaluated  [31] . At a structural 
level, current work is directed towards crystallizing the 
Gs � -tubulin complex, as well as establishing a mecha-
nism for effects of Gs �  on neuronal morphology in living 
cells.

  Thus, heterotrimeric G-proteins have physiologic 
roles in cells distinct from their canonical signaling path-
ways. These processes are regulated by the G-protein ac-
tivation state and modulated by differential location in 
membrane or subcellular compartments such as lipid 
rafts. We are just beginning to appreciate this added com-
plexity to G-protein-signaling pathways, and eagerly an-
ticipate exciting new results that we hope will prove illu-
minating and insightful.
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  Fig. 2.  Model for G-protein modulation of microtubule dynamics. 
Upon neurotransmitter stimulation, G � -GTP internalizes by 
‘coating’ caveolar/lipid raft-derived vesicles. The internalized 
G � -GTP interacts with either microtubules or tubulin, and stim-
ulates tubulin GTPase activity at the plus end of microtubules. 
This increases microtubule dynamic instability, and allows for 
neurotransmitter-dependent plasticity. Conversely, G �  �  sub-
units stabilize microtubules after internalizing. 
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