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Heuristic Algorithms for Multiconstrained
Quality-of-Service Routing

Xin Yuan, Member, IEEE

Abstract—Multiconstrained quality-of-service (QoS) routing delay-cost constrained routing, i.e., finding a route in the net-
deals with finding routes that satisfy multiple independent QoS work with bounded end-to-end delay and bounded end-to-end
constraints. This problem is NP-hard. In this paper, two heuristics, cost. We will use the notiokt-constrained routingo refer to

the limited granularity heuristic and the limited path heuristic, . . . .
are investigated. Both heuristics extend the Bellman—Ford shortest Multiconstrained QoS routing problems with exactypath

path algorithm and solve generalk-constrained QoS routing prob- ~ constraints. The delay-cost constrained routing is an example
lems. Analytical and simulation studies are conducted to compare of a 2-constrained routing problem. Multiconstrained QoS
the time/space requirements of the heuristics and the eﬁectivenessrouting is known to be NP-hard [4], [9]. Previous work [1]

of the heuristics in finding paths that satisfy the QoS constraints. . .. .
The major results of this ge?perare the follg)\:ving.(lgor anN-nodes [10] has focused on developing heuristic algorithms to solve

and E-edges network with & (a small constant) independent 2-constrained problems. The algorithm in [10] guarantees to
QoS constraints, the limited granularity heuristic must maintain ~ find a path that satisfies the QoS constraints if such a path
a table of sizeO(|IN|*~*) in each node to be effective, which exjsts. In the worst case, the time complexity of the algorithm

results in a time complexity of O(|N|*| E]), while the limited 0 010 exponentially with respect to the network size
path heuristic can achieve very high performance by maintaining ’

O(|N|2 1g(|N1)) entries in each node. These resulis indicate that Algorithms in [1] find approximate solutions in polynomial
the limited path heuristic is relatively insensitive to the number of time. The generalk-constrained routing problem receives
constraints and is superior to the limited granularity heuristic in  |ittle attention. In practice, however, effective heuristics to

solving k-constrained QoS routing problems wherk > 3. solve generak-constrained QoS routing problems, such as the
Index Terms—Quality of service, routing. delay-jitter-cost constrained problem, are needed.
This paper considers two polynomial time heuristics Jitime
|. INTRODUCTION ited granularity heuristiand thdimited path heuristicthat can

HE migration to integrated networks for voice, data, an%e applied to the extended Bellman—Ford algorithm to solve

multimedia applications introduces new challenges in suf;-constrained QoS routing problems. The limited granularity
porting predictable communication performance. Multimedi e.urlst!c.obtams gpproxmate solutions in polynorr_nal time by

applications require the communication to meet stringent rgsing finite dor_nalns, sugh as bounded ranges of integer num-
quirements on delay, delay-jitter, cost, and/or other quality-ok?-ers' to approximate the infinite number of values that QoS met-

service (QoS) metrics. QoS routing, which identifies paths thatS can take. The limited path heuristic focuses on the cases
meet the QoS requirement and selects one that leads to t occur most frequently in general and solves these cases ef-

overall resource efficiency, is the first step toward achievin€Ntly and effectively. In this paper, we develop the heuristics
end-to-end QoS guarantees. t. solve the generdt-constrained Qo$ ro'utlng problems,.lnves—
The QoS requirement of a point-to-point connection is Spe(Hgate the perfo_rman_ce of the he_u_rlstlcs in solvhqg(_)n_stramed
fied as a set of constraints, which canlini constraintsorpath  ProPlems, and identify the conditions for the heuristics to be ef-
constraints[2]. A link constraint, such as the bandwidth confeCt'Ve' We prove analytically that for ai-nodes ands-edges

straint, specifies the restriction on the use of links. For examp[é?twork with/ independent path constrainisi¢ a small con-

the bandwidth constraint requires that each link along the pftfmt)' the limited granularity heuristic must maintain a table

. E—1n ¢ ; . .

must be able to support certain bandwidth. A path constraif] ,s!zeO(|N| )in ea-ch. node to achieve h|g.h probability of

such as the delay constraint, specifies the end-to-end QoSfP%g'ng a path that' saps.ﬁes the QoS (?OﬂStI‘%lnIS When such a
h exists. By maintaining a table of si2€| N|*~+), the time

qguirement for the entire path. For example, the delay constrafftt lexity of the limited larity heuristic i %

requires that the aggregate delay of all links along the path magf"P eX|ty_0 the limited granularity heuristic (| V| |E|)_' .

be less than the delay requirement. The analysis also shows that the performance of the limited
Multiconstrained QoS routing finds a path that satisfie%ath heuristic is rather insensitive Azand that the limited path

multiple independent path constraints. One example is tngristic can achieve very high performance by maintaining
O(|N|*1g(]N|)) entries in each node. These results indicate that
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The rest of the paper is organized as follows. Section Il
discusses the related work. Section Ill describes the multi-
constrained QoS routing problem and introduces the extended
Bellman—Ford algorithm that can solve this problem. Section IV
studies the limited granularity heuristic fbfconstrained prob-
lems. Section V analyzes the limited path heuristic. Section VI (1.0, 20.0)

presents the simulation study. Section VII concludes the paper. _
Fig. 1. Optimal QoS paths.
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Il. RELATED WORK operators+, — on the weight vectors are defined similarly.

Much work has been done in QoS routing recently. An eX-et a pathp = vg — v1 — v2 — --- — v, and a link
tensive survey can be found in [2]. Among the proposed Q@S= v, — vn41. The notationp + ¢ or p + {v, — vpy1}
routing schemes, the ones that deal with multiconstrained Qdénotes the pathy — v; — vo — -+ — v, — v,41. ThiS
routing are more related to the work in this paper. In [8], paper considers centralized algorithms and assumes that the
distributed algorithm was proposed to find paths that satisfjobal network state information is known.
the end-to-end delay constraint while minimizing the cost. Al- Given a setS, the notation.S| denotes the size of the sgt
though this algorithm considers two path constraints, it does n&fe will use the following notations: binary logarithm function
solve the 2-constrained problem because the cost metric is i) = log,(n), natural logarithm functiotn(n) = log,(n),
bounded. Ma [6] showed that when the weighted fair queueipgwer of the logarithm functiot® (n) = (Ig(n))*, and facto-
algorithm is used, the metrics of delay, delay-jitter, and buffeial functionn! = n * (n — 1) x - - - x 1. We defined! = 1.
space are not independent, and all of them become functions
of the bandwidth. Orda [7] proposed the quantization of Qd% Multiconstrained QoS Routing
metrics for efficient QoS routing in networks with a rate-based pefinition 1: Given a directed grapltX(N, E), a source
scheduler at each router. Although the idea of quantization gdde src, a destinationdst, ¥ > 2 weight functions
QoS metrics is similar to the limited granularity heuristic, it, . £ — Rt w, : E — RT,...,uy : E — R¥,
was proposed in [7] to improve the performance of a polyn@nd % constants ¢y, ¢,,...c; represented by a vector
mial time QoS routing algorithm that solves the bandwidth: — (¢, ¢,,..., ), multiconstrained QoS routings to
delay bound problem. Jaffe [4] proposed a distributed algorithiid a pathp from src to dst such thatw(p) < ¢, that is,
that solves 2-constrained problems with a time complexity of, (p) < ¢; ws(p) < ca, ..., andwr(p) < cr.
O(|N]°blog(|N|b)), whereb is the largest value of the weights. we will call a multiconstrained routing problem with
This algorithm is pseudopolynomial in that the execution timgeight functions ak-constrainedproblem. Since the number

depends on the value of the weights (not just the size of the ngfveight functions in a network is small, we will assume that
work). Widyono [10] proposed an algorithm that performs ap js 5 small constant.

exhaustive search on the QoS paths in exponential time. Chemefinition 2: Given a directed grap(V, E) with k& > 2

[1] and Korkmaz [5] proposed heuristic algorithms that effegyeight functionsw;, : E — Rt,w» : E — RT,... wy :
tively solve 2-constrained problems. This research differs from _, r+ a pathp = stc — v; — v, — - -+ — dst is said to

the previous work in that it studies heuristic algorithms that efre anoptimal QoS pattirom src to dst if there does not exist
ficiently solve the generat-constrained QoS routing problem.another pathy from src to dst such thatw(q) < w(p).

Some of the results for 2-constrained QoS routing [1] are spe4yhenk = 1, the optimal QoS path is the same as the shortest

cial cases of the results in this paper. path. Whenk > 1, however, there can be multiple optimal
QoS paths between two nodes. For example, in Fig. 1, both
ll. BACKGROUND pathpy = 0 — 1 — 3 (w(p1) = (40.0,2.0)) and path

. _ p2 =0 — 2 — 3 (w(p2) = (2.0,40.0)) are optimal QoS paths
A. Assumptions and Notations from node 0 to node 3. Paglh = 0 — 3 is not an optimal QoS
The network is modeled as a directed gra@fiV, E), path sincew(ps) = (50.0,4.0) > w(p;). Optimal QoS paths
where N is the set of nodes representing routers &his the are interesting because each optimal QoS path can potentially
set of edges representing links that connect the routers. Eaalisfy particular QoS constraints that no other path can satisfy.
edgee = u — w is associated wittk independent weights, On the other hand, when there exists a path that satisfies the QoS
wi (e), wae), ..., wi(e), wherew;(e) is a positive real number requirement, there always exists an optimal QoS path that satis-
(wi(e) € Rt andw(e) > 0) forall 1 <1 < k. The notation fies the same QoS requirement. Thus, a QoS routing algorithm
wle) = wlu — v) = (wi(e),w(e),...,wi(e)) is used can guarantee finding a path that satisfies the QoS constraints
to represent the weights of a link. It is assumed that all thehen such a path exists if the algorithm considers all optimal
constraints are path constraints and that the weight functiad@eS paths. Notice that the number of optimal QoS paths can be
are additive [9], that is, the weight of a path is equal to the surexponential with respect to the network size as shown in Fig. 2.
mation of the weights of all edges on the path. Thus, for a pdthFig. 2, the number of optimal QoS paths from necte= 0 to
P=wg > v — v — - — v, wp) = Z;;l wi(vi_; — nodedst = 3k is equal ta2* because from each nodewhere
v;). Notationw(p) < w(g) denotesw;(p) < wi(g) for all 0 < ¢ < &, taking the link3: — 3¢+ 1 or3é — 3¢+ 2 will
1 <[ < k. Other relational operatoks, =, >, > and arithmetic result in different optimal QoS paths.
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Fig. 2. Number of optimal QoS paths between two nodes.

RELAX(u, v, w) EBFA guarantees to find a path that satisfies the QoS con-

8; Fo;f;‘:h_“i(p) in PATH(u) straints when such a path exists by recording all optimal QoS

(3) Forgeach w(q) in Path(v) paths in each node. Given a netwdi N, E), the algorithm

(4) if (w(p) + w(u,v) > w(g)) then executes thRELAX operationO(|N|| E|) times. The time and

(5) flag=10 space needed to execRELAX (u, v, w) depends on the sizes

(®)  if (w(p) + w(u,v) <w(q)) then of PATH(u) andPATH(v), which are the number of optimal

g; it ( ;;ngm;’el;”ifllfom PATH() QoS paths from nodec to nodes: andv respectively. Since the

9) add w(p) + w(u, v) to PATH(v) number of optimal QoS paths frasrc to « or v can be exponen-
tial with respect td V| and| E|, the time and space requirement

BELLMAN-FORD(G, w, ¢, src, dst) of EBFA may also grow exponentially. Thus, heuristics must be

(1) For i = 0 to |N(G)] - 1 developed to reduce the time and space complexity.

(2) PATH()=¢ ; o ) P .

(3) PATH(src) = {0} _ The idea of _bo_th _the I|r_n|t_ed granularity heur|§t|c and the lim-

(4) For i =1 to [N(G)| — 1 ited path heuristic is to limit the number of optimal QoS paths

5)  For each edge (u,v) € E(G) maintained in each node, thatis, the siz€AfTH, to reduce the

) RELAX(u, v, W) time and space complexity of tRELAX operation. By lim-

) For each w(p) in PAT H(dst)
) if (w(p) < ¢) then return “yes”
) return “no”

iting the size ofPATH, each node is not able to record all op-
timal QoS paths from the source and the heuristics can only find
approximate solutions. Thus, the challenge of the heuristics is
Fig. 3. Extended Bellman—Ford algorithm (EBFA) for multiconstrained Qoiow to limit the size ofPATH in each node while maintaining

(

(6
(7
(8
9

routing problems. the effectiveness in finding paths that satisfy QoS constraints.
In the next few sections, we will discuss two different methods
C. Extended Bellman—Ford Algorithm to limit the size of PATH and study their performance when

Since the heuristics that we consider are variations of tﬁglvmg generak-constrained QoS routing problems.

extended Bellman—Ford algorithm, we will describe a version
of the extended Bellman—Ford algorithm in this section for the
completeness of the paper. Fig. 3 shows the algorithm, which isWhen all QoS metrics except one take bounded integer
a variation of the Constrained Bellman—Ford algorithm in [10}alues, the multiconstrained QoS routing problem is solv-
For simplicity, the algorithm only checks whether there existsable in polynomial time. The idea of the limited granularity
path that satisfies the QoS constraints. The algorithm can easiuristic is to use bounded finite ranges to approximate QoS
be modified to find the exact path. We will call the algorithrmetrics, which reduces the original NP-hard problem to a
EBFA. simpler problem that can be solved in polynomial time. This
EBFA extends the original Bellman—Ford shortest path algalgorithm is a generalization of the algorithms in [1]. To
rithm [3] by having each nodeto maintain a sdPATH(u) that  solve thek-constrained problem defined in Section 1lI-B, the
records all optimal QoS paths found so far frem to ». The limited granularity heuristic approximatés— 1 metrics with
first three lines in the main routine (BELLMANORD) ini- k& — 1 bounded finite ranges. Lato,...,w; be thek — 1
tialize the variables. Lines (4) to (6) perform tB&LAX op- metrics to be approximated, that is, or< ¢ < k, the range
erations. After theRELAX operations, all optimal QoS paths(0, ¢;] is mapped intoX; elements, i, 75, .. .,rg(z_, where
from nodesrc to nodedst are stored in the s®ATH(dst). 0 < 7} < 7§ < .-+ < 7% = ¢. Thew;(e) € (0,¢] is
Lines (7) and (8) check whether there exists an optimal Q@pproximated byjl if and only if rjc_l < wie) < 7; In the

IV. LIMITED GRANULARITY HEURISTIC

path that satisfies the QoS constraints. RIBLAX(u,v,w) rest of the section, we will use the notatiew;(p),2 < ¢ < k,
operation is a little more complicated since all the elements denote the approximated (p) in the bounded finite domain
in PATH(u) andPATH(v) must be considered. For each ele{r},r5,... 7% }.

mentw(p) in PATH(u), line (4) in theRELAX routine checks ~ Fig. 4 shows the limited granularity heuristic that solves
whether there exists an old patfromsrc tov that is better than k-constrained problems. In this heuristic, each nadeain-
pathp + (v — v). If such a path exists, therd- (v — v) isnot tains a tabled"[1 : X2,1 : X3,....1 : Xg]. An entry

an optimal QoS path. Line (6) checks whether path(v. — v)  d“[is,is,...,ix] in the table records the path that has the
is better than any old path frosec to v. If such an old patly smallestw; weight among all pathg from the source to node
exists, then patly is not an optimal QoS path and is removed. that satisfyws(p) < 7’32,w3(p) < 7‘?3, cow(p) < rf‘k. In
from the sePATH(v). Line (8) adds the newly found optimalthe RELAX(u, v, w) operation, to computé®[is, ¢s, . . ., 4],
QoS path tdPATH(v). only d“[j2,743,...,Jx] wherej, is the largestj; such that
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RELAX(u, v, w) Lemma 1 shows that in order for the limited granularity

(1) for each d”[ia, 43, -y ix] heuristic to be effective in finding paths of lengththat satisfy
(2) Here,1<iz <Xy, ..., 1< < X

(3) Let dfi] = Plin, iv, o is] k independent path constraints, the number of entries in each
(4) Let ji be the largest j, such that node should be at leagt*~. For an/N-node network, paths

Ty <1y —wi(u,v),2 <1<k can potentially be of lengttv. Thus, the limited granularity
(5) Let d*[j] = d”[jz, ja, -, ] heuristic should at least maintain a table of si2g N|*~1)
(6) if (i > 1, for all 2 <1 < k) then in each node to be effective. This result indicates that the
(1) if (@[] > d*[j] + wi(u,v)) then limited granularity heuristic is quite sensitive to the number

®  @il=d)+ww) of constraintsk. Notice that this lemma does not make any

Limited_Granularity Heuristic(G, w, ¢, src, dst) assumptions about the values.®, . .., X and the values of
(1) For i =0 to [N(G)| — 1 i, where2 < ¢ < kandl < j < X;. Thus, it applies to all
(2)  For each d'[iz,ds, .-, 1] _ variations of the limited granularity heuristic.

gg i}fle(;e’zlsfc)’?tfef;;r;ﬁ:’ g’k fk]X:k . Lemma 2: Letn be a constantyz = X = - = X = nL

(5) else di[is, i3, ...ix] = 00 so thatX = Xy X3... Xy 2.7’L L _ .Forall2 < i <k,

(6) Fori =1 to |N(G)| — 1 let the rang€0, c;] be approximated with equally spaced values
(7)  For each edge (u,v) € E(G) {rt = (;/X,),rh = (6;) X3) %2, .., T, = ¢; +. The limited

8) RELAX(u, v, w) granularity heuristic guarantees finding a patthat satisfies

(
: ds A . . e
E?Z))Irfe(tir;[ﬁi)s{%’ = Xi] < 1) then return TRUE w(q) < cif there exists a path of length L that satisfies

wi(p) e and w;(p) < ¢ —(¢;/n), forall2 <i<k.
Fig. 4. Limited granularity heuristic fat-constrained routing problems.

Proof. Consider the approximation of arith weight of
b <7l —wy(u,v), for2 < I < k, needs to be considered. Thé?athp,2 < i < k

RJiELA)l( routine has a time complexity aP(X>Xs5... X3).

Notice that the approximation of the weights is carried out awi(p) = Z awi(u — v)

implicitly in the RELAX operation. For example, if, for each (u—wv) ONp

path p from src to dst, there exists an,2 < ¢ < k, such : G

thataw; (p = stc — vg — w3 — --- — dst) > ¢, then < (u_)%:onp <wz(u—> v)+ Xi)

d%*[ Xy, X3, ..., X3] = oo at the end of the algorithm after all .

RELAX operations are done. = > wilw—v)+ A_’Z
Let X = X,X5...X; be the size of the table maintained (u—w) ONp (u—w)onp ="

in each node. By limiting the granularity of the QoS metrics, <o G I L we = o

the limited granularity heuristic has a time complexity of - X,

O(X|N||E|). The most important issue of this heuristic is tQ‘_ h N ¢ alb: weigh < i < Eowil
determine the relation between the size of the table (which, ﬁ“ﬂs' the appro_x_lmanon ot ail; Welg 15,2 < LS R W
tisfy the conditionu;(p) < ¢;. Since the heuristic does not

turn, determines the time complexity of the heuristic) and s : h ‘aht the heuristi findi
effectiveness of the heuristic in finding paths that satisfyldheapprox'matet ev1 Weight, the heuristic can guarantee finding

QoS constraints. The following lemmas attempt to answer it t pathy satisfiesw(p) < c. o O
question. _ Lerr;r_nla 2 E}PPWS that W}tl_eln each node maintains a table of
Lemma 1: In order for the limited granularity heuristic to >4 " I ~ _O(JN| ) and _Whenn 'sa reasqnably
find any path of lengtlL that satisfies the QoS constraints, thg‘r?r?eCs;tﬁsaT:]’atthSaltlig]fgt/et?\gggglacl:rgr):s?gijr?tztlCFﬁ?trr]];rr;?orrT:aost}y

. i el ) ) ,
As)lfze:o;(zt;(egt'a'll'a;e(’:n>eaj:itllr1.ode must be at ldst”. That is, maintaining a table of size*~! N*~1, the heuristic guarantees

. finding a solution when there exists a path whose QoS metrics

are better tharil — (1/n)) = &, wherec is the required QoS
{Qetrics of the connection. This guarantee will be called finding
an(1l — (1/n))-approximate solutiorFFor example, if» = 100,
the heuristic guarantees finding a patthat satisfiess(p) < ¢
when there exists a patithat satisfiesv(q) < 0.99 % ¢, that is,
it guarantees finding a 0.9@pproximate solution

Proof: AssumingX = X, Xs3... X, < L¥1, there ex-
ists ani,2 < ¢ < k,suchthatX; < L. Letp = vg — vy —
vo — --- — v, be a path that satisfies the QoS constrain
w(p) < c. Let the rang€0, ¢;] be approximated by; discrete
elements, 7, ..., 7% ,where0 < ri <7 <--- <rk =c,.

Letp(n) denote the pathy — v; — v2 — -+ — v,,. By in-
duction, it can be shown thatv;(p(n)) > r¢ . Base case, when
n = 1, sincer! is the smallest value that can be used to approx-
imateaw;(vo — wv1) > 7¢. Assuming thatw;(p(n — 1)) >
i awi(p(n)) = aw;(p(n — 1)) + aw;(vp_1 — v,) > The limited path heuristic ensures the worst case polynomial
i L+ wi(ve_1 — v) > 7t > ri . Thus,aw;(p(X;)) > time complexity by maintaining a limited number of optimal
ri = ¢;. WhenL > X;,aw;(p(L)) > ¢;. Thatis, the ap- QoS paths, say optimal QoS paths, in each node. He?e,
proximation value for thev;(p) weight is larger tham;. Thus, corresponds to the size of the table maintained in each node
the heuristic does not recognize the path as a path that satisifiethe limited granularity heuristic. The limited path heuristic
w(p) < ec. [0 is basically the same as the extended Bellman—Ford algorithm

V. LIMITED PATH HEURISTIC
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in Fig. 3 except that before a path is inserted iBWI'H, the
size of PATH is checked. WheRATH already contain el-
ements, the new path will not be inserted. By limiting the size
of PATH to X, the time complexity of th&@ ELAX operation

is reduced taO(X?). The time complexity of the heuristic is

O(X?|N|IE]).
We must choose the valu€ carefully for the heuristic to be
both efficient and effective. IX is sufficiently large such that pShist]
k

_ - plSitis—" plsizisks Py
each node actually records all optimal QoS paths, the heuristic
is as effective as EBFA. However, largé results in an ineffi- 4 5
cient heuristic in terms of the time/space complexity. In this sec-
tion, we will show that for any small constak&ind a randomly ] . . .
generated network, the limited path heuristic can solve ge?f?€ optimal QoS path is chosed;*(|S], 0) is the probability
eral k-constrained problems with very high probability wherhat the set of sizgs| becomes empty after selecting exaatly
X = O(|N|?1g(|N])). This result indicates that unlike the lim-OPtimal QoS paths, thatisl;* (| 5|, 0) is the probability that the
ited granularity heuristic, the limited path heuristic is insensiti@etS contains exactlyn optlmaISQoS paths. Our goal is to de-
to the number of QoS constraints in the network. termine the valueX such thal=!>L  A7(]S],0) is very small.
Let us assume that the weights of the links in a graph areThe summation formfor} (¢, j), where: > j, is given next.
randomly generated and are independent of one another. FOt4e that4;* (i, j) = 0, wheni < j. By definition, we have
setS of |\S| paths of the same length, we derive the probability
prob, that setS contains: optimal QoS paths. We then show
that V\1h|enX = O(|N|21g(|N|)),Zf(:1 prob, is very large
(or Zi prob, is very small), which indicates that when . . .
eac%:no)é:arlmaintair@(|N|2 lg(|V])) entries, the limited path A (65) = Y Arlisn) = Ax(n, j)
heuristic will have very high probability to record all optimal =0

Markov chain.

Ar(i,j) = Py’
[S]

1—1
QoS paths in each node and thus will have very high probability _ Z pim y prid
to find the QoS paths when such paths exist. e b b

We use the following process to derive the probabibiyl, 1]
that the sef containsi optimal QoS paths. First, the pailtthat A3( i) — Al A2 .
has the smallest; weight is chosen fron¥. The pathp is an k(i 9) Z k(i) Ay, 5)

optimal QoS path because (p) is the smallest among all the nli__ol —1

paths. All paths whose; weights,2 < j < k, are larger than _ i,n n1.n2 72,4

w;(p) are not optimal QJoS paths. Let the geinclude all such n1;+2 b nZ;H b by

nonoptimal QoS paths. The sgt 7’ contains all pathg where ...,

there exists at least ope2 < j < k, such thatw;(q) < w;(p). i-1 ‘

Thus, a path in the sét— 7" may potentially be an optimal QoS AR (d,g) = Z P Z e

path. The process is then repeated on thé'set’. If S contains ny=j+m—1

m optimal QoS paths, the process can be repeatéides. Mm—2—1 i
Let us use the notiof{’ to represent the probability of the D DI A -

remaining set size equal javhen the process is applied to a set P _1=j+1

of i paths and the number of QoS metricd:isNe will always _ _ _ o

assum@ < j < i—1, when the notiot is used. The process We will derive the numerical bounds fad}*(¢, ) in the

can be modeled as a Markov process, as shown in Fig. 5. TR&t of the section. Let us first consider the 2-constrained QoS
Markov chain containkS| + 1 states, each statén the Markoy Fouting problem. Whert: = 2, each link has two weights,

chain represents a set dpaths. The transition matrix for the@ndw2. In the path selection process, we choose from the set
Markov chain is of : paths a path whose; weight is the smallest. Since.

and w; weights are independent and the length of the paths
are the same, the probability of the size of the remaining set

P?,o 8 8 8 may be0, 1,...,i — 1, each with probabilityl /7, sincews(p)
%o 21 can be ranked, ..., among the paths in the set with equal
Av=| B By 0 0 probability1 /i, P’ = 1/i. Hence
P’lsl—l,o PIL5|_1,1 o0 0 0 o o 0 o
: _ 7 0 0 0 0
Let us defined} = Ay and A7 = A7~ A4 form > 1. | S S 0 0
A7 (4, j) represents the probability of the state transferring from Ar = 2 2
node: to nodej in exactlym steps. For examplet; (|S|,0) rep- : :
resents the probability that a set of s{# became empty after ﬁ Il?l ﬁ ﬁ 0
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By manipulating the matrix4,, we have A3(|S],0) = wo weights are smaller tham.(p) is 1/i. When! = 0, all the
1/]5], A3|5],0 = 1S|(1/(S|-1) + 1/(]S|—-2)... + i— 1 paths are potential candidates to be considered for the rest
(1/1)) = 1/15] Zﬁ'{l 1/¢ and form > 2 k — 2 weights in the remaining set. In this case, the probability

that the remaining set size equaljts equivalent to the case to
AT(]S],0) choose fromi paths the path with the smallest weight and
1S]—1 i1 iy—1 o1 the remaining set size is equal favith £ — 1 weights. Thus,
_ 1 3 1 3 1 S _ the probability isP’,. Whenl = 1, there exists one patf

S| i1 iz im—1  wherews(q) < wo(p), thus, pathy belongs to the remaining

11=m—1 to=m—2 iz=m—3 T—1=1

set. In this case, the probability that the remaining set size equal
Lemma3: Formn > 2. A™(1S1.0) < (21n(lSN™—1 /(]S to j is equivalent to the case to choose frem 1 paths (all
(m — 1)) 2 2,45(51.0) = 2(sp)ym=/(5] « paths but patly) the path with the smallest; weight and the

Proof: See the Appendix remaining set size is equal fe- 1 with £ — 1 weights (since path

O i X . s
Theorem 1: Given anN-node graph with two independent? is already in the remaining set by considering). Thus, the

™ . i—1,5—1 ..
constraints, the limited path heuristic has very high probabili obability is ,_,*" . Similar arguments apply for all cases

to record all optimal QoS paths and thus has very high pro omi=0tol = j. When! > j, there will be at least paths

bility to find a path that satisfies the QoS constraints when oHyhe remainjng set, thus_, _the probability that the rema_ining set
exists, when each node maintaif§) N’ |2 1s(|V|) paths. size equal tg is 0. Combining all these cases, we obtain
Proof: From Lemma 3,A7%(|S|,0) < (2In(|S|))™ 1/

(IS|(m — 1)!). Using the formular! > +/27n(n/e)” from [3], Py =P’ + I—,P,i_i” R Rt I—,P,z_fl’o
whenm > 2¢? In(|S]) + 1 ¢ i ¢ ¢
1 i—lj—1
= - .F)Z J .
ap(s),0) < s i 2t
2 TS (m — 1)
1 /2eln(SP\™ " , =
Sl ——— emmas 5, 6, and 7 summarize some proper an
S5\ T L 5,6, and 7 typf and
2¢% 1n(|51) Ay. See the Appendix for the proofs of these lemmas.
< (1 Lemma 5: PyY > Py,
~|S] \e Lemma 6: Fork > 3 and0 < 7 < |5|,
1
= pe B E
oAl )= > B <2
The number of paths of length between any two nodes in i=0 i=j+1

the graph is at most = | N|%. The probability that there exists o

no more than optimal QoS paths among tHe = |N|* paths ~ Lemma 7: P,” < (1/i)((1/¢) + (1/(i —1)) + --- +
isp=1-Y"_ | A7(R,0). Wheni > 2¢?In(R) +1,p= 1/(i—j))*%

1 _ ZR AT(R,0) > 1 — Z§=i+1 1/(R2€2+1) > 11— Lemmas 8, 9, and 10 are mathematic formulae to be used

gn:i—l—l .
(1/R2<"). Thus, when each node maintaird In(| N |) +1 = later. See the Appendix for the proof_s of these lemmas.
Lemma 8: For a constank, there exists a constansuch that

2¢%L1g(|N|)+1 paths, the probability that the node can record_ 5 ot

all optimal QoS paths of lengthis very high,l—(l/RQez). For i=1 (1/2’)? = ¢ o .
example, itk = 30, the probability is more thah—(l/RQez) S Lemma 9: For a constank and1 < j < ¢ — 1, there exists
99.999 99%. In anN-node graph, the length of any QoS path i& constant: such that

between 1 andV. Thus, maintainingZ'L]\;l1 2cc?LIn(|N|) + i1 k k

1 = O(|N|*1g(|N])) paths in each node will give very high <1 4o ! 4 ! ) <l 4t ! ) < cxi.
probability to record all optimal QoS paths in a node. Thus, thé&7,\¢ ¢ —1 o " nJ

limited granularity heuristic has very high probability to find a

path that satisfies the QoS constraints when such a path existg,emma 10:Let 0 < j < i/2, there exists a constaatsuch

when each node maintaid¥ |V |?1g(|NV|)) paths. O that
Next, we will derive the formula for computing the general i1 .
P and prove that mamtalnln@(|N|21g(|N|)) paths enables Z P <1 e 1 ) <e.
the heuristic to solve the generiaiconstrained problem with S [ t—n
very high probability. Lemma 4 shows how to compiie’.
Lemma 4: p}i:i = (/)Y plz:llﬂ—l. The next lemma describes the relation betwdg(y, j) and

Proof: LetS be the set of paths. Lep be the path with the A7 (4, 7)-
smallestu; (p). Considenws(p), since the weights are randomly Lemma 11: There exists a constantsuch thatd? (¢, j) <
generated and are independent(p) can be ranked, 2,...,i ¢* A2(i, 7).
among all the paths with equal probability:. In other words, Proof: Consider the following three cases:
the probability that there ark0 < | < ¢ — 1, paths whose  Case 1j > i — 1. Inthis caseAZ (i, j) = 0 < As(, 5).
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» Case 2i/2 < j < i — 2. Inthis case o f) N O
NIV NV
SR ]
ALy = 2L BB e e
n=itl NN \_/
S 1/1 1 1\
< i i i e
nejbr 0N Lo o N N
1/1 1 \* NN A
Ny )
nA\n n—7
i—1 k
2 1 1 1
< = Z
_i22<i+i_1+ +i_n>
n=j+1
1 1 1 \*
x| =+ +ot—
n n-—1 n—j
2 .
< “ 2¢1 Ao(i, §)/ applying Lemmap™ /.

2

* Case 30 < j < (i/2) — 1.

i—1
A=Y BB
n=j+1
i-1 1/1 1 1 \* Fig. 6. Network topologies. (a) A # 4 mesh. (b) MCI backbone.
< ZP:’J—.<—.+. + -+ - )
wsls e\t t—1 t—n .

Jifl X The proof of Theorem 2 assumes that paths of different
< 1 Z proi <} + 1 +oet 1 ) lengths are of the same probability to be the optimal QoS paths.
9 Bt k i 1—1 11— However, when the weights in a graph are randomly generated

o o ] . with a uniform distribution, the paths of shorter length are more
< — = cady(i, j)/"applying Lemmal0®/. likely to be the optimal QoS paths. In addition, the probability

used in the proof of the theorem is extremely high. In practice,
we do not need such high probability for the heuristic to be
effective. A tighter upper bound for the number of optimal
QoS paths to be maintained in each node for the limited path
euristic to be effective may be obtained by considering these
ctors. However, the formal derivation of a tighter upper bound
n be complicated. In the next section, we examine the two
euristics through the simulation study.

Thus, there exists a constant= max(2c¢;, ¢z, 1) such that
A3(4,5) < cx As(4, 7).

Theorem 2: Given anN-node graph witlk independent con-
straints, the limited path heuristic has very high probability t:
record all optimal QoS paths and thus has very high probabil
to find a path that satisfies the QoS constraints when one exi
when each node maintaid | N|?1g(|V|)) paths.

Proof: From Lemma 3, we havel*(|S],0) < (2In
(S))™=1/(|S|(m—1)!). From Lemma 11, we havé (4, j)
cAx(4,7), where ¢ is a constant. Henced;'(|S],0) The goal of the simulation experiments is to compare the per-
e™/24772(1S1,0) < e(2¢In(|S]) ™/ D=1 /(|S|((m/2) — 1)1).  formance of the heuristics for real-world network topologies and

Following similar arguments as the proof of Theorem 1, tb study the impact of constants in the asymptotic bounds we de-
can be shown that the limited granularity heuristic has very higived. Two topologies, the mesh topology shown in Fig. 6(a) and
probability to find a path that satisfies the QoS constraints whéme MCI backbone topology shown in Fig. 6(b), are used in the
such a path exists, when each node maintaifisv|?1g(|V]))  studies. Inthe simulation, the; weight of each link is randomly
paths. O generated in the range .0,10.0 x ¢), for 1 < ¢ < k. Since

Theorem 2 establishes that the performance of the limittte performance of the two heuristics is closely related to the
path heuristic is not as sensitive to the number of QoS cdength of the paths, when the mesh topology is used, we choose
straints as the limited granularity heuristic. Thus, the limitetb establish connections between the source and the destination
path heuristic provides better performance whken 3. Given that are the farthest apart, as shown in Fig. 6(a). When the MCI
that the global network state information is inherently imprésackbone topology is used, connections are between randomly
cise, in practice, using an algorithm that can precisely solve thenerated sources and destinations.
k-constrained routing problem may not have much advantagéNe compare the two heuristics with the exhaustive algorithm,
over the limited path heuristic that can solve theonstrained EBFA, that guarantees finding a path that satisfies the QoS con-
routing problem with very high probability. straints if such a path exists. Two concepts, ¢kistence per-

< VI. SIMULATION STUDY
<
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Fig. 7. 2-constrained problems onx8 meshes. (a) Limited granularity Fig. 8. 2-constrained problems on %616 meshes. (a) Limited granularity
heuristic. (b) Limited path heuristic. heuristic. (b) Limited path heuristic.

centageand thecompetitive ratipare used to describe the sim+esult in an existence percentage of 0.866. Notice that for ex-
ulation results. The existence percentage, which indicates hpariments with meshes, the paths to be found are between the
difficult the paths that satisfy the QoS constraints are to find, dSagonal nodes in the network as shown in Fig. 6(a). The general
defined as the ratio of the total number of requests satisfied usingnd is that both the limited granularity heuristics and the lim-
the exhaustive algorithm and the total number of requests geritgd granularity heuristics can have close to 100% competitive
ated. The competitive ratio, which indicates how well a heuristiatio when a sufficiently large number of entries are maintained
algorithm performs, is defined as the ratio of the number of rex each node. However, to achieve high competitive ratio, the
quests satisfied using a heuristic algorithm and the numberliofited granularity heuristic requires to maintain a very large
requests satisfied using the exhaustive algorithm. By definitiomimber of entries, e.g., 800 in this experiment, while the lim-
both the existence percentage and the competitive ratio arétégd path heuristic only requires a small number of entries in
the range of [0.0, 1.0]. each node, e.g., 8 in the experiment. Due to the large difference
Fig. 7 shows the performance of the two heuristics for8 in the number of entries maintained in each node, the limited
meshes with two QoS constraints. In both figures, thaxis path heuristic is also much more efficient in terms of execution
represents the existence percentage and,thris represents time than the limited granularity heuristic.
the competitive ratio. Different curves are for different values Fig. 8 shows the performance of the heuristics for<156
of X in the two heuristics. The data for each point in the figurmeshes with two QoS constraints. The data are obtained by
are obtained by running the two heuristics and the exhaustiwmning the two heuristics and the exhaustive algorithm using
algorithm using requests with the same QoS constraints on 5@quests with the same QoS constraints on 500 randomly
randomly generated 8 8 meshes. In this experiment, findinggenerated 16 16 meshes. In this experiment, finding paths
paths with constraints (47.5, 95.0) results in an existence peiith constraints (95.0, 190.0) results in an existence percentage
centage of 0.170. Constraints (50.0, 100.0) resultin an existermée0.086. Constraints (100.0, 200.0) result in an existence
percentage of 0.334, constraints (52.5, 105.0) result in an @ercentage of 0.294, constraints (105.0, 210.0) result in an
istence percentage of 0.534, constraints (55.0, 110.0) resulekistence percentage of 0.632, and constraints (110.0, 220.0)
an existence percentage of 0.742, and constraints (57.5, 1188t in an existence percentage of 0.872. The general trend in
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Fig. 9. 3-constrained problems onx88 meshes. (a) Limited granularity Eig'm: 3k;cons§raiéled p;]rcr)]blems.on the MCl backbone. (a) Limited granularity
heuristic. (b) Limited path heuristic. euristic. (b) Limited path heuristic.

the 16x 16 mesh is similar to that in thex88 mesh except that to 2-constrained problems. Maintaining a table of size 40 000
maintaining same amount entries in the larger mesh resulty200x 200) for 3-constrained problems yields a worse compet-
lower performance. For example, in thec® mesh, the limited itive ratio than maintaining a table of size 200 for 2-constrained
granularity heuristics has about 95% competitive ratio whgmoblems. The competitive ratio of the limited path heuristic, on
maintaining 800 entries in each node, while in thex18 the other hand, only decreases slightly. Maintaining 16 entries
mesh, it can only achieve 81.6% competitive ratio when findingsults in close to 100% competitive ratio for all the cases in
paths with constraints (95.0, 190.0) (existence percentagfge experiments. This indicates that the limited path heuristic is
0.086). The degradation in performance for the limited pathuch less sensitive to the number of QoS constraints than the
heuristic is not so severe as that for the limited granularitynited granularity heuristic.
heuristic. Maintaining 16 entries in each node can still achieveFig. 10 shows the results when the two heuristics solve
a close to 100% competitive ratio in the £616 mesh. 3-constrained QoS routing problems in the MCI backbone
Fig. 9 shows the performance of the two heuristics when th&ypology. The existence percentage and the competitive ratio
solve 3-constrained problems inx8 meshes. The existenceare obtained by solving 1000 QoS routing problems. Each of
percentage and the competitive ratio for each pointin the figuttee 1000 routing problems tries to find a connection between
are obtained by solving 500 QoS routing problems with thtbe randomly generated source and destination with the same
same QoS requirement. Constraints (52.5, 105.0, 157.5) re€uiS requirement. In this experiment, constraints (10.0, 20.0,
in an existence percentage of 0.122, constraints (55.0, 11@80,0) result in an existence percentage of 0.259, constraints
165.0) result in an existence percentage of 0.300, constrai(.5, 25.0, 37.5) result in an existence percentage of 0.376,
(57.5, 115.0, 172.5) result in an existence percentage of 0.52@nstraints (15.0, 30.0, 45.0) result in an existence percentage
constraints (60.0, 120.0, 180.0) result in an existence percentafj®.547, constraints (17.5, 35.0, 52.5) result in an existence
of 0.728. Comparing the results in Fig. 9 and the results percentage of 0.693, constraints (20.0, 40.0, 60.0) result in an
Fig. 7, we can see that the number of entries to be maintaineeiistence percentage of 0.855. The general trend in this figure is
each node for the limited granularity heuristic to be effective@milar to that in the previous experiment. In comparison to the
increases dramatically for 3-constrained problems compariligited path heuristic, the limited granularity heuristic requires
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LPH, low/high e. p. paths, X=4 —— to 32% for low existence percentage paths and from 100% to
LGH, high e. p. paths, X=4000 -—x-- i i
LGH, Ic?w o 8_ gaths’ XoA000 —onmr 58% for h|gh existence percentage pths when the numper of
1| et — _ constraints increases from 2 to 6. This experiment confirms
o T that the limited path heuristic is more efficient than the limited
T 08} * ] granularity heuristic in solving generiiconstrained problems
2 e whenk > 3.
$ 06 Sy T T
Q
5 VII. CONCLUSION
o 04
* In this paper, we study two heuristics, the limited granularity
02r 1 heuristic and the limited path heuristic, that can be applied to the
0 . . . . . extended Bellman—Ford algorithm to soleconstrained QoS
2 3 4 5 6 path routing problems. We show that although both heuristics
Number of Constraints can solve:-constrained QoS routing problems with high proba-

bility in polynomial time, to achieve high performance, the lim-
Fig. 11.  Impacts of the number of QoS constraints on the MCI backbojgd granularity heuristic requires much more resources than the
topology. LGH: limited granularity heuristic. LPH: limited path heuristic. limited path heuristic does. Specifically, the limited granularity

heuristics must maintain a table of si2¢|/V|*~!) in each node
significantly more resources to achieve good performangg.achieve good performance, which results in a time complexity
The limited granularity heuristic must maintain 1600 entriegs O(|N|*|E|), while the limited path heuristic only needs to
(a 40x 40 table) in each node to consistently achieve 95%qaintainO(|V|21g(|V|)) entries in each node. Both our analyt-
competitive ratio, while the limited path heuristic achievega| and simulation results indicate that the limited path heuristic
close to 100% competitive ratio with four entries in each nodgs more efficient than the limited granularity heuristic in solving

Fig. 11 shows the impact of the number of constraints Qeneralk-constrained QoS routing problems whien> 3, al-

the performance of the heuristics using the MCI backboRgough previous research results show that both the limited gran-
topology. In this experiment, we fix the number of entriegarity heuristic and the limited path heuristic can solve 2-con-
maintained at each node for both heuristics and study t§@ained QoS routing problems efficiently. The advantage of the
performance of the two heuristics when they solve QoS routifgited granularity heuristic, however, is that by maintaining a
problems with different numbers of QoS constraints. For thgple of sizen*—! N*—!, it guarantees findingl — (1/n)) ap-

limited granularity heuristics, we fix the table size to be aroungoximate solutions, while the limited path heuristic cannot pro-
4000. More specifically, we maintain in each node a linegjge such guarantee.

array of 4000 for 2-constrained problems, a>684 table for

3-constrained problems, a X717 x 17 table for 4-constrained APPENDIX
problems, a & 8 x 8 x 8 table for 5-constrained problems _ . 1
and a 6x6x 6x6x6 table for 6-constrained problems. Lemma 3: Iform > 2,A9(51,0) < @In(ls))m=Y/

For the limited path heuristic, we fix the table size to be 4{.|S| * (m — 1)) . ) )

We consider two types of paths: high existence percentage Proqf: We will first prove the following formula that will
paths and low existence percentage paths. The high existeRg&!Sed in the proof of the lemma. For any- 2

percentage paths are paths that satisfy constraints (20.0, 40.0) n—l (i) _ 2Iln"™*Y(n)
for 2-constrained problems, (20.0, 40.0, 60.0) for 3-constrained Z ; < ]
problems, (20.0, 40.0, 60.0, 80.0) for 4-constrained problems, i=2

(20.0, 40.0, 60.0, 80.0, 100.0) for 5-constrained problems,For: > 2and: +1 > = > ¢, (In™ (7)) /i < (2In™(x))/=.
and (20.0, 40.0, 60.0, 80.0, 100.0, 120.0) for 6-constrainet&nce
problems. The existence percentages for these paths are be- n—1

tween 0.75 and 0.95. The low existence percentage paths are Z b ,(L) < / 21n—(x)dx
paths that satisfy constraints (10.0, 20.0) for 2-constrained iz ! 2 .
problems, (10.0, 20.0, 30.0) for 3-constrained problems, (10.0, _ 2 1nrn+l($)|n
20.0, 30.0, 40.0) for 4-constrained problems, (10.0, 20.0, 30.0, Com+1 2
40.0, 50.0) for 5-constrained problems, and (10.0, 20.0, 30.0, 2In" (n)

40.0, 50.0, 60.0) for 6-constrained problems. The existence < Tm+1

percentages for these paths are between 0.22 and 0.33. Th’,grmed with this formula, we will now prove the theorem:
results are obtained by solving 1000 QoS routing problems for

each setting. As can be seen from the figure, the performantg(|S/|,0)

of the limited path heuristic is somewhat insensitive to the 1 [S]—1 ; b=l ool
number of QoS constraints. Witk = 4, the limited path == Z — Z — Z Z

. ) 0 o . |S] I ls ln—1
heuristic achieves close to 100% competitive ratio for all Li=m—1 "~ ly=m—2 Ly =1
different number of constraints. The performance of the limited |S]—1 -1 lm3—1

granularity heuristic drastically degrades as the number of QoS< 1 Z 1 Z 12 Z nln—2) +1
constraints increases.The competitive ratio falls from 100% 5] h Ly b2

li=m—1 lo=m—2 lop_o=
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Thus,Y (k) <2kY(k—1) < 2%k(k - 1)+ Y(k-2)<--- < Lemma 10:Let0 < j < (i/2), there exists a constansuch
2¥E1Y(0) = 2¥k!. Whenk is a constant, there exists a constarthat

c =2k such thafy 2, (1/29)i* < c. O i1 .
Lemma 9: For a constank and1 < j < ¢ — 1, there exists Z p}zw' <1 IO 1 ) <ec.
a constant such that i) 1 t—n
i—1 k k . .
1 1 1 1 1 - =1 7]
Z <—. 4 4 ) <_ 4t ) <ewi. Proof: From Le‘rrj’ma7,‘vvlexha\igjn=j+1 P < 2.From
N PANI A i—n) \n n=j Lemma 6, we havé’,” > P,t'. Hence
Proof: Let W(m) = ((1/3) + 1/(i—1) + -+ + o
1/(i — m))*. We will first derive some bounds fa# (m). Z P <2
Forl <m <i/2 n=jt+l

In general, for (29 —1)/(2%) *+ « + 1 < m < n=j+1
(27) = /(27 )

2 . 1 1 m
. = Pn’] — ...
W < 2 ()
Forn < ¢, we also have S 1 1 \™
32X
k k + Z Pr <7 +oot i — n)
1 1 1 1 i
— -t g e =3
n n—7 1 n—7 ke .
=W(@E—-n+y) P = 1
+ 23: A R R ) B
Thus n=%+1
3¢ 3%
=1 1 1 1 k 1 1 k m . n,J m - n,j
> <,—.+, +oe ) <—+---+ ) SHDIE DR
noja1 \0 ¢t —1 ¢ —n ) n—j n=i41 n=i41
i—1 %
<Y W)W —n+j) +3m S B
n=j+1 n:%-l—l
=WiE-DWEH+1D+--+W(EH+1HW(E - 1)
SWG 1)+ 4 Wi = 1))+ > 2ab"/ =1 /*2“(2 R *?*)
1—1 1—1 . - .
< ¢, wherecis a constanf."applying Lemma 8/
= > W) <Y (Wn)?
n=j+1 n=1 O
= Z(W(”))2 + Z (W(n))2 +--- ACKNOWLEDGMENT
n=1 n=4+1 The author would like to thank X. Liu for his help in gener-
ating some simulation results, and the anonymous referees for

_Con fook  fook
o 21 * 42 * 83 + their valuable comments.

< e,
wherec is a constanf*Applying Lemma 8/ REFERENCES

[1] S.Chenand K. Nahrstedt, “On finding multiconstrained pathsPrioc.
IEEE Int. Conf. Communications (ICC’98June 1998, pp. 874-879.



256

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

[2] S. Chen and K. Nahrstedt, “An overview of quality-of-service routing [10] R. Widyono, “The design and evaluation of routing algorithms for
real-time channels,” International Computer Science Inst., Univ. of
California, Berkeley, CA, Tech. Rep. TR-94-024, 1994.

for the next generation high-speed networks: Problems and solutions,”

IEEE Network Mag.vol. 12, pp. 64-79, Nov.—Dec. 1998.

[3] T.H. Cormen, C. E. Leiserson, and R. L. Rivdsitroduction to Algo-
rithms  Cambridge, MA: MIT Press, 1990.

[4] J. M. Jaffe, “Algorithms for finding paths with multiple constraints,”
Networks vol. 14, pp. 95-116, 1984.

[5] T. Korkmaz, M. Krunz, and S. Tragoudas, “An efficient algorithm for
finding a path subject to two additive constraints,"Hroc. ACM SIG-

METRICS 2000 Confvol. 1, Santa Clara, CA, June 2000, pp. 318-327.

[6] Q. Ma and P. Steenkiste, “Quality-of-service routing with performanc
guarantees,” irProc. IFIP Int. Workshop Quality of Service (IwQgS)
May 1997, pp. 115-126.

[7] A. Orda, “Routing with end-to-end QoS guarantees in broadband n¢
works,” IEEE/ACM Trans. Networkingol. 7, pp. 365-374, June 1999.

[8] H. F. Salama, D. S. Reeves, and Y. Viniotis, “A distributed algorithn
for delay-constrained unicast routing,” Rrroc. IEEE INFOCOM Apr.
1997, pp. 84-91.

[9] Z. Wang and J. Crowcroft, “QoS routing for supporting resource rese
vation,” IEEE J. Select. Areas Communwol. 14, pp. 1228-1234, Sept.
1996.

Vg !

Xin Yuan (M’98) received the Ph.D. degree in com-
puter science from the University of Pittsburgh, Pitts-
burgh, PA.

He is currently an Assistant Professor in the
Department of Computer Science, Florida State
University, Tallahassee. His research interests
include quality-of-service routing, optical WDM
networks, and high-performance communication for
clusters of workstations.

Dr. Yuan is a member of the Association for Com-
puting Machinery.



