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Abstract— Multi–constrained Quality of Service (QoS) routing finds a
route in the network that satisfies multiple independent quality of service
constraints. This problem is NP–hard and a number of heuristic algorithms
have been proposed to solve the problem. This paper studies two heuristics,
the limited granularity heuristic and the limited path heuristic, for solv-
ing general � –constrained problems. Analytical and simulation studies are
conducted to compare the time/space requirements of the heuristics and the
effectiveness of the heuristics in finding the paths that satisfy the QoS con-
straints. We prove analytically that for an � nodes and � edges network
with � (a small constant) independent QoS constraints, the limited granu-
larity heuristic must maintain a table of size ���	� �
� ������ in each node to
be effective, which results in a time complexity of ���	� �
� � � ��� � . We also
prove that the limited path heuristic can achieve very high performance
by maintaining ����� ��� �������	� �
� ��� entries in each node, which indicates that
the performance of the limited path heuristic is not sensitive to the num-
ber of constraints. We conclude that although both the limited granularity
heuristic and the limited path heuristic can efficiently solve � –constrained
QoS routing problems, the limited path heuristic is superior to the limited
granularity heuristic in solving � –constrained QoS routing problems when��� � . Our simulation study further confirms this conclusion.

Keywords—Quality of service routing, multi–constrained, limited gran-
ularity heuristic, limited path heuristic

I. INTRODUCTION

The Quality of Service (QoS) requirement of a point–to–point
connection is typically specified as a set of constraints, which
can be link constraints or path constraints [2]. A link constraint,
such as the bandwidth constraint, specifies the restriction on the
use of links. For example, the bandwidth constraint requires that
each link along the path must be able to support certain band-
width. A path constraint, such as the delay constraint, specifies
the end–to–end QoS requirement for the entire path. For exam-
ple, the delay constraint requires that the aggregate delay of all
links along the path must be less than the delay requirement.

Multi-constrained QoS routing finds a path that satisfies mul-
tiple independent path constraints. One example is the delay-
cost-constrained routing, i.e., finding a route in the network
with bounded end–to–end delay and bounded end–to–end cost.
We will use the notion ! –constrained routing to refer to multi–
constrained QoS routing problems with exactly ! path con-
straints. The delay-cost-constrained routing is an example of
a " –constrained routing problem. Multi–constrained QoS rout-
ing is known to be NP–hard[4], [8]. Previous work [1], [9],
[10] has focused on developing heuristic algorithms to solve " -
constrained problems. The general ! –constrained routing prob-
lem receives little attention. In practice, however, effective
heuristics to solve general ! –constrained QoS routing problems,
such as the delay–jitter–cost–constrained problem, are needed.
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Whether (and how) the existing heuristics that effectively solve
" –constrained problems can be extended to handle general ! –
constrained problems is unclear. The performance of the heuris-
tics in solving general ! –constrained problems also needs fur-
ther investigation.

In this paper, we study two heuristics, the limited path heuris-
tic and the limited granularity heuristic, to solve general ! –
constrained QoS routing problems. The two heuristics were
proposed in [10] to solve " –constrained QoS routing problems
using variations of the extended Bellman–Ford shortest path al-
gorithm [9]. We extend the heuristics to deal with ! –constrained
problems, investigate the performance of the heuristics in solv-
ing ! –constrained problems, and identify the conditions for the
heuristics to be effective. We prove analytically that for an#

nodes and $ edges network with ! independent path con-
straints ( ! is a small constant), the limited granularity heuris-
tic must maintain a table of size %'&�( # ( )+*-,/. in each node to
achieve high probability of finding a path that satisfies the QoS
constraints when such a path exists. By maintaining a table of
size %'&0( # ( )1*2, . , the time complexity of the limited granularity
heuristic is %'&0( # ( ) ( $ ( . . Our analysis also shows that the perfor-
mance of the limited path heuristic is rather insensitive to ! and
that the limited path heuristic can achieve very high performance
by maintaining %'&�( # ( 3+4652&�( # ( .7. entries in each node. These re-
sults indicate that although both heuristics can efficiently solve
" –constrained routing problems [10] and solve ! –constrained
routing problems with very high probability in polynomial time,
the limited granularity heuristic is inefficient when !98;: since
the time/space requirement of the limited granularity heuristic
increases drastically when ! increases. We conclude that the
limited path heuristic is more effective than the limited granu-
larity heuristic in solving ! –constrained QoS routing problems
when ! 8<: . Our simulation study further confirms this conclu-
sion.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 describes the multi-
constrained QoS routing problem and introduces the extended
Bellman–Ford algorithm that can solve this problem. Section 4
studies the limited granularity heuristic for ! –constrained prob-
lems. Section 5 analyzes the limited path heuristic. Section 6
presents the simulation study. Section 7 concludes the paper.

II. RELATED WORK

Much work has been done in QoS routing recently, an ex-
tensive survey can be found in [2]. Among the proposed QoS
routing schemes, the ones that deal with multi-constrained QoS
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routing are more related to the work in this paper. In [7], a
distributed algorithm is proposed to find paths that satisfy the
end–to–end delay constraint while minimizing the cost. Al-
though this algorithm considers two path constraints, it does not
solve the " –constrained problem because the cost metric is not
bounded. Ma [5] showed that when the weighted fair queuing
algorithm is used, the metrics of delay, delay–jitter and buffer
space are not independent and all of them become functions
of the bandwidth. Orda [6] proposed the quantization of QoS
metrics for efficient QoS routing in networks with a rate–based
scheduler at each router. Although the idea of quantization of
QoS metrics is similar to the limited granularity heuristic, the
technique was proposed to improve the performance of a poly-
nomial time QoS routing algorithm that solves the bandwidth–
delay bound problem. Jaffe [4] proposed a distributed algo-
rithm that solves " –constrained problems with a time complex-
ity of %'&�( # ( ��� 4��+52&�( # ( � .7. , where

�
is the largest number of the

weights. This algorithm is pseudo-polynomial in that the execu-
tion time depends on the value of the weights (not just the size
of the network). Widyono [9] proposed an algorithm that per-
forms exhaustive search on the QoS paths in exponential time.
Chen [1] proposed a heuristic algorithm that effectively solves
" –constrained problems. Yuan [10] studied the limited granu-
larity heuristic and the limited path heuristic for " –constrained
problems. Our paper differs from the previous work in that it
studies heuristic algorithms that efficiently solve the general ! –
constrained QoS routing problem. Some of the results for " –
constrained QoS routing [1], [10] are special cases of the results
in this paper. To the best of our knowledge, this is the first paper
that reports the study on the general ! –constrained QoS routing
problem.

III. BACKGROUND

A. Assumptions and notations

The network is modeled as a directed graph � & #�� $
. , where#
is the set of nodes representing routers and $ is the set

of edges representing links that connect the routers. Each
edge �
	����� is associated with ! independent weights,� , &���. , � 3 &���. , ..., � ) &���. , where ��� &���. is a positive real number
( ��� &���.������ and ��� &��1.98�� ) for all � � 4!� ! . The nota-
tion � &���."	 � &��#$� ."	 & � , &���.

� � 3 &���. �&%'%'%(� � ) &���.7. is used to
represent the weights of a link. It is assumed that all the con-
straints are path constraints and that the weight functions are
additive [8], that is, the weight of a path is equal to the summa-
tion of the weights of all edges on the path. Thus, for a path) 	*�,+-.� , /� 3 

%'%(% .�10 , � � & ) .2	43 05'6 , � � &7�
5
*2, � 5 . . Notation � & ) .8� � &�9 . denotes �:� & ) .8� ��� &�9 . for all�;�;4<� ! . Other comparative operators = , 	 , 8 , > and arith-

metic operators ? , @ on the weight vectors are defined simi-
larly. Let a path ) 	��1+A � ,  � 3  %(%'% ��10 and a
link �B	C� 0 .� 0 � , . The notation ) ?D� or ) ?A� 0 E� 0 � ,
denotes the path � + F� , G� 3  %'%'% F� 0 F� 0 � , . This pa-
per considers centralized algorithms and assumes that the global
network state information is known.

Given a set H , the notation ( H ( denotes the size of the set H .
We will use the following notations: binary logarithm function
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Fig. 1. Optimal QoS paths

4652&7I .J	 4��+5 3 &7I . , natural logarithm function 4�I &7I .J	 4��+5LK1&7I . ,
exponentiation of the logarithm function 465 ) &7I .M	 &�4652&7I .�.7) ,
and factorial function IONP	QISR &�I @T�+.�R %'%(% RU� . We define�VNL	W� .
B. Multi–Constrained QoS Routing

Definition 1: Given a directed graph � & #�� $
. , a source
node X&Y,Z , a destination [LX]\ , !^> " weight functions � ,`_ $C��� , � 3M_ $ab��� , ..., � ) _ $Gc��� , and ! constants Z , ,Z 3 , ... Z ) represented by a vector Zd	 &�Z ,

� Z 3 �&%'%(%'� Z ) . , multi–
constrained QoS routing is to find a path ) from X&Y,Z to [LX]\ such
that � & ) .��8Z , that is, � , & ) .��AZ , , � 3 & ) .��eZ 3 , ..., � ) & ) .:�eZ ) .

We will call a multi–constrained routing problem with !
weight functions a ! –constrained problem. Since the number
of weight functions in a network is small, we will assume that !
is a small constant.

Definition 2: Given a directed graph � & #^� $�. with !B><"
weight functions � ,f_ $gh��� , � 3 _ $����� , ..., � )-_ $���� , a path ) 	iX]Y,Zjk� , l� 3 

%'%'% k[mX]\ is said to be an
optimal QoS path from X]Y,Z to [LX]\ if there does not exist another
path 9 from X]Y,Z to [mX]\ such that � &�9 .n= � & ) . .

When !^	�� , the optimal QoS path is the same as the short-
est path. When ! 8o� , however, there can be multiple opti-
mal QoS paths between two nodes. For example, in Figure 1,
both path ) , 	p�dq�r : ( � & ) , .U	 &7sm�

% � � " % � . ) and path) 3 	W�; "; : ( � & ) 3 .�	 & " % � � st� % � . ) are optimal QoS paths
from node 0 to node 3. Path )vu 	w�` : is not an optimal QoS
path since � & ) u .`	 &yx1� % � � s % � .
8 � & ) , . . Optimal QoS paths
are interesting because each optimal QoS path can potentially
satisfy particular QoS constraints that no other path can satisfy.
On the other hand, when there exists a path that satisfies the QoS
requirement, there always exists an optimal QoS path that satis-
fies the same QoS requirement. Thus, a QoS routing algorithm
can guarantee finding a path that satisfies the QoS constraints
when such a path exists if the algorithm considers all optimal
QoS paths. Notice that the number of optimal QoS paths can
be exponential with respect to the network size as shown in Fig-
ure 2. In Figure 2, the number of optimal QoS paths from nodeX]Y,ZP	
� to node [mX]\z	 : ! is equal to " ) because from each node
:1{ where �;�e{|= ! , taking the link :1{} :1{~?e� or :1{} :1{~? "
will result in different optimal QoS paths.

C. Extended Bellman–Ford Algorithm

Since the heuristics that we consider are variations of the
extended Bellman–Ford algorithm, we will describe a version
of the extended Bellman–Ford algorithm in this section for the
completeness of the paper. Figure 3 shows the algorithm, which
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Fig. 2. The number of optimal QoS paths between two nodes

is a variation of the Constrained Bellman–Ford algorithm in [9].
For simplicity, the algorithm only checks whether there exists a
path that satisfies the QoS constraints. The algorithm can easily
be modified to find the exact path. We will call the algorithm
$ ����� .

$ ����� extends the original Bellman-Ford shortest path al-
gorithm [3] by having each node � to maintain a set � ����	 &7�2.
that records all optimal QoS paths found so far from X]Y,Z to � .
The first three lines in the main routine (BELLMAN FORD)
initialize the variables. Lines (4) to (6) perform the relax op-
erations. After the relax operations all optimal QoS paths from
node X]Y,Z to node [mX]\ are stored in the set � ����	 &�[LX]\7. . Lines
(7) and (8) check whether there exists an optimal QoS path that
satisfies the QoS constraints. The � $�
 ��� &7� � � � � . operation
is a little more complicated since all the elements in � ����	 &�� .
and � ����	 &�� . must be considered. For each element � & ) .
in � ����	 &�� . , line (4) in the RELAX routine checks whether
there exists an old path 9 from X]Y,Z to � that is better than path) ? &��So� . . If such a path exists, then ) ? &��SF� . is not an
optimal QoS path. Line (6) checks whether path ) ? &�� k� .
is better than any old path from X]Y,Z to � . If such an old path 9
exists, then path 9 is not an optimal QoS path and is removed
from the set � ���	 &7� . . Line (8) adds the newly found optimal
QoS path to � ���	 &7� . .
$ ����� guarantees to find a path that satisfies the QoS con-

straints when such a path exists by recording all optimal QoS
paths in each node. Given a network � & #�� $�. , the algorithm ex-
ecutes the � $�
 ��� operation %'&�( # ( ( $ ( . times. The time and
space needed to execute � $�
 ��� &�� � � � � . depend on the sizes
of � ����	 &�� . and � ����	 &7� . , which are the number of optimal
QoS paths from node X]Y,Z to nodes � and � respectively. Since
the number of optimal QoS paths from X]Y Z to � or � can be expo-
nential with respect to ( # ( and ( $ ( , the time and space require-
ment of $ ����� may also grow exponentially. Thus, heuristics
must be developed to reduce the time and space complexity.

The idea of both the limited granularity heuristic and the lim-
ited path heuristic is to limit the number of optimal QoS paths
maintained in each node, that is, the size of � ����	 , to reduce
the time and space complexity of the � $�
 ��� operation. By
limiting the size of � ����	 , each node is not able to record all
optimal QoS paths from the source and the heuristics can only
find approximate solutions. Thus, the challenge of the heuris-
tics is how to limit the size of � ����	 in each node while main-
taining the effectiveness in finding paths that satisfy QoS con-
straints. In the next few sections, we will discuss two different
methods to limit the size of � ����	 and study their performance
when solving general ! –constrained QoS routing problems.

RELAX(u, v, w)
(1) For each � & ) . in PATH(u)
(2) � 4�� 5j	W�
(3) For each � &�9 . in Path(v)
(4) if ( � & ) . ? � &7� � � .�> � &�9 . ) then
(5) � 4�� 5j	 �
(6) if ( � & ) . ? � &7� � � .�= � &�9 . ) then
(7) remove � &�9 . from � ����	 &7� .
(8) if &�� 4�� 5j	W�+. then
(9) add � & ) . ? � &7� � � . to � ����	 &7� .
BELLMAN-FORD( � , � , Z , X&Y,Z , [mX]\ )

(1) For {}	D� to ( # &�� .(1@e�
(2) � ����	 &�{�.}	��
(3) � ����	 &yX&Y,Z.z	�������
(4) For {}	�� to ( # &�� .(1@e�
(5) For each edge &7� � � .�� $ &�� .
(6) RELAX(u, v, w)
(7) For each � & ) . in � ����	 &�[mX]\7.
(8) if ( � & ) .�=8Z ) then return “yes”
(9) return “no”

Fig. 3. The extended Bellman–Ford algorithm (EBFA) for multi–constrained
QoS routing

IV. THE LIMITED GRANULARITY HEURISTIC

When all QoS metrics except one take bounded integer val-
ues, the multi-constrained QoS routing problem is solvable in
polynomial time. The idea of the limited granularity heuristic is
to use bounded finite ranges to approximate QoS metrics, which
reduces the original NP–hard problem to a simpler problem that
can be solved in polynomial time. This algorithm is a general-
ization of the algorithms in [1], [10]. To solve the ! –constrained
problem defined in Section 3.2, the limited granularity heuristic
approximates !-@ � metrics with !B@ � bounded finite ranges.
Let � 3 , ..., � ) be the !j@A� metrics to be approximated, that is,
for "e�4{U� ! , the range &�� � Z 5�� is mapped into

� 5
elements,Y

5
, , Y
5
3 , ..., Y

5��� , where �e= Y
5
, =4Y

5
3 =

%'%(% = Y
5��� 	pZ 5 . The� 5 &���.M� &�� � Z 5 � is approximated by Y

5� if and only if Y
5� *2, =� 5 &���.2�WY

5� . In the rest of the section, we will use the notation� � 5 & ) . , "e� {U� ! , to denote the approximated � 5 & ) . in the
bounded finite domain ��Y

5
, , Y
5
3 , ..., Y

5� � � .
Figure 4 shows the limited granularity heuristic that solves ! –

constrained problems. In this heuristic, each node � maintains a
table [! #"(� _ � 3 � � _ � u �&%'%(%'%(� � _ � )

�
. An entry [! #" { 3 � { u �]%(%'%(� { )

�
in

the table records the path that has the smallest � , weight among
all paths ) from the source to node � that satisfy � 3 & ) .f��Y�35%$ ,�:u & ) ."�DY u5'& , ..., � ) & ) .P�wY )5)( . In the � $�
 ��� &�� � � � � . opera-
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RELAX(u, v, w)
(1) for each [ � " { 3 � { u �&%'%(%'� { )

�
(2) Here, �2� { 3 � � 3 , ..., �2� { ) � � )
(3) Let [ � " � { � 	D[ � " { 3 � { u �]%(%'%(� { )

�
(4) Let

� � be the largest
� � such thatY ��� =eY 5 � @ � � &�� � � . , "j� 4}� !

(5) Let [ � " �� � 	D[ � " � 3 � � u �]%(%'%'� � )
�

(6) if (
� � >w� , for all "j� 4}�<! ) then

(7) if ( [ � " � { � 8A[! " �� � ? � , &7� � � . ) then
(8) [ � " � { � 	D[! " �� � ? � , &�� � � .
Limited Granularity Heuristic( � , � , Z , X]Y,Z , [LX&\ )

(1) For {}	D� to ( # &�� .(1@e�
(2) For each [

5
" { 3 � { u �&%'%'%(� { )

�
(3) Here, ���8{ 3 � � 3 , ..., ���8{ ) �

�
)

(4) if &�{}	wX&Y,Z. then [������ " { 3 � { u �&%'%(%'� { )
� 	 �

(5) else [
5
" { 3 � { u �&%'%(% { )

� 	
	
(6) For {}	�� to ( # &�� .(1@e�
(7) For each edge &�� � � .�� $ &�� .
(8) RELAX(u, v, w)
(9) if ( [�� �� " � 3 � � u �]%(%'%'� � )

� =AZ , ) then return TRUE
(10)return FALSE

Fig. 4. The limited granularity heuristic for � –constrained routing problems

tion, to compute [ � " { 3 � { u �]%(%'%(� { )
�
, only [  " � 3 � � u �&%'%(%'� � )

�
where

� �
is the largest

� � such that Y ���� � Y �5 � @ � � &7� � � . , for "�� 4n� ! ,
needs to be considered. The � $�
 ��� routine has a time com-
plexity of %'& � 3 � u %'%(% � ) . . Notice that the approximation of the
weights is carried out implicitly in the � $�
 ��� operation. For
example, if, for each path ) from X]Y,Z to [LX]\ , there exists an { ,
"j�A{|� ! , such that � � 5 & ) 	 X]Y ZPG� + a� ,  %'%(% a[LX&\7. 8Z 5 , then [ � �� " � 3 � � u �]%(%'%'� � )

� 	�	 at the end of the algorithm
after all RELAX operations are done.

Let
� 	 �

3
� u %'%(% � ) be the size of the table maintained

in each node. By limiting the granularity of the QoS met-
rics, the limited granularity heuristic has a time complexity of
%'& � ( # ( ( $ ( . . The most important issue of this heuristic is to
determine the relation between the size of the table (which, in
turn, determines the time complexity of the heuristic) and the
effectiveness of the heuristic in finding paths that satisfy the !
QoS constraints. The following lemmas attempt to answer this
question.

Lemma 1: In order for the limited granularity heuristic to find
any path of length 
 that satisfies the QoS constraints, the size
of the table in each node must be at least 
 )+*-, . That is,

� 	�
3
� u %'%'% � ) > 
 )+*2, .

Proof: Assuming
� 	 �

3
� u %(%'% � ) = 
 )+*-, , there exists an{ , "S�T{ � ! , such that

� 5 = 
 . Let ) 	g� + /� , /� 3 %'%(% h��� be a path that satisfies the QoS constraints � & ) .�� Z .
Let the range &�� � Z 5 � be approximated by

� 5
discrete elements,Y

5
, , Y
5
3 , ..., Y

5� � , where �j=8Y
5
, = Y

5
3 =
%'%'% =eY

5� � 	 Z 5 .
Let ) &7I . denote the path � +  � ,  � 3  %(%'%  � 0 .

By induction, it can be shown that � � 5 & ) &�I .7. >lY
5
0 . Base

case, when Io	 � , since Y
5
, is the smallest value that can

be used to approximate, � � 5 &7� +  � , .�> Y
5
, . Assuming

that � � 5 & ) &7I @W�+.�.�> Y
5
0 *-, , � �

5 & ) &7I .7.B	 � � 5 & ) &�I @��+.7.<?� � 5 &�� 0 *2, E� 0 .U>gY
5
0 *2, ? �

5 &�� 0 *2,  � 0 .'8*Y
5
0 *-, >*Y

5
0 .

Thus, � � 5 & ) & � 5 .�.�>eY
5� 	
Z 5 . When 
<8 � 5

, � � 5 & ) &�
�.7.�8AZ 5 .
That is, the approximation value for the � 5 & ) . weight is larger
than Z 5 . Thus, the heuristic does not recognize the path as a path
that satisfies � & ) .:�8Z .

Lemma 1 shows that in order for the limited granularity
heuristic to be effective in finding paths of length 
 that satisfy !
independent path constraints, the number of entries in each node
should be at least 
 )1*2, . For an

#
–node network, paths can po-

tentially be of length
#

. Thus, the limited granularity heuristic
should at least maintain a table of size %'&�( # ( )1*2, . in each node
to be effective. This result indicates that the limited granularity
heuristic is quite sensitive to the number of constraints, ! . No-
tice that this lemma does not make any assumptions about the
values of

�
3 , ....,

�
) and the values of Y

5� , where " ��{!� !
and � � � � � 5

. Thus, it applies to all variations of the limited
granularity heuristic.

Lemma 2: Let I be a constant,
�
3 	 � u 	 %(%'% 	 �

) 	gI 

so that

� 	 �
3
� u %'%(% � ) 	pI )1*2, 
 )+*-, . For all "A� {-� ! ,

let the range &�� � Z 5 � be approximated with equally spaced values�]Y
5
, 	 �

�� � � Y
5
3 	 �

�� � R " �&%'%(%'� Y
5� � 	 Z 5 � . The limited granularity

heuristic guarantees finding a path 9 that satisfies � &�9 .-��Z if
there exists a path ) of length 
 that satisfies� , & ) .��8Z , and � 5 & ) .��eZ 5 @ � �0 for all "j� {<�<! .
Proof: Consider the approximation of any { th weight of path) , "j� {|� ! ,
����� � � �y	W3��  �� ����� 0 � � �

5 &�� Q� .
=D3��  �� ����� 0 � & �

5 &�� Q� . ? �
�� � .

	 3 �  �� ����� 0 � �
5 &�� Q� . ? 3 �  �� ���!� 0"� �

����
�AZ 5 @ � �0 ? �� � R�Z 5 	DZ 5

Thus, the approximation of all � 5 weights, "S�g{ � ! , will
satisfy the condition � 5 & ) .-�CZ 5 . Since the heuristic does not
approximate the � , weight, the heuristic can guarantee finding
that path ) satisfies � & ) .:�8Z .

Lemma 2 shows that when each node maintains a table of
size I )1*2, ( # ( )+*2, 	 %'&�( # ( )+*2, . and when I is a reasonably
large constant, the limited granularity heuristic can find most
of the paths that satisfy the QoS constraints. Furthermore, by
maintaining a table of size I )+*-, # )1*2, , the heuristic guarantees
finding a solution when there exists a path whose QoS metrics
are better than & � @ ,0 . R �Z , where �Z is the required QoS metrics of
the connection. This guarantee will be called finding an & � @ ,0 . -
approximate solution. For example, if IW	a��� � , the heuristic
guarantees finding a path ) that satisfies � & ) .!�iZ when there
exists a path 9 that satisfies � &�9 .��A� % #$# R Z , that is, it guarantees
finding an � % #%# -approximate solution.

V. THE LIMITED PATH HEURISTIC

The limited path heuristic ensures the worst case polynomial
time complexity by maintaining a limited number of optimal
QoS paths, say

�
optimal QoS paths, in each node. Here,

�
corresponds to the size of the table maintained in each node in
the limited granularity heuristic. The limited path heuristic is
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basically the same as the extended Bellman–Ford algorithm in
Figure 3 except that before a path is inserted into � ����	 , the
size of � ����	 is checked. When � ����	 already contains

�
elements, the new path will not be inserted. By limiting the size
of � ����	 to

�
, the time complexity of the � $�
 ��� operation

is reduced to %'& � 31. . The time complexity of the heuristic is
%'& � 3 ( # ( ( $ ( . .

We must choose the value
�

carefully for the heuristic to be
both efficient and effective. If

�
is sufficiently large such that

each node actually records all optimal QoS paths, the heuristic
is as effective as $ ����� . However, large

�
results in an ineffi-

cient heuristic in terms of the time/space complexity. In [10], it
was established that for a network of

#
nodes, the limited path

heuristic can solve " –constrained problems with very high prob-
ability when

� 	 %'&0( # ( 3 4 5 &0( # ( .�. . In this section, we extend
this result and show that the limited path heuristic can solve gen-
eral ! –constrained problems with very high probability when� 	 %'&0( # ( 3+4652&�( # ( .�. , assuming that ! is a small constant. This
result is significant in the sense that it indicates that unlike the
limited granularity heuristic, the limited path heuristic is insen-
sitive to the number of QoS constraints in the network.

Let us assume that the weights of the links in a graph are
randomly generated and are independent of one another. For a
set H of ( H ( paths of the same length, we derive the probability) Y,� � 5 that set H contains { optimal QoS paths. We then show
that when

� 	 %'&0( # ( 3+4652&�( # ( .7. , 3 �5(6
,
) Y,� � 5 is very large (or

3 � ���5(6 � � , ) Y,� � 5 is very small), which indicates that when each
node maintains %'&�( # ( 3+4652&�( # ( .7. entries, the limited path heuris-
tic will have very high probability to record all optimal QoS
paths in each node and thus, will have very high probability to
find the QoS paths when such paths exist.

We use the following process to derive the probability ) Y � � 5
that the set H contains { optimal QoS paths. First, the path, ) ,
that has the smallest � , weight is chosen from H . The path )
is an optimal QoS path because � , & ) . is the smallest among all
the paths. All paths whose � � weights, "S� � � ! , are larger
than � � & ) . are not optimal QoS paths. Let the set

�
include

all such non–optimal QoS paths. The set H
@ �
contains all

paths 9 where there exists at least one
�
, "�� � � ! , such that� � &�9 .2= � � & ) . . Thus, a path in the set H#@ � may potentially

be an optimal QoS path. The process is then repeated on the setH#@ � . If H contains � optimal QoS paths, the process can be
repeated � times.

Let us use the notion �
5�� �
) to represent the probability of the

remaining set size equal to
�

when the process is applied to a set
of { paths and the number of QoS metrics is ! . We will always
assume �;� � � {�@;� , when the notion �

5�� �
) is used. The process

can be modeled as a Markov process as shown in Figure 5. The
Markov chain contains ( H ( ? � states, each state { in the Markov
chain represents a set of { paths. The transition matrix for the
Markov chain is

P

k
|S|, 0

k
|S|-2, 0

k
|S|, |S|-2

kP

P

1, 0
P P

P
P

|S|, |S|-1
k k

|S|-1, |S|-2 |S|-2, |S|-3
k

|S|-2 0|S| |S|-1

Fig. 5. The Markov Chain

� �	�

������
�

� ��� ��� � � �� ...��� ��� ����� ��� � ��� � ��

� � � �� ...� � ��� ����� ����� ��� � ��

������������������������������


...� � ��� � � ��� ����


...

��������
�

.

Let us define
� ,) 	

�
) and

���
) 	

� � *2,)
�
) for � 8G� .���

) &7{
� � . represents the probability of the state transferring from

node { to node
�

in exactly � steps. For example,
� ,) &�( H (

� � .
represents the probability of a set of size ( H ( became empty after
one optimal QoS path is chosen.

� �
) &�( H (

� � . is the probability
that the set of size ( H ( becomes empty after selecting exactly� optimal QoS paths, that is,

� �
) &0( H�(

� � . is the probability that
the set S contains exactly � optimal QoS paths. Our goal is
to determine the value

�
such that 3 � �!�� 6 � ���

) &�( H (
� � . is very

small.

A special case, when !i	 " , was studied in [10]. When
! 	 " , each link has two weights � , and � 3 . In the path se-
lection process, we choose from the set of { paths a path whose� , weight is the smallest. Since � 3 and � , weights are inde-
pendent and the length of the paths are the same, the probability
of the size of the remaining set may be 0, 1, ..., { @e� , each with
probability , 5 , since � 3 & ) . can be ranked � , ...., { among the {
paths in the set with equal probability , 5 , �

5�� �
3 	 , 5 . By manip-

ulating the transition matrix,
�
3 , it was shown that when each

node maintains %'&�( # ( 3/4 5 &0( # ( .7. paths, the heuristic can solve
the " -constrained problem with very high probability. Next,
we will first derive the formula for computing the general �

5�� �
) ,

then prove that maintaining %'&�( # ( 3/4 5 &0( # ( .�. paths enables the
heuristic to solve the general ! –constrained problem with very
high probability. Lemma 3 shows how to compute �

5�� �
) .

Lemma 3: �
5�� �
) 	 ,

5 3 � � 6 + �
5
* �
� � * �)+*2,
%

Proof: Let H be the set of { paths. Let ) be the path with the
smallest � , & ) . . Consider � 3 & ) . , since the weights are randomly
generated and are independent, � 3 & ) . can be ranked 1, 2, ..., i
among all the paths with equal probability , 5 . In other words,
the probability that there are 4 , �w� 4-� {�@�� , paths whose� 3 weights are smaller than � 3 & ) . is , 5 . When 4�	�� , all the{ @e� paths are potential candidates to be considered for the rest
!j@ " weights in the remaining set. In this case, the probability
that the remaining set size equal to

�
is equivalent to the case to
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choose from { paths the path with the smallest � , weight and
the remaining set size is equal to

�
with !U@w� weights. Thus,

the probability is �
5�� �
)+*-, . When 4 	a� , there exists one path 9

where � 3 &�9 .^= � 3 & ) . , thus, path 9 belongs to the remaining
set. In this case, the probability that the remaining set size equal
to
�

is equivalent to the case to choose from {:@�� paths (all
paths but path 9 ) the path with the smallest � , weight and the
remaining set size is equal to

� @!� with !O@!� weights (since path9 is already in the remaining set by considering � 3 ). Thus, the
probability is �

5
*-,
� � *-,)+*-, . Similar arguments apply for all cases

from 4|	T� to 4|	 � . When 4�8 � , there will be at least 4 paths
in the remaining set, thus, the probability that the remaining set
size equal to

�
is 0. Combining all these cases, we obtain

�
5�� �
) 	 ,

5 �
5�� �
)1*2, ? ,

5 �
5
*2,
� � *2,)+*-, ? %'%'% ? , 5 �

5
* �
� +

)+*2,	 , 5 3 � � 6 + �
5
* �
� � * �)1*2,
%

Next, we will introduce a number of lemmas (Lemmas 4, 5,
and 6) that summarize some property of �

5�� �
) and

�
) .

Lemma 4: �
5�� �
) 8 �

5
� ,
� �

) .

Proof: Base case, !!	 " , �
5�� �
3 	 ,

5 8 ,5 � , 	 �
5
� ,
� �

3 .

Induction case, assuming that for any { , � and ! , �
5�� �
) 8 �

5
� ,
� �

) ,
�
5�� �
) � , 	 ,

5 3 � � 6 + �
5
* �
� � * �) 8 ,5 � , 3

� � 6 + �
5
� , * �

� � * �) 	 �
5
� ,
� �

) � ,
Lemma 5: For !-><: and �j� � � ( H ( ,

3 � �!�5'6 + � ) &7{ � � .|	 3 � �!�5'6 � � , �
5�� �
) = " .

Proof: Base case, !E	 : . From Lemma 3, �
5�� �u 	

, 5 & 3 � � 6 + �
5
* �
� � * �3 .z	 , 5 & , 5 ? ,5 *2, ?

%'%(% ? ,5 * � . . Hence, for any
�
,

3 � ���5(6 + � u &7{ � � . @d3 � �!�5'6 + � u &�{ � � ?D�+.
	 3 � �!�5'6 � � , �

5�� �u @ 3 � �!�5'6 � �-3 �
5�� � � ,u

	 ,� & ,� ? ,� *2, ?
%'%(% ? ,, . @ & ,� � , ,, ? ,� � 3 ,3 ?

%'%(% ? , 5 ,5 * � *2, .8A�
Thus, " 8 3 � �!�5(6 , ,5 $ 	 3 � �!�5'6 + � u &�{ � � .�8D3 � �!�5'6 + � u &�{ � �+.�8 %'%(% 83 � ���5(6 + � u &7{ � ( H ( . .
Induction case, for any

�
and ! , assuming 3 � ���5(6 + � ) &�{ � � .d	3 � ���5(6 � � , �

5�� �
) = " ,

3 � ���5(6 + � ) � , &�{ � � . 	 3 � �!�5'6 � � , �
5�� �
) � ,	 3 � �!�5'6 � � , , 5 3 � � 6 + �

5
* �
� � * �)= ,� � , 3

� � 6 + 3 � �!�5(6 � � , �
5�� �
)� ,� � , R & ""R &

� ?D�+.�.
	 "

Lemma 6: �
5�� �
) � ,

5 & , 5 ? ,5 *-, ?
%(%'% ? ,5 * � . )1* 3

%
Proof: Base case, !!	 " ,�

5�� �
3 	 ,

5 � , 5 & , 5 ? ,5 *-, ?
%(%'% ? ,5 * � .�3 * 3

%
Induction case, assuming that for any { , � and ! ,�

5�� �
) � ,

5 & , 5 ? ,5 *-, ?
%(%'% ? ,5 * � . )+* 3

%

�
5�� �
) � , 	 ,

5 &��
5�� �
) ? �

5
*-,
� � *-,) ? %(%'% ? �

5
* �
� +

) .

� , 5 & , 5 & , 5 ? ,5 *2, ?
%'%'% ? ,5 * � . )+* 3? ,5 *-, & ,

5
*-, ? ,5 * 3 ?

%(%'% ? ,5 * � . )+* 3? %(%'% ? ,5 * � & ,
5
* � . )+* 3+.� , 5 & , 5 & , 5 ? ,5 *2, ?
%'%'% ? ,5 * � . )+* 3? ,5 *-, & ,

5 ? ,5 *-, ?
%(%'% ? ,5 * � . )1* 3? %(%'% ? ,5 * � & ,

5 ? ,5 *2, ?
%'%'% ? ,5 * � .7)+* 3 .	 , 5 &7& , 5 ? %(%'% ? ,5 * � .& ,

5 ? %'%(% ? ,5 * � . )+* 31.	 , 5 & , 5 ? ,5 *2, ?
%'%'% ? ,5 * � . )+*-,

The following three Lemmas (Lemmas 7, 8 and 9) are math-
ematic formulae to be used later.

Lemma 7: For a constant ! , there exists a constant Z such that3 �5(6
, ,3
� { ) �8Z .

Proof: When !!	D� , 3 �5'6
, ,3
� { ) 	w3 �5(6

, ,3
� 	T� .

Let
� & ! .|	w3 �5'6

, ,3
� { ) , � � ) �3 	 3 �5(6

3
�
3
� &7{ @8�+. )

� � ) �3 	
� &	! .}@ � � ) �3	 ,3 ? 3

�5'6
3 ,3
� &�{ )J@<&7{ @e�1.7) .� ,3 ? 3

�5'6
3 ,3
� &	! R<{ )1*2, .�<! R � & !j@8�+.

Thus,
� &	! .J� " ! � &	!!@
�+.J� " 3/!2&	!!@
�+. R � & !;@ " .J� %'%(% �

" ) ! N � &�� .�	 " ) !vN . When ! is a constant, there exists a constantZn	;" ) !vN such that 3 �5(6
, ,3
� { ) �8Z .

Lemma 8: For a constant k and �;� � � {}@A� , there exists a
constant Z such that3

5
*-,0 6 � � , & ,

5 ? ,5 *2, ?
%'%'% ,5 * 0 . ) & ,0 ?

%'%(% ? ,0 * � . ) �8Z|R<{ .
Proof: Let � &��9.P	 & , 5 ? ,5 *2, ?

%'%(% ? ,5 * � . ) . We will first
derive some bounds for � &��9. .
For �!� �F� 53 , � &�� .n	 & , 5 ? ,5 *-, ?

%(%'% ? ,5 * � . ) � & ,5�� 3 ?,5�� 3 ?
%'%'% ? ,5�� 3 .7)`� &��*R ,5�� 3 .�)f� �+) .

For
5
3 ?D�2� � � u

5
� , � &�� .�� & ,5�� 3 ? ,5�� 3 ?

%'%(% ? ,5�� 3 ? &��4@5
3 . R ,

5�� � . ) � " ) .
In general, for

� 3 	 *2, �3 	 R<{v?D�J� � � � 3 	�
� � *2,3 	�
�� R<{ ,
� &��9.�� & � ?D�+. ) .

For IM�8{ , we also have & ,0 ? %(%'% ? ,0 * � .7)j� & ,
5 ? %'%(% ? ,0 * � .�)2	� &7{ @SI-? � . . Thus,

3
5
*-,0 6 � � , & ,

5 ? ,5 *2, ?
%'%(% ,5 * 0 . ) & ,0 ?

%(%'% ? ,0 * � . )�D3
5
*2,0 6 � � , � &7I .�� &7{ @SIU?

� .
	�� &7{ @8�+.�� & � ?
�1. ? %'%'% ?�� & � ?D�+.�� &7{ @e�1.��� & � ?D�+.73<? %(%'% ?�� &7{ @e�1.�3 /* � 3|? � 3�> " � � */
	 3

5
*2,0 6 � � , &�� &7I .7.73 �
3

5
*2,0 6 , &�� &�I .7.73	 3

�$
0 6 , &�� &�I .7.73<?e3

& ��0 6 �$ � , &�� &7I .�.�3�?
%'%(%'%

	
5
3 �+3 ) ?

5
� " 3 ) ?

5
� : 3 ) ? %'%'%�AZOR<{ , where Z is a constant. /* Applying Lemma 7 */

Lemma 9: Let � � � =
5
3 and � be a constant, there exists a

constant Z such that3
5
*-,0 6 � � , �

0 � �
) & , 5 ? %'%'% ? ,5 * 0 .

� �AZ .
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Proof: From Lemma 6, we have 3
5
*-,0 6 � � , �

0 � �
) = " .

From Lemma 5, we have �
5�� �
) 8 �

5
� ,
� �

) . Hence,

3
�$
0 6 � � , �

0 � �
) = "

3
& ��0 6 �$ � , �

0 � �
) = "

3 � ��0 6 & �� � , �
0 � �
) = ,3 3

& ��0 6 �$ � , �
0 � �
) = "nR ,33 ��� ����0 6 � �� � , �

0 � �
) = ,� 3

& ��0 6 �$ � , �
0 � �
) = "nR ,�

...

Thus,

3
5
*-,0 6 � � , �

0 � �
) & , 5 ? %'%(% ? ,5 * 0 .

�
	 3

�$
0 6 � � , �

0 � �
) & , 5 ? %'%(% ? ,5 * 0 .

�
? 3

& ��0 6 �$ � , �
0 � �
) & , 5 ? %'%(% ? ,5 * 0 .

�
?#3 � ��0 6 & �� � , �

0 � �
) & , 5 ? %(%'% ? ,5 * 0 .

� ? %'%(%
� � � 3

& ��0 6 �$ � , �
0 � �
) ? " � 3

& ��0 6 �$ � , �
0 � �
)? : � 3 � ��0 6 & �� � , �

0 � �
) ? %'%'%

� � � R�"n? " &	" � R ,3 � ? : � R ,3 � ? s � R ,3 $ ? %'%'% .�AZ , where Z is a constant. /* applying Lemma 7 */

Lemma 10 describes the relation between
�
3 &�{ � � . and� 3 ) &7{

� � . .
Lemma 10: There exists a constant Z such that� 3 ) &�{

� � .��eZ|R � 3 &7{ � � . .
Proof: Consider the following three cases:
� Case 1:

� >e{ @e� . In this case,
� 3 ) &7{

� � .z	 �j� � 3 &7{ � � . .� Case 2:
5
3 �

� �e{ @ " . In this case,� 3 ) &7{
� � .

	 3
5
*2,0 6 � � , �

5�� 0
) R � 0

� �
)� 3

5
*2,0 6 � � , ,

5 & , 5 ? %'%(% ? ,5 * 0 . )+* 3�R ,0 & ,0 ?
%(%'% ? ,0 * � . )+* 3� 35 $ 3

5
*2,0 6 � � , & ,

5 ? %(%'% ? ,5 * 0 .7)1* 3 & ,0 ?
%(%'% ? ,0 * � .�)+* 3� 3�� �5 	 "1Z , � 3 &7{ � � . /* applying Lemma 8 */� Case 3: �;� � �

5
3 @8� .� 3 ) &7{

� � . 	 3
5
*-,0 6 � � , �

5�� 0
) R � 0

� �
)�D3

5
*-,0 6 � � , �

0 � �
) , 5 & , 5 ? ,5 *-, ?

%(%'% ? ,5 * 0 . )1* 3� , 5 3
5
*-,0 6 � � , �

0 � �
) & , 5 ? ,5 *2, ?

%'%'% ? ,5 * 0 .7)+* 3� �
$5 	 Z 3 � 3 &7{ � � . /* applying Lemma 9 */

Thus, there exists a constant Z 	 � ��� &	"1Z , � Z 3 � �+. such that� 3 ) &7{
� � .��AZOR � 3 &�{ � � . .

Theorem 1: Given an
#

node graph with ! independent con-
straints, the limited path heuristic has very high probability to
record all optimal QoS paths and thus, has very high probability
to find a path that satisfies the QoS constraints when one exists,
when each node maintains %'&0( # ( 3/4 5 &0( # ( .7. paths.

Proof: The proof of this theorem uses results in [10] that���
3 &�( H (

� � .�� � 3 � 0 � � �!� � ��	 
��� ��� � � � , ��
 . From Lemma 10, we have� 3 ) &7{
� � . � Z � 3 &7{ � � . , and hence

���
) &�{
� � .�� Z 	 $ � 	 $

3 &7{
� � . .

Thus,
���
) &�( H (

� � .��AZ 	 $ � 	 $
3 &0( H�(

� � .�� � 3�� � 0 � � �!� � � 	 $ 
��� �!� � 	 $ � , ��
 .

Using the formula ION-> � "� I & 0 K . 0 from [3]. When � 8stZ&�+347I &�( H ( . ,

���
) &�( H (

� � . � � 3�� � 0 � � �!� � � 	 $ 
��� �!� � 	 $ � , ��
 � � 3 � � 0 � � �!� � � 	 $ 
��� �!� � 	$�� � 	 $ 
��
� ,� ��� & � � K�� � 0 � � �!� �� . 	

$ � , � ,� �!� & , K .�3 � K
$ � 0 � � �!� �

� ,� ��� $���� $ 
��
.

The number of paths of length 
 between any two nodes in
the graph is at most � 	 ( # ( � . The probability that there exists
no more than { optimal QoS paths among the �C	 ( # ( � paths
is ) 	T�:@ 3��� 6 5 � , ��� ) &�� � � . . When { 88stZ �1347I &�� . , ) 	T�:@
3 �� 6 5 � , ��� ) &�� � � .z>w��@ 3 � )

6 5
� , ,�

$���� $ 
�� >w��@ ,�
$���� $

Thus,

when each node maintains " Z ��3 4�I &�( # ( � . 	 "1Z �13 
 4652&�( # ( .
paths, the probability that the node can record all optimal QoS
paths of length 
 is very high, �!@ ,�

$���� $
. For example, if

� 	 : � , the probability is more than � @ ,�
$�� $ 8 #$#~% #%#$#%#$#�� . In

an
#

node graph, the length of any QoS path is between 1 and#
. Thus, maintaining 3 � � �� 6 , "1Z � 3 
 47I &0( # ( .z	 %'&�( # ( 3 4652&�( # ( .7.paths in each node will give very high probability to record all

optimal QoS paths in the node. Thus, the limited granularity
heuristic has very high probability to find a path that satisfies
the QoS constraints when such a path exists, when each node
maintains %'&0( # ( 3 4 5 &0( # ( .7. paths.

Theorem � establishes that the performance of the limited
path heuristic is not as sensitive to the number of QoS con-
straints as the limited granularity heuristic. Thus, the limited
path heuristic provides better performance when ! 8 : . Given
that the global network state information is inherently impre-
cise, in practice, using an algorithm that can precisely solve the
! –constrained routing problem may not have much advantage
over the limited path heuristic that can solve the ! –constrained
routing problem with very high probability.

The proof of Theorem 1 assumes that paths of different
lengths are of the same probability to be the optimal Qos paths.
However, when the weights in a graph are randomly generated
with uniform distribution, the paths of shorter length are more
likely to be the optimal QoS paths. In addition, the probability
used in the proof of Theorem � is extremely high. In practice,
we do not need such high probability for the heuristic to be ef-
fective. A tighter upper bound for the number of optimal QoS
paths to be maintained in each node for the limited path heuris-
tic to be effective may be obtained by considering these factors.
However, the formal derivation of a tighter upper bound can be
complicated. In the next section, we further examine the two
heuristics through simulation study.

VI. EXPERIMENTS

The goal of the simulation experiments is to compare the per-
formance of the heuristics for real world network topologies and
to study the impact of constants in the asymptotic bounds we de-
rived. Two topologies, the mesh topology shown in Figure 6 (a)
and the MCI backbone topology shown in Figure 6 (b), are used
in the studies. In the simulation, the � 5 weight of each link is
randomly generated in the range of &�� % � � ��� % �vRV{�. , for ���e{<� ! .

We compare the two heuristics with the exhaustive algorithm,
$ ����� , that guarantees finding a path that satisfies the QoS
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Fig. 6. The network topologies

constraints if such a path exists. Two concepts, the existence
percentage and the competitive ratio, are used to describe the
simulation results. The existence percentage, which indicates
how difficult the paths that satisfy the QoS constraints can be
found, is defined as the ratio of the total number of requests
satisfied using the exhaustive algorithm and the total number of
requests generated. The competitive ratio, which indicates how
well a heuristic algorithm performs, is defined as the ratio of
the number of requests satisfied using a heuristic algorithm and
the number of requests satisfied using the exhaustive algorithm.
By definition, both the existence percentage and the competitive
ratio are in the range of " � % � � � % � � .

Figure 7 shows the performance of the two heuristics when
they solve : –constrained problems in ����� meshes. Since the
performance of the two heuristics is closely related to the length
of the paths, we choose the source and the destination to be the
farthest apart in the mesh network as shown in Figure 6 (a). The
existence percentage and the competitive ratio are obtained by
solving x � � QoS routing problems with the same QoS require-
ment. Each routing problem uses a mesh whose weights are
randomly generated. In general, when X is sufficiently large,
both heuristics have high competitive ratio, which indicates that
the performance is close to that of $ ����� . However, the lim-
ited granularity heuristic must maintain a very large number of
entries in each node to achieve good performance. In this ex-
periment, the limited granularity heuristic must maintain st� �t� �
entries (a "1�t���<"1� � table) to achieve 80% competitive ratio
when the existence percentage is high (0.8) and around 50%
competitive ratio when the existence percentage is low (0.26).
In contrast, the limited path heuristic achieves close to 100%

(a) Limited Granularity Heuristic

(b) Limited Path Heuristic

Fig. 7. Performance for � –constrained problems in � � � meshes

competitive ratio for all different competitive ratios with 16 en-
tries in each node. In addition, the existence percentage, which
has a strong impact on the limited granularity heuristics, does
not significantly affect the limited path heuristic. The limited
path heuristic out–performs the limited granularity heuristic in
terms of both efficiency and consistency.

Figure 8 shows the results when the two heuristics solve : –
constrained QoS routing problems in the MCI backbone topol-
ogy. The existence percentage and the competitive ratio are ob-
tained by solving �]� �t� QoS routing problems. Each of the �]�t� �
routing problems tries to find a connection between randomly
generated source and destination with the same QoS require-
ment. The general trend in this figure is similar to that in the
previous experiment. In comparison to the limited path heuris-
tic, the limited granularity heuristic requires significantly more
resources to achieve good performance. The limited granular-
ity heuristic must maintain

# � � entries (a :t�	� : � table) in each
node to consistently achieve 90% competitive ratio, while the
limited path heuristic achieves close to 100% competitive ratio
with 4 entries in each node.

Figure 9 shows the impact of the number of constraints on the
performance of the heuristics using the MCI backbone topol-
ogy. In this experiment, we fix the number of entries maintained
at each node for both heuristics and study the performance of
the two heuristics when they solve QoS routing problems with
different numbers of QoS constraints. For the limited granular-
ity heuristics, we fix the table size to be around 4,000. More
specifically, we maintain in each node a linear array of 4,000
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(a) Limited Granularity Heuristic

(b) Limited Path Heuristic

Fig. 8. Performance for � –constrained problems in the MCI backbone

(a) Limited Granularity Heuristic

(b) Limited Path Heuristic

Fig. 9. Performance of the heuristics for different numbers of QoS constraints

for 2-constrained problems, a
� s � � s table for 3-constrained

problems, a ��� �8��� �8��� table for 4-constrained problems, a
� � � � � � � table for 5-constrained problems and a

� � � � � � � � �
table for 6-constrained problems. For the limited path heuristic,
we fix the table size to be 4. The results are obtained by solv-
ing �]�t� � QoS routing problems for each setting. As can be seen
from the figure, the performance of the limited path heuristic is
somewhat insensitive to the number of QoS constraints. With� 	Ws , the limited path heuristic achieves close to 100% com-
petitive ratio for all different number of constraints. The perfor-
mance of the limited granularity heuristic drastically degrades
as the number of QoS constraints increases. The competitive ra-
tio falls from nearly 100% to less than 40% when the number
of constraints increases from 2 to 6. This experiment confirms
that the limited path heuristic is more efficient than the limited
granularity heuristic in solving general ! –constrained problems
when ! 8<: .

VII. CONCLUSION

In this paper, we study two heuristics, the limited granularity
heuristic and the limited path heuristic, that can be applied to the
extended Bellman–Ford algorithm to solve ! –constrained QoS
path routing problems. We show that although both heuristics
can solve ! –constrained QoS routing problems with high prob-
ability in polynomial time, to achieve high performance, the lim-
ited granularity heuristic requires much more resources than the
limited path heuristic does. Specifically, the limited granularity
heuristics must maintain a table of size %'&0( # ( )+*2, . in each node
to achieve good performance, which results in a time complex-
ity of %'&0( # ( ) ( $ ( . , while the limited path heuristic only needs to
maintain %'&0( # ( 3/4 5 &0( # ( .7. entries in each node. Both our analyt-
ical and simulation results indicate that the limited path heuristic
is more efficient than the limited granularity heuristic in solv-
ing general ! –constrained QoS routing problems when ! 8 : ,
although previous research results show that both the limited
granularity heuristic and the limited path heuristic can solve " –
constrained QoS routing problems efficiently. The advantage of
the limited granularity heuristic is that, by maintaining a table
of size I )+*-, # )+*2, , it guarantees finding & �2@ ,0 . -approximate
solutions while the limited path heuristic cannot provide such
guarantee.
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