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Abstract. This paper addresses a research problem of scheduling parallel, non-
identical batch processors in the presence of dynamic job arrivals, incompatible
job-families and non-identical job sizes. We were led to this problem through a real-
world application involving the scheduling of heat-treatment operations of steel
casting. The scheduling of furnaces for heat-treatment of castings is of considerable
interest as a large proportion of the total production time is the processing times of
these operations. In view of the computational intractability of this type of prob-
lem, a few heuristic algorithms have been designed for maximizing the utilization
of heat-treatment furnaces of steel casting manufacturing. Extensive computational
experiments were carried out to compare the performance of the heuristics with the
estimated optimal value (using the Weibull technique) and for relative effectiveness
among the heuristics. Further, the computational experiments show that the heuris-
tic algorithms proposed in this paper are capable of obtaining near (statistically
estimated) optimal utilization of heat-treatment furnaces and are also capable of
solving any large size real-life problems with a relatively low computational effort.

Keywords. Heat-treatment furnaces; heuristic algorithms; Weibull technique;
scheduling batch processors.

1. Introduction

In the late 1970s and the early 1980s, market pressure for greater product variety forced a
gradual shift from continuous manufacturing to batch manufacturing (Roberts et al 1999). As
a sequel to this, in the last decade, deterministic manufacturing batch scheduling problems
have attracted the attention of researchers. The earliest work in the deterministic scheduling
of batch processors appears to be that of Ikura & Gimple (1986).

In this paper, we consider the problem of scheduling jobs on heat-treatment furnaces (HTF)
in the post-casting stage of foundry manufacturing. This is an extension to our earlier study
∗Corresponding author
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Figure 1. A typical steel-casting manufacturing process sequence.

(Mathirajan et al 2001). Although this work is related to the application in the steel casting
manufacturing, similar problems are encountered in other industrial settings, such as dif-
fusion/oxidation in the semiconductor manufacturing [see Fowler et al (1992), Uzsoy et al
(1992) and ovens used for hardening of the synthetic parts in aircraft industries [see Zee et al
(1997)].

A fundamental feature of foundry manufacturing is its extreme flexibility, enabling castings
to be produced with almost unlimited freedom in design over an extremely wide range of sizes,
quantities, and materials suited to practically every environment and application. Furthermore,
the foundry manufacturing industry is capital-intensive and highly competitive. The latter
forces a greater emphasis on customer service.

1.1 Heat treatment operations

Like all foundries, a steel foundry is a flow line production system in which the sequence of
operations is fixed and the workflow is in a single direction. A typical sequence of operations
in a steel foundry is given in figure 1. The working mechanism of the steel-casting foundry
studied is briefly described here.

Based on planned orders, moulds (and cores) are prepared using patterns. These moulds are
moved to the pouring area where molten metal from melting furnaces are poured and allowed
to cool. In the next operation, castings are knocked-out of the mould cavity either manually
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or mechanically. The knocked-out rough castings are then shot blasted and cut to the finished
castings which are generally moved to storage prior to the next process; heat-treatment. The
stored castings are grouped into batches depending on the type and family of castings, and
loaded on the furnaces for the process-controlled heat treatment operation. Subsequently, the
heat-treated castings are fettled, finished and inspected prior to dispatch to the customers.

From the viewpoint of throughput and utilization of the important and costly resources, it
was felt that the process-controlled furnace operations for the melting and pouring operations
as well as the heat-treatment furnace operations are critical for meeting the overall production
schedules. The two furnace operations are batch processes that have distinctive constraints
on job-mixes in addition to the usual capacity and technical constraints associated with any
industrial process. The benefits of effective scheduling of these batch processes include higher
machine utilization, lower work-in-process (WIP) inventory, shorter cycle time, and greater
customer satisfaction (Pinedo 1995).

Recently production planning and scheduling models for a steel foundry, considering the
melting furnace of the pre-casting stage as the core foundry operation were proposed (Voorhis
et al 2001), Krishnaswamy et al (1998) and Shekar (1998). Even though the melting and
pouring operations may be considered as the core of foundry operations and their scheduling
is of central importance, the scheduling of heat-treatment furnaces is also of considerable
importance. This is because the processing time required at the heat treatment furnace is often
longer compared to other operations in the steel-casting foundry and therefore considerably
affects the scheduling, overall flow time and WIP inventory.

Further, the heat-treatment operation is critical because it determines the final metallurgical
properties that, enables the components to perform under demanding service conditions such
as large mechanical load, high temperature, and in corrosive environment. Generally, every
type of casting has to undergo more than one form of heat-treatment operation, where the
total processing times changes. For control purposes, castings are primarily classified into
a number of job-families based on the alloy type such as low-alloy castings and high-alloy
castings. These families are further classified into various sub-families based on the type of
heat-treatment operations required. Figure 2 gives a sample classification of castings (jobs)
for heat-treatment operation in the steel foundry. The castings (jobs) from different families
cannot be processed together in the same batch due to technical reasons, such as type of
alloy, temperature level and the expected combination of heat-treatment operations. These
job families are therefore mutually incompatible for processing together.

Trinder & Watts (1973) indicated that individual centers at the post-casting stage could
be scheduled separately. Hence, in this paper we have considered the scheduling of heat-
treatment furnaces in a steel-casting foundry, a special problem of batch processor scheduling,
as an independent problem worthy of investigation. Furthermore, a major concern of foundry
production management is to maximize throughput and reduce flow time and WIP. This
motivated the choice of maximizing the utilization of the batch processors as the primary
scheduling objective and minimizing the overall flow time and the average waiting time per
job as secondary objectives in this study.

In the following section, we present the problem definition and assumptions. Section 3
reviews previously reported work on scheduling batch processors (BP). Section 4 presents
briefly the heuristic algorithms proposed for this specific scheduling problem. We then present
the computational experiments carried out to compare the performance of the heuristics with
the estimated optimal solution and evaluate their relative effectiveness based on various per-
formance measures in § 5. A summary and discussion of future research directions concludes
the paper.
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Figure 2. A sample classification of job-families for heat-treatment operations.

2. Research problem definition and assumptions

2.1 Definition

Suppose that there are F, F ≥ 1, job-families of which a family f contains N(f ) jobs with
different size S(j, f ) and different priority P(j, f ), for all 1 ≤ f ≤ F and 1 ≤ j ≤ N(f ).
In addition, a job ‘j ’ in family ‘f ’ has the same processing time PT (f ). Due to technical
reasons, it is not possible to process jobs from different families together in the same batch. We
shall call these job-families incompatible. Furthermore, these jobs will have to be processed
without interruption on parallel and non-identical BPs (BPs with different capacities), which
are available continuously with an objective of maximizing the utilization of the BPs.

2.2 Assumptions

• At the beginning of every fixed interval of time (in our analysis, every 24 hours1) from
the starting time of scheduling, a number of jobs will arrive for operations at the BPs
(that is, a full knowledge is available about future arrival of jobs).

• Scheduling planning period is one week. At the beginning of the planning period, the
number of castings corresponding to first day of the planning period is in WIP. Further-
more, the entire jobs corresponding to the planning period have to be scheduled first
before considering the jobs associated with the next planning period and no re-scheduling
is allowed.

• All batch processors are continuously available and all jobs must pass through the oper-
ation(s) to be carried out at the BPs.

1This parameter is given as a variable in the computer implementation of the proposed greedy
heuristics and thus the algorithms accepts new jobs dynamically in any fixed interval of time.
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• Any job in the WIP for processing at BPs can be processed in any one of the parallel,
non-identical BPs (BPs with different capacities).

• The batch size of the BP is independent of the shape of a job but is dependent on the
size of a job and the capacity of the BP.

• The number of trays in which the jobs are normally placed for a specific operation at the
BP are assumed to be unlimited and, thus, do not affect the scheduling decisions.

• Once processing of a batch is initiated, the BP cannot be interrupted and other jobs
cannot be introduced into the BP until the current processing is completed.

• The set-up times of the operations are included in the processing time and are sequence
independent.

• Machine breakdowns are ignored and manpower of uniform skill is continuously avail-
able.

• Processing time of job-families is considered constant and independent of the number
of jobs in a batch.

3. Related work

Though considerable literature is available on the technical aspects of casting processes, there
is scant treatment of foundry operation scheduling and the application of Operations Research
methodologies to foundry scheduling [Voorhis et al (2001) and Shekar (1998)]. Law & Green
(1970) demonstrated the use of computers for foundry scheduling and production control
with small numerical examples, applied separately to melting, core making, molding, casting,
annealing, and finishing processes. Scheduling of the total foundry production system is not
dealt with and the scalability for practical application is not discussed. Further, Trinder &
Watts (1973) outlined the general facets of the production control systems as currently found
in many foundry organizations and discussed in general how computer-aided systems might
improve on this situation.

Without detailing any model development, a working group of the Institute of British
Foundrymen wrote a series of articles (Law et al 1983, 1985, 1988–1990) on topics like
production control, functional overview and database requirement, production planning
and scheduling, production monitoring and data capture, and management information.
Southall & Law (1980) discussed some approaches to improving job scheduling in foundries;
and Trinder & Moss (1984) discussed the necessity of real-time systems for foundry produc-
tion control. These articles provide some broad requirements for production planning and
control systems for foundries. Further, Law et al (1985) presented five factors to indicating
that the day-to-day implementation of production scheduling, planning and control in a
foundry is a difficult task.

Ram & Patel (1998) modelled the heat treatment furnace operations of manufacturing plant
using simulation and heuristics. The heuristic part of the model provides a decision support to
the furnace operator to help as to which orders to load and to find a possible match of orders
that can be nested together in the batch to increase furnace utilization.

To the best of our knowledge, no study (other than our own earlier study) has addressed the
scheduling of heterogeneous heat treatment furnaces under conditions such as incompatible
job families, dynamic job arrivals and non-identical job sizes, as observed in the steel-casting
foundry. The objective of our earlier study was to illustrate the operations of the proposed
algorithms in comparison with our own earlier four algorithms. This was accomplished using
a single problem configuration for purpose of evaluation. We could not however firmly gen-
eralize a conclusion, as at that time rigorous evaluation procedures for heuristics had not
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evolved. In this paper, we will use more in-depth experimental evaluation procedures for
the heuristics developed. Accordingly, we interacted with the management of a large-scale
steel casting industry in Tamil Nadu, India (because of confidentiality issues, the name of the
foundry is not quoted) and developed an experimental design, which is very close to the real-
ity, to evaluate the proposed heuristic algorithms. The evaluation of the proposed algorithm
is carried out using the estimated optimality principle.

Though no study is reported on scheduling of heat treatment furnaces, there are some studies
related to other similar industries such as semiconductor manufacturing. A brief review of
deterministic scheduling of BP with incompatible job-families is given in table 1. Though,
these studies are closely related, it is observed that in the semiconductor manufacturing, the
capacity of the BP is defined by the number of jobs whereas in steel casting, each job has a
certain capacity requirement and the total size of a batch cannot exceed the capacity of the BP.

4. Heuristic algorithms

4.1 Decision problem

The decision problem defined in this paper involves three interrelated sets of decisions:
(1) Batch processor selection (BPS)—selection of a BP from the available parallel, non-
identical batch processors for the next scheduling; (2) Job-Family selection (JFS)—selection
of a job-family from the given set of incompatible job-families for processing in the selected
BP; and (3) Batch construction (BC)—selection of a set of jobs from a selected job-family to
form a batch for the selected BP.

Dobson & Nambimadom (2001) proved that the configuration of the problem defined in
their paper is NP-hard. Since the problem defined in this paper subsumes the configuration
of the problem defined in Dobson & Nambimadom (2001), it is quite difficult to optimize
exactly. Thus, there is good reason to look for heuristic and approximate methods that will
produce solutions that are efficient and effective.

4.2 Heuristic algorithms

The heuristics proposed are related to managerial considerations observed mostly in the
scheduling of heat treatment operations in steel casting manufacturing. That is, (a) selecting
a BP which has maximum capacity when a tie occurs for scheduling jobs at time ‘t’ so that
maximum number of jobs will be completed as early as possible, (b) the jobs with high
priority and also with the maximum job-size should be completed, so that maximum repletion
of working capital is achieved.

There are four heuristic algorithms proposed for the scheduling problems described in
this paper with a primary scheduling objective of maximizing average utilization of batch
processors (AUBP). In each of the variants of the four heuristic algorithms, we kept a fixed
heuristic for both decisions of ‘batch processor selection’ and ‘batch construction’ and vary
only the heuristics for the decision of job family selection. The variation in the heuristics for
‘job-family selection’ is based on four criteria and they are: (1) the weighted average job-
size of job-family, (2) the weighted average job-priority of job-family, (3) the simple average
job-priority of job-family, and (4) the simple average job-size of job-family.

Further, for the maximum utilization obtained from the heuristics the overall flow time
(OFT) and the weighted average waiting time (WAWT) are computed as secondary scheduling
objectives, which will also be used for evaluating the performance of the proposed heuristic
algorithms.
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Table 1. A review on scheduling BPs with incompatible job-families.

Scheduling

Researcher Problem (Application) Algorithm OBJ.

Uzsoy (1995) Single BP with identical job sizes and
assuming that all the jobs are avail-
able at time = zero. Also single BP
and parallel identical BPs with identi-
cal job sizes with dynamic job arrivals
(Semiconductor industry)

Proposed exact and approxi-
mate solution procedures

2, 4
& 5

Fanti et al
(1996)

Single BP with identical job sizes and
assuming that all the jobs are available
at time = zero. (Shoe manufacturing)

Proposed heuristic algorithm 8

Hung (1998) Single BP as well as parallel identi-
cal BPs with identical job sizes and
assuming that all the jobs are available
at time = zero (Semiconductor indus-
try)

Dynamic programming for-
mulation was proposed

3

Kempf et al
(1998)

Single BP with different job sizes and
assuming that all the jobs are available
at time = zero (Semiconductor indus-
try)

Several heuristic algorithms
were proposed

1 & 5

Mehta &
Uzsoy (1998)

Single BP with identical job sizes and
assuming that all the jobs are avail-
able at time = zero. They consider an
additional constraint in addition to the
default capacity constraint of the BP.
(Semiconductor industry)

Developed DP algorithms and
provided heuristic algorithms

3

Kim et al
(2000)

Single BP with identical job sizes and
assuming that all the jobs are avail-
able at time = zero. (Semiconductor
industry)

Heuristic algorithm was pro-
posed

3

Azizoglu &
Webster
(2001)

Single BP with different job sizes and
assuming that all the jobs are avail-
able at time = zero. (Semiconductor
industry)

Proposed a branch and bound
procedure for BP model dis-
cussed in Dobson & Nambi-
madom (2001)

2

Dobson &
Nambimadom
(2001)

Single BP with different job sizes and
assuming that all the jobs are available
at time = zero (Semiconductor indus-
try)

Integer program model was
developed; proved that the
problem is NP hard and pro-
posed a number of heuristic
algorithms

7

Zee et al
(2001)

Parallel non-identical BPs with iden-
tical job sizes and with dynamic job
arrivals. (Aircraft industry)

Proposed a heuristic algorithm 9

Objectives: 1 = Min. completion time; 2 = Min. weighted completion time; 3 = Min. total tardiness;
4 = Min. maximum lateness; 5 = Min. makespan; 6 = Min. total weighted tardiness 7 = Min. weighted
flow time; 8 = Max. BPs’ utilization; 9 = Min. logistics cost; 10 = Min. number of tardy jobs
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Table 1. (Continued).

Scheduling

Researcher Problem (Application) Algorithm OBJ.

Jolai (2005) Scheduling of a single BP assuming
that (a) all jobs are available at time =
zero, and (b) jobs of the same family
are indexed in non-decreasing order of
their due dates. (Semiconductor indus-
try)

Proved that this problem
is NP-hard and proposed
Dynamic Programming algo-
rithm

10

Koh et al (2004
& 2005)

Scheduling of ‘bake-out’ operation in
the MLC manufacturing process with
different volumes of jobs. (Multi-layer
ceramic capacitor manufacturing)

Proposed IP model and a
number of heuristics and
genetic algorithms

1, 2, 5

Monch et al
(2005)

Scheduling of parallel batch machines
with unequal ready times of the jobs
(i.e with dynamic job arrivals). (Semi-
conductor industry)

Proposed two different
decomposition approaches
based on Genetic Algorithm
and simple heuristic algo-
rithms

6

Perez et al
(2005)

Single BP with different job sizes and
assuming that all the jobs are avail-
able at time = zero. (Semiconductor
industry)

Proposed heuristic algorithm 6

Monch et al
(2006)

Scheduling BPs found in the diffu-
sion and oxidation areas of semicon-
ductor wafer fabrication facilities with
dynamic job arrivals. (Semiconductor
industry)

Proposed heuristic algorithms
along machine learning tech-
niques for estimating values
of parameters.

6

Malve &
Uzsoy
(2007)

Parallel identical BPMs with n jobs
(a) representing multiple and incom-
patible job-families, and (b) having
different release time and due date.
(Semiconductor industry)

Proposed genetic algorithm 4

4.2a Formula for scheduling objective – Average utilization of the batch processors (AUBP):

AUBP =
∑NBP

BP=1 {CAP(BP) ∗ UT(BP)}
∑NBP

BP=1 CAP (BP)

where

UT(BP) =
∑NB(BP)

BP=1 Tot−Job−Size (B, BP)

NB(BP) ∗ CAP(BP)
For all BP

Tot−Job−Size (B, BP) =
NJ(B,BP)∑

J=1

Size (J, B, BP) For all B and For all BP
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4.2b Formula for scheduling objective – Overall flow time (OFT):

OFT = Max{End-Time (NB, BP), BP = 1, 2, . . . . . . NBP}
4.2c Formula for scheduling objective – Weighted average waiting time (WAWT):

WAWT =
∑NBP

BP=1 CAP(BP) ∗ TAWT(BP)
∑NBP

BP=1 CAP (BP)

where

TAWT (BP) =
NJ(BP)∑

B=1

AWT (B, BP) For all B and BP

AWT(B, BP) = {TWT(B, BP)/NJ (B, BP)} For all B and BP

TWT (B, BP) =
NJ(B,BP)∑

J=1

WT (J, B, BP) For all B and BP

WT(J, B, BP) = ST-TIME(B, BP) − {(Day(J) − 1) ∗ 24} For all J, B and BP

4.3 Heuristic algorithm 1 – A1

Decision 1: Batch processor selection – (BPS):

Step 1. Whenever ‘tie’ occurs in selecting a BP for scheduling, select a BP, which has a
maximum capacity; When there is no ‘tie’ situation for selecting a BP for scheduling, select
the batch processor which is going to be available early for the next scheduling.

Decision 2: Job-family selection – (JFS):

Step 2. For each family, temporarily construct a ‘batch’ using the following steps:

Step 2.1. Sort, all the jobs of the job-family ‘F’ based on job’s arrival day in ascending order,
and within a day based on job’s priority in ascending order, and all daily jobs within a priority
based on job’s size in descending order.

Step 2.2. Select a set of feasible jobs from the top of a ‘sorted-list’ until the selected BP
capacity is utilized to the maximum extent.

Step 2.3. Do steps 2·1 and 2·2 for all job-families. Further, store temporarily all the details of
the jobs considered for the batch of jobs corresponding to each family for the selected batch
processor.

Step 2.4. Compute for each job-family the index, INDEX (F ) = {PT (F )/WASJ (F ,BP)

Step 3. Select a job-family, which has the Min {INDEX (F), F = 1, 2, . . . NF}.
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Decision 3: Batch construction – (BC):

Step 4. Confirm the temporarily constructed batch corresponding to the selected job-family
as per step 3 for scheduling at time ‘t’.

Step 5. Update the ‘time matrix’ (for each batch processor, a time matrix is created and this
matrix contains information on starting time of each batch and ending time of the correspond-
ing batch) of batch processor availability and the ‘sorted-list’ of the selected job-family.

Step 6. Repeat steps 1 to 5 until all jobs for the given planning period (= one week) are
scheduled.

Note: Heuristic algorithms 2 to 4 that follow are identical to ‘A1’ except in Step 2·4 of
Step 2 of the algorithm. Therefore, only the modified Step 2·4 is detailed below for each of
the variants:

4.4 Heuristic algorithm 2 – A2

Step 2.4. Compute for each job-family the index, INDEX (F ) = {PT (F )/WAPJ(F, BP )}

4.5 Heuristic algorithm 3 – A3

Step 2.4. Compute for each job-family the index, INDEX (F ) = {PT (F )/APJ(F, BP )}

4.6 Heuristic algorithm 4 – A4

Step 2.4. Compute for each job-family the index, INDEX (F ) = {PT (F )/ASJ (F )}
All the above four variants of the greedy heuristic were implemented using programming

language Turbo C++.

5. Computational experiments

A computational experiment is appropriate in order to provide a perspective on the relative
effectiveness of any proposed heuristic algorithm (Baker 1999). In this study, computational
experiments were carried out with two objectives. The first objective was to evaluate the
absolute quality of the solutions obtained by the proposed heuristic algorithms by comparing
them with estimated optimal solutions. The second objective was to compare the relative
performance of the proposed heuristic algorithms in terms of both computational effort and
quality of the solutions. The analysis of the experimental data is presented for both cases.
An experimental approach of this type relies on two elements; an experimental design and
a measure of effectiveness. These are discussed first as a prelude to the discussions of the
evaluation of heuristics.

5.1 The experiment

5.1a Measure of effectiveness: The performance of the algorithms may vary over a range of
problem instances. Therefore, the performances of the proposed heuristic algorithms are com-
pared using the measures, viz., (1) average proximity (AP), (2) average relative percentage
deviation (ARPD), indicating the average performance of heuristics and (3) maximum relative
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Table 2. Summary of the experimental design.

Sl.
No.

Problem
factor Levels # Levels

1 Number of
jobs (n)

L1: n = 861 = {123, 123, 123, 123, 123, 123, 123}
L2: n = 943 = {125, 132, 144, 123, 150, 142, 127}
L3: n = 1003 = {123, 180, 143, 157, 130, 140, 130}
L4: n = 1107 = {152, 144, 168, 163, 135, 176, 169}
L5: n = 1260 = {180, 180, 180, 180, 180, 180, 180}

5

2 Job-
priority
(P )

L1 : P ∈ [1, 8] with equal probability of assigning each
of the priorities.
L2 : P ∈ [1, 8] with un-equal probability of assigning
each of the priorities.

2

3 Job-family
(F )

L1 : F ∈ [1, 5] with equal probability of assigning each
family ID.
L2 : F ∈ [1, 5] with un-equal probability of assigning
each family ID.

2

Problem configurations 5 × 2 × 2
= 20

Problem instance per configuration 15

Total problem instances 300

percentage deviation (MRPD), indicating the worst case performance of heuristics. Further,
these measures are defined as follows:

AP(k) ≡
{

N∑

i=1

(U1 − UK)

} /

N

ARPD(k) =
{

N∑

i=1

[ (U1 − UK) / U1] × 100

} /

N

MRPD(k) ≡ Max
N

{[(U1 − UK) / U1] × 100}

5.1b Experimental design: The experimental design is the process of planning an exper-
iment to ensure that the appropriate data will be collected/generated. We identified three
important problem parameters based on our observation made in the steel casting industry.
They are number of jobs (n), job-priority (P ), and job-family (F ). It was learnt during the
interaction with a user organization that these parameters may affect the performance of the
heuristic algorithms. Accordingly, an experimental design was developed to study the perfor-
mance of the proposed heuristic algorithms, the summary of which is given in table 2.

The parameter, number of jobs ‘n’ (which indicates the load on heat-treatment furnaces),
was assumed based on the field data collected over one week period for heat treatment furnaces
of a steel casting industry. Out of five levels of ‘n’, one is related to the observed week (that
is, n = 1003 jobs), two are related to two extremes of the observed week (that is, extreme
1: 123 jobs per day × 7 days and the extreme 2: 180 jobs per day × 7 days), and the other
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two levels are randomly decided. The number of jobs, proposed in this design exceeds all the
computational experiments reported in the literature of batch processor scheduling problem,
including the recent one of Qi & Tu (1999).

Further, it is assumed that the size of the jobs vary and are uniformly distributed between
(100 Kg, 1000 Kg), as most of the job-sizes fall within this range, in the observed steel casting
industry. Furthermore, the uniform distribution was chosen because it is a relatively high-
variance distribution, which would allow the heuristics to be tested under conditions relatively
unfavourable to them (Chandru et al 1993).

It was observed that the foundry assigned priorities (P in table 2) right at the beginning.
The management uses three criteria (value, alloy type and market status of the order) with
two alternatives for each criterion (that is, high value vs. low value; high alloy vs. low alloy;
and export order vs. domestic order) for assigning a priority to a job. Thus, the priority varies
from 1 to 8. It was observed that each of the priorities (1 to 8) is not assigned always with
equal probability. For example, out of (say) 180 jobs expected to arrive for heat-treatment
operations, 30 jobs has priority 1, 20 jobs has priority 2, 35 jobs has priority 3, 45 jobs has
priority 4, 20 jobs has priority 5, 10 jobs has priority 6, 20 jobs has priority 7 and no jobs with
priority 8. This type of non-uniformly distributed priorities has an influence on the criterion
to be used for job-family selection at time ‘t’ for scheduling. Thus, the parameter ‘P ’ has
two levels in the experiments.

The parameter, job-family ‘F ’ used in table 2 is based on the observed job families in
the foundry, where the jobs are classified into five different groups (families). These five
families are based on the expected combination of heat treatment operations required by
the job. It was also observed that, over a long period, jobs were not equally distributed
over the families. For example, out of (say) 180 jobs expected to arrive for heat-treatment
operations, 50 jobs belong to job-family 1; 30 jobs belong to job-family 2; 35 jobs belong
to job-family 3; 45 jobs belong to job-family 4 and 20 jobs belong to job-family 5. This
type of non-uniformly distributed job-families has an influence on the criterion to be used for
job-family selection at time ‘t’ for scheduling. Thus, the parameter ‘F ’ has two levels in the
experiments.

The experimental design for generating test problems was implemented in program-
ming language Turbo C++. For each combination of values for {n, P , and F} 15 problem
instances were randomly generated, yielding a total of 300[= 5 × 2 × 2 × 15] problem
instances.

In addition to the input parameters mentioned in table 2, we assume, based on the obser-
vation made in the foundry, that there are two batch processors with capacities: 1500 Kg and
5000 Kg respectively, and five incompatible job-families with the processing times: 13, 9, 8,
7, and 10 Hrs., respectively, for scheduling.

5.2 Absolute evaluation of heuristic solutions

In this evaluation, heuristic solutions of the proposed algorithms are compared with an esti-
mated optimal solution. There are many procedures available in the literature for estimating
optimal value for combinatorial optimization problems. We have used the procedure discussed
in Rardin & Uzsoy (2001) for the statistical estimation (based on the Weibull distribution)
of optimal (minimum) value (with reference to a problem having minimization as the objec-
tive), appropriately for our maximization situation. Accordingly, for obtaining an estimated
optimal solution for each problem instance, we need to generate a number of feasible solu-
tions. To achieve this, a procedure is developed (which is named as RSA) and the systematic
procedure of this algorithm is as follows:
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Figure 3. Average performance of heuristics [Average {ARPD (AUBP)} with respect to estimated
optimal solution (EOS)].

Step 1. Randomly select a BP whenever ‘tie’ occurs in selecting BP for next scheduling.
Otherwise, select the one, which is going to be available for next scheduling.

Step 2. Randomly select a job-family from a set of feasible job-families. The criterion of
feasibility may be a threshold of perhaps such as ‘above 75%’ of the selected BP’s capacity,
when we add the entire jobs in the selected job-family.

Step 3. As given in heuristic algorithm 1 for the decision: Batch construction [BC].

The RSA was coded in programming language Turbo C++. For each of the randomly
generated 300 problem instances, 15 feasible solutions (i.e., the average utilization of batch
processors (AUBP) were obtained using the RSA. The 15 feasible solutions obtained using
RSA were used to estimate the optimal solution using the procedure highlighted in Rardin &
Uzsoy (2001). It is to be noted that the generated 15 feasible solutions using the RSA are
expected to provide the estimated optimal solution, [that is, estimated optimal AUBP] of the
problem instance with a very high probability of approximately 0·9999996941 [= (1−e−15)].

Further, for each variant of the heuristic and for each problem instance belonging to the
level of (n, P , and F ), the solution of maximum AUBP is obtained. For the maximum AUBP
obtained for each problem instances, the corresponding minimum weighted average waiting
time (WAWT) and minimum overall flow time (OFT), were also computed.

5.2a Results: For the primary scheduling objective of maximizing the average utilization
of the batch processors, the value of ‘ARPD’ and ‘MRPD’ were computed with respect to
each level of (n, P , and F ). Furthermore, for each ‘n’ with all levels of (P , and F ) the average
of {ARPD} and the maximum of {MRPD} were computed. These average of {ARPD} and
maximum {MRPD} are shown in figures 3 and 4 respectively.

From the perspective of average performance of the heuristics (figure 3), a negative ARPD
indicates that on average, the corresponding heuristic algorithm found a better result than the
estimated optimal value. From this, it is possible to conclude that the heuristic algorithms
A3 and A4, on average yielded better utilization than the estimated optimal value. This
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Figure 4. Worst case performance of heuristics [Maximum {MRPD (AUBP)} with respect to esti-
mated optimal solution (EOS)].

indicates that the Weibull-based technique may have yielded conservative estimates of the
optimal value. Further, a positive ARPD indicates that the heuristic algorithm found inferior
solutions when compared with the estimated optimal value. However, the deviation is very
small. In addition, same inference can be drawn using the worst-case performance analysis
(see figure 4).

From the figures 3 and 4, it can be observed that, on average, the difference between
the solution obtained from the heuristic algorithms and the estimated optimal value is not
significant, and therefore we may infer that all the proposed heuristic algorithms are highly
satisfactory heuristics to achieve maximum utilization of the batch processors.

5.3 Relative evaluation of heuristics algorithms

The relative performance of the proposed heuristics is discussed in terms of their computa-
tional effort and quality of the solutions relative to each other.

5.3a Computational effort: The computational time (in seconds) on a Pentium 200 MHz
processor required for each algorithm for solving five sets of 60 problem instances together,
corresponding to each level of n, is reported in table 3. From the table 3, it is clear that the
computational burden increases with the number of jobs considered for scheduling. Though
it increases, on average, from the point of view of computational burden of the heuristics, it
appears that the proposed heuristic algorithms will take relatively low computational times
even for very large size problems. Thus, from the point of view of computational effort, we
can conclude that one could run several heuristics, proposed in this paper, on each problem
instance and could take the best solution found.

5.3b Quality of the solution: For each problem instance, every heuristic produces (a) maxi-
mum AUBP, which is the primary objective, (b) corresponding minimum OFT and minimum
WAWT. Furthermore, average and standard deviation of AUBP as well as average proximity
and average standard deviation of proximity (which indicates the average performance of the
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Table 3. CPU time (in seconds) required to obtain the solutions of a set of 60 problem instances.

CPU Time for the heuristic algorithms
Number of problem # jobs (n) per

instances instance A1 A2 A3 A4

60 861 339 356 339 344
60 943 386 476 388 391
60 1003 432 531 435 440
60 1107 511 628 513 517
60 1260 645 787 648 644

heuristics), were computed for each level of factors (n, P and F ). The results are shown in
table 4 (related to AUBP) and appendices 1 and 2 (related to OFT and WAWT respectively).

On average, if we observe the quality of the solution for the primary scheduling objec-
tive of maximizing AUBP, the difference between the best solution and the worst solution is
not substantial (see table 4). Therefore, it is possible to conclude that any heuristics can be
chosen from the four (proposed). However, for the secondary scheduling objectives, minimiz-
ing OFT and minimizing WAWT, the differences in performance are reasonably significant
(appendixces 1 & 2). This particular observation becomes obvious from the results, when
problem factor ‘n’ increases.

Further, the average of (a) ‘maximum AUBP’, (b) ‘minimum OFT’ and (c) ‘minimum
WAWT’ were computed over ‘n’. The result is shown in table 5. From the table 5, it may
be useful to consider heuristics that are inferior with respect to AUBP but superior with
respect to both OFT and WAWT. That is, if we were to select a single heuristic it is clear
that the trade-offs between AUBP, OFT and WAWT will be in favour of heuristic A1. That
is, on average, the criterion, viz. ‘the weighted average job-size of job-family, with priority as
weight’, used for job-family selection is expected to yield an acceptable and efficient solution
for the three scheduling objectives addressed in this paper. The same inferences hold for the
results obtained based on average performance analysis using average relative percentage
deviation as well as based on the worst-case performance analysis using the value of maximum
relative percentage deviation.

From the detailed results obtained on primary as well as secondary scheduling objectives, it
is observed that there is an influence of problem instance on the performance of the heuristic
algorithms (that is, there is variability in the performance of the heuristics with the problem
factors (n,P andF )]. This inference is further verified using the analysis of variance (ANOVA)
technique. The window-based statistical package ‘SIGMASTAT’ is used for this ANOVA.
The package initially tests for the assumptions behind the ANOVA-analysis. Since, our data
failed in the normality test but passed in the equal variance test, the package suggested for non-
parametric analysis. Accordingly, the package constructs the required rank matrix from the
basic data and then does the non-parametric ANOVA. It is observed from the result obtained
from the package that the problem factors influence the performance of heuristic algorithms.

6. Conclusion

This paper has examined the problem of scheduling jobs on parallel, non-identical batch
processing machines with incompatible job-families and non-identical job sizes to maximize
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Table 4. Performance of the heuristics – primary scheduling objective: AUBP.

Proximity in % by
Problem factor AUBP by heuristic algorithm heuristic algorithm

n P F Criterion A1 A2 A3 A4 A1 A2 A3 A4

861

L1 L1

Avg.

94·1 93·8 94·5 94·4 0·8 1·0 0·3 0·4
L1 L2 94·3 93·8 94·8 95·0 0·9 1·4 0·4 0·2
L2 L1 94·5 94·1 94·5 94·5 0·4 0·7 0·3 0·3
L2 L2 94·0 94·0 94·2 94·4 0·6 0·6 0·4 0·2
L1 L1

Std. dev

2·0 2·3 1·9 2·0 0·6 0·7 0·4 0·5
L1 L2 1·8 1·9 2·0 2·1 0·8 0·6 0·4 0·3
L2 L1 2·0 2·3 2·1 2·1 0·3 0·4 0·5 0·4
L2 L2 2·0 2·1 2·1 2·0 0·6 0·6 0·3 0·4

943

L1 L1

Avg.

96·1 95·9 96·0 96·0 0·3 0·5 0·5 0·5
L1 L2 96·1 95·8 96·6 96·6 0·7 1·0 0·2 0·2
L2 L1 96·0 95·7 95·9 95·8 0·3 0·7 0·4 0·6
L2 L2 96·2 96·0 96·4 96·3 0·6 0·7 0·3 0·5
L1 L1

Std. dev

0·4 0·6 0·6 0·5 0·4 0·4 0·6 0·3
L1 L2 0·9 0·9 0·4 0·4 0·8 1·0 0·4 0·2
L2 L1 0·7 0·6 0·4 0·4 0·4 0·6 0·5 0·5
L2 L2 0·7 0·5 0·4 0·5 0·7 0·7 0·4 0·5

1003

L1 L1

Avg.

96·2 96·0 95·9 96·0 0·2 0·4 0·5 0·4
L1 L2 96·2 95·9 96·1 96·3 0·3 0·6 0·4 0·2
L2 L1 96·3 96·0 96·1 96·1 0·1 0·4 0·3 0·3
L2 L2 96·3 96·1 96·3 96·3 0·2 0·4 0·3 0·2
L1 L1

Std. dev

0·5 0·4 0·4 0·3 0·3 0·2 0·3 0·4
L1 L2 0·8 0·5 0·3 0·2 0·5 0·3 0·2 0·3
L2 L1 0·5 0·3 0·3 0·3 0·2 0·3 0·3 0·3
L2 L2 0·5 0·5 0·4 0·4 0·3 0·4 0·2 0·3

1107

L1 L1

Avg.

96·4 96·0 96·5 96·5 0·4 0·7 0·2 0·3
L1 L2 96·6 96·3 96·8 96·9 0·5 0·8 0·3 0·2
L2 L1 96·4 96·2 96·5 96·4 0·5 0·7 0·4 0·4
L2 L2 96·6 96·2 96·8 96·8 0·4 0·7 0·1 0·2
L1 L1

Std. dev

0·5 0·5 0·4 0·4 0·5 0·6 0·3 0·4
L1 L2 0·5 0·6 0·4 0·4 0·4 0·6 0·3 0·3
L2 L1 0·4 0·6 0·6 0·6 0·4 0·6 0·4 0·5
L2 L2 0·5 0·5 0·4 0·4 0·3 0·6 0·3 0·2

1260

L1 L1

Avg.

96·2 96·3 96·7 96·6 0·7 0·6 0·2 0·3
L1 L2 95·5 95·6 96·7 96·7 1·4 1·2 0·1 0·1
L2 L1 96·4 96·3 96·7 96·9 0·6 0·7 0·3 0·1
L2 L2 95·6 96·0 96·8 96·7 1·4 1·1 0·2 0·3
L1 L1

Std. dev

0·4 0·4 0·4 0·3 0·5 0·5 0·3 0·3
L1 L2 0·6 0·6 0·3 0·4 0·6 0·7 0·2 0·2
L2 L1 0·4 0·6 0·4 0·2 0·4 0·5 0·3 0·2
L2 L2 0·5 0·6 0·4 0·4 0·6 0·6 0·3 0·4

the average utilization of batch processing machines, and has suggested a few fast and efficient
heuristics. The motivation for this research is the heat-treatment operation at the post casting
stage of steel casting manufacturing. This problem is of considerable practical value, because
the heuristics proposed in this paper can be used in modelling a large number of heat-treatment
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Table 5. Net average performance of heuristics and scheduling objectives.

Average performance of the heuristic algorithm
Scheduling {Best solution-

# Jobs (n) objective A1 A2 A3 A4 worst solution}

A 95·0 94·5 95·7 96·0 1·5%
861 B 737 741 731 727 4 hrs

C 60 60 72 73 13 hrs
A 95·3 94·9 96·0 96·1 1·2%

943 B 804 808 799 796 12 hrs
C 66 67 80 81 15 hrs
A 95·6 95·3 96·2 96·3 1·0%

1003 B 854 857 849 846 11 hrs
C 72 72 86 88 16 hrs
A 96·0 95·6 96·5 96·6 1·0%

1107 B 939 943 934 930 13
C 80 80 97 98 18 hrs
A 96·4 96·0 96·6 96·8 1·8%

1260 B 1060 1066 1058 1054 12 hrs
C 93 93 111 113 20 hrs

A - Average {Maximum AUBP} in %; B - Average {Minimum OFT} in Hrs; C - Average {Minimum
WAWT} in Hrs

operations as well as chemical processing operations such as diffusion and oxidation in wafer
fabrication, hardening of synthetic parts in aircraft industries, etc.

On comparison with the statistically estimated optima (based on the Weibull technique), it
appears that all the proposed heuristic algorithms are, on average, better ones for scheduling
large scale heterogeneous batch processors in the presence of dynamic job arrivals with
incompatible job-families and non-identical job sizes. From the point of view of computational
effort, we can further conclude that one could run several heuristics, proposed in this paper,
on each problem instance and could take one that gives the best solution. Further, the heuristic
algorithm A1, particularly, the job-family selection based on ‘weighted average job-size
of job-family with priority as weight’, turns out to be the best choice if we trade-off all
three scheduling objectives maximizing AUBP, minimizing OFT and minimizing WAWT,
considered in this study. Finally, it is observed from the results (as well as statistically verified)
that the performance of the heuristic is seen to be sensitive to the problem factor (n, P , and
F ) used in the experimental design.

There are a number of interesting extensions of the problems that can be pursued. One inter-
esting extension is to evaluate whether the inferences obtained in this study are stable when
we allow the changes in the input parameters such as (a) job-size distribution, (b) processing
time for each incompatible job-family, and (c) a specific capacity combination of the two non-
identical batch processors. Additional important extensions could be (i) to include the due
date related performance measures in the model, and (2) relaxing some of the assumptions,
mentioned in this paper, one-by-one, and studying its impact on the proposed algorithms (for
example, studying the impact of relaxing the first assumption mentioned in this paper could
be an interesting extension. That is, changing the current assumption from ‘every 24 hours, a
set of new jobs arrive to WIP area’ to various input such as ‘every 3 hours’, ‘6’, 9, ‘12 hours’,
etc.). Finally, the proposed heuristic algorithms in this paper can be extended by incorporating
today’s standard job shop or assembly scheduling rules to sequence the batches, constructed
by the proposed heuristic algorithms for other scheduling criteria based on completion time.
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Notations

WIP Work-in-process inventory
BP Batch processor ‘BP ’ and BP = 1, 2, . . . NBP

NBP Maximum number of batch processors or last BP

B Batch B and B = 1, 2, . . . NB

AUBP Average utilization of the batch processors
CAP(BP) Capacity of the batch processor ‘BP ’
UT(BP) Utilization of the batch processor ‘BP ’
NB(BP) Number of batches, processed in ‘BP ’
Tot−Job−Size(B,BP) Total job size of the batch ‘B’ of the batch processor ‘BP ’
NJ(B, BP) Number of jobs in the batch ‘B’ of the batch processor ‘BP ’
Size(J, B, BP) Size of job ‘J ’ in the batch ‘B’ of the batch processor ‘BP ’
OFT Overall flow time
End−Time(NB,BP) Ending time of the last batch ‘NB’, processed in ‘BP ’
WAWT Weighted average waiting time
TAWT(BP) Total average waiting time of jobs, processed in ‘BP ’
AWT(B, BP) Average waiting time per job in batch ‘B’, processed in ‘BP ’
TWT(B, BP) Total waiting time of jobs of batch ‘B’, processed in ‘BP ’
WT(J, B, BP) Waiting time of job ‘J ’ of batch ‘B’, processed in ‘BP ’
ST-TIME(B, BP) Starting time of batch ‘B’, processed in ‘BP ’
Day(J) Arrival day of the job ‘J ’
MaxRun Maximum number of runs
F Job-family ‘F ’ and F = 1, 2, . . . NF

NF Number of job-families
ASJ(F, BP) Average job-size of job-family ‘F ’ based on a subset or batch of

jobs consistent with the selected ‘BP ’
APJ(F, BP) Average job-priority of job-family ‘F ’ based on a subset or batch

of jobs consistent with the selected ‘BP ’
WASJ(F, BP) Weighted average job-size of job-family ‘F ’ based on a subset

or batch of jobs consistent with the selected ‘BP ’ with ‘priority’
as weight

WAPJ(F, BP) Weighted average job-priority of job-family ‘F ’ based on a subset
or batch of jobs consistent with the selected ‘BP ’ with ‘job-size’
as weight

AP(k) Average proximity of heuristic ‘k’
ARPD(k) Average relative percentage deviation of heuristic ‘k’
MRPD(k) Maximum relative percentage deviation of heuristic ‘k’
N Number of problem instances
Uk Average utilization of batch processors, yielded by kth heuristic
U1 Estimated optimal ‘average utilization of batch processors’ OR

U1 = max{Uk, k = 1, 2, 3, 4) with respect to the type of evalua-
tion
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Appendix 1. Performance of the heuristics – secondary scheduling objective: OFT.

Proximity by heuristic
Problem factor OFT by heuristic algorithm algorithm

n P F Criterion A1 A2 A3 A4 A1 A2 A3 A4

861

L1 L1

Avg.

840 845 836 835 8 13 4 3
L1 L2 935 942 931 929 9 16 5 2
L2 L1 838 842 837 837 5 9 4 4
L2 L2 976 978 974 970 8 10 6 2
L1 L1

Std. dev.

81 84 81 80 7 8 5 4
L1 L2 76 78 80 81 8 8 5 5
L2 L1 81 82 81 81 6 6 6 4
L2 L2 63 66 62 60 8 8 6 5

943

L1 L1

Avg.

817 818 818 817 5 5 6 4
L1 L2 920 922 915 912 10 12 5 3
L2 L1 817 821 818 820 3 8 5 6
L2 L2 913 914 910 911 7 8 4 5
L1 L1

Std. dev.

18 17 20 17 5 5 6 5
L1 L2 18 21 20 18 10 11 6 4
L2 L1 18 14 17 18 4 6 6 7
L2 L2 17 14 15 14 9 7 6 5

1003

L1 L1

Avg.

845 850 847 845 4 9 6 4
L1 L2 944 950 942 940 7 13 5 2
L2 L1 842 850 844 844 2 9 3 3
L2 L2 939 946 939 937 6 13 5 3
L1 L1

Std. dev.

27 27 29 26 6 6 7 4
L1 L2 22 20 22 19 9 7 5 4
L2 L1 25 28 27 29 3 8 4 4
L2 L2 26 25 26 30 6 9 5 6

1107

L1 L1

Avg.

944 949 942 942 6 10 4 4
L1 L2 1061 1065 1058 1056 7 11 5 3
L2 L1 945 947 943 942 6 8 4 3
L2 L2 1051 1058 1048 1048 6 13 3 3
L1 L1

Std. dev.

23 23 25 25 8 6 4 6
L1 L2 30 28 27 27 6 9 6 4
L2 L1 24 26 25 26 4 8 6 5
L2 L2 15 16 16 17 6 8 4 4

1260

L1 L1

Avg.

1238 1239 1232 1232 9 9 3 3
L1 L2 1297 1294 1285 1282 18 15 6 3
L2 L1 1235 1240 1231 1230 8 12 4 2
L2 L2 1296 1290 1279 1279 20 14 3 3
L1 L1

Std. dev.

20 21 21 22 7 8 4 4
L1 L2 26 24 22 18 10 11 6 4
L2 L1 22 22 21 22 6 7 4 3
L2 L2 19 20 16 18 6 9 4 5



498 M Mathirajan, V Chandru and A I Sivakumar

Appendix 2. Performance of the heuristics – secondary scheduling objective: WAWT.

WAWT by heuristic Proximity by heuristic
Problem factor algorithm algorithm

n P F Criterion A1 A2 A3 A4 A1 A2 A3 A4

861

L1 L1

Avg.

75·2 78·4 82·4 83·2 0·4 3·6 7·6 8·4
L1 L2 86·9 91·0 91·9 92·3 0·5 4·6 5·6 6·0
L2 L1 75·7 75·5 82·9 84·4 1·5 1·2 8·6 10·1
L2 L2 93·0 93·6 99·3 98·3 1·8 2·4 8·1 7·1
L1 L1

Std. dev

13·2 15·4 14·4 14·6 0·7 4·1 3·7 3·6
L1 L2 13·5 13·4 13·3 14·6 1·2 3·1 3·4 3·0
L2 L1 13·3 13·5 14·8 15·5 1·8 3·1 3·8 3·7
L2 L2 14·5 14·5 13·7 12·9 2·7 2·5 2·4 2·7

943

L1 L1

Avg.

71·0 71·2 77·0 78·2 2·1 2·2 8·0 9·2
L1 L2 82·9 85·3 88·5 88·8 1·0 3·3 6·6 6·9
L2 L1 70·2 70·6 77·9 79·4 1·2 1·5 8·8 10·3
L2 L2 83·0 84·5 88·9 89·2 0·5 2·1 6·5 6·8
L1 L1

Std. dev

4·1 4·6 4·3 3·3 2·7 4·2 3·0 2·1
L1 L2 2·7 5·5 5·5 4·2 2·3 3·1 3·9 3·5
L2 L1 3·3 2·7 3·5 3·5 1·8 2·5 2·4 2·8
L2 L2 3·7 3·9 3·9 3·2 0·9 2·7 3·2 3·0

1003

L1 L1

Avg.

72·3 72·8 76·7 78·2 0·4 0·8 4·8 6·3
L1 L2 84·6 86·3 88·5 89·5 0·1 1·9 4·1 5·0
L2 L1 75·0 74·0 77·7 79·1 1·4 0·5 4·1 5·6
L2 L2 85·4 86·4 88·9 90·0 0·2 1·2 3·7 4·8
L1 L1

Std. dev

5·1 5·0 5·1 5·0 0·9 1·0 1·7 1·9
L1 L2 5·0 4·7 4·4 4·2 0·3 1·6 2·5 2·6
L2 L1 5·0 4·5 4·7 4·7 1·4 0·8 1·4 1·6
L2 L2 4·7 4·9 5·0 5·3 0·3 1·5 1·6 1·9

1107

L1 L1

Avg.

82·8 82·1 90·1 91·8 1·7 1·0 9·0 10·6
L1 L2 97·1 100·7 103·7 104·1 0·7 4·3 7·3 7·8
L2 L1 83·6 83·2 91·0 92·0 1·7 1·2 9·1 10·1
L2 L2 97·3 98·3 103·6 103·6 1·1 2·1 7·4 7·4
L1 L1

Std. dev

4·8 3·6 3·8 4·5 2·8 1·8 2·7 2·2
L1 L2 5·9 3·6 4·9 4·4 1·8 3·5 2·4 2·2
L2 L1 4·4 5·1 5·3 5·1 2·7 2·1 3·0 3·8
L2 L2 3·3 4·8 4·8 4·2 2·1 3·6 3·1 3·6

1260

L1 L1

Avg.

109·6 110·1 134·1 136·3 2·3 2·9 26·9 29·1
L1 L2 121·4 121·9 134·0 137·3 2·2 2·7 14·8 18·1
L2 L1 109·0 107·9 133·6 136·7 2·2 1·1 26·8 29·9
L2 L2 121·7 118·7 134·3 137·5 3·8 0·8 16·4 19·6
L1 L1

Std. dev

3·6 5·7 5·6 4·1 3·1 4·8 5·6 3·9
L1 L2 5·1 6·0 3·7 3·8 2·2 6·3 4·0 3·2
L2 L1 4·5 4·2 4·8 5·7 2·6 2·2 4·1 4·6
L2 L2 3·8 3·4 3·9 3·9 3·7 1·7 3·7 3·1
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