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Heuristic Algorithms for Multiconstrained
Quality-of-Service Routing
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Abstract—Multiconstrained quality-of-service (QoS) routing
deals with finding routes that satisfy multiple independent QoS
constraints. This problem is NP-hard. In this paper, two heuristics,
the limited granularity heuristic and the limited path heuristic,
are investigated. Both heuristics extend the Bellman–Ford shortest
path algorithm and solve general -constrained QoS routing prob-
lems. Analytical and simulation studies are conducted to compare
the time/space requirements of the heuristics and the effectiveness
of the heuristics in finding paths that satisfy the QoS constraints.
The major results of this paper are the following. For an -nodes
and -edges network with (a small constant) independent
QoS constraints, the limited granularity heuristic must maintain
a table of size ( 1) in each node to be effective, which
results in a time complexity of ( ), while the limited
path heuristic can achieve very high performance by maintaining
( 2 lg( )) entries in each node. These results indicate that

the limited path heuristic is relatively insensitive to the number of
constraints and is superior to the limited granularity heuristic in
solving -constrained QoS routing problems when 3.

Index Terms—Quality of service, routing.

I. INTRODUCTION

T HE migration to integrated networks for voice, data, and
multimedia applications introduces new challenges in sup-

porting predictable communication performance. Multimedia
applications require the communication to meet stringent re-
quirements on delay, delay-jitter, cost, and/or other quality-of-
service (QoS) metrics. QoS routing, which identifies paths that
meet the QoS requirement and selects one that leads to high
overall resource efficiency, is the first step toward achieving
end-to-end QoS guarantees.

The QoS requirement of a point-to-point connection is speci-
fied as a set of constraints, which can belink constraintsor path
constraints[2]. A link constraint, such as the bandwidth con-
straint, specifies the restriction on the use of links. For example,
the bandwidth constraint requires that each link along the path
must be able to support certain bandwidth. A path constraint,
such as the delay constraint, specifies the end-to-end QoS re-
quirement for the entire path. For example, the delay constraint
requires that the aggregate delay of all links along the path must
be less than the delay requirement.

Multiconstrained QoS routing finds a path that satisfies
multiple independent path constraints. One example is the
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delay-cost constrained routing, i.e., finding a route in the net-
work with bounded end-to-end delay and bounded end-to-end
cost. We will use the notion-constrained routingto refer to
multiconstrained QoS routing problems with exactlypath
constraints. The delay-cost constrained routing is an example
of a 2-constrained routing problem. Multiconstrained QoS
routing is known to be NP-hard [4], [9]. Previous work [1],
[10] has focused on developing heuristic algorithms to solve
2-constrained problems. The algorithm in [10] guarantees to
find a path that satisfies the QoS constraints if such a path
exists. In the worst case, the time complexity of the algorithm
may grow exponentially with respect to the network size.
Algorithms in [1] find approximate solutions in polynomial
time. The general -constrained routing problem receives
little attention. In practice, however, effective heuristics to
solve general -constrained QoS routing problems, such as the
delay-jitter-cost constrained problem, are needed.

This paper considers two polynomial time heuristics, thelim-
ited granularity heuristicand thelimited path heuristic, that can
be applied to the extended Bellman–Ford algorithm to solve

-constrained QoS routing problems. The limited granularity
heuristic obtains approximate solutions in polynomial time by
using finite domains, such as bounded ranges of integer num-
bers, to approximate the infinite number of values that QoS met-
rics can take. The limited path heuristic focuses on the cases
that occur most frequently in general and solves these cases ef-
ficiently and effectively. In this paper, we develop the heuristics
to solve the general-constrained QoS routing problems, inves-
tigate the performance of the heuristics in solving-constrained
problems, and identify the conditions for the heuristics to be ef-
fective. We prove analytically that for an-nodes and -edges
network with independent path constraints (is a small con-
stant), the limited granularity heuristic must maintain a table
of size in each node to achieve high probability of
finding a path that satisfies the QoS constraints when such a
path exists. By maintaining a table of size , the time
complexity of the limited granularity heuristic is .
The analysis also shows that the performance of the limited
path heuristic is rather insensitive toand that the limited path
heuristic can achieve very high performance by maintaining

entries in each node. These results indicate that
the limited granularity heuristic is inefficient when since
the time/space requirement of the limited granularity heuristic
increases drastically whenincreases, and that the limited path
heuristic is more effective than the limited granularity heuristic
in solving -constrained QoS routing problems when .
The simulation study further confirms this conclusion.
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The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes the multi-
constrained QoS routing problem and introduces the extended
Bellman–Ford algorithm that can solve this problem. Section IV
studies the limited granularity heuristic for-constrained prob-
lems. Section V analyzes the limited path heuristic. Section VI
presents the simulation study. Section VII concludes the paper.

II. RELATED WORK

Much work has been done in QoS routing recently. An ex-
tensive survey can be found in [2]. Among the proposed QoS
routing schemes, the ones that deal with multiconstrained QoS
routing are more related to the work in this paper. In [8], a
distributed algorithm was proposed to find paths that satisfy
the end-to-end delay constraint while minimizing the cost. Al-
though this algorithm considers two path constraints, it does not
solve the 2-constrained problem because the cost metric is not
bounded. Ma [6] showed that when the weighted fair queueing
algorithm is used, the metrics of delay, delay-jitter, and buffer
space are not independent, and all of them become functions
of the bandwidth. Orda [7] proposed the quantization of QoS
metrics for efficient QoS routing in networks with a rate-based
scheduler at each router. Although the idea of quantization of
QoS metrics is similar to the limited granularity heuristic, it
was proposed in [7] to improve the performance of a polyno-
mial time QoS routing algorithm that solves the bandwidth-
delay bound problem. Jaffe [4] proposed a distributed algorithm
that solves 2-constrained problems with a time complexity of

, where is the largest value of the weights.
This algorithm is pseudopolynomial in that the execution time
depends on the value of the weights (not just the size of the net-
work). Widyono [10] proposed an algorithm that performs an
exhaustive search on the QoS paths in exponential time. Chen
[1] and Korkmaz [5] proposed heuristic algorithms that effec-
tively solve 2-constrained problems. This research differs from
the previous work in that it studies heuristic algorithms that ef-
ficiently solve the general-constrained QoS routing problem.
Some of the results for 2-constrained QoS routing [1] are spe-
cial cases of the results in this paper.

III. B ACKGROUND

A. Assumptions and Notations

The network is modeled as a directed graph ,
where is the set of nodes representing routers andis the
set of edges representing links that connect the routers. Each
edge is associated with independent weights,

, where is a positive real number
( and ) for all . The notation

is used
to represent the weights of a link. It is assumed that all the
constraints are path constraints and that the weight functions
are additive [9], that is, the weight of a path is equal to the sum-
mation of the weights of all edges on the path. Thus, for a path

. Notation denotes for all
. Other relational operators and arithmetic

Fig. 1. Optimal QoS paths.

operators on the weight vectors are defined similarly.
Let a path and a link

. The notation or
denotes the path . This
paper considers centralized algorithms and assumes that the
global network state information is known.

Given a set , the notation denotes the size of the set.
We will use the following notations: binary logarithm function

, natural logarithm function ,
power of the logarithm function , and facto-
rial function . We define .

B. Multiconstrained QoS Routing

Definition 1: Given a directed graph , a source
node , a destination , weight functions

,
and constants represented by a vector

, multiconstrained QoS routingis to
find a path from to such that , that is,

and .
We will call a multiconstrained routing problem with

weight functions a -constrainedproblem. Since the number
of weight functions in a network is small, we will assume that

is a small constant.
Definition 2: Given a directed graph with

weight functions
, a path is said to

be anoptimal QoS pathfrom to if there does not exist
another path from to such that .

When , the optimal QoS path is the same as the shortest
path. When , however, there can be multiple optimal
QoS paths between two nodes. For example, in Fig. 1, both
path and path

are optimal QoS paths
from node 0 to node 3. Path is not an optimal QoS
path since . Optimal QoS paths
are interesting because each optimal QoS path can potentially
satisfy particular QoS constraints that no other path can satisfy.
On the other hand, when there exists a path that satisfies the QoS
requirement, there always exists an optimal QoS path that satis-
fies the same QoS requirement. Thus, a QoS routing algorithm
can guarantee finding a path that satisfies the QoS constraints
when such a path exists if the algorithm considers all optimal
QoS paths. Notice that the number of optimal QoS paths can be
exponential with respect to the network size as shown in Fig. 2.
In Fig. 2, the number of optimal QoS paths from node to
node is equal to because from each nodewhere

, taking the link or will
result in different optimal QoS paths.
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Fig. 2. Number of optimal QoS paths between two nodes.

Fig. 3. Extended Bellman–Ford algorithm (EBFA) for multiconstrained QoS
routing problems.

C. Extended Bellman–Ford Algorithm

Since the heuristics that we consider are variations of the
extended Bellman–Ford algorithm, we will describe a version
of the extended Bellman–Ford algorithm in this section for the
completeness of the paper. Fig. 3 shows the algorithm, which is
a variation of the Constrained Bellman–Ford algorithm in [10].
For simplicity, the algorithm only checks whether there exists a
path that satisfies the QoS constraints. The algorithm can easily
be modified to find the exact path. We will call the algorithm
EBFA.

EBFA extends the original Bellman–Ford shortest path algo-
rithm [3] by having each nodeto maintain a set that
records all optimal QoS paths found so far from to . The
first three lines in the main routine (BELLMANFORD) ini-
tialize the variables. Lines (4) to (6) perform the op-
erations. After the operations, all optimal QoS paths
from node to node are stored in the set .
Lines (7) and (8) check whether there exists an optimal QoS
path that satisfies the QoS constraints. The
operation is a little more complicated since all the elements
in and must be considered. For each ele-
ment in , line (4) in the routine checks
whether there exists an old pathfrom to that is better than
path . If such a path exists, then is not
an optimal QoS path. Line (6) checks whether path
is better than any old path from to . If such an old path
exists, then path is not an optimal QoS path and is removed
from the set . Line (8) adds the newly found optimal
QoS path to .

EBFA guarantees to find a path that satisfies the QoS con-
straints when such a path exists by recording all optimal QoS
paths in each node. Given a network , the algorithm
executes the operation times. The time and
space needed to execute depends on the sizes
of and , which are the number of optimal
QoS paths from node to nodes and respectively. Since the
number of optimal QoS paths from to or can be exponen-
tial with respect to and , the time and space requirement
of EBFA may also grow exponentially. Thus, heuristics must be
developed to reduce the time and space complexity.

The idea of both the limited granularity heuristic and the lim-
ited path heuristic is to limit the number of optimal QoS paths
maintained in each node, that is, the size of , to reduce the
time and space complexity of the operation. By lim-
iting the size of , each node is not able to record all op-
timal QoS paths from the source and the heuristics can only find
approximate solutions. Thus, the challenge of the heuristics is
how to limit the size of in each node while maintaining
the effectiveness in finding paths that satisfy QoS constraints.
In the next few sections, we will discuss two different methods
to limit the size of and study their performance when
solving general -constrained QoS routing problems.

IV. L IMITED GRANULARITY HEURISTIC

When all QoS metrics except one take bounded integer
values, the multiconstrained QoS routing problem is solv-
able in polynomial time. The idea of the limited granularity
heuristic is to use bounded finite ranges to approximate QoS
metrics, which reduces the original NP-hard problem to a
simpler problem that can be solved in polynomial time. This
algorithm is a generalization of the algorithms in [1]. To
solve the -constrained problem defined in Section III-B, the
limited granularity heuristic approximates metrics with

bounded finite ranges. Let be the
metrics to be approximated, that is, for , the range

is mapped into elements, , where
. The is

approximated by if and only if . In the
rest of the section, we will use the notation ,
to denote the approximated in the bounded finite domain

.
Fig. 4 shows the limited granularity heuristic that solves

-constrained problems. In this heuristic, each nodemain-
tains a table . An entry

in the table records the path that has the
smallest weight among all paths from the source to node

that satisfy . In
the operation, to compute ,
only where is the largest such that
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Fig. 4. Limited granularity heuristic fork-constrained routing problems.

, for , needs to be considered. The
routine has a time complexity of .

Notice that the approximation of the weights is carried out
implicitly in the operation. For example, if, for each
path from to , there exists an , such
that , then

at the end of the algorithm after all
operations are done.

Let be the size of the table maintained
in each node. By limiting the granularity of the QoS metrics,
the limited granularity heuristic has a time complexity of

. The most important issue of this heuristic is to
determine the relation between the size of the table (which, in
turn, determines the time complexity of the heuristic) and the
effectiveness of the heuristic in finding paths that satisfy the
QoS constraints. The following lemmas attempt to answer this
question.

Lemma 1: In order for the limited granularity heuristic to
find any path of length that satisfies the QoS constraints, the
size of the table in each node must be at least . That is,

.
Proof: Assuming , there ex-

ists an , such that . Let
be a path that satisfies the QoS constraints

. Let the range be approximated by discrete
elements , where .

Let denote the path . By in-
duction, it can be shown that . Base case, when

, since is the smallest value that can be used to approx-
imate . Assuming that

. Thus,
. When . That is, the ap-

proximation value for the weight is larger than . Thus,
the heuristic does not recognize the path as a path that satisfies

.

Lemma 1 shows that in order for the limited granularity
heuristic to be effective in finding paths of lengththat satisfy

independent path constraints, the number of entries in each
node should be at least . For an -node network, paths
can potentially be of length . Thus, the limited granularity
heuristic should at least maintain a table of size
in each node to be effective. This result indicates that the
limited granularity heuristic is quite sensitive to the number
of constraints . Notice that this lemma does not make any
assumptions about the values of and the values of

, where and . Thus, it applies to all
variations of the limited granularity heuristic.

Lemma 2: Let be a constant,
so that . For all ,
let the range be approximated with equally spaced values

. The limited
granularity heuristic guarantees finding a paththat satisfies

if there exists a path of length that satisfies

and for all

Proof: Consider the approximation of anyth weight of
path

on

on

on on

Thus, the approximation of all weights, , will
satisfy the condition . Since the heuristic does not
approximate the weight, the heuristic can guarantee finding
that path satisfies .

Lemma 2 shows that when each node maintains a table of
size and when is a reasonably
large constant, the limited granularity heuristic can find most
of the paths that satisfy the QoS constraints. Furthermore, by
maintaining a table of size , the heuristic guarantees
finding a solution when there exists a path whose QoS metrics
are better than , where is the required QoS
metrics of the connection. This guarantee will be called finding
an -approximate solution. For example, if ,
the heuristic guarantees finding a paththat satisfies
when there exists a paththat satisfies , that is,
it guarantees finding a 0.99-approximate solution.

V. LIMITED PATH HEURISTIC

The limited path heuristic ensures the worst case polynomial
time complexity by maintaining a limited number of optimal
QoS paths, say optimal QoS paths, in each node. Here,
corresponds to the size of the table maintained in each node
in the limited granularity heuristic. The limited path heuristic
is basically the same as the extended Bellman–Ford algorithm
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in Fig. 3 except that before a path is inserted into , the
size of is checked. When already contains el-
ements, the new path will not be inserted. By limiting the size
of to , the time complexity of the operation
is reduced to . The time complexity of the heuristic is

.
We must choose the value carefully for the heuristic to be

both efficient and effective. If is sufficiently large such that
each node actually records all optimal QoS paths, the heuristic
is as effective as EBFA. However, large results in an ineffi-
cient heuristic in terms of the time/space complexity. In this sec-
tion, we will show that for any small constantand a randomly
generated network, the limited path heuristic can solve gen-
eral -constrained problems with very high probability when

. This result indicates that unlike the lim-
ited granularity heuristic, the limited path heuristic is insensitive
to the number of QoS constraints in the network.

Let us assume that the weights of the links in a graph are
randomly generated and are independent of one another. For a
set of paths of the same length, we derive the probability

that set contains optimal QoS paths. We then show
that when is very large
(or is very small), which indicates that when
each node maintains entries, the limited path
heuristic will have very high probability to record all optimal
QoS paths in each node and thus will have very high probability
to find the QoS paths when such paths exist.

We use the following process to derive the probability
that the set contains optimal QoS paths. First, the paththat
has the smallest weight is chosen from . The path is an
optimal QoS path because is the smallest among all the
paths. All paths whose weights, , are larger than

are not optimal QoS paths. Let the setinclude all such
nonoptimal QoS paths. The set contains all paths where
there exists at least one , such that .
Thus, a path in the set may potentially be an optimal QoS
path. The process is then repeated on the set . If contains

optimal QoS paths, the process can be repeatedtimes.
Let us use the notion to represent the probability of the

remaining set size equal towhen the process is applied to a set
of paths and the number of QoS metrics is. We will always
assume , when the notion is used. The process
can be modeled as a Markov process, as shown in Fig. 5. The
Markov chain contains states, each statein the Markov
chain represents a set ofpaths. The transition matrix for the
Markov chain is

...
...

...
...

Let us define and for .
represents the probability of the state transferring from

node to node in exactly steps. For example, rep-
resents the probability that a set of size became empty after

Fig. 5. Markov chain.

one optimal QoS path is chosen. is the probability
that the set of size becomes empty after selecting exactly
optimal QoS paths, that is, is the probability that the
set contains exactly optimal QoS paths. Our goal is to de-
termine the value such that is very small.

The summation form for , where , is given next.
Note that , when . By definition, we have

We will derive the numerical bounds for in the
rest of the section. Let us first consider the 2-constrained QoS
routing problem. When , each link has two weights
and . In the path selection process, we choose from the set
of paths a path whose weight is the smallest. Since
and weights are independent and the length of the paths
are the same, the probability of the size of the remaining set
may be , each with probability , since
can be ranked among the paths in the set with equal
probability . Hence

...
...

...
...

...
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By manipulating the matrix , we have

and for

Lemma3: For
.

Proof: See the Appendix.
Theorem 1: Given an -node graph with two independent

constraints, the limited path heuristic has very high probability
to record all optimal QoS paths and thus has very high proba-
bility to find a path that satisfies the QoS constraints when one
exists, when each node maintains paths.

Proof: From Lemma 3,
. Using the formula from [3],

when

The number of paths of length between any two nodes in
the graph is at most . The probability that there exists
no more than optimal QoS paths among the paths
is . When

. Thus, when each node maintains
paths, the probability that the node can record

all optimal QoS paths of lengthis very high, . For
example, if , the probability is more than

%. In an -node graph, the length of any QoS path is
between 1 and . Thus, maintaining

paths in each node will give very high
probability to record all optimal QoS paths in a node. Thus, the
limited granularity heuristic has very high probability to find a
path that satisfies the QoS constraints when such a path exists,
when each node maintains paths.

Next, we will derive the formula for computing the general
and prove that maintaining paths enables

the heuristic to solve the general-constrained problem with
very high probability. Lemma 4 shows how to compute .

Lemma 4: .
Proof: Let be the set of paths. Let be the path with the

smallest . Consider , since the weights are randomly
generated and are independent, can be ranked
among all the paths with equal probability . In other words,
the probability that there are , paths whose

weights are smaller than is . When , all the
paths are potential candidates to be considered for the rest
weights in the remaining set. In this case, the probability

that the remaining set size equal tois equivalent to the case to
choose from paths the path with the smallest weight and
the remaining set size is equal towith weights. Thus,
the probability is . When , there exists one path
where , thus, path belongs to the remaining
set. In this case, the probability that the remaining set size equal
to is equivalent to the case to choose from paths (all
paths but path) the path with the smallest weight and the
remaining set size is equal to with weights (since path

is already in the remaining set by considering). Thus, the
probability is . Similar arguments apply for all cases
from to . When , there will be at least paths
in the remaining set, thus, the probability that the remaining set
size equal to is 0. Combining all these cases, we obtain

Lemmas 5, 6, and 7 summarize some property of and
. See the Appendix for the proofs of these lemmas.
Lemma 5: .
Lemma 6: For and

Lemma 7:
.

Lemmas 8, 9, and 10 are mathematic formulae to be used
later. See the Appendix for the proofs of these lemmas.

Lemma 8: For a constant, there exists a constantsuch that
.

Lemma 9: For a constant and , there exists
a constant such that

Lemma 10: Let , there exists a constantsuch
that

The next lemma describes the relation between and
.

Lemma 11: There exists a constantsuch that
.

Proof: Consider the following three cases:

• Case 1: . In this case, .
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• Case 2: . In this case

applying Lemma

• Case 3: .

applying Lemma

Thus, there exists a constant such that
.

Theorem 2: Given an -node graph with independent con-
straints, the limited path heuristic has very high probability to
record all optimal QoS paths and thus has very high probability
to find a path that satisfies the QoS constraints when one exists,
when each node maintains paths.

Proof: From Lemma 3, we have
. From Lemma 11, we have

, where is a constant. Hence
.

Following similar arguments as the proof of Theorem 1, it
can be shown that the limited granularity heuristic has very high
probability to find a path that satisfies the QoS constraints when
such a path exists, when each node maintains
paths.

Theorem 2 establishes that the performance of the limited
path heuristic is not as sensitive to the number of QoS con-
straints as the limited granularity heuristic. Thus, the limited
path heuristic provides better performance when . Given
that the global network state information is inherently impre-
cise, in practice, using an algorithm that can precisely solve the

-constrained routing problem may not have much advantage
over the limited path heuristic that can solve the-constrained
routing problem with very high probability.

(a)

(b)

Fig. 6. Network topologies. (a) A 4� 4 mesh. (b) MCI backbone.

The proof of Theorem 2 assumes that paths of different
lengths are of the same probability to be the optimal QoS paths.
However, when the weights in a graph are randomly generated
with a uniform distribution, the paths of shorter length are more
likely to be the optimal QoS paths. In addition, the probability
used in the proof of the theorem is extremely high. In practice,
we do not need such high probability for the heuristic to be
effective. A tighter upper bound for the number of optimal
QoS paths to be maintained in each node for the limited path
heuristic to be effective may be obtained by considering these
factors. However, the formal derivation of a tighter upper bound
can be complicated. In the next section, we examine the two
heuristics through the simulation study.

VI. SIMULATION STUDY

The goal of the simulation experiments is to compare the per-
formance of the heuristics for real-world network topologies and
to study the impact of constants in the asymptotic bounds we de-
rived. Two topologies, the mesh topology shown in Fig. 6(a) and
the MCI backbone topology shown in Fig. 6(b), are used in the
studies. In the simulation, the weight of each link is randomly
generated in the range of , for . Since
the performance of the two heuristics is closely related to the
length of the paths, when the mesh topology is used, we choose
to establish connections between the source and the destination
that are the farthest apart, as shown in Fig. 6(a). When the MCI
backbone topology is used, connections are between randomly
generated sources and destinations.

We compare the two heuristics with the exhaustive algorithm,
EBFA, that guarantees finding a path that satisfies the QoS con-
straints if such a path exists. Two concepts, theexistence per-
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(a)

(b)

Fig. 7. 2-constrained problems on 8� 8 meshes. (a) Limited granularity
heuristic. (b) Limited path heuristic.

centageand thecompetitive ratio, are used to describe the sim-
ulation results. The existence percentage, which indicates how
difficult the paths that satisfy the QoS constraints are to find, is
defined as the ratio of the total number of requests satisfied using
the exhaustive algorithm and the total number of requests gener-
ated. The competitive ratio, which indicates how well a heuristic
algorithm performs, is defined as the ratio of the number of re-
quests satisfied using a heuristic algorithm and the number of
requests satisfied using the exhaustive algorithm. By definition,
both the existence percentage and the competitive ratio are in
the range of [0.0, 1.0].

Fig. 7 shows the performance of the two heuristics for 88
meshes with two QoS constraints. In both figures, theaxis
represents the existence percentage and theaxis represents
the competitive ratio. Different curves are for different values
of in the two heuristics. The data for each point in the figure
are obtained by running the two heuristics and the exhaustive
algorithm using requests with the same QoS constraints on 500
randomly generated 8 8 meshes. In this experiment, finding
paths with constraints (47.5, 95.0) results in an existence per-
centage of 0.170. Constraints (50.0, 100.0) result in an existence
percentage of 0.334, constraints (52.5, 105.0) result in an ex-
istence percentage of 0.534, constraints (55.0, 110.0) result in
an existence percentage of 0.742, and constraints (57.5, 115.0)

(a)

(b)

Fig. 8. 2-constrained problems on 16� 16 meshes. (a) Limited granularity
heuristic. (b) Limited path heuristic.

result in an existence percentage of 0.866. Notice that for ex-
periments with meshes, the paths to be found are between the
diagonal nodes in the network as shown in Fig. 6(a). The general
trend is that both the limited granularity heuristics and the lim-
ited granularity heuristics can have close to 100% competitive
ratio when a sufficiently large number of entries are maintained
in each node. However, to achieve high competitive ratio, the
limited granularity heuristic requires to maintain a very large
number of entries, e.g., 800 in this experiment, while the lim-
ited path heuristic only requires a small number of entries in
each node, e.g., 8 in the experiment. Due to the large difference
in the number of entries maintained in each node, the limited
path heuristic is also much more efficient in terms of execution
time than the limited granularity heuristic.

Fig. 8 shows the performance of the heuristics for 1616
meshes with two QoS constraints. The data are obtained by
running the two heuristics and the exhaustive algorithm using
requests with the same QoS constraints on 500 randomly
generated 16 16 meshes. In this experiment, finding paths
with constraints (95.0, 190.0) results in an existence percentage
of 0.086. Constraints (100.0, 200.0) result in an existence
percentage of 0.294, constraints (105.0, 210.0) result in an
existence percentage of 0.632, and constraints (110.0, 220.0)
result in an existence percentage of 0.872. The general trend in
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(a)

(b)

Fig. 9. 3-constrained problems on 8� 8 meshes. (a) Limited granularity
heuristic. (b) Limited path heuristic.

the 16 16 mesh is similar to that in the 88 mesh except that
maintaining same amount entries in the larger mesh results in
lower performance. For example, in the 88 mesh, the limited
granularity heuristics has about 95% competitive ratio when
maintaining 800 entries in each node, while in the 1616
mesh, it can only achieve 81.6% competitive ratio when finding
paths with constraints (95.0, 190.0) (existence percentage:
0.086). The degradation in performance for the limited path
heuristic is not so severe as that for the limited granularity
heuristic. Maintaining 16 entries in each node can still achieve
a close to 100% competitive ratio in the 1616 mesh.

Fig. 9 shows the performance of the two heuristics when they
solve 3-constrained problems in 88 meshes. The existence
percentage and the competitive ratio for each point in the figure
are obtained by solving 500 QoS routing problems with the
same QoS requirement. Constraints (52.5, 105.0, 157.5) result
in an existence percentage of 0.122, constraints (55.0, 110.0,
165.0) result in an existence percentage of 0.300, constraints
(57.5, 115.0, 172.5) result in an existence percentage of 0.522,
constraints (60.0, 120.0, 180.0) result in an existence percentage
of 0.728. Comparing the results in Fig. 9 and the results in
Fig. 7, we can see that the number of entries to be maintained in
each node for the limited granularity heuristic to be effective
increases dramatically for 3-constrained problems comparing

(a)

(b)

Fig. 10. 3-constrained problems on the MCI backbone. (a) Limited granularity
heuristic. (b) Limited path heuristic.

to 2-constrained problems. Maintaining a table of size 40 000
(200 200) for 3-constrained problems yields a worse compet-
itive ratio than maintaining a table of size 200 for 2-constrained
problems. The competitive ratio of the limited path heuristic, on
the other hand, only decreases slightly. Maintaining 16 entries
results in close to 100% competitive ratio for all the cases in
the experiments. This indicates that the limited path heuristic is
much less sensitive to the number of QoS constraints than the
limited granularity heuristic.

Fig. 10 shows the results when the two heuristics solve
3-constrained QoS routing problems in the MCI backbone
topology. The existence percentage and the competitive ratio
are obtained by solving 1000 QoS routing problems. Each of
the 1000 routing problems tries to find a connection between
the randomly generated source and destination with the same
QoS requirement. In this experiment, constraints (10.0, 20.0,
30.0) result in an existence percentage of 0.259, constraints
(12.5, 25.0, 37.5) result in an existence percentage of 0.376,
constraints (15.0, 30.0, 45.0) result in an existence percentage
of 0.547, constraints (17.5, 35.0, 52.5) result in an existence
percentage of 0.693, constraints (20.0, 40.0, 60.0) result in an
existence percentage of 0.855. The general trend in this figure is
similar to that in the previous experiment. In comparison to the
limited path heuristic, the limited granularity heuristic requires
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Fig. 11. Impacts of the number of QoS constraints on the MCI backbone
topology. LGH: limited granularity heuristic. LPH: limited path heuristic.

significantly more resources to achieve good performance.
The limited granularity heuristic must maintain 1600 entries
(a 40 40 table) in each node to consistently achieve 95%
competitive ratio, while the limited path heuristic achieves
close to 100% competitive ratio with four entries in each node.

Fig. 11 shows the impact of the number of constraints on
the performance of the heuristics using the MCI backbone
topology. In this experiment, we fix the number of entries
maintained at each node for both heuristics and study the
performance of the two heuristics when they solve QoS routing
problems with different numbers of QoS constraints. For the
limited granularity heuristics, we fix the table size to be around
4000. More specifically, we maintain in each node a linear
array of 4000 for 2-constrained problems, a 6464 table for
3-constrained problems, a 1717 17 table for 4-constrained
problems, a 8 8 8 8 table for 5-constrained problems
and a 6 6 6 6 6 table for 6-constrained problems.
For the limited path heuristic, we fix the table size to be 4.
We consider two types of paths: high existence percentage
paths and low existence percentage paths. The high existence
percentage paths are paths that satisfy constraints (20.0, 40.0)
for 2-constrained problems, (20.0, 40.0, 60.0) for 3-constrained
problems, (20.0, 40.0, 60.0, 80.0) for 4-constrained problems,
(20.0, 40.0, 60.0, 80.0, 100.0) for 5-constrained problems,
and (20.0, 40.0, 60.0, 80.0, 100.0, 120.0) for 6-constrained
problems. The existence percentages for these paths are be-
tween 0.75 and 0.95. The low existence percentage paths are
paths that satisfy constraints (10.0, 20.0) for 2-constrained
problems, (10.0, 20.0, 30.0) for 3-constrained problems, (10.0,
20.0, 30.0, 40.0) for 4-constrained problems, (10.0, 20.0, 30.0,
40.0, 50.0) for 5-constrained problems, and (10.0, 20.0, 30.0,
40.0, 50.0, 60.0) for 6-constrained problems. The existence
percentages for these paths are between 0.22 and 0.33. The
results are obtained by solving 1000 QoS routing problems for
each setting. As can be seen from the figure, the performance
of the limited path heuristic is somewhat insensitive to the
number of QoS constraints. With , the limited path
heuristic achieves close to 100% competitive ratio for all
different number of constraints. The performance of the limited
granularity heuristic drastically degrades as the number of QoS
constraints increases.The competitive ratio falls from 100%

to 32% for low existence percentage paths and from 100% to
58% for high existence percentage paths when the number of
constraints increases from 2 to 6. This experiment confirms
that the limited path heuristic is more efficient than the limited
granularity heuristic in solving general-constrained problems
when .

VII. CONCLUSION

In this paper, we study two heuristics, the limited granularity
heuristic and the limited path heuristic, that can be applied to the
extended Bellman–Ford algorithm to solve-constrained QoS
path routing problems. We show that although both heuristics
can solve -constrained QoS routing problems with high proba-
bility in polynomial time, to achieve high performance, the lim-
ited granularity heuristic requires much more resources than the
limited path heuristic does. Specifically, the limited granularity
heuristics must maintain a table of size in each node
to achieve good performance, which results in a time complexity
of , while the limited path heuristic only needs to
maintain entries in each node. Both our analyt-
ical and simulation results indicate that the limited path heuristic
is more efficient than the limited granularity heuristic in solving
general -constrained QoS routing problems when , al-
though previous research results show that both the limited gran-
ularity heuristic and the limited path heuristic can solve 2-con-
strained QoS routing problems efficiently. The advantage of the
limited granularity heuristic, however, is that by maintaining a
table of size , it guarantees finding ap-
proximate solutions, while the limited path heuristic cannot pro-
vide such guarantee.

APPENDIX

Lemma 3: For
.

Proof: We will first prove the following formula that will
be used in the proof of the lemma. For any

For and .
Hence

Armed with this formula, we will now prove the theorem:
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Lemma 5: .
Proof: Base case,

.
Induction case, assuming that for any and

Lemma 6: For and
.

Proof: Base case, . From Lemma 4, we obtain

For any

Thus

Induction case, for any and , assume

Lemma 7:
.

Proof: Base case,

Induction case, assume that for any and

Lemma 8: For a constant, there exists a constantsuch that
.

Proof: When .
Let
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Thus,
. When is a constant, there exists a constant

such that .
Lemma 9: For a constant and , there exists

a constant such that

Proof: Let
. We will first derive some bounds for .

For

For

In general, for

For , we also have

Thus

where is a constant. Applying Lemma 8

Lemma 10: Let , there exists a constantsuch
that

Proof: From Lemma 7, we have . From
Lemma 6, we have . Hence

Thus

where is a constant. applying Lemma 8
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