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1. Introduction 

We are g iven m >- 2 processors  P1, ... , P m  and a set T of  n >- 2 i ndependen t  tasks 
J1, . . . ,  Jn. T h e  processors  are  nonident ica l  in the sense that  processing t ime functions/~1,  
. . . .  /Xm are  def ined on T so that  a task J, r eqmres  ~(J,) t ime to process  on processor  P~, 
1 -< 1 -< m.  J This mode l  of  a mul t ip rocessor  system was in t roduced  in [1, 2], where  it was 
shown that  an O(max(mn 2, n3)) t ime-bounded  a lgor i thm exists which obta ins  a schedule  
(of  T on  the m processors)  having the least  m e a n  f low t ime.  In this paper  we are  
conce rned  with  the p rob l em of  f inding a schedule  whose  finishing t ime is as small  as 
possible (such a schedule  will be called optimal). This p rob lem is known to be P- 
comple te  [7-9] .  2 H e n c e  it seems unl ikely that  a po lynomia l  t ime-bounded  a lgor i thm 
exists for  this p rob lem.  In [7] a dynamic  p r o g r a m m i n g  type a lgor i thm of  exponent ia l  
t ime complexi ty  was given to find an opt imal  schedule .  It  was also shown in [7] that  a 
po lynomia l  t ime-bounded  a lgor i thm exists which obta ins  a schedule  with a finishing t ime 
arbitrari ly close to the opt imal  finishing t ime.  H o w e v e r ,  the  complexi ty  of  the a lgor i thm 
was O( (1 /e ) .  n2m), where  E is the  re la t ive  e r ror .  A special  case of  our  p rob l em w h e n / x J / x j  
= s~ (i .e.  the  processors  have  un i fo rm speeds)  was s tudied in [5, 7]. 

In  Sect ion 2 we look at several  s imple  heuris t ic  a lgor i thms and analyze their  worst-case 
behav io r  as measured  by the rat io  f / f * ,  where  ] is the  finishing t ime of  the  schedule  
ob ta ined  by the  a lgor i thm and f* is the op t imal  f inishing t ime.  In Sect ion 3 we cons ider  
the case of  there  being only two processors .  A n  n log n a lgor i thm that  has a be t t e r  worst-  
case behav ior  than any of  the a lgor i thms deve loped  in Sect ion 2 is p resen ted .  Finally,  in 
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For convenience, we shall usually write a task J, as Jt(ttL(Jt), , /z,n(J,)) 
z The terminology "P-complete" is defined in [9] Karp's notion of "completeness" is shghtly different from 
this 

Journal of the A~,~oclatton for Computing Machmery, Vol 24, No 2, Aprd 1977, pp 280-289 



Heuristtc Algorithms 281 

Section 4, we consider the special case of a multiprocessor system in which all the 
processors are identical, i.e. ~, = ~ = / z  for all t 4~ j, and the processing time of each task 
does not vary " too much," 1.e. max~/z(J,)/min~/z(J0 = p for some p > 1.3 We show that 
this simplified problem remains P-complete, but the LPT scheduling strategy [6] applied 
to this problem produces schedules with f/f* ~ 1 as n ~ ~. 

THEOREM l .  

above. 

2. Nonidentical Multiprocessor Scheduling 

In this section we consider five different heuristic algorithms and study their worst-case 
behaviors. Some employ very simple heuristics and may seem inferior to others. How- 
ever, it can be shown that for any pair of these algorithms, examples exist for which one 
gives a better result than the other Several such examples are discussed. 

In every algorithm that we shall consider, the input/output are as follows: 
Input. T = set of n independent tasks J~(lzl(J~) . . . .  , P.m(J~)), 1 -~ i ~ n. 
Output. L = {L~ I 1 -< j -< m} andf .  L~ is the set of tasks scheduled on processor Pj, 

a n d f  is the finishing time of the schedule,f  = max,{ ~ jEz/z~(J)}. 

A-schedule. The ith task in the list T is scheduled on the processor that minimizes its 
finishing time. 

A L G O R I T H M  A(T, LA, fA) 
Step 1 ( I m t l a h z e L j a n d t s )  L ~ a n d h ~ O f o r l - < l  ~ .m 

Step 2 (Schedule the tasks and f indfa)  
For I ~-  1 to n step 1 do 

find the smal les t / such  that  h +/x~(J~) -< h +/zt(Jl)  for all 1 -< 1 -< m ,  L~ ~ Lj t.J {J~}, t~ ~--t~ + btj(J0 end, 
fla ":'- maxj 0 ,  return 

B-schedule. For each task J, let /Zmm(J) = mine /zj(J). Algorithm B(T, LB, ~B) first 
orders the tasks in T according to nonincreasing/Zmm(J), and then calls Algorithm A to 
schedule T. 

C-schedule. For each task J in T, let/J.max(J) = max~/xj(J). Algorithm C(T, Lc, fc) 
orders the tasks in T according to nonincreasing/.Zmax(J) and calls Algorithm A. 

D-schedule. After having scheduled t tasks, the algorithm schedules a task (from 
among the remaining (n - i) tasks) which gives the least finishing time. 

A L G O R I T H M  D(T, LD, fo) 

Step 1 ( I n m a h z e L j a n d h )  L j ~ a n d t ~ 0 f o r l - - < l  -<m 

Step 2 (Completed'; ') I f  T = O then [fro <--- max~ t~, return]. 

Step 3 (Schedule a task). Find a task J m T such that  mmj{ h + ,u.j(J)} -< mini{t, + /z jQ ' )}  for all J '  E T,  l e t / b e  
such that h + /J.:(J) is minimum; Lj ~ Lj t.J {J}, tj <-- L + /xj(J), T ~ T - {J}, go to step 2 

E-schedule. Algorithm E(T, L~,fE) is the same as Algorithm D except that step 3 is 
replaced with 

Step 3 Fmd a task J m T such that  mm~{q + ~j(J)} --< mmj{q + ~ ( J ' ) }  for all J '  ~ T ,  le t l  be  such that tj + /z j (J)  
ts minimum, L~ ~ Lj LJ {J}, tj ~ L + P.J(J), T ~ T - {J}, go to step 2 

The table below summarizes the behavior o f  the algorithms presented 

Worst-case Is the bound the 
Algorithm Run time 

bound for f / f *  best possible? 

A O(n) rn yes 
B O(n log n) m yes 
C O(n log n) m yes 
D O(n 2) m ? 4 
E O(n z) m yes 

a max,/z(J~) zs an abbreviat ion for max,{/z(Jt)} 
4 The bound can be approached for m = 2 (see Remark  (4)). 
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PROOF. 

(1) R u n  t i m e .  It  is obvious  tha t  A l g o r i t h m  A runs  in t ime  O ( n ) .  Eva lua t ing  ~min(J) 
o r  ~mx(. / )  for  all J in T takes  O ( n )  t ime ,  and  sor t ing T takes  O ( n  log n) t ime.  I t  fol lows 
tha t  A l g o r i t h m s  B and  C have t ime complex i ty  O ( n  log  n ) .  F o r  A lgo r i t hms  D and E ,  
schedul ing a t ask  af ter  i tasks  have been  schedu led  takes  O ( n  - i) t ime.  So the run  t ime 
of  the a lgor i thms  is O(n2). 

(2)  W o r s t - c a s e  b o u n d  f o r  ] / f * .  Le t  g ( n )  = ~= l (min l~ j~ m /z~(J0). C lea r ly  i f ( n )  -> 
( 1 / m ) g ( n ) .  F o r  A l g o r i t h m  A ,  it is an easy  induct ion  on  n to show tha t  ]A(n) --< ~(n).  
Therefore~A/f*  -< m.  Since A l g o r i t h m s  B and  C employ  A l g o r i t h m  A it fol lows tha t  fB/ f f  
--< m a n d ] c / f f  <- m.  N o w  we show tha t  fly -< g ( n )  by induct ion  on n.  Trivially,jtt ,(1) -< g(1). 
A s s u m e  t h a t f o ( k )  -< g ( k ) ,  and cons ider  a set Tk÷j  of k + 1 tasks .  Suppose  tha t  Jk+~ is the 
task  tha t  is schedu led  last by A l g o r i t h m  D .  F o r  the set  o f k  tasks  Tk = Tk+~ - {Jk÷~}, ]D(k) 
<-- g ( k )  by the induct ion  hypothes is .  Thus  for  Tk+~ the a lgor i thm gives]o(k  + 1) -< ] o ( k )  + 

minl~j~m/.t,(Jk+0 --< g ( k  + 1). T h u s ] n  -< g ( n )  and S O ] o / P  -< m.  A s imilar  a r g u m e n t  shows 
tha t  ]E/f* -< m.  

(3)  T h e  b o u n d s  are  the  be s t  p o s s i b l e  f o r  al l  b u t  A l g o r i t h m  D .  The  fol lowing example  
shows tha t  the bounds  for  A lg o r i t h ms  A and B can be app roached .  Cons ide r  the  set of  m 
tasks,  

J l ( u ,  u ,  . . . ,  u ) ,  
J2(u ,  2u - 1 . . . .  , 2 u  - 1), 
J3(2u, u ,  3u - 2, ... , 3u - 2), 

Jl(( l  - 1)u, (l - 2)u, . . .  , 2 u ,  u ,  lu  - (l - 1) . . . . .  lu  - (l - 1)), 

Jm( (m  - 1)u, (m - 2)u, ... , 2 u ,  u ,  m u  - ( m  - 1)). 

(See F igure  1.) SOfA = f B  = m u  -- ( m  -- 1 ) , / *  = u,  a n d f A / f *  = fB/f*  = m -- (m -- 1)/  
u ~ m as u --> oo. N o w  we show tha t  the  b o u n d  for  A lgo r i t hms  C and E can be  ap- 
p roached .  Cons ide r  the set  of  (m - 1)m + 1 tasks ,  where  u >> m:  

J d u ,  u . . . . .  u ) ,  4 ( 1 ,  u . . . .  , u ) ,  . . .  , Jm(1  . . . .  , 1, U) ,  

Jm+l(u - 1, u - I . . . .  , u - 1), Jm+2 (1, u - 1 . . . . .  u - 1) . . . .  , J2m(1 . . . .  , 1, u - 1), 

J(m-2)m+l(U - -  ( m  - 2), u - (m - 2) . . . . .  u - (m - 2)), J~m-2,m+z(1, u - ( m  - 2) . . . .  , 
u - (m - 2)), ... , J ,~-x ,m(1 ,  1 . . . . .  1, u - ( m  - 2)), 

J(ra_l)m+l(U - -  ( m  - 1), u - (m - 1) . . . . .  u - (m - 1)). 

(See F igure  2 . )  Thus  

•c/ f*  = ~ / f f  = [ m u  - m ( m  - 1 ) / 2 ] / [ u  + ( m  - 2)m + 1] 
= [ m  - m ( m  - 1)/2u]/{1 + [(m - 2)m + 1]/u} --~ m 

as u ---> ~ .  [ ]  

R e m a r k s .  

(I) I t  is in teres t ing  to no te  that  ]A --  ~B, • -> ]c ,  )~A --> ]t~, and L - )~g are  no t  

0 u 

Jl [ 2u- i 

J2 - ~  3u - 2 

mu- (m-l) : 

FiG 1. A worst-case example for Algonthms A and B 

u=f * 

J2 

J3 

J4 
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LC = LE 

2u-1 

J1 Jm+l " " " J (m-2)m+l  

J2 Jm+2 " " " J(m-2)m+2 

J3 Jm+3 " " " J(m-Z)m+3 

Jm J2m " " " J(m-1)m 

J(ra-1)ra+l ] 
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L • 

J1 

Jm+l 

J2m+l 

u+(m-2)m+l = f*  

J2 " '"  J(n~-l)m 

J tm-1)m+l  } 

Fie 2 A worst-case example for Algort thms C and E 

necessarily true,  as the followin$ examples show. Consider  the set T~ = {Jl(U - 1, 2u), 
J2(u, u)}. Then~A = f *  = u andfB = 2u -- 1. For  the set T2 = {Jl(U, 2u, 2u), J2(u - 1, u,  
3u)}, fA = f *  = U and3~c = 2u - 1. For  T3 = {J,(u + 1, 2u), Jz(u, u)}, fA = f *  = U + 1 and 
~D = 2U. Finally, for T4 = {J,(u, 2u), J2(u + 1, u + 1)}, we have~A = f *  = u + 1 and re  = 
2u. 

(2) The following shows that fB --> fO andfB --> ffE are not necessarily true: For  T3 in 
(1), fB = U + 1 andfD = 2U, and in the last example of Theorem 1, ]B = f* = U + 
(m -- 2)m + 1 whilefE = mu - (m - 1)m/2. 

(3) It is not necessary thatffc ->fro andfc  -->rE. For  example,ffc = u + 1 andfD = 2u for 
the set Ta in (1), a n d f c  = u + 1 and]E = 2u for T4 in (1). 

(4) We are unable to show that the bound m can be approached for Algor i thm D 
when m -> 3. In fact, we have no example that yields fo/f* > 2. However ,  the example 
involving the set T3 m (1) shows that ffD/f* can approach 2. Hence the bound for 
Algor i thm D is the best possible for m = 2. A slight modification of the example will 
show that fD/f* can approach 2 for m-processor  scheduling for any m -> 2. 

(5) Now suppose that the processors are identical, i e. /z,(J) = /.re(J) for all 1 -~ l, 
! -< m. Then Algori thms A and D become arbitrary list scheduling and SPT scheduling, 5 
respectively [4, 6]. These schedules yieldS/f* -< 2 - 1/m [6]. Algori thms B, C, and E, 
on the other  hand,  reduce to the LPT scheduling algorithm which has a bound f / f*  --< 4/3 
- 1 / 3 m  [6]. 

3. Scheduhng on Two Nonidentical Processors 

Every algorithm m Section 2 was shown to have a worst-case bound of m for the ratio 
f / f * .  Moreover ,  this bound ~s the best possible for all but Algori thm D. For  this algo- 
rithm, we were only able to show that the ratio m is approachable  for m = 2. We now 

5 A n  SPT (LPT) schedule is a schedule obtained as a result of an algorithm which, whenever  a processor 
becomes free,  assigns the task whose processing time is the shortest  (largest) of those tasks not yet assmgned. 
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present  a s imple heurist ic  algori thm for the two-processor system that  has a be t te r  worst- 
case behavior  than  any of the algori thms of Section 2. We  have no t  b e e n  able  to extend 
the idea used in the algori thm to the case m >- 3. 

We  first describe the algori thm informally.  The  algori thm begins  by temporar i ly  
scheduling the tasks in such a way that  each task is assigned to the processor for which 
the task has a smaller  processing t ime. If the finishing t imes of  both  processors are the 
same,  the schedule is obviously opt imal .  However ,  if one  processor is idle while the o ther  
is not ,  t hen  the  schedule may  not  be  opt imal .  Wi thou t  loss of general i ty ,  assume that  P~ 
has a longer  f inishing t ime.  T h e n  it may be possible to reduce the f inishing t ime by 
reassigning some of  the tasks on  P~ on to  P2. T h e  idea is to decrease the f inishing t ime of  
P~ as much  as possible while min imiz ing  the increase in the finishing t ime of  P2- Thus  if 
two tasks J~ and  J2 on  P~ are such that  i.tl(J1)/i.t2(J1) -> i.t2(Jz)/ix~(J2), then J~ may  be the 
be t te r  candida te  than  J2 for the reass ignment .  The  algori thm lists the tasks on  P~ in this 
order ,  and  then  reassigns them to P2 as long as the finishing t ime can be  reduced.  The  
formal  descript ion of the algori thm follows. 

ALGORITHM F(T, L, ]) 

Step 1. (Initialize) L~ ,-- 0 ;  L2 *-- 0 ,  tx ~ O, tz *- 0 

Step 2 (Schedule each task on the processor with the shorter processing time and check which processor 
fimshes last). 

For t ~-- 1 to n step 1 do 
if ~l(J*) --< /xz(Jt) 

then [L~ ~ Li O {J~}; tt ~-- t~ + txa(J~)] 
else [Lz *-- L2 LI {Jt}; t2 *-- tz + #,(J,)] end 

If tl = tz then [~ ~-- ta, return] 
If ta > t2 then [~x ~ 1; fl ~ 2, go to step 3] 

else [a ~- 2; B ~ 1] 

Step 3 (t~ > ta, sort L~ and reschedule some tasks in L~ onto Pa) 
3.1 Sort La so that, by changing subscripts if necessary, L~ = {Jr, , Jk I k <- n} and ~(Jt)/tzn(J,) -< 

~Q(Jt+l)/lzo(J~+l) for 1 --< z _< k - 1 
3 2  F o r t ~ - k t o l s t e p -  1 do 

ifta > t~ + /xo(J,) then [La ~ La - {J ,} ;  ta ~--- ta - txa(JO ; L~ ~-- LB t.2 {Jr};  t~ ~--- t.~ + /.xB(J~) ] end 
3.3 lft  a --> t B then ~f ~ t~; return] 

else I f  <-- t~, return] 

LEMMA 1. Algorithm F has time complexity 0 (n log n ). 
PROOF. We look at the t ime needed  for each step of  the algori thm. Step 1 takes a 

cons tan t  a m o u n t  of t ime while step 2 takes O(n) t ime.  For  step 3 let I L~ ] = m -~ n .  T h e n  
steps 3.1 and  3.2 take O(m log m) and  O(m) t ime,  respectively.  Step 3.3 takes a cons tan t  
amoun t  of t ime.  I t  follows that  the algori thm runs  in O(n)  + O ( m  log m) + O(m)  -< 
O(n log n) t ime. [] 

Cons ider  the case t~ > t2 after  step 2. (The case t2 > tx is t reated similarly.)  Suppose 
that  at this t ime L1 = {Jl, .-. , Jk} and  L2 = {Jk+~ . . . .  , J,}, where  bt~(Jt)/pz(J,) _< 
tx~(J,+l)/lz2(J,+O for 1 <-- i <_ k - 1. Le t  l be  the first (largest) in teger  such that  t~ -< t2 + 
/-~2(J3) dur ing  the execut ion of 3.2 of step 3. W e  consider  this in te rmedia te  schedule 
L,  L~ = {J1, . . . ,  Jr} and  L~ = {J,+t . . . .  , Jn}- We  let R = L~, U = {J~+~, . . . ,  J ,} ,  and V = 
{J~+~ . . . . .  J~} (see Figure 3). A n  opt imal  schedule L*  will have a conf igura t ion  shown on  
Figure 4. Note that f = m a x { ~ L , ~ ( . / ) ,  ~ p . 2 ( J ) } a n d f * = m a x { ~ q * p a ( J ) ,  
~ * P a ( J ) } .  Let  r = ~,~n/-h(./), u = ~ v P , z ( J ) ,  v = ~v /a ,z ( J ) ,  a n d w  = u + v. F o r j  = 
1, 2 l e t r ,  = ~jeRjtZ~(J), u~ = ~s~ujbq(J), and  v~ = ~s~vjtX~(J). 

We need  two lemmas  before  we can prove the result  of  this section. 
LEMMA 2. Suppose f = r > w (Figure 3 (a)). Then f / f*  --< (~/5 + 1)/2. 
PROOF. L e t s  = /Xl(Jt) and  q = /.t2(Jt). Obvious ly  f* -> s. I f r  < [(~/5 + 1)/2Is ,  f / f *  -< 

r/s  < (45 + 1)/2. So assume that r >- [(~5 + 1)/2]s. 
Let  d = r - w. Clearly q _> d and  d -< r.  We claim that  a reduct ion  of the finishing t ime 

of Pi  by z increases the finishing t ime of P~ by at least (q / s ) . z ,  where  q/s  --> 1. Also if 
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~2o~ I Jk+ll... I Jn I J, I-..I J,,,l 
0 U V 

(a) :~ = t 1 = r 

o 

U v 

(b) ~ = t 2 = w 

Fm 3 Schedule L 

El ° ~iuuiuvl R1 I u1 I vl [ 
, ~ -. .~__.,. 

r I u I v I 

L~=RZ~2 I U2 1 v2 ] ~ 2 t  
, .  ~ = = . _ _ _ _ = . ) %  ~ . ~  y .. ) 

u 2 v 2 r 2 

R = R 1 O R 2' U = U 1 UU 2 and V = V 1 UV 2. 

FiG 4 An optimal schedule L* 

d - z b e c o m e s  s m a l l e r  t h a n  ( q / s ) . z ,  t h e n  the  f in i sh ing  t ime  o f  t he  s c h e d u l e  s t a r t s  

i n c r e a s i n g .  L e t  y b e  the  l a rges t  z sa t i s fy ing  d - z -> ( q / s ) - z ,  i .e .  d - y = ( q / s ) . y  o r y  = 

(s . d ) / ( s  + q) .  T h e n  in fact  o u r  c la im is t ha t  f*  -> r - y .  N o w  w e  p r o v e  this .  I f  r l  + u l  + vl 

-> r - y ,  t h e n  o b v i o u s l y . f *  -> r - y .  So  a s s u m e  tha t  r~ + u t  + vl < r - y .  T h e n  

f *  >-- r2 + u2 + v2 >-- u2 + vz  + (r - r , ) , q / s  > u2 + v2 + (u, + v l  + y ) . q / s  = us + u , . q / s  
+ v~ + v ~ . q / s  + y . q / s  >_ u + v + y . q / s  = w + y . q / s  = w + d - y = r - y .  

H e n c e  

f <  r 
f *  r - y 

r 

r - ( s . d ) / ( s  + q)  

s ince  r ~ [ (X/5  + 1 ) / 2 ] s .  [ ]  

LEMMA 3. 

r 

r - ( s ' d ) / ( s  + d)  
r 

r - ( s ' r ) / ( s  + r) 

s + r  ~5+1  
r 2 

S u p p o s e  f = w >- r (Ftgure 3(b)) .  T h e n  f f f *  <- (X/5 + 1) /2 .  
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PROOF. Let s = Ixl(Jt+l) and q = /Xz(Jz+l). Clearly f f  _> s. Then 

W r + s  r 
- - < . ~  - - <  = 1 + - - .  (1) 
f *  S S S 

Now consider the schedule which results from the one in Figure 3(b) by moving the task 
Jz+m back to Pt. As in the proof of Lemma 2, we claim that the finishing time of an 
optimal schedule cannot be reduced from r + s by more than z, where z must satisfy 
(w - q )  + ( q / s ) . z  _< r + s - z .  L e t  y be the maximum possible z. Theny  satisfies (w - q) 
+ ( q / s ) . y  = r + s - y .  Thus we are claiming that f* -> r + s - y = w - q + y .  (q / s ) .  So 
assume that rj + u~ + vl < r + s - y. Then 

f f  -> rz + uz  + v~ _> uz  + v2 + (r - r l ) . ( q / s )  > u~ + v2 + (ul  + v l  + y - s ) ' ( q / s )  
= u2 + u ~ ' ( q / s )  + v2 + v ~ ' ( q / s )  + y ' ( q / s )  - q -> u + v + y . ( q / s )  - q = w - q 

+ y "  ( q / s ) .  

Now f* >- w - q + y . ( q / s )  imphes t h a t  y . ( q / s )  _< q .  It follows that 

f__ _< w = w - q + q _< q s (2) 
f *  w - q + y . ( q / s )  w - q + y . ( q / s )  y . ( q / s )  y 

Also, since w - q + y .  ( q / s )  = r + s - y ,  we have 

ff < w w r + s  y 
- - _  = -< = 1 + . ( 3 )  
f *  w - q + y ' ( q / s )  r + s - y  r + s - y  r + s - y  

Now (1) becomesff/f* _< 1 + r / s  -< 1 + y / s  i fy  -> r, and (3) reduces t o f f / f *  -< 1 + y / s  if 
r >-- y. In either case we have 

f _< 1 + y (4) 
J* s 

Combining (2) and (4), we have f / f *  _< m i n { s / y ,  1 + y / s } .  The maximum of this 
minimum occurs when s / y  = 1 + y / s  or s = [(X/5 + 1)/2]y. Hence ff/ff -< 
(x/5 + 1)/2. [] 

THEOREM 2. A l g o r i t h m  F has  t i m e  c o m p l e x i t y  O ( n  l og  n )  a n d  p r o d u c e s  a s c h e d u l e  

w i th  the  f i m s h i n g  t i m e  ] s a t i s f y i n g  f / f *  -< (X/5 + 1)/2. M o r e o v e r ,  the  b o u n d  ts the  be s t  
p o s s t b l e .  

PROOF. The time is given by Lemma 1. Since Pi and P2 are symmetric, by Lemmas 2 
and 3 , f / f*  _< (x/5 + 1)/2. ( f ls  interpreted in the same way for the case t~ < tz after step 
2 of the algorithm.) It is obvious that f ~ f. Thus f / f *  -< (X/5 + 1)/2. Now we give an 
example which shows that the bound can be approached. Let T = {J~(u, [(x/5 + 1)/2]u), 
J2([(x/5 + 1)/2]u, [(x/5 + 3)/2]u - 1)}. Algorithm F yields Lt = {J~} and L2 = {J2}. Hence 
f = [(X/5 + 3)/2]u - 1. The optimal schedule has L~ = {Jz} and L*2 = {Jr}, giving f* = 
[(X/5 + 1)/2]u. Thus 

f ( X / 5 ~ 3  u 1 ) / _ ~ _  ~ " , , /5+1  X / 5 - 1  X / 5 + l  
f - ~ =  - -  - u =  2 2 - - ~ - - ~  

as  u --.~ oo. [ ]  

4.  I d e n t i c a l  M u l t t p r o c e s s o r  S c h e d u l i n g  

In this section we look at the case in which all processors are identical; i.e. the processing 
time of a task is the same on every processor? Even for this case there is no known 
nonenumerative algorithm for finding a schedule with the optimal (least) finishing time. 
Finding an optimal schedule is computationally as difficult as solvmg such problems as 
the traveling salesman, knapsack, partition, and maximum clique. These problems are 

For this system, a task is denoted by J(Iz(J)), J being the ldenUty of the task and p(J) Its processing time 
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called P-complete problems [8, 9]. It is well known, however,  that the LPT schedule 
produces an f such that f / f*  <- ~ - 1/3m [6]. The following example shows that this 
bound is the best  possible for any number  of jobs,  n >-- 5: Consider the set of  n tasks T = 
{J1(3), J2(3), Jn(2), J4(2), J5(2), J6(x) . . . . .  J,(x)} to be scheduled on two identical 
processors, where x << 1/n. Then the LPT schedule yields f = 7 while f *  = 6 + 
[(n - 5)/2]x. Hence f / f*  = 7/{6 + [(n - 5)/2]x} ~ ~ as x ~ 0. Similar examples show 
that the bound can be approached for any m ~ 2. 

We shall show that the above problem remains P-complete even when a reasonable 
restriction is imposed on the processing t ime. However ,  the LPT schedule applied to this 
problem yields an f which is near  optimal for large n. The simplified problem is the 
following: 

p-PT (processing time) problem (p > 1). Given a set of  tasks, T = {Jl(/~(J0), ... , 
J,(/z(J,))} satisfying maxdx(JO/mir~J,) = P. find a schedule with the minimum finishing 
time. 

In order  to prove that the p-PT problem is P-complete,  we make use of the part i t ion 
problem,  a known member  of the P-complete class [8]. 

Partition problem. Given a multiset S = {sl, ... , s,} of  positive integers, find 
partition $1 and $2 of S such that [ ~s~s,S, - ~s~sJ~ [ is minimum; i.e. minimize the 

size of the larger part i t ion.  
Suppose a part i t ion problem K has a multiset S = {sl . . . .  , sn}. We construct a p-PT 

problem H that  is equivalent to K; i .e.  a solution to K gives a solution to H and vice 
versa. Let  3 = min{31, 32}, where 31 = 2p - [2p[ and 32 = [2p] - 2p. If 3 ~ 0, define 
W = (3/3).  ~ ~ sj, and if 3 = 0, define W = 2 ~ 77 s~. We construct the problem H as 
follows: Let  T be the set of 2n + 2 tasks defined by 

r = T 1 U T2 U T3 = {J1 . . . .  , Jn}  ~ {Jn+l ,  . . .  , J2} ~J {J2 .+1,  J2.+2},  

where ~J , )  = 1 + q, = 1 + s , /W for J, ~ r l ,  ~ J i )  = 1 forJ~ E T~, g.(J,) = p for J, E T3. ~ 
The set of tasks in T is to be scheduled on two identical processors in such a way that the 
finishing time is minimal.  

We note that  ~ ~ q, = 3/3 if 3 4= 0 and ~ ~ q~ = ½ if 3 = 0. If 3 = 0, then p >- 1.5, and if 
3 :~ 0, then p -> 1 + 3/2. Thus g(J0 -< P for all 1 -< i _< 2n + 2. Hence H i s  a p-PT 
problem.  It is obvious that K can be t ransformed in H in polynomial  t ime. 

LEMMA 4. In the case 3 4: O, any optimal schedule of T has J2~+x and J2n+~ scheduled 
on different processors. 

PROOF. Suppose both J2n+l and Jzn+2 are scheduled on the same processor, say P1- 
Then the fractional part of the finishing time of Pa, ul, is given by 3~ -~ ~,a -~ 1 - 32 + 3/3. 
For  if no task in TI is scheduled on P1, ul = 3~, and if every task in T1 is scheduled on 
Pi,  v~ = ~1 + /5/3 = 1 - 32 + 8/3. So ul lies between 81 and 1 - 32 + 3/3. Similarly the 
fractional part  of the finishing time of  Pz, u2, is given by 0 -< ~2 -< 3/3, Thus the 
difference between the finishing times of the two processors d is at least min{31 - 8/3, 32 
- 3/3}. Since 3 = min{3~, 32}, d -> § 3. This schedule, however,  cannot be optimal.  For  
consider the schedule in which T~ U {J~,+l} is scheduled on Pi and T2 U {./2n+2} is 
scheduled on P2: The difference between the finishing times of  Px and P2 is 8 /3 .  So this 
schedule is strictly bet ter  than any schedule with J2n+l and J2n+2 scheduled on the same 
processor.  [] 

I.~MMA 5. Suppose 3 = O. Then there is an optimal schedule of  T with J2n+l and J2n+2 
scheduled on different processors. 

PROOF. Consider the case in which p is not  an integer.  Since 3 is zero,  31 = 32 = 0. 
Then p = m + ½ for some integer m -> 1. Let us consider a schedule L '  in which both 
tasks J2n+~ and J2n+2 are scheduled on the same processor,  say P~. Since ~ Jet /z(J) = 
2(n + p) + ½, the finishing time of L '  is greater than or equal to n + p + ~. We compare 
L' with a schedule L in which P~ processes Jzn+l, J,+~, and all tasks in T except J~, and 

The fractmnal parts are represented by ordered patrs of integers, ~ e n/m by (n, m). 
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P~ processes J2n+2, .11, and all tasks in T2 except Jn+~. The finishing time of this schedule is 
m a x { p + n  + ~ q t ,  p + n  + q ~ } < n  + p + ½ s i n c e 0 < q , < ½ a n d ~ l ' q , = ½ .  

Case 1. P~ finishes last in L ' .  Then P~ must process at least n - [p] tasks from T~ U 
Tz. Otherwise the finishing time of Pi is less than 2p + (n - ho] + ½) - 1 = n + p. This 
contradicts the assumption that P~ finishes last.  So P1 is greater  than or  equal to n + p + 
½. However ,  this schedule cannot be optimal since L has a smaller finishing t ime. 

Case 2. Pz finishes last in L ' .  Then Pz should process at leas tn  + [p] + 1 tasks from 
Ti U T~. Otherwise,  its finishing time is less than or  equal to n + ~o] + ½ = n + p,  which is 
a contradiction. So the finishing time of P~ is greater  than or  equal to n + p + ½. Again,  
this cannot be optimal.  

Cases 1 and 2 show that an opt imal  schedule must have Jzn+~ and Jzn+z on different 
processors.  

Consider  now the case in which p is an integer greater  than or  equal to n. Suppose that 
in an optimal schedule J2n+~ and Jzn+2 are on the same processor.  Then the finishing time 
would be greater  than or  equal to p + n + ½ for p = n and greater  than or  equal to p + n 
+ 1 for p > n. But this is a contradiction since the schedule L described above has a 
finishing time less than p + n + ½. 

Finally,  if p is an integer less than n and an optimal schedule has both Jzn+~ and J2n+z 
on the same processor,  say P~, then we can get another  opt imal  schedule by interchang- 
ing J2n+z on Pt with p tasks on Pz which are in T2. (At  least p tasks from T2 are on P2 since 
otherwise the finishing time would be greater  than or equal to 2p + n - p + 1 = p + n + 
1.) [] 

COROLLARY 1. There is an opt imal  schedule off T which assigns J2n+~ on P~ and J2n+2 
on P~, and P1 and P~ process the same number  o f  tasks.  

PROOF. That  there  is an opt imal  schedule of T in which J2n+~ is on P~ and J2n+2 is on 
P2 follows from Lemmas 4 and 5. If P~ and P2 do not process the same number  of tasks, 
then one of  these processors will have a finishing time of at least p + n + 1. But then the 
schedule cannot be optimal ,  since a schedule with J~, ... , J~, J2n+~ on P1 and Jn+l . . . . .  
Jzn, J2n+2 on P2 yields a fimshmg time equal to p + n + ~|2 q, < p + n + 1. [] 

THEOREM 3. The p - P T  problem is P-complete.  
PROOF. We prove that the problems K and H are equivalent by showing that a 

solution to one gives a solution to the other.  
Suppose,  by rearranging elements  in S if necessary, that a solution to K is the part i t ion 

$1 = {s~, . . . ,  st} and $2 = {s~+l . . . .  , s~}, and assume that  S~ is the larger part i t ion.  Then the 
schedule with Q1 = {J1 . . . .  , Jr, Jn+l . . . .  , J2n-t, J2n+l} on P1 and Q~ = {Jl+l . . . . .  J~, J2n-l+l, 
. . . .  J2n, J2,+2} on Pz is optimal ,  with Q~ determining the finishing time. Suppose not. 
Without  loss of generality we may assume that P~ finishes last in an optimal schedule. By 
Corollary 1, H has an opt imal  schedule with Q~ = {Jn . . . . . .  Jn,} t_J 
{J,+l, ... , Jz~-~} o {J2~+~} on P~ and the remaining tasks on P~, where {J~ . . . . .  , Jh~} 

C T~. By assumption 

( l + q 0 + - . - + ( l + q , ) + l + " ' + l + p  
~r 

n - l  

> ( l + q h , ) + ' ' ' + ( l + q h ) +  1 + ' ' ' +  1 + p .  
k ~v.~ J 

n - v  

Then q~ + . . - +  q, > qn, + " "  + qno, and so s~ + - . . +  s, > sn, + ' " +  sn~. This 
contradicts the assumption that the part i t ion S = S~ (3 $2 is a solution to K. Hence the 
schedule Q~ on P~ and Q~ on P2 is an optima] schedule of problem H. Conversely by 
Corollary 1 and by rearranging T~ if necessary, a solution to H is a schedule wtth Q~ = 
{J~ . . . .  , J~} U {Jn+,, ... , J~ -~}  t_J {J~+~} on P~ and Q~ = {J~+,, . . . ,  Jn} t3 {J2n-~+,, ... , Jzn} 
t3 {J2,,+*} on P~. We assume that Pt finishes last,  i .e .  ~ J, eO, Ix(J~) >- ~ J, eo~ tx(J~). We claim 

that  Sa = {sl, ... , s,} and $2 = {s~+l, ... , s~} is a solution to K. Suppose not  and assume 
that  K has a solution having the part i t ion S = S[ t_J S~ such that S[ = {sh . . . . . .  sn~}, and it is 
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the larger part i t ion.  This implies that ~ ~ ~sl s, < 

s~,) < (1 /W)(Sl  + . - .  + sk), 

( l + q h l )  + ' ' "  + ( 1  + q ~ . ) +  1 + - . .  + l + p  
~' ' '~ r  • 

n-u 
< ( 1  + q , )  + ' ' "  + (1 + q k )  + l . + ' ' ' + . l + P ,  

n-k 

and so Zs~o,  /*(J,) < ZJ,~Q; /*(J~), where Q~ = {Jn . . . . . .  Jh,} u {Jn+l . . . . .  J2n-u} O 
{Jzn+l}. (W is as def ined previously.)  This lS a contradict ion.  

Thus  the par t i t ion p rob lem is reducible  to the p -PT problem.  Since the reduct ion can 
be carried out  in polynomial  t ime, it follows that a polynomial  t ime algori thm for the p- 
PT  prob lem implies  a polynomial  t ime algori thm for the par t i t ion problem.  F r o m  [9] we 
conclude that the p - P T  problem is P-complete. [] 

We  now show that  the LPT-schedule  of the p-PT p rob lem is nea r  opt imal  for large n .  
THEOREM 4. For the p- PT  problem, the LPT-schedule yields an f such that f / f*  -< 1 

+ 2(m - 1)/n when n -> 2(m - 1)p. Thus the LPT-schedule is near optimal for  large n.8 
PROOF. Let T = {J1 . . . .  , Jn} be ordered  in nonincreas ing  processing t ime. Suppose 

that  in the LPT-schedule ,  Jt is the task with the latest comple t ion  t ime, ! _< n.  We  assume,  
with no loss of general i ty ,  that  J~ is scheduled on  P~. T h e n  the complet ion t ime of  P ,  2 _< 
i _< m,  is no  earl ier  than the start t tme of Ji. Hence  f* -> f - [(m - 1)/m]lx(Jz) or  f -< f* + 
[(m - 1)/m]lx(Ji). Since/ , (J , )  >-/x(Jz) for all 1 -~ i <- l, f* >- (l/m)lz(Jz). Now (n - l) tasks 
Jz+a, J~+2 . . . . .  Jn are scheduled on m - 1 processors during the processing time of Jr, and 
/x(J,) ->/ , (J , )  for l + 1 -< i -< n .  It  follows that Ix(Jl) --> (n -- l)tz(Jn)/(m - 1). Clearly/x(Jt) 
-< p ' /x ( J0  for all I -< i -< n.  Then  n - l -< (m - 1) P-(Jz)/tz(J~) -< (m - 1)p, and  so l -> n - 
(m - 1)p. Assuming  that n -> 2(m - 1)p, we have 

f__ _ < f*+  [(m - 1)/m]tx(Jt) - < 1 + [(m - 1)/m]lx(Jt) 

f * f *  (l/m) P-(Jl) 
m - 1 2 (m - 1) 

= 1 +  - < 1 +  - -  [ ]  
n - (m - 1)p n 
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