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Abstract

Deep Neural Network (DNN) models have continuously been

growing in size in order to improve the accuracy and quality

of the models. Moreover, for training of large DNN models,

the use of heterogeneous GPUs is inevitable due to the short

release cycle of new GPU architectures. In this paper, we

investigate how to enable training of large DNN models on

a heterogeneous GPU cluster that possibly includes whimpy

GPUs that, as a standalone, could not be used for training.

We present a DNN training system, HetPipe (Heterogeneous

Pipeline), that integrates pipelined model parallelism (PMP)

with data parallelism (DP). In HetPipe, a group of multiple

GPUs, called a virtual worker, processes minibatches in a

pipelined manner, and multiple such virtual workers employ

data parallelism for higher performance. We also propose a

novel parameter synchronization model, which we refer to

as Wave Synchronous Parallel (WSP) to accommodate both

PMP and DP for virtual workers, and provide convergence

proof of WSP. Our experimental results on a given heteroge-

neous setting show that with HetPipe, DNN models converge

up to 49% faster compared to the state-of-the-art DP tech-

nique.

1 Introduction

Deep Neural Networks have been popularly used to solve

various problems such as image classification [16,29], speech

recognition [17], topic modeling [3], and text processing [10].

The size of DNN models (i.e., the number of parameters) have

continuously been increasing in order to improve the accuracy

and quality of models and to deal with complex features of

data [19, 47, 54, 55]. The size of input data and batches used

for training have also increased to achieve higher accuracy

and throughput [19, 26].

For training large DNN models, data parallelism [4, 31,

32, 50], which employs multiple workers using parame-

ter servers or AllReduce communication, and model paral-

lelism [12,28,30], which divides the network layers of a DNN

model into multiple partitions and assigns each partition to

a different GPU, have commonly been leveraged. Further-

more, to mitigate the critical issue of low GPU utilization of

naive model parallelism, pipelined model parallelism, where

minibatches are continuously fed to the GPUs one after the

other and processed in a pipelined manner, has recently been

proposed [19, 38].

Table 1: Heterogeneous GPUs

Year Archi.
CUDA

Core

Boost

Clock (MHz)

Memory

Size (GB)

Memory BW

(GB/sec)

TITAN V 2017 Volta 5120 1455 12 653

TITAN RTX 2018 Turing 4608 1770 24 672

GeForce

RTX 2060
2019 Turing 1920 1680 6 336

Quadro P4000 2017 Pascal 1792 1480 8 243

For training DNN models, the use of GPU clusters is now

commonplace. In such an environment, the use of hetero-

geneous GPUs is inevitable due to the short release cycle

of new GPU architectures [24]. Moreover, several types of

GPUs targeted for high-end servers, workstations, and desk-

tops are being released for purchase [39–42]. Due to their

cost-effectiveness, less expensive GPUs targeted for desk-

tops and workstations, rather than high-end servers are also

commonly used for machine learning training, especially for

small and medium size clusters [14, 21, 49, 56, 57, 59]. Due

to the same reason, spot instances with different types of

GPUs that are offered by cloud service providers are being

used [2,24,36]. Table 1 shows the hardware specifications for

four different types of GPUs, along with their market release

years, that we have purchased in our institution in the short

span of the last three years. Each, at the time of purchase,

was (close to) state-of-the-art affordable with what budget we

could muster. With technology advancing in such rapid pace,

these systems have become outdated. Some of the systems

have become old technologies that, individually, are unable

to run large DNN models that are common today. Such situ-

ations with clusters of heterogeneous GPUs should now be

commonplace.

There are benefits to enabling DNN training with hetero-

geneous resources. First, it allows for large model training

with lower-class GPUs. While unable to train individually

due to their limited resources, aggregated together, they may

be used for training. These GPUs, which likely would have

been retired, become usable, possibly used to create (virtual)

workers that show similar performance as high-class GPUs.

Second, low-class GPUs can be used to improve the perfor-

mance of even high-class GPUs by incrementally adding on

the resources of the (old) lower class systems to the (new)

high-class systems. We call a group of aggregated GPUs that

could satisfy the resource constraint and be used for training a

virtual worker. Internally, such a virtual worker could leverage

pipelined model parallelism (PMP) to process a minibatch,
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while externally, a number of virtual workers could leverage

data parallelism (DP) for higher performance.

In this paper, we explore the integration of PMP and DP

to maximize the parallelism of DNN model training. In par-

ticular, we investigate a DNN model training system, which

employs both PMP and DP, for a heterogeneous GPU cluster

that possibly includes whimpy GPUs that, as a standalone,

could not be used for training large models. Integrating DP

to PMP may sound trivial, but in fact, it is quite challenging.

In this setting, each virtual worker is continuously process-

ing multiple minibatches in a pipelined manner and thus,

all the virtual workers can be in different states. Thus, the

key question here is, what weight version should be used by

each virtual worker to synchronize with other virtual workers?

Numerous questions need to be answered to answer this ques-

tion: 1) How many new minibatches can start being processed

while waiting for global updates from the parameter server?

2) Can synchronization occur at any point of processing the

minibatches? 3) How can convergence be guaranteed when

such synchronization occurs? 4) What version of parameters

is used for the next minibatch while previous minibatches are

still executing within each virtual worker? (This question is

also considered to some extent in a prior work [38].) And so

on. Furthermore, there are also many challenges that need to

be overcome to ideally leverage a heterogeneous GPU cluster

for DNN training: How are the heterogeneous GPUs to be

divided and allocated into virtual workers? How do we reduce

virtual worker stragglers when we consider DP? How do we

partition the model to maximize the performance of PMP

using heterogeneous GPUs?

While DP [4, 31, 32, 50], PMP [19, 38], and heterogene-

ity [24, 25, 33] for training have been considered separately,

to the best of our knowledge, this is the first paper that tack-

les these issues together in attempting to answer some of the

aforementioned questions. In this work, we design a DNN

training system, HetPipe (Heterogeneous Pipeline), that inte-

grates PMP of a virtual worker, which is composed of multiple

(possibly whimpy) heterogeneous GPUs, with DP of virtual

workers using parameter servers to enable and also speed

up training of large models. HetPipe can aggregate heteroge-

neous resources from multiple GPUs to form a virtual worker

such that the performance of each virtual worker is similar to

each other, reducing the straggler problem. For HetPipe, we

propose a novel parameter synchronization model, which we

refer to as Wave Synchronous Parallel (WSP). WSP is adapted

from the Stale Synchronous Parallel (SSP) model [18] to ac-

commodate both PMP and DP for multiple virtual workers

unlike existing synchronization models. We also prove the

convergence of WSP. Note that while HetPipe would work

in a homogeneous GPU cluster in training a large model that

cannot be loaded into the memory of a single GPU, with the

rapid turnaround of newer GPU architectures, it is more likely

that one will end up with a cluster of heterogeneous GPUs.

This is the environment that we target.

We implement HetPipe by modifying TensorFlow, a com-

monly used machine learning training system. We evaluate

the performance of HetPipe for two DNN models using a het-

erogeneous GPU cluster composed of four different types of

GPUs. Our experimental results demonstrate that the perfor-

mance of HetPipe is better than that of the state-of-the-art DP

via Horovod [50] that uses AllReduce communication [45].

This is because HetPipe mitigates the straggler problem, and

also because it enables each virtual worker and the parameter

server to intra-communicate for all parameter updates, sig-

nificantly reducing communication overhead. Compared to

Horovod, the convergence of VGG-19 with a large parameter

set to a desired accuracy becomes 49% faster, and that of

ResNet-152 which is too big to be loaded in four whimpy

GPUs in our cluster becomes 39% faster by using all the

GPUs (including whimpy ones).

Strategies to leverage PMP have been explored in previous

studies [7, 19, 27, 38]. Compared to these, our study makes

forward strides in three aspects. First, we generalize PMP

of a virtual worker to be used together with DP of virtual

workers, increasing the parallelism of DNN model training.

Consequently, this results in speeding up training. Second,

we consider a heterogeneous GPU cluster, which allows the

use of GPUs, which otherwise, could not be used for training.

Finally, we present a parameter synchronization model that

guarantees convergence, of which we provide a proof, for

training models using PMP with DP. We provide a more in-

depth comparative discussion on these studies in Section 2.2.

2 Background

2.1 Data Parallelism

Training of a DNN model is processed by a forward pass

followed by a backward pass for each minibatch, which is a

subset of training samples, in a popularly used stochastic gra-

dient descent (SGD) method. For each minibatch, the weight

updates, i.e., gradients, are computed to update weights (or

parameters) w of the model.

Data parallelism (DP) utilizes multiple workers to speed

up training of a DNN model. It divides the training dataset

into subsets and assigns each worker a different subset. Each

worker has a replica of the DNN model and processes each

minibatch in the subset, thereby computing the weight updates.

Therefore, if a DNN model cannot be loaded into the memory

of a single GPU, DP cannot be used.

Among the multiple workers, the parameters are synchro-

nized using parameter servers [31] or AllReduce communica-

tions [32, 50]. For Bulk Synchronous Parallel (BSP) [1, 35],

each worker must wait for all other workers to finish the cur-

rent minibatch p before it starts to process the next minibatch

p+1 so that it can use an updated version of the weights for

minibatch p+ 1. For Asynchronous Parallel (ASP) [1, 48],

each worker need not wait for other workers to finish mini-

batch p, possibly using a stale version of the weights. With

BSP, which is possible for both the parameter servers and
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AllReduce communications, the system may suffer from high

synchronization overhead, especially in a heterogeneous GPU

cluster where each worker with a different GPU provides dif-

ferent training performance [33]. On the other hand, while

ASP, which is possible for the parameter servers, has no syn-

chronization overhead, it is known that ASP does not ensure

convergence [48, 58].

A method that takes the middle ground between BSP and

ASP is Stale Synchronous Parallel (SSP) [18]. With SSP, each

worker is allowed to proceed the training of minibatches using

a stale version of the weights that may not reflect the most re-

cent updates computed by other workers. Thus, workers need

not synchronize with other workers whenever it finishes the

processing of a minibatch. As such, parameter staleness can

occur. However, this staleness is bounded as defined by the

user and referred to as the staleness threshold. As SSP is bene-

ficial when worker performance is varied, it has been explored

especially in the context of heterogeneous systems [24].

In SSP, each worker periodically pushes the weight updates

to the parameter server. This synchronization interval is called

a clock. Thus, each worker increases its local clock by one for

every iteration, which is the training period of a minibatch.

For a given staleness threshold s where s ≥ 0, each worker

with clock c is allowed to use a stale version of the weights,

which includes all the updates from iteration 0 to c−s−1 and,

possibly, more recent updates past iteration c− s− 1. That

is, a worker can continue training of the next minibatch with

parameters whose updates may be missing from up to the s

most recent minibatches.

2.2 Model Parallelism and Pipeline Execution
Model parallelism (MP) is typically exploited for large DNN

models that are too large to be loaded into memory of a single

GPU. In particular, a DNN model composed of multiple lay-

ers is divided into k partitions and each partition is assigned

to a different GPU. Each GPU executes both the forward

and backward passes for the layers of the assigned partition.

Note that it is important to execute the forward and backward

passes of a partition on the same GPU as the activation result

computed for the minibatch during the forward pass needs

to be kept in the GPU memory until the backward pass of

the same minibatch for efficient convergence, as similarly

discussed by Narayanan and others [38]. Otherwise, consid-

erable extra overhead will incur for managing the activation

through either recomputation or memory management.

In the basic form of MP, k GPUs, individually, act as one

virtual worker to process a minibatch as follows: For each

minibatch, execution of the forward pass starts from GPU1 up

to GPUk. When each GPUi, where 1 ≤ i < k, completes the

forward pass of the assigned partition, it sends the computed

activations of only the last layer in its partition to GPUi+1.

Once GPUk finishes the forward pass of its partition, the

backward pass of the minibatch is executed from GPUk down

to GPU1. When each GPUi′ , where 1 < i′ ≤ k, finishes the

backward pass, it sends the computed local gradients of only

Table 2: Comparison of HetPipe with GPipe and PipeDream

GPipe PipeDream HetPipe

Heterogeneous Cluster Support No No Yes

Target Large Model Training Yes No Yes

Number of (Virtual) Workers 1 1 N

Data Parallelism Extensible Partition Virtual Workers

Proof of Convergence Analytical Empirical Analytical

the first layer in its assigned partition to GPUi′−1. This basic

form of MP results in low GPU utilization as only one GPU

is actively executing either the forward or backward pass.

Nonetheless, MP allows execution of large DNN models that

are too large for a single GPU.

To improve utilization of the GPUs in a virtual worker,

minibatches can be processed in a pipelined manner. The

subsequent minibatches are fed into the first GPU in MP (i.e.,

GPU1) one by one once the GPU completes the processing

of the previous minibatch. This allows for multiple GPUs

to simultaneously execute either the forward or backward

pass of their assigned layers for different minibatches. This is

referred to as Pipelined Model Parallelism (PMP).

This PMP strategy has been investigated in previous

studies [19, 38]. PipeDream exploits PMP of a single vir-

tual worker to avoid the parameter communication over-

head of DP [38]. Considering only homogeneous GPUs,

when PipeDream partitions a model into stages to maximize

pipeline performance, it does not take into account the mem-

ory requirement of a GPU that depends on the stage of a

pipeline. Thus, PipeDream processes a limited number of

minibatches, which is large enough to saturate the pipeline,

to reduce memory overhead. PipeDream also provides a form

of DP, but it considers DP within a virtual worker to speed up

the execution of lagging layers. No proof of single pipeline

convergence is provided in PipeDream. Note that without

a parameter synchronization model such as WSP, it is not

possible to properly run DP over multiple PipeDream virtual

workers via parameter servers or AllReduce communication.

GPipe is a scheme that leverages PMP of a single virtual

worker to support large DNN models, also in a homogeneous

GPU cluster [19]. In GPipe, a minibatch is divided into mul-

tiple microbatches that are injected into the pipeline. Using

the same weights, GPipe executes the forward passes for all

the microbatches, and then executes the backward passes for

them. When the backward pass of the last microbatch is done,

it updates the weights all together for the minibatch. GPipe in-

curs frequent pipeline flushes, possibly resulting in low GPU

utilization [38]. In GPipe, DP of multiple virtual workers can

be done using existing synchronization schemes like BSP as a

virtual worker processes one minibatch at a time. GPipe saves

on GPU memory by recomputing the activations again in the

backward pass instead of keeping the activations computed

in the forward pass in memory. We do not use this optimiza-

tion though there are no fundamental reasons forbidding it.

A comparison of HetPipe with previous studies is given in

Table 2.
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Wave 1Wave 0 Wave 2

Figure 1: Pipeline execution of minibatches where Mp,k indicates the execution of a minibatch p in partition k, which is executed

in GPUk and the yellow and green colors indicate the forward and backward passes, respectively.

3 System Overview

The system that we propose focuses on training a large DNN

model in a heterogeneous GPU cluster composed of various

types of GPUs that have different computation capability and

memory capacity. In such settings, for some types of GPUs

in the cluster, the DNN model of interest may be too large

to be loaded into the memory of a single GPU. The system

that we propose in this paper leverages both pipelined model

parallelism (PMP) and data parallelism (DP) to enable train-

ing of such large DNN models and, in the process, enhance

performance as well as the utilization of the heterogeneous

GPU resources of the cluster.

Figure 2 shows the architecture of the proposed cluster

system composed of H nodes. Each node comprises a homo-

geneous set of GPUs, but the GPUs (and memory capacity)

of the nodes themselves can be heterogeneous. Two key nov-

elties exist in this architecture. First, DP is supported through

a notion of a virtual worker (VW), which consists of k, pos-

sibly heterogeneous, GPUs, and encapsulates the notion of a

worker in typical DNN systems. That is, a virtual worker is

used to train the DNN model. In Figure 2, note that there are

N virtual workers with 4 GPUs each, that is, k = 4, and that

the GPUs comprising the virtual worker may be different for

each virtual worker. While in this paper we consider k to be

constant for each virtual worker, our design does not restrain

it to be so; this is simply a choice we make for simplicity.

The key aspect here is that a virtual worker allows DP by

aggregating GPUs possibly even when individual GPUs may

be resource limited.

The second novelty is that each virtual worker processes

each minibatch based on model parallelism, in a pipelined

manner, to fully utilize the GPU resources, as shown in Fig-

ure 1, to accommodate large DNN models. While PMP has

been proposed before (which we compare in Section 2.2), to

the best of our knowledge, we are the first to present PMP in

a heterogeneous setting. We refer to our system as HetPipe

as it is heterogeneous, in GPUs, across and, possibly, within

virtual workers and makes use of pipelining in virtual workers

for resource efficiency.

To train DNN models based on pipelined model parallelism

in virtual workers, the resource allocator first assigns k GPUs

to each virtual worker based on a resource allocation policy

Node 𝟏
G𝑨
G𝑨
G𝑨
G𝑨 P3

P4

VW 𝟏
VW 𝑵− 𝟏

Parameter Server

VW 𝑵
Push & Pull

P2

P1

Node 𝑯− 𝟏
G𝑩
G𝑩
G𝑩
G𝑩

Node 𝑯
G𝑪
G𝑪
G𝑪
G𝑪

Resource Allocator

Cluster Configuration
P1 P2 P3 P4

Model PartitionerDNN Model

Figure 2: System architecture (VW: Virtual Worker)

(which will be discussed in Section 8.1). Note that for allo-

cating the heterogeneous GPUs to the virtual workers, the

resource allocation policy must consider several factors such

as the performance of individual GPUs as well as the com-

munication overhead caused by sending activations and gra-

dients within a virtual worker, and synchronizing the weights

among the virtual workers and the parameter server. Then,

for the given DNN model and allocated k GPUs, the model

partitioner divides the model into k partitions for the virtual

worker such that the performance of the pipeline executed in

the virtual worker can be maximized.

As any typical DP, multiple virtual workers must periodi-

cally synchronize the global parameters via parameter servers

or AllReduce communication; in HetPipe, parameter servers

are used to maintain the global weights. Each virtual worker

has a local copy of the global weights and periodically syn-

chronizes the weights with the parameter server. Evidently,

when managing the weights within a virtual worker and across

virtual workers, two types of staleness, local staleness and

global staleness, need to be permitted to improve the perfor-

mance of DNN training. Local staleness refers to staleness

within a virtual worker. As each virtual worker processes

minibatches in a pipelined manner, there are multiple mini-

batches that are being processed in parallel. Thus, staleness is

inevitable as weights seen by a minibatch may not reflect the

updates of all of its previous minibatches.

Global staleness, on the other hand, is similar to the stale-

ness notion introduced by Ho et al. [18]. That is, the system

needs to reduce communication overhead between the param-
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eter server and (virtual) workers, and, in our case, also mitigate

the synchronization overhead caused by possibly heteroge-

neous virtual workers. Therefore, similarly to SSP [18], each

virtual worker should be allowed to proceed training without

querying the global weights for every minibatch, unless its

local copy is so old such that there are too many missing

recent updates made by other virtual workers. Note that such

staleness condition is set by the user [18].

For our system, we propose the Wave Synchronous Par-

allel (WSP) model to synchronize the weights. A wave is a

sequence of minibatches that are processed concurrently in

a virtual worker. Let the number of minibatches in a wave

be Nm. Within a wave, processing of the i-th minibatch is

allowed to proceed without waiting for the preceding mini-

batchs i′ to be completed, where 1 < i ≤ Nm and 1 ≤ i′ < i.

That is, there is no dependency among the weights used by

minibatches in the same wave. As the virtual worker does not

enforce the updates even from the first minibatch in a wave

to be reflected in the weights used by the last minibatch, the

local staleness threshold in WSP is Nm −1. Moreover, each

virtual worker only pushes the aggregated updates from all

the minibatches in a wave, instead of for every minibatch, to

the parameter server. This results in considerable reduction

in communication overhead.

As it is important that the results generated through our

proposed system configuration are correct [18, 24, 60], we

show the convergence of our methodology in Section 6.

Note that HetPipe uses parameter servers, which may incur

synchronization and communication overhead. However, Het-

Pipe mitigates such overhead by permitting global staleness

among virtual workers and executing the pipeline in each vir-

tual worker such that it continues to process minibatches that

have already been injected while waiting for the parameter up-

date. We believe HetPipe can be further optimized by taking

decentralized approaches, but leave this for future work.

4 Pipelined Model Parallelism Within a VW

Number of Minibatches in the Pipeline: In our system,

each virtual worker processes up to Nm minibatches con-

currently in a pipeline manner so that the executions of the

minibatches can overlap. Given a DNN model and k GPUs,

the maximum number of minibatches executed concurrently

in the virtual worker, Maxm, is basically determined by the

memory requirement for training the model. For a model that

requires a huge amount of memory for output activations and

weights, Maxm may be less than k. Note that in such cases,

the utilization of each GPU is unlikely to be high.

Nm, the actual number of minibatches in the pipeline will

be Nm ≤ Maxm and basically determined by considering the

throughput of the pipeline. Note that Nm must be the same

in every virtual worker, and thus, Nm is set to the minimum

Maxm among all the virtual workers. Nm will affect the local

staleness that we discuss later in this section.

Model Partitioning: To train a DNN model, a set of k

GPUs is allocated to a virtual worker by a resource allocation

policy, which we discuss in Section 8.1. For now, let us as-

sume that k, the number of possibly heterogeneous GPUs, and

Nm are given. Then, a partitioning algorithm is employed to

divide multiple layers of the model into k partitions, assigning

them to the k different GPUs. The goal of the partitioning

algorithm is to maximize the performance of the pipeline,

while satisfying the memory requirement of each partition to

process Nm minibatches.

In particular, in this study, for memory, we consider the

fact that the actual memory requirement will vary depending

on the stage of the pipeline that the GPU is used for. For

example, contrast GPU4 and GPU1 in Figure 1. GPU4, the

GPU that handles the last stage of the pipeline, handles only

one minibatch at a time and is immediately done with the

minibatch as exemplified by the yellow (forward pass) and

green (backward pass) Mi,4 pairs for i = 1,2, ..., that are side-

by-side. In contrast, for GPU1, the yellow and green Mi,1 pairs

are far apart, meaning that the forward pass Mi,1 needs to hold

up memory until the backward pass Mi,1 is finished with its

execution. Thus, with GPU1, the memory requirement is high

as it needs to hold on to the results of the forward pass for all

stages of the pipeline. This variance in memory requirement

is considered in partitioning the layers.

Execution time must also be considered when partitioning

the layers. To do so, we calculate the execution time of a parti-

tion to be the sum of the computation time of all the layers in

the partition and the communication time needed for receiv-

ing the activations (in the forward pass) and local gradients

(in the backward pass). Our partitioning algorithm attempts

to minimize the maximum execution time of the partitions

within the bounds of satisfying the memory requirement.

Partition Scheduling: Once the partition is set, the parti-

tions need to be scheduled for each of the GPUs. Each GPUq

responsible for partition q may have multiple forward pass

and backward pass tasks to schedule at a time. Each GPU

schedules a task by enforcing the following conditions:

1. A forward pass task for a minibatch p will be executed

only after a forward pass task for every minibatch p′ is

done where 1 ≤ p′ < p.

2. Similarly, a backward pass task for a minibatch p will

be executed only after a backward pass task for every

minibatch p′ is done where 1 ≤ p′ < p.

3. Among multiple forward and backward pass tasks, a

FIFO scheduling policy is used.

Note that in the last partition, for a minibatch, processing a

forward pass immediately followed by a backward pass is

executed as a single task.

Considering Staleness: Given the description of pipelin-

ing, the question of staleness of weights used needs to be

considered. That is, as a minibatch is scheduled, it may be

that the layers are not using the most up-to-date weights. For

example, in Figure 1, when the forward pass M2,1, the second

minibatch, begins to be processed, it must use stale weights as
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the first minibatch has not completed and hence, the changes

in the weights due to the first minibatch have not yet been

appropriately reflected, which is in contrast with typical pro-

cessing where minibatches are processed one at a time. We

now discuss how this staleness issue is considered.

Let local staleness be the maximum number of missing

updates from the most recent minibatches that is allowed for

a minibatch to proceed in a virtual worker. As training with

Nm minibatches can proceed in parallel in a virtual worker,

the local staleness threshold, slocal , is determined as Nm −1,

where 1 ≤ Nm ≤ Maxm. If Nm = 1, the behavior is exactly the

same as naive model parallelism. Larger Nm may improve the

performance (i.e., throughput) of the pipeline as a larger num-

ber of concurrent minibatches are executed, but local staleness

increases, possibly affecting the convergence of training. In a

real setting, typically, Nm will not be large enough to affect

convergence as it will be bounded by the total amount of GPU

memory of a virtual worker.

Such local staleness also exists in PipeDream [38]. As

PipeDream basically employs weight stashing that uses the

latest version of weights available on each partition to exe-

cute the forward pass of a minibatch, a different version of

weights is used across partitions for the same minibatch. Un-

fortunately, PipeDream only shows empirical evidence of con-

vergence when weight stashing is used. Note that PipeDream

also discusses vertical sync, which is similar to HetPipe, but

it excludes vertical sync in its evaluations [38].

Now let wp be the weights used by minibatch p. Then, ini-

tially, we can assume that w0, the initial version of weights,

is given to the virtual worker. Then, the first (slocal +1) mini-

batches are processed in a pipelined manner with w0 = w1 =
· · ·= wslocal

= wslocal+1.

To accommodate staleness in our system, when process-

ing of minibatch p completes, the virtual worker updates the

local version of the weights, wlocal as wlocal = wlocal + up,

where up is the updates computed by processing minibatch p.

Therefore, in HetPipe, weights are not updated layer by layer

and wlocal is a consistent version of weights across partitions.

When the virtual worker starts to process a new minibatch,

it makes use of the latest value of wlocal without waiting for

the other minibatches to update their weights. For example,

once the virtual worker is done for minibatch 1 and updates

wlocal with u1, it will start to process minibatch slocal +2 by

using the updated weights without waiting for minibatches 2

up to slocal +1 to be completed. Similarly, when the virtual

worker is done with minibatch slocal + 1 and updates wlocal

with uslocal+1, it will start to process minibatch 2× (slocal +1)
without waiting for the previous most recent slocal minibatches

to be completed. Therefore, except for the initial minibatches

1 to slocal + 1, for minibatch p the virtual worker will use

the version of the weights that reflects (at least) all the local

updates from minibatches 1 to p− (slocal +1). Note that for

every minibatch p, wp must be kept in GPU memory until the

backward pass for p is executed.

Note that staleness in SSP is caused by the different pro-

cessing speed of minibatches among multiple workers. Thus,

in SSP, staleness is used as a means to reduce the synchroniza-

tion and communication overhead. However, local staleness

in HetPipe is caused inherently as minibatches are processed

in a pipelined manner within a virtual worker.

5 Data Parallelism with Multiple VWs

In this section, we discuss data parallelism (DP) with virtual

workers. The first and foremost observation of DP being sup-

ported with virtual workers is that the virtual workers may be

composed of (whimpy) heterogeneous GPUs. While it is well

known that DP helps expedite DNN execution, DP, in typical

systems, is not possible if individual GPUs, that is, workers,

do not have sufficient resources to handle the DNN model,

in particular, large DNNs. By allowing a virtual worker to be

composed of multiple GPUs that are lacking in resources, our

system allows DP even with whimpy GPUs. The other key

observation in properly supporting DP with virtual workers

is that each virtual worker now retains local staleness as dis-

cussed in Section 4. Making sure that, despite such individual

staleness, we understand and show that the results obtained

from DP among virtual workers (globally) converge is an

important issue that must be addressed. The rest of the section

elaborates on this matter.

Workings of WSP: As stated in the system overview, Het-

Pipe uses parameter servers. We assume that such synchro-

nization occurs in clock units, a notion taken from SSP [18].

Precisely, a clock unit is defined as the progress of completing

one wave. Recall from Section 3 (and Figure 1) that a wave

is a sequence of slocal +1 minibatches concurrently executed

such that a virtual worker is allowed to process a later mini-

batch in a wave without updates from an earlier minibatch in

the same wave.

Similarly to SSP (which, however, considers the staleness

of weights only in DP), each virtual worker maintains a local

clock clocal , while the parameter server maintains a global

clock cglobal , which holds the minimum clocal value of all

the virtual workers. Initially, the local clocks and the global

clock are 0. At the end of every clock c, each virtual worker

completes the execution of all the minibatches in wave c.

At this point, the virtual worker computes the aggregated

updates from minibatch c × (slocal + 1) + 1 to minibatch

(c+1)×(slocal +1) and pushes the updates ũ to the parameter

server. We see that, similar to in SSP [18], ũ is synchronized

with a clock value c. For example, as shown in Figure 1 where

slocal = 3, at the end of clock 0, the virtual worker pushes the

aggregated updates of wave 0, which is composed of mini-

batches from 1 to 4, and at the end of clock 1, the aggregated

updates of wave 1, which is composed of minibatches from

5 to 8, and so on. It is important to note that in WSP, the vir-

tual worker pushes ũ to the parameter server for every wave,

instead of pushing ũ for every minibatch, which will signifi-

cantly reduce the communication overhead.
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When the parameter server receives the updates ũ from

the virtual worker, the parameter server updates the global

version of the weights as wglobal = wglobal+ ũ. Note that the

parameter server updates its cglobal to c+1 only after every

virtual worker has pushed the aggregated updates of wave c.

In WSP, each virtual worker is allowed to proceed training

without retrieving the global weights for every wave. Thus,

the virtual worker may use a weight version that, from a

global standpoint, may be stale, as the most recent updates

received by the parameter servers may not be reflected in its

local version of the weights. We discuss how global staleness

among the virtual workers is bounded.

Global Staleness Bound: Let clock distance be the differ-

ence in clocal between the fastest and slowest virtual workers

in the system. Therefore, a virtual worker with local clock

c, where c ≥ D+ 1, must use a version of the weights that

includes all the (aggregated) updates from wave 0 up to

c−D−1. Also, the weight version may include some recent

global updates from other virtual workers and some recent lo-

cal updates within the virtual worker beyond wave c−D−1.

When a virtual worker pulls the global weights at the end

of clock c to maintain this distance, it may need to wait for

other virtual workers to push their updates upon completion

of wave c−D. However, while a virtual worker waits for other

virtual workers to possibly catch up at the end of clock c, local

processing is allowed to proceed with slocal minibatches of

wave c+1 as the minibatches are executed in a pipelined man-

ner. Take, for example, the case when D = 0 and slocal = 3 in

Figure 3 (and Figure 1). As a virtual worker, VW1, completes

minibatch 4, it computes the aggregated updates ũ for wave 0

(composed of minibatches 1 to 4) and pushes ũ to the param-

eter server. VW1 now waits for the other virtual workers to

complete wave 0 before proceeding with minibatch 8. How-

ever, note that as shown in the figure, VW1 has already started

to process minibatches 5, 6 and 7, which belong to wave 1,

while its local clock is still 0. Similarly, once it completes

minibatch 8, it pushes the aggregated updates ũ for wave 1

(composed of minibatches 5 to 8) to the parameter server; in

the meantime, it has already started processing minibatches 9,

10, and 11, which belong to wave 2, while its clock is still 1.

Note that this processing of local minibatches in the virtual

worker does not violate the local staleness bound. Note also

that when D = 0, each virtual worker must wait for each other

at the end of every clock to synchronize the weights for every

wave, which is BSP-like behavior with pipelined execution in

each virtual worker.

Now let us define the global staleness bound, sglobal , to

be the maximum number of missing updates from the most

recent minibatches, globally computed by all the other virtual

workers in the system, that is allowed for a minibatch to pro-

ceed in a virtual worker. We want to identify sglobal based on

our discussion so far. This will allow each virtual worker to

determine whether it can proceed with its current minibatch.

Initially, all virtual workers start processing the first (D+1)

1
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Figure 3: Local and global staleness with WSP

waves without querying the global weights from the parameter

server. Furthermore, they can start to process up to slocal

minibatches of the next wave before receiving the global

weights that include the recent updates as discussed above.

Therefore, for those initial minibatches, the virtual worker

uses w0 or a weight version that may include some recent

local updates.

For any minibatch p thereafter, that is, where p> (D+1)×
(slocal +1)+ slocal , p must use a weight version that reflects,

at the very least, all the global updates from all the other vir-

tual workers from minibatch 1 to minibatch p− (sglobal +1),
where sglobal = (D+ 1)× (slocal + 1) + slocal − 1. The first

term of this equation is due to the fact that a virtual worker

is allowed to proceed with the next (D + 1) waves (i.e.,

(D+ 1)× (slocal + 1) minibatches), and the second term is

due to the additional slocal minibatches that can be started be-

cause of pipelined execution. Continuing with the example in

Figure 3, where D = 0 and slocal = 3, VW1 proceeds the train-

ing of minibatch 11 without the global and/or local updates

from wave 1 (minibatches 5 to 8) or the two local updates

from minibatches 9 and 10 (i.e., having sglobal = 6). Thus, it

must have a version of the weights that includes all the global

updates from minibatches 1 to 4. Actually, the weight version

used for minibatch 11 includes three local updates from mini-

batches 5, 6, and 7, along with all the global updates from

wave 0. In case of minibatch 12, it cannot start the training

until global updates up to minibatch 8 are received.

6 Convergence Analysis

In this section, we discuss the convergence property of the

WSP model. Let N be the number of virtual workers and

un,p be the update of worker n at minibatch execution p. Let

sg = sglobal and sl = slocal + 1, and following the analysis

of [18], the noisy weight parameter1 w̃n,p for worker n at

minibatch execution p, is decomposed into

w̃n,p = w0 +

[

N

∑
n′=1

p−sg−1

∑
p′=1

un′,p′

]

+

[

∑
p′∈Cn,p

un,p′

]

+



 ∑
(n′,p′)∈En,p

un′,p′



 . (1)

1In this section, we use the term ‘weight parameter’ to denote all weights

of a network. Thus, the weight parameters refer to a set of weights of net-

works.
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Here w0 refers to the initial parameter, and the noisy weight

parameter has three other terms which respectively include

1. updates of all workers (guaranteed to be included) to

process minibatch execution p,

2. Cn,p ⊆ [p− sg, p−1]: the index set of the latest updates

of the querying worker n in the range of current global

staleness bound, and

3. En,p ⊆ ([1,N]\{n})× [p− sg, p+ sg + sl ]: the index set

of extra updates of other workers in the range of the

current global staleness bound. When execution p is not

at a synchronization point, En,p = /0.

We define {ut} as the sequence of updates of each vir-

tual worker after processing each minibatch and {wt = w0 +

∑
t−slN

t ′=0
ut ′} as the reference sequence of weight parameters,

where ut := ut mod N,⌊t/N⌋+ t mod sl
, in which we loop over

the workers (t mod N) and over each update after a mini-

batch execution inside a worker (⌊t/N⌋+ t mod sl). Here,

slN (= sl ×N) is the number of total minibatch updates in

one wave from all virtual workers. Since a virtual worker

uses a version of the weight parameter that reflects all the

local updates from minibatch 1 to p− sl for worker p, the

reference and noisy sequences at iteration t are updated up

to t − slN. The set Et and the noisy weight parameter w̃t are

defined similarly and the difference between wt and w̃t is

w̃t = wt −
[

∑i∈Rt
ui

]

+
[

∑i∈Qt
ui

]

where Rt is the index set

of missing updates in the reference weight parameter but not

in noisy weight parameter, and Qt is the index set of extra

updates in the noisy weight parameter but not in reference

weight parameter.

After T updates, we represent the target function as f (w) :=
1
T ∑T

t=1 ft(w), the regret of two functions with w̃t , the pa-

rameter learned from the noisy update, and w∗, the pa-

rameter learned from the synchronized update is R[W ] :=
1
T ∑T

t=1 ft (w̃t)− f (w∗) .

Thus, when we bound the regret of the two functions, we

can bound the error of the noisy updates incurred by the

distributed pipeline staleness gradient descent. We first bound

the cardinality of Rt and Qt in the following lemma.

Lemma 1. The following two inequalities, |Rt |+ |Qt | ≤
(2sg+sl)(N−1) and min(Rt ∪Qt)≥max(1, t−(sg+sl)N),
hold.

Proof. Since Qt ⊆ Et and Rt ⊆ Et\Qt , |Rt |+ |Qt | ≤ |Et | ≤
(2sg + sl)(N −1). The second claim follows from Et ⊇Rt ∪
Qt .

With the following two assumptions, the proof of conver-

gence generally follows Qirong et al. [18]2

Assumption 1. (L-Lipschitz components) For all t, the com-

ponent function ft is convex and has bounded subdifferential

‖∇ ft(w)‖ ≤ L, in which L > 0 is a constant.

Assumption 2. (Bounded distances) For all w,w′, the dis-

tance between them is bounded D(w‖w′) ≤ M, in which

M > 0 is a constant.

2The full proof is omitted due to space, but can be found in [44].

We also denote 1
2
‖w−w′‖2 as D(w‖w′). Then, we can

bound the regret of the function trained with our noisy dis-

tributed, pipeline update as in Theorem 1.

Theorem 1. Suppose w∗ is the minimizer of f (w). Let ut :=
−ηt∇ ft (w̃t) where ηt =

σ√
t

with σ = M

L
√

(2sg+sl)N
, in which

M,L are the constants defined in the assumptions. Then the

regret is bounded as R[W ]≤ 4ML

√

(2sg+sl)N
T

.

Our theoretical results are similar with existing work on non

pipelined version of staleness update [18, 24]. However, we

reflect the new characteristics of distributed pipeline staleness

update in Lemma 1, and thus in Theorem 1.

7 Partitioning Algorithm

Recall that the goal of our partitioning algorithm is to min-

imize the maximum execution time of the partitions within

the bounds of satisfying the memory requirement. To obtain

a performance model to predict the execution time of each

layer of a model in a heterogeneous GPU, we first profile

the DNN model on each of the different types of GPUs in a

cluster, where we measure the computation time of each layer

of the model. For GPU memory usage, we measure the usage

of each layer (by using the logging feature of TensorFlow)

on only one GPU type (as it is roughly the same for all GPU

types). For profiling the memory usage on a whimpy node, we

measure the memory usage of each layer using a small batch

size and then multiply it for the target batch size. To compute

the memory requirement for a given partition, we take into

account the total memory usage to store the data to process

the layers as well as the maximum number of minibatches

concurrently assigned to the partition.

For communication time between layers in the model, we

first derive the amount of input data for each layer in the for-

ward and backward pass from the model graph. For the given

data size, we predict intra-node communication based on the

PCI-e bandwidth, then multiply it by a scaling-down constant

(which is similarly done in Paleo [46]), since in practice, it is

not possible to utilize the peak bandwidth. The scaling-down

constant is derived by running a synthetic model that sends

various sizes of data from one GPU to another GPU in the

same node. For inter-node communication (via InfiniBand),

we use linear regression to estimate the communication time

for the given data size. To build a prediction model, we collect

27 samples by training two DNN models, used in our exper-

iments, with arbitrary partitions. Note that in this work, the

heterogeneity of network performance such as slow network

links is not considered (as in [33]). However, for such cases,

we can extend our partitioning algorithm to consider different

network performance between two nodes when estimating the

communication time. Also, a model that estimates the mem-

ory requirement for each stage more accurately will be helpful

in partitioning a DNN model in a more balanced manner.
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To find the best partitions of a DNN model, we make use of

CPLEX, which is an optimizer for solving linear programming

problems [20]. The memory requirement for each partition on

the pipeline to support Nm concurrent minibatches is provided

as a constraint to the optimizer. The algorithm will return

partitions for a model with a certain batch size only if it finds

partitions that meet the memory requirement for the given

GPUs. Also, the optimizer checks all the different orders of

the given heterogeneous GPUs for a single virtual worker to

partition and place layers of the DNN model on them.

8 Experimental Results

8.1 Methodology
Heterogeneous GPU cluster: In our experiments, we use

four nodes with two Intel Xeon Octa-core E5-2620 v4 proces-

sors (2.10 GHz) connected via InfiniBand (56 Gbps). Each

node has 64 GB memory and 4 homogeneous GPUs. Each

node is configured with a different type of GPU as shown

in Table 1. Thus, the total number of GPUs in our cluster

is 16. Each GPU is equipped with PCIe-3×16 (15.75 GB/s).

Ubuntu 16.04 LTS with Linux kernel version 4.4 is used. We

implement HetPipe based on the WSP model by modifying

TensorFlow 1.12 version3 with CUDA 10.0 and cuDNN 7.4.

DNN models and datasets Our main performance metric is

throughput (images/second) of training a DNN model. We

use ResNet-152 [16], and VGG-19 [51] with ImageNet [13].

For each DNN model, batch size of 32 is used. For all other

hyperparameters, we use the default settings as specified in

the benchmark [52] of ResNet-152 and VGG-19.

Resource allocation for virtual workers: Given any hetero-

geneous GPU cluster, there can be many ways of allocating

the resources to the multiple virtual workers. For our experi-

ments, we consider allocation policies within the bounds of

our platform. Thus, given the 16 GPUs, HetPipe employs four

virtual workers, each of which is configured with four GPUs,

along the following three allocation policies.

Node Partition (NP): This policy assigns a node per virtual

worker. Thus, each virtual worker is composed of homoge-

neous GPUs. Consequently, as the nodes are heterogeneous,

partitioning of layers for a DNN model is different for each

virtual worker. NP results in minimum communication over-

head within each virtual worker as communication between

GPUs occurs within the same node via PCI-e, rather than

across multiple nodes where communication is via Infini-

Band. On the other hand, as the performance of each virtual

worker varies, a straggler may degrade performance with DP.

Equal Distribution (ED): This policy evenly distributes GPUs

from each node to every virtual worker. Thus, every virtual

worker is assigned four different GPUs, but every virtual

worker has the exact same resources. Thus, model partitioning

is the same, and thus, performance will be the same across

3Modified LOC is ∼1.5K in the TensorFlow framework and TensorFlow

benchmark codes, where most features are added as independent functions.

Table 3: Resource allocation for the three policies considered

Node Partition Equal Distribution Hybrid Distribution

VW1 VVVV VRGQ VVQQ

VW2 RRRR VRGQ VVQQ

VW3 GGGG VRGQ RRGG

VW4 QQQQ VRGQ RRGG

the virtual workers, which mitigates the straggler problem.

However, ED results in high communication overhead within

each virtual worker.

Hybrid Distribution (HD): This policy is a hybrid of NP and

ED. For our cluster, a combination of two GPU types are

allocated to each virtual worker such that their performances

in terms of aggregated computation capability and amount

of GPU memory are similar to each other. This choice is

made to mitigate the straggler problem while reducing the

communication overhead within each virtual worker. As, in

terms of computation power, V> R> G> Q and, in terms of

the amount of the GPU memory, R> V> Q> G, two virtual

workers are allocated VVQQ, while the other two are allocated

RRGG, where V, R, G and Q refers to TITAN V, TITAN RTX,

GeForce RTX 2060, and Quadro P4000, respectively.

Table 3 shows the resource allocation of each virtual worker

for the three resource allocation policies.

Parameter Placement: In our experiments, for DP, we locate

the parameter servers, each of which only handles a portion

of the model parameters, over all the nodes. For the default

placement policy, which can be used with all three of our

resource allocation policies, we place layers of the model

in round-robin fashion over all the parameter servers as in

TensorFlow [53]. For ED, however, another policy is possible,

which we refer to as ‘ED-local’. With ‘ED-local’, we place

the layers of a partition on the parameter server running on

the same node, incurring no actual network traffic across the

nodes for parameter synchronization. This is possible as the

same partition of the model can be assigned locally to the

GPU on the same node for every virtual worker. For all results

reported hereafter, the ‘default’ policy is used, except for ‘ED-

local’.

8.2 Performance of a single virtual worker

We first investigate the performance of the 7 different in-

dividual virtual workers that are possible according to the

allocation schemes in Table 3. Figure 4 shows the throughput

over various values of Nm, which is the number of minibatches

executed concurrently, in the virtual worker normalized to that

of when Nm = 1 and the maximum average GPU utilization

among the four partitions for ResNet-152 and VGG-19. The

numbers shown (in the box) along with the allocation policy

are the absolute throughput (images/sec) when Nm = 1. Note

that some results for larger Nm are not shown. This is because

the GPU memory cannot accommodate such situations and

hence, cannot be run.
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Figure 4: Normalized throughput and the maximum average GPU utilization among partitions in a single virtual worker for

various resource allocation policies as Nm is varied. The number in parenthesis is absolute throughput (images/sec) when Nm = 1

(which is equivalent to the naive MP) for each policy.
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Figure 5: Performance with the three allocation policies when

D=0 (The number on bar represents Nm)

From the results, we can see that as Nm increases, normal-

ized throughput of a virtual worker as well as the maximum

GPU utilization generally increases. Note that, though not

shown, the total GPU memory utilization tends to increase

as Nm increases. However, depending on the resource alloca-

tion scheme (which results in different partitions of a model)

as well as the DNN model, the effect of having larger Nm

varies. When a virtual worker is configured with homoge-

neous GPUs, the average GPU utilization of each partition

is similar to each other. However, when it is configured with

heterogeneous GPUs, there is a tendency that the GPU uti-

lization of the first or last partition is higher than those of the

other partitions. For this configuration, different computation

capabilities and memory capacity of the GPUs are considered

when partitioning a model. As it is possible that only a small

number of layers are assigned to some GPUs, the overall GPU

utilization may turn out to be low.

8.3 Performance of multiple virtual workers
Figure 5 shows the throughput of training each model with

the three resource allocation policies, where “Horovod” indi-

cates the state-of-the-art DP via Horovod that uses AllReduce

communication4. In these experiments, for each resource al-

location policy, Nm is set such that performance is maximized

while every virtual worker uses the same value of Nm as this

is the assumption behind HetPipe. For ResNet-152, the whole

model is too large to be loaded into a single GPU with G type,

and thus, Horovod uses only 12 GPUs.

4We use the same minibatch size for all workers of Horovod as the

minibatch size is one of the critical factors to the final performance of a

trained DNN and adaptive batch sizing will affect convergence [5].

Table 4: Performance improvement of adding whimpy GPUs

(The number in parenthesis presents the total number of con-

current minibatches in HetPipe)

Model
Single

GPU [V]
Method

4 GPUs

4[V]

8 GPUs

4[VR]

12 GPUs

4[VRQ]

16 GPUs

4[VRQG]

VGG-19 159
Horovod 164 205 265 339

HetPipe 300(5) 530(16) 572(20) 606(20)

ResNet-152 112
Horovod 233 353 415 X

HetPipe 256(5) 516(20) 538(24) 580(28)

The results in Figure 5 show that the performance of DNN

training is strongly affected by how heterogeneous GPUs

are allocated to virtual workers. From the results, we can

make the following observations: First, for VGG-19 whose

parameter size is 548MB, the performance of Horovod, which

reduces communication overhead for parameter synchroniza-

tion, is better than those of NP, ED, and HD. However, for

ResNet-152 whose parameter size is 230MB, ED and HD,

which utilize virtual workers with similar performance, show

a bit better or similar performance to Horovod (with 12 GPUs).

Second, with NP, training performance of ResNet-152 and

VGG-19 is low as Nm is bounded by the virtual worker

with the smallest GPU memory. Third, with ED-local, intra-

communication occurs between each GPU and the parameter

server, significantly reducing communication overhead across

the nodes, especially for VGG-19, the model with a large

parameter set. For VGG-19, the amount of data transferred

across the nodes per minibatch with ED-local (i.e., 103MB) is

much smaller than that with Horovod (i.e., 515MB). Thus, the

performance of ED-local (which also mitigates the straggler

problem) is 1.8× higher than Horovod. For ResNet-152, the

amount of data transferred with ED-local (i.e., 298MB) is

larger than that with Horovod (i.e., 211MB) because the sizes

of output activations to be sent between partitions are large,

even though the parameter size is relatively small. However,

the throughput of ED-local is still 40% higher than Horovod.

This is because Hetpipe allows each virtual worker to process

a large number of minibatches concurrently. Compared to

NP and HD, ED-local (or ED) usually has larger Nm in each

virtual worker, improving throughput.
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Figure 6: ResNet-152 top-1 accuracy

Next, we investigate how the throughput is improved when

whimpy GPUs are additionally used for training. Table 4

shows the throughput of VGG-19 and ResNet-152 when DP

via Horovod and HetPipe with ED-local are used over dif-

ferent sets of heterogeneous GPUs, and also when a single V

GPU is used. For these experiments, HetPipe is configured to

use four virtual workers, except for ‘4 GPUs’ where a single

virtual worker is used. In the table, the number and type of

GPUs used for each experiment are also given. From the re-

sults, we can see that the performance of both Horovod and

HetPipe increases when additional whimpy GPUs are used

for training. With additional GPUs, HetPipe can increase the

total number of concurrent minibatches processed, having up

to 2.3 times speedup. This scenario can be thought of as an

answer to when new, higher end nodes are purchased, but one

does not know what to do with existing nodes. The results

show that making use of the whimpy systems allows for faster

training of larger models.

8.4 Convergence

Our HetPipe based on the WSP model is guaranteed to con-

verge as proven in Section 6. In this section, we analyze the

convergence performance of HetPipe with ED-local using

ResNet-152 and VGG-19. For our experiments, the desired

target accuracy of ResNet-152 and VGG-19 is 74% and 67%,

respectively.

Figure 6 shows the top-1 accuracy of ResNet-152 with

Horovod (12 GPUs), HetPipe (12 GPUs), and HetPipe (16

GPUs), where D is set to 0 for HetPipe. For the experiments

with 12 GPUs, the 4 G type GPUs are not used. When the same

set of GPUs are used, convergence with HetPipe is 35% faster

than that of Horovod by reducing the straggler problem in a

heterogeneous environment and exploiting both PMP and DP.

Furthermore, by adding four more whimpy G GPUs, HetPipe

improves training performance even more, converging faster

than Horovod by 39%.

Figure 7 shows the top-1 accuracy of VGG-19 with

Horovod and HetPipe as we vary D to 0, 4, and 32. For the

experiments, all 16 GPUs are used. The figure shows that

convergence with the BSP-like configuration (i.e., D = 0)

of HetPipe is roughly 29% faster than that with Horovod.

As we increase D to 4, the straggler effect is mitigated and

the communication overhead due to parameter synchroniza-

tion is reduced. Thus, convergence is faster by 28% and 49%

compared to D = 0 and Horovod, respectively. In this experi-
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Figure 7: VGG-19 top-1 accuracy

ment with ED-local (where the training speed of each virtual

worker is similar), when D becomes very large (i.e., 32), the

throughput remains similar but the convergence performance

degrades by 4.7%, compared to D = 4. This is because it is

unlikely that the clock distance between the fastest and slow-

est virtual workers becomes as large as 32, but higher global

staleness can degrade the convergence performance (similarly

discussed in [18]). Note that though not shown, using larger D

has a greater effect for HetPipe with NP, ED and HD resource

allocation, and the different resource allocations only affect

the set of heterogeneous GPUs used for each virtual worker

and do not affect the convergence behavior.

We also analyze the synchronization overhead as D is var-

ied. We find that as D increases, the waiting time of a virtual

worker to receive the updated global weights decreases. In our

experiments, the average waiting time with D = 4 is found

to be 62% of that with D = 0. Furthermore, the actual idle

time is only 18% of the waiting time as the virtual worker can

continue to proceed in the pipeline while waiting.

9 Discussion

Comparison to PipeDream PipeDream [38], which is the

closest related study, optimizes PMP of a single virtual worker,

only employing DP for lagging layers within a virtual worker

in homogeneous environments. To be adapted to heteroge-

neous environments, its partitioning algorithm must be ex-

tended to consider the different performance and memory

sizes of heterogeneous GPUs, various orders of heteroge-

neous nodes used for a pipeline, and the memory requirement

of the GPUs for partitions.

We run the training of ResNet-152 using PipeDream, which

is implemented on PyTorch [37], in our heterogeneous GPU

cluster described in Section 8.1. Since the partitioning al-

gorithm does not consider heterogeneous GPUs, for each

GPU type, we profile ResNet-152, then generate partitions

of the model assuming that our cluster is configured with

homogeneous GPUs with that type, and finally, measure the

throughput of PipeDream with the partitions. All the com-

puted configurations of the pipeline result in a large number

of (i.e., 12 or 14) partitions. For example, with Q, the configu-

ration is 4-2-1-1-1-1-1-1-1-1-1-1 indicating that the model is

divided into 12 partitions where the first partition is executed

by four GPUs with DP, the second one is executed by two

GPUs with DP, and so on. For these configurations, we run

experiments with various orders of the four different nodes
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and test using several batch sizes. (Note that we could not

run training for some configurations due to out of memory er-

rors.) The best throughput measured using PipeDream is 158.

Recall that the throughputs of Horovod (with 12 GPUs) and

HetPipe are 415 and 580, respectively. In this case, the per-

formance of PipeDream for ResNet-152 is found to be low as

a large number of partitions cause high network overhead, in

addition to the sub-optimal partitions. Therefore, with PMP

alone (i.e., single virtual worker), the performance benefit

may become limited when a model is divided into numerous

partitions. Instead of increasing partitions, running DP with

multiple virtual workers like HetPipe can improve the paral-

lelism of training and further improve performance in such

cases.

Effect of imbalanced partitions Our partitioning algo-

rithm attempts to balance partitions while satisfying the mem-

ory requirements. However, depending on the DNN model,

computed partitions may be imbalanced. For example, for a

model composed of a small number of layers, if one layer

takes much longer to execute compared to other layers, the

partitions may end up having different execution times. In

this case, the performance of the pipeline will be degraded as

in any other pipeline-based systems. Note that running DP for

the slow partition to have a similar processing rate across all

the partitions like PipeDream [38] will be a possible extension

of HetPipe.

10 Related Work

Pipelining has been leveraged to improve the performance

of machine learning systems [6, 7, 19, 32, 38]. A pipelin-

ing scheme is employed to handle expensive backpropa-

gation [7]. Pipe-SGD pipelines the processing of a mini-

batch to hide communication time in AllReduce based sys-

tems [32]. A weight prediction technique is proposed to ad-

dress the staleness issue in pipelined model parallelism [6].

Detailed comparisons of HetPipe with PipeDream [38] and

GPipe [19] are provided in Section 2.2. Note that the feature

of overlapping computation and communication, presented

in PipeDream [38], will also improve the performance of our

system. PipeDream employs the one-forward-one-backward

scheduling algorithm for pipeline execution. Sophisticated

schedulers that consider various factors such as heterogeneous

configurations, the number of partitions, and the number of

concurrent minibatches within a virtual worker, can poten-

tially improve the performance of HetPipe. Techniques to

optimize learning rates have been studied [15], which can

also be applied to HetPipe to help converge faster.

Decentralized training systems that consider heterogeneous

environments have also been studied [33, 34]. However, these

techniques do not consider integration of DP with PMP, which

allows support for large models that do not fit into single

GPU memory. In AD-PSGD, once a mini-batch is processed,

a worker updates the parameters by averaging them with only

one neighbor which is randomly selected [33]. This is done

asynchronously, allowing faster workers to continue. In the-

ory, the convergence rate of AD-PSGD is the same as SGD.

In principle, the contribution of AD-PSGD is orthogonal with

the contributions of HetPipe in that we can extend our HetPipe

further by adapting the idea of asynchronous decentralized

update in AD-PSGD when there is a bottleneck in the param-

eter server. When it comes to the experimental evaluations,

the performance of AD-PSGD is evaluated for DNN models

whose sizes are 1MB, 60MB, and 100MB, which are smaller

than the models we consider in HetPipe. For a decentralized

training system, Hop [34] considers the bounded staleness

and backup workers, and uses CIFAR-10 for performance

evaluation on a CNN model.

There have been earlier efforts to employ DP and/or MP for

model training. Project Adam uses both DP and MP to train

machine learning models on CPUs [8]. Pal et al. combine DP

and MP in a similar way as our system, but do not consider

pipelining nor heterogeneous GPUs [43]. STRADS leverages

MP to address the issues of uneven convergence of param-

eters and parameter dependencies [27]. FlexFlow considers

utilizing parallelism in various dimensions such as sample,

operator, attribute and parameters to maximize paralleliza-

tion performance [23]. Bounded staleness has been explored

where Jiang et al. present heterogeneity-aware parameter syn-

chronization algorithms based on the SSP model [24], while

Cui et al. analyze the effects of bounded staleness [11].

Hierarchical AllReduce performs the AllReduce operation

in two levels [22]. This technique does not solve the straggler

problem in a heterogeneous GPU cluster, as master GPUs in

the second level will have different GPU types. BlueConnect

is an efficient AllReduce communication library consider-

ing heterogeneous networks [9]; unfortunately, it also cannot

handle stragglers caused by heterogeneous GPUs.

11 Conclusion

In this paper, we presented a DNN training system, HetPipe,

that integrates pipelined model parallelism with data paral-

lelism. Leveraging multiple virtual workers, each of which

consists of multiple, possibly whimpy, heterogeneous GPUs,

HetPipe makes it possible to efficiently train large DNN mod-

els. We proved that HetPipe converges and presented results

showing the fast convergence of DNN models with HetPipe.
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