
Heuristic Algorithms for Scheduling Independent Tasks
on Nonidentical Processors

OSCAR H. IBARRA AND CHUL E. KIM

Universuy of Minnesota, Minneapohs, Minnesota

ABSTRACt. The finishing time properties of several heuristic algorithms for scheduhng n independent tasks on
m nonidentical processors are studied In particular, for m = 2 an n log n time-bounded algorithm is given
which generates a schedule having a fimshmg Ume of at most (.,/5 + 1)/2 of the optimal hmshmg time A
simplified scheduling problem involving identical processors and restricted task sets is shown to be P-complete
However, the LPT algorithm applied to this problem yields schedules which are near optimal for large n

KEY WORDS AND PHRASES finishing time, heuristic algorithm, scheduling independent tasks, nonidentical
processors, identical processors, time-bounded algorithm, LPT schedule, SPT schedule, P-complete prob-
lem, time complexity

CR CATEGORIES. 4 32, 5 39

1. Introduction

We are g iven m >- 2 processors P1, ... , P m and a set T of n >- 2 i ndependen t tasks
J1, . . . , Jn. T h e processors are nonident ica l in the sense that processing t ime functions/~1,
. . . . /Xm are def ined on T so that a task J, r eqmres ~(J,) t ime to process on processor P~,
1 -< 1 -< m. J This mode l of a mul t ip rocessor system was in t roduced in [1, 2], where it was
shown that an O(max(mn 2, n3)) t ime-bounded a lgor i thm exists which obta ins a schedule
(of T on the m processors) having the least m e a n f low t ime. In this paper we are
conce rned with the p rob l em of f inding a schedule whose finishing t ime is as small as
possible (such a schedule will be called optimal). This p rob lem is known to be P-
comple te [7-9] . 2 H e n c e it seems unl ikely that a po lynomia l t ime-bounded a lgor i thm
exists for this p rob lem. In [7] a dynamic p r o g r a m m i n g type a lgor i thm of exponent ia l
t ime complexi ty was given to find an opt imal schedule . It was also shown in [7] that a
po lynomia l t ime-bounded a lgor i thm exists which obta ins a schedule with a finishing t ime
arbitrari ly close to the opt imal finishing t ime. H o w e v e r , the complexi ty of the a lgor i thm
was O((1 /e) . n2m), where E is the re la t ive e r ror . A special case of our p rob l em w h e n / x J / x j
= s~ (i .e. the processors have un i fo rm speeds) was s tudied in [5, 7].

In Sect ion 2 we look at several s imple heuris t ic a lgor i thms and analyze their worst-case
behav io r as measured by the rat io f / f * , where] is the finishing t ime of the schedule
ob ta ined by the a lgor i thm and f* is the op t imal f inishing t ime. In Sect ion 3 we cons ider
the case of there being only two processors . A n n log n a lgor i thm that has a be t t e r worst-
case behav ior than any of the a lgor i thms deve loped in Sect ion 2 is p resen ted . Finally, in

Copyright © 1977, Association for Computing Machinery, Inc. General permnsslon to repubhsh, but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference xs
made to the pubhcatlon, to its date of issue, and to the fact that repnntmg privileges were granted by
permission of the Assooatton for Computing Machinery
TMs research was supported by the National Science Foundation under Grant DCR72-03728-A01 and by
University of Minnesota Research Grant 435-0806-8520-02.
Authors' present addresses. O H. Ibarra, Department of Computer Science, Umverslty of Minnesota,
Mmneapohs, MN 55455; C E. Klm, Department of Computer Science, University of Maryland, College Park,
MD 20742

For convenience, we shall usually write a task J, as Jt(ttL(Jt), , /z,n(J,))
z The terminology "P-complete" is defined in [9] Karp's notion of "completeness" is shghtly different from
this

Journal of the A~,~oclatton for Computing Machmery, Vol 24, No 2, Aprd 1977, pp 280-289

Heuristtc Algorithms 281

Section 4, we consider the special case of a multiprocessor system in which all the
processors are identical, i.e. ~, = ~ = / z for all t 4~ j, and the processing time of each task
does not vary " too much," 1.e. max~/z(J,)/min~/z(J0 = p for some p > 1.3 We show that
this simplified problem remains P-complete, but the LPT scheduling strategy [6] applied
to this problem produces schedules with f/f* ~ 1 as n ~ ~.

THEOREM l .

above.

2. Nonidentical Multiprocessor Scheduling

In this section we consider five different heuristic algorithms and study their worst-case
behaviors. Some employ very simple heuristics and may seem inferior to others. How-
ever, it can be shown that for any pair of these algorithms, examples exist for which one
gives a better result than the other Several such examples are discussed.

In every algorithm that we shall consider, the input/output are as follows:
Input. T = set of n independent tasks J~(lzl(J~) , P.m(J~)), 1 -~ i ~ n.
Output. L = {L~ I 1 -< j -< m} andf . L~ is the set of tasks scheduled on processor Pj,

a n d f is the finishing time of the schedule,f = max,{ ~ jEz/z~(J)}.

A-schedule. The ith task in the list T is scheduled on the processor that minimizes its
finishing time.

A L G O R I T H M A(T, LA, fA)
Step 1 (I m t l a h z e L j a n d t s) L ~ a n d h ~ O f o r l - < l ~ .m

Step 2 (Schedule the tasks and f indfa)
For I ~- 1 to n step 1 do

find the smal les t / such that h +/x~(J~) -< h +/zt(Jl) for all 1 -< 1 -< m , L~ ~ Lj t.J {J~}, t~ ~--t~ + btj(J0 end,
fla ":'- maxj 0 , return

B-schedule. For each task J, let /Zmm(J) = mine /zj(J). Algorithm B(T, LB, ~B) first
orders the tasks in T according to nonincreasing/Zmm(J), and then calls Algorithm A to
schedule T.

C-schedule. For each task J in T, let/J.max(J) = max~/xj(J). Algorithm C(T, Lc, fc)
orders the tasks in T according to nonincreasing/.Zmax(J) and calls Algorithm A.

D-schedule. After having scheduled t tasks, the algorithm schedules a task (from
among the remaining (n - i) tasks) which gives the least finishing time.

A L G O R I T H M D(T, LD, fo)

Step 1 (I n m a h z e L j a n d h) L j ~ a n d t ~ 0 f o r l - - < l -<m

Step 2 (Completed'; ') I f T = O then [fro <--- max~ t~, return].

Step 3 (Schedule a task). Find a task J m T such that mmj{ h + ,u.j(J)} -< mini{t, + /z jQ ')} for all J ' E T, l e t / b e
such that h + /J.:(J) is minimum; Lj ~ Lj t.J {J}, tj <-- L + /xj(J), T ~ T - {J}, go to step 2

E-schedule. Algorithm E(T, L~,fE) is the same as Algorithm D except that step 3 is
replaced with

Step 3 Fmd a task J m T such that mm~{q + ~j(J)} --< mmj{q + ~ (J ') } for all J ' ~ T , le t l be such that tj + /z j (J)
ts minimum, L~ ~ Lj LJ {J}, tj ~ L + P.J(J), T ~ T - {J}, go to step 2

The table below summarizes the behavior o f the algorithms presented

Worst-case Is the bound the
Algorithm Run time

bound for f / f * best possible?

A O(n) rn yes
B O(n log n) m yes
C O(n log n) m yes
D O(n 2) m ? 4
E O(n z) m yes

a max,/z(J~) zs an abbreviat ion for max,{/z(Jt)}
4 The bound can be approached for m = 2 (see Remark (4)).

282 o . H . IBARRA AND C. E. KIM

PROOF.

(1) R u n t i m e . It is obvious tha t A l g o r i t h m A runs in t ime O (n) . Eva lua t ing ~min(J)
o r ~mx(. /) for all J in T takes O (n) t ime , and sor t ing T takes O (n log n) t ime. I t fol lows
tha t A l g o r i t h m s B and C have t ime complex i ty O (n log n) . F o r A lgo r i t hms D and E ,
schedul ing a t ask af ter i tasks have been schedu led takes O (n - i) t ime. So the run t ime
of the a lgor i thms is O(n2).

(2) W o r s t - c a s e b o u n d f o r] / f * . Le t g (n) = ~= l (min l~ j~ m /z~(J0). C lea r ly i f (n) ->
(1 / m) g (n) . F o r A l g o r i t h m A , it is an easy induct ion on n to show tha t]A(n) --< ~(n).
Therefore~A/f* -< m. Since A l g o r i t h m s B and C employ A l g o r i t h m A it fol lows tha t fB/ f f
--< m a n d] c / f f <- m. N o w we show tha t fly -< g (n) by induct ion on n. Trivially,jtt ,(1) -< g(1).
A s s u m e t h a t f o (k) -< g (k) , and cons ider a set Tk÷j of k + 1 tasks . Suppose tha t Jk+~ is the
task tha t is schedu led last by A l g o r i t h m D . F o r the set o f k tasks Tk = Tk+~ - {Jk÷~},]D(k)
<-- g (k) by the induct ion hypothes is . Thus for Tk+~ the a lgor i thm gives]o(k + 1) -<] o (k) +

minl~j~m/.t,(Jk+0 --< g (k + 1). T h u s] n -< g (n) and S O] o / P -< m. A s imilar a r g u m e n t shows
tha t]E/f* -< m.

(3) T h e b o u n d s are the be s t p o s s i b l e f o r al l b u t A l g o r i t h m D . The fol lowing example
shows tha t the bounds for A lg o r i t h ms A and B can be app roached . Cons ide r the set of m
tasks,

J l (u , u , . . . , u) ,
J2(u , 2u - 1 , 2 u - 1),
J3(2u, u , 3u - 2, ... , 3u - 2),

Jl((l - 1)u, (l - 2)u, . . . , 2 u , u , lu - (l - 1) lu - (l - 1)),

Jm((m - 1)u, (m - 2)u, ... , 2 u , u , m u - (m - 1)).

(See F igure 1.) SOfA = f B = m u -- (m -- 1) , / * = u, a n d f A / f * = fB/f* = m -- (m -- 1)/
u ~ m as u --> oo. N o w we show tha t the b o u n d for A lgo r i t hms C and E can be ap-
p roached . Cons ide r the set of (m - 1)m + 1 tasks , where u >> m:

J d u , u u) , 4 (1 , u , u) , . . . , Jm(1 , 1, U) ,

Jm+l(u - 1, u - I , u - 1), Jm+2 (1, u - 1 u - 1) , J2m(1 , 1, u - 1),

J(m-2)m+l(U - - (m - 2), u - (m - 2) u - (m - 2)), J~m-2,m+z(1, u - (m - 2) ,
u - (m - 2)), ... , J ,~-x ,m(1 , 1 1, u - (m - 2)),

J(ra_l)m+l(U - - (m - 1), u - (m - 1) u - (m - 1)).

(See F igure 2 .) Thus

•c/ f* = ~ / f f = [m u - m (m - 1) / 2] / [u + (m - 2)m + 1]
= [m - m (m - 1)/2u]/{1 + [(m - 2)m + 1]/u} --~ m

as u ---> ~ . []

R e m a r k s .

(I) I t is in teres t ing to no te that]A -- ~B, • ->]c ,)~A -->]t~, and L -)~g are no t

0 u

Jl [2u- i

J2 - ~ 3u - 2

mu- (m-l) :

FiG 1. A worst-case example for Algonthms A and B

u=f *

J2

J3

J4

Heuristtc Algori thms

LC = LE

2u-1

J1 Jm+l " " " J (m-2)m+l

J2 Jm+2 " " " J(m-2)m+2

J3 Jm+3 " " " J(m-Z)m+3

Jm J2m " " " J(m-1)m

J(ra-1)ra+l]

283

L •

J1

Jm+l

J2m+l

u+(m-2)m+l = f*

J2 " '" J(n~-l)m

J tm-1)m+l }

Fie 2 A worst-case example for Algort thms C and E

necessarily true, as the followin$ examples show. Consider the set T~ = {Jl(U - 1, 2u),
J2(u, u)}. Then~A = f * = u andfB = 2u -- 1. For the set T2 = {Jl(U, 2u, 2u), J2(u - 1, u,
3u)}, fA = f * = U and3~c = 2u - 1. For T3 = {J,(u + 1, 2u), Jz(u, u)}, fA = f * = U + 1 and
~D = 2U. Finally, for T4 = {J,(u, 2u), J2(u + 1, u + 1)}, we have~A = f * = u + 1 and re =
2u.

(2) The following shows that fB --> fO andfB --> ffE are not necessarily true: For T3 in
(1), fB = U + 1 andfD = 2U, and in the last example of Theorem 1,]B = f* = U +
(m -- 2)m + 1 whilefE = mu - (m - 1)m/2.

(3) It is not necessary thatffc ->fro andfc -->rE. For example,ffc = u + 1 andfD = 2u for
the set Ta in (1), a n d f c = u + 1 and]E = 2u for T4 in (1).

(4) We are unable to show that the bound m can be approached for Algor i thm D
when m -> 3. In fact, we have no example that yields fo/f* > 2. However , the example
involving the set T3 m (1) shows that ffD/f* can approach 2. Hence the bound for
Algor i thm D is the best possible for m = 2. A slight modification of the example will
show that fD/f* can approach 2 for m-processor scheduling for any m -> 2.

(5) Now suppose that the processors are identical, i e. /z,(J) = /.re(J) for all 1 -~ l,
! -< m. Then Algori thms A and D become arbitrary list scheduling and SPT scheduling, 5
respectively [4, 6]. These schedules yieldS/f* -< 2 - 1/m [6]. Algori thms B, C, and E,
on the other hand, reduce to the LPT scheduling algorithm which has a bound f / f* --< 4/3
- 1 / 3 m [6].

3. Scheduhng on Two Nonidentical Processors

Every algorithm m Section 2 was shown to have a worst-case bound of m for the ratio
f / f * . Moreover , this bound ~s the best possible for all but Algori thm D. For this algo-
rithm, we were only able to show that the ratio m is approachable for m = 2. We now

5 A n SPT (LPT) schedule is a schedule obtained as a result of an algorithm which, whenever a processor
becomes free, assigns the task whose processing time is the shortest (largest) of those tasks not yet assmgned.

284 o . H . IBARRA AND G. E. KIM

present a s imple heurist ic algori thm for the two-processor system that has a be t te r worst-
case behavior than any of the algori thms of Section 2. We have no t b e e n able to extend
the idea used in the algori thm to the case m >- 3.

We first describe the algori thm informally. The algori thm begins by temporar i ly
scheduling the tasks in such a way that each task is assigned to the processor for which
the task has a smaller processing t ime. If the finishing t imes of both processors are the
same, the schedule is obviously opt imal . However , if one processor is idle while the o ther
is not , t hen the schedule may not be opt imal . Wi thou t loss of general i ty , assume that P~
has a longer f inishing t ime. T h e n it may be possible to reduce the f inishing t ime by
reassigning some of the tasks on P~ on to P2. T h e idea is to decrease the f inishing t ime of
P~ as much as possible while min imiz ing the increase in the finishing t ime of P2- Thus if
two tasks J~ and J2 on P~ are such that i.tl(J1)/i.t2(J1) -> i.t2(Jz)/ix~(J2), then J~ may be the
be t te r candida te than J2 for the reass ignment . The algori thm lists the tasks on P~ in this
order , and then reassigns them to P2 as long as the finishing t ime can be reduced. The
formal descript ion of the algori thm follows.

ALGORITHM F(T, L,])

Step 1. (Initialize) L~ ,-- 0 ; L2 *-- 0 , tx ~ O, tz *- 0

Step 2 (Schedule each task on the processor with the shorter processing time and check which processor
fimshes last).

For t ~-- 1 to n step 1 do
if ~l(J*) --< /xz(Jt)

then [L~ ~ Li O {J~}; tt ~-- t~ + txa(J~)]
else [Lz *-- L2 LI {Jt}; t2 *-- tz + #,(J,)] end

If tl = tz then [~ ~-- ta, return]
If ta > t2 then [~x ~ 1; fl ~ 2, go to step 3]

else [a ~- 2; B ~ 1]

Step 3 (t~ > ta, sort L~ and reschedule some tasks in L~ onto Pa)
3.1 Sort La so that, by changing subscripts if necessary, L~ = {Jr, , Jk I k <- n} and ~(Jt)/tzn(J,) -<

~Q(Jt+l)/lzo(J~+l) for 1 --< z _< k - 1
3 2 F o r t ~ - k t o l s t e p - 1 do

ifta > t~ + /xo(J,) then [La ~ La - {J ,} ; ta ~--- ta - txa(JO ; L~ ~-- LB t.2 {Jr}; t~ ~--- t.~ + /.xB(J~)] end
3.3 lft a --> t B then ~f ~ t~; return]

else I f <-- t~, return]

LEMMA 1. Algorithm F has time complexity 0 (n log n).
PROOF. We look at the t ime needed for each step of the algori thm. Step 1 takes a

cons tan t a m o u n t of t ime while step 2 takes O(n) t ime. For step 3 let I L~] = m -~ n . T h e n
steps 3.1 and 3.2 take O(m log m) and O(m) t ime, respectively. Step 3.3 takes a cons tan t
amoun t of t ime. I t follows that the algori thm runs in O(n) + O (m log m) + O(m) -<
O(n log n) t ime. []

Cons ider the case t~ > t2 after step 2. (The case t2 > tx is t reated similarly.) Suppose
that at this t ime L1 = {Jl, .-. , Jk} and L2 = {Jk+~ , J,}, where bt~(Jt)/pz(J,) _<
tx~(J,+l)/lz2(J,+O for 1 <-- i <_ k - 1. Le t l be the first (largest) in teger such that t~ -< t2 +
/-~2(J3) dur ing the execut ion of 3.2 of step 3. W e consider this in te rmedia te schedule
L, L~ = {J1, . . . , Jr} and L~ = {J,+t , Jn}- We let R = L~, U = {J~+~, . . . , J ,} , and V =
{J~+~ J~} (see Figure 3). A n opt imal schedule L* will have a conf igura t ion shown on
Figure 4. Note that f = m a x { ~ L , ~ (. /) , ~ p . 2 (J) } a n d f * = m a x { ~ q * p a (J) ,
~ * P a (J) } . Let r = ~,~n/-h(./), u = ~ v P , z (J) , v = ~v /a ,z (J) , a n d w = u + v. F o r j =
1, 2 l e t r , = ~jeRjtZ~(J), u~ = ~s~ujbq(J), and v~ = ~s~vjtX~(J).

We need two lemmas before we can prove the result of this section.
LEMMA 2. Suppose f = r > w (Figure 3 (a)). Then f / f* --< (~/5 + 1)/2.
PROOF. L e t s = /Xl(Jt) and q = /.t2(Jt). Obvious ly f* -> s. I f r < [(~/5 + 1)/2Is , f / f * -<

r/s < (45 + 1)/2. So assume that r >- [(~5 + 1)/2]s.
Let d = r - w. Clearly q _> d and d -< r. We claim that a reduct ion of the finishing t ime

of Pi by z increases the finishing t ime of P~ by at least (q / s) . z , where q/s --> 1. Also if

Heuris t ic A lgo r i thms

~o~ I J1 I J21
o

$

F

285

~2o~ I Jk+ll... I Jn I J, I-..I J,,,l
0 U V

(a) :~ = t 1 = r

o

U v

(b) ~ = t 2 = w

Fm 3 Schedule L

El ° ~iuuiuvl R1 I u1 I vl [
, ~ -. .~__.,.

r I u I v I

L~=RZ~2 I U2 1 v2] ~ 2 t
, . ~ = = . _ _ _ _ = .) % ~ . ~ y ..)

u 2 v 2 r 2

R = R 1 O R 2' U = U 1 UU 2 and V = V 1 UV 2.

FiG 4 An optimal schedule L*

d - z b e c o m e s s m a l l e r t h a n (q / s) . z , t h e n the f in i sh ing t ime o f t he s c h e d u l e s t a r t s

i n c r e a s i n g . L e t y b e the l a rges t z sa t i s fy ing d - z -> (q / s) - z , i .e . d - y = (q / s) . y o r y =

(s . d) / (s + q) . T h e n in fact o u r c la im is t ha t f* -> r - y . N o w w e p r o v e this . I f r l + u l + vl

-> r - y , t h e n o b v i o u s l y . f * -> r - y . So a s s u m e tha t r~ + u t + vl < r - y . T h e n

f * >-- r2 + u2 + v2 >-- u2 + vz + (r - r ,) , q / s > u2 + v2 + (u, + v l + y) . q / s = us + u , . q / s
+ v~ + v ~ . q / s + y . q / s >_ u + v + y . q / s = w + y . q / s = w + d - y = r - y .

H e n c e

f < r
f * r - y

r

r - (s . d) / (s + q)

s ince r ~ [(X/5 + 1) / 2] s . []

LEMMA 3.

r

r - (s ' d) / (s + d)
r

r - (s ' r) / (s + r)

s + r ~5+1
r 2

S u p p o s e f = w >- r (Ftgure 3(b)) . T h e n f f f * <- (X/5 + 1) /2 .

286 O. H. IBARRA AND C. E, KIM

PROOF. Let s = Ixl(Jt+l) and q = /Xz(Jz+l). Clearly f f _> s. Then

W r + s r
- - < . ~ - - < = 1 + - - . (1)
f * S S S

Now consider the schedule which results from the one in Figure 3(b) by moving the task
Jz+m back to Pt. As in the proof of Lemma 2, we claim that the finishing time of an
optimal schedule cannot be reduced from r + s by more than z, where z must satisfy
(w - q) + (q / s) . z _< r + s - z . L e t y be the maximum possible z. Theny satisfies (w - q)
+ (q / s) . y = r + s - y . Thus we are claiming that f* -> r + s - y = w - q + y . (q / s) . So
assume that rj + u~ + vl < r + s - y. Then

f f -> rz + uz + v~ _> uz + v2 + (r - r l) . (q / s) > u~ + v2 + (ul + v l + y - s) ' (q / s)
= u2 + u ~ ' (q / s) + v2 + v ~ ' (q / s) + y ' (q / s) - q -> u + v + y . (q / s) - q = w - q

+ y " (q / s) .

Now f* >- w - q + y . (q / s) imphes t h a t y . (q / s) _< q . It follows that

f__ _< w = w - q + q _< q s (2)
f * w - q + y . (q / s) w - q + y . (q / s) y . (q / s) y

Also, since w - q + y . (q / s) = r + s - y , we have

ff < w w r + s y
- - _ = -< = 1 + . (3)
f * w - q + y ' (q / s) r + s - y r + s - y r + s - y

Now (1) becomesff/f* _< 1 + r / s -< 1 + y / s i fy -> r, and (3) reduces t o f f / f * -< 1 + y / s if
r >-- y. In either case we have

f _< 1 + y (4)
J* s

Combining (2) and (4), we have f / f * _< m i n { s / y , 1 + y / s } . The maximum of this
minimum occurs when s / y = 1 + y / s or s = [(X/5 + 1)/2]y. Hence ff/ff -<
(x/5 + 1)/2. []

THEOREM 2. A l g o r i t h m F has t i m e c o m p l e x i t y O (n l og n) a n d p r o d u c e s a s c h e d u l e

w i th the f i m s h i n g t i m e] s a t i s f y i n g f / f * -< (X/5 + 1)/2. M o r e o v e r , the b o u n d ts the be s t
p o s s t b l e .

PROOF. The time is given by Lemma 1. Since Pi and P2 are symmetric, by Lemmas 2
and 3 , f / f* _< (x/5 + 1)/2. (f ls interpreted in the same way for the case t~ < tz after step
2 of the algorithm.) It is obvious that f ~ f. Thus f / f * -< (X/5 + 1)/2. Now we give an
example which shows that the bound can be approached. Let T = {J~(u, [(x/5 + 1)/2]u),
J2([(x/5 + 1)/2]u, [(x/5 + 3)/2]u - 1)}. Algorithm F yields Lt = {J~} and L2 = {J2}. Hence
f = [(X/5 + 3)/2]u - 1. The optimal schedule has L~ = {Jz} and L*2 = {Jr}, giving f* =
[(X/5 + 1)/2]u. Thus

f (X / 5 ~ 3 u 1) / _ ~ _ ~ " , , /5+1 X / 5 - 1 X / 5 + l
f - ~ = - - - u = 2 2 - - ~ - - ~

as u --.~ oo. []

4. I d e n t i c a l M u l t t p r o c e s s o r S c h e d u l i n g

In this section we look at the case in which all processors are identical; i.e. the processing
time of a task is the same on every processor? Even for this case there is no known
nonenumerative algorithm for finding a schedule with the optimal (least) finishing time.
Finding an optimal schedule is computationally as difficult as solvmg such problems as
the traveling salesman, knapsack, partition, and maximum clique. These problems are

For this system, a task is denoted by J(Iz(J)), J being the ldenUty of the task and p(J) Its processing time

Heuristic Algorithms 287

called P-complete problems [8, 9]. It is well known, however, that the LPT schedule
produces an f such that f / f* <- ~ - 1/3m [6]. The following example shows that this
bound is the best possible for any number of jobs, n >-- 5: Consider the set of n tasks T =
{J1(3), J2(3), Jn(2), J4(2), J5(2), J6(x) J,(x)} to be scheduled on two identical
processors, where x << 1/n. Then the LPT schedule yields f = 7 while f * = 6 +
[(n - 5)/2]x. Hence f / f* = 7/{6 + [(n - 5)/2]x} ~ ~ as x ~ 0. Similar examples show
that the bound can be approached for any m ~ 2.

We shall show that the above problem remains P-complete even when a reasonable
restriction is imposed on the processing t ime. However , the LPT schedule applied to this
problem yields an f which is near optimal for large n. The simplified problem is the
following:

p-PT (processing time) problem (p > 1). Given a set of tasks, T = {Jl(/~(J0), ... ,
J,(/z(J,))} satisfying maxdx(JO/mir~J,) = P. find a schedule with the minimum finishing
time.

In order to prove that the p-PT problem is P-complete, we make use of the part i t ion
problem, a known member of the P-complete class [8].

Partition problem. Given a multiset S = {sl, ... , s,} of positive integers, find
partition $1 and $2 of S such that [~s~s,S, - ~s~sJ~ [is minimum; i.e. minimize the

size of the larger part i t ion.
Suppose a part i t ion problem K has a multiset S = {sl , sn}. We construct a p-PT

problem H that is equivalent to K; i .e. a solution to K gives a solution to H and vice
versa. Let 3 = min{31, 32}, where 31 = 2p - [2p[and 32 = [2p] - 2p. If 3 ~ 0, define
W = (3/3). ~ ~ sj, and if 3 = 0, define W = 2 ~ 77 s~. We construct the problem H as
follows: Let T be the set of 2n + 2 tasks defined by

r = T 1 U T2 U T3 = {J1 , Jn} ~ {Jn+l , . . . , J2} ~J {J2 .+1, J2.+2},

where ~J ,) = 1 + q, = 1 + s , /W for J, ~ r l , ~ J i) = 1 forJ~ E T~, g.(J,) = p for J, E T3. ~
The set of tasks in T is to be scheduled on two identical processors in such a way that the
finishing time is minimal.

We note that ~ ~ q, = 3/3 if 3 4= 0 and ~ ~ q~ = ½ if 3 = 0. If 3 = 0, then p >- 1.5, and if
3 :~ 0, then p -> 1 + 3/2. Thus g(J0 -< P for all 1 -< i _< 2n + 2. Hence H i s a p-PT
problem. It is obvious that K can be t ransformed in H in polynomial t ime.

LEMMA 4. In the case 3 4: O, any optimal schedule of T has J2~+x and J2n+~ scheduled
on different processors.

PROOF. Suppose both J2n+l and Jzn+2 are scheduled on the same processor, say P1-
Then the fractional part of the finishing time of Pa, ul, is given by 3~ -~ ~,a -~ 1 - 32 + 3/3.
For if no task in TI is scheduled on P1, ul = 3~, and if every task in T1 is scheduled on
Pi, v~ = ~1 + /5/3 = 1 - 32 + 8/3. So ul lies between 81 and 1 - 32 + 3/3. Similarly the
fractional part of the finishing time of Pz, u2, is given by 0 -< ~2 -< 3/3, Thus the
difference between the finishing times of the two processors d is at least min{31 - 8/3, 32
- 3/3}. Since 3 = min{3~, 32}, d -> § 3. This schedule, however, cannot be optimal. For
consider the schedule in which T~ U {J~,+l} is scheduled on Pi and T2 U {./2n+2} is
scheduled on P2: The difference between the finishing times of Px and P2 is 8 /3 . So this
schedule is strictly bet ter than any schedule with J2n+l and J2n+2 scheduled on the same
processor. []

I.~MMA 5. Suppose 3 = O. Then there is an optimal schedule of T with J2n+l and J2n+2
scheduled on different processors.

PROOF. Consider the case in which p is not an integer. Since 3 is zero, 31 = 32 = 0.
Then p = m + ½ for some integer m -> 1. Let us consider a schedule L ' in which both
tasks J2n+~ and J2n+2 are scheduled on the same processor, say P~. Since ~ Jet /z(J) =
2(n + p) + ½, the finishing time of L ' is greater than or equal to n + p + ~. We compare
L' with a schedule L in which P~ processes Jzn+l, J,+~, and all tasks in T except J~, and

The fractmnal parts are represented by ordered patrs of integers, ~ e n/m by (n, m).

288 O . H . IBARRA AND C. E. KIM

P~ processes J2n+2, .11, and all tasks in T2 except Jn+~. The finishing time of this schedule is
m a x { p + n + ~ q t , p + n + q ~ } < n + p + ½ s i n c e 0 < q , < ½ a n d ~ l ' q , = ½ .

Case 1. P~ finishes last in L ' . Then P~ must process at least n - [p] tasks from T~ U
Tz. Otherwise the finishing time of Pi is less than 2p + (n - ho] + ½) - 1 = n + p. This
contradicts the assumption that P~ finishes last. So P1 is greater than or equal to n + p +
½. However , this schedule cannot be optimal since L has a smaller finishing t ime.

Case 2. Pz finishes last in L ' . Then Pz should process at leas tn + [p] + 1 tasks from
Ti U T~. Otherwise, its finishing time is less than or equal to n + ~o] + ½ = n + p, which is
a contradiction. So the finishing time of P~ is greater than or equal to n + p + ½. Again,
this cannot be optimal.

Cases 1 and 2 show that an opt imal schedule must have Jzn+~ and Jzn+z on different
processors.

Consider now the case in which p is an integer greater than or equal to n. Suppose that
in an optimal schedule J2n+~ and Jzn+2 are on the same processor. Then the finishing time
would be greater than or equal to p + n + ½ for p = n and greater than or equal to p + n
+ 1 for p > n. But this is a contradiction since the schedule L described above has a
finishing time less than p + n + ½.

Finally, if p is an integer less than n and an optimal schedule has both Jzn+~ and J2n+z
on the same processor, say P~, then we can get another opt imal schedule by interchang-
ing J2n+z on Pt with p tasks on Pz which are in T2. (At least p tasks from T2 are on P2 since
otherwise the finishing time would be greater than or equal to 2p + n - p + 1 = p + n +
1.) []

COROLLARY 1. There is an opt imal schedule off T which assigns J2n+~ on P~ and J2n+2
on P~, and P1 and P~ process the same number o f tasks.

PROOF. That there is an opt imal schedule of T in which J2n+~ is on P~ and J2n+2 is on
P2 follows from Lemmas 4 and 5. If P~ and P2 do not process the same number of tasks,
then one of these processors will have a finishing time of at least p + n + 1. But then the
schedule cannot be optimal , since a schedule with J~, ... , J~, J2n+~ on P1 and Jn+l
Jzn, J2n+2 on P2 yields a fimshmg time equal to p + n + ~|2 q, < p + n + 1. []

THEOREM 3. The p - P T problem is P-complete.
PROOF. We prove that the problems K and H are equivalent by showing that a

solution to one gives a solution to the other.
Suppose, by rearranging elements in S if necessary, that a solution to K is the part i t ion

$1 = {s~, . . . , st} and $2 = {s~+l , s~}, and assume that S~ is the larger part i t ion. Then the
schedule with Q1 = {J1 , Jr, Jn+l , J2n-t, J2n+l} on P1 and Q~ = {Jl+l J~, J2n-l+l,
. . . . J2n, J2,+2} on Pz is optimal , with Q~ determining the finishing time. Suppose not.
Without loss of generality we may assume that P~ finishes last in an optimal schedule. By
Corollary 1, H has an opt imal schedule with Q~ = {Jn Jn,} t_J
{J,+l, ... , Jz~-~} o {J2~+~} on P~ and the remaining tasks on P~, where {J~ , Jh~}

C T~. By assumption

(l + q 0 + - . - + (l + q ,) + l + " ' + l + p
~r

n - l

> (l + q h ,) + ' ' ' + (l + q h) + 1 + ' ' ' + 1 + p .
k ~v.~ J

n - v

Then q~ + . . - + q, > qn, + " " + qno, and so s~ + - . . + s, > sn, + ' " + sn~. This
contradicts the assumption that the part i t ion S = S~ (3 $2 is a solution to K. Hence the
schedule Q~ on P~ and Q~ on P2 is an optima] schedule of problem H. Conversely by
Corollary 1 and by rearranging T~ if necessary, a solution to H is a schedule wtth Q~ =
{J~ , J~} U {Jn+,, ... , J~ -~} t_J {J~+~} on P~ and Q~ = {J~+,, . . . , Jn} t3 {J2n-~+,, ... , Jzn}
t3 {J2,,+*} on P~. We assume that Pt finishes last, i .e . ~ J, eO, Ix(J~) >- ~ J, eo~ tx(J~). We claim

that Sa = {sl, ... , s,} and $2 = {s~+l, ... , s~} is a solution to K. Suppose not and assume
that K has a solution having the part i t ion S = S[t_J S~ such that S[= {sh sn~}, and it is

Heuristtc Algorithms

the larger part i t ion. This implies that ~ ~ ~sl s, <

s~,) < (1 /W)(Sl + . - . + sk),

(l + q h l) + ' ' " + (1 + q ~ .) + 1 + - . . + l + p
~' ' '~ r •

n-u
< (1 + q ,) + ' ' " + (1 + q k) + l . + ' ' ' + . l + P ,

n-k

and so Zs~o, /*(J,) < ZJ,~Q; /*(J~), where Q~ = {Jn Jh,} u {Jn+l J2n-u} O
{Jzn+l}. (W is as def ined previously.) This lS a contradict ion.

Thus the par t i t ion p rob lem is reducible to the p -PT problem. Since the reduct ion can
be carried out in polynomial t ime, it follows that a polynomial t ime algori thm for the p-
PT prob lem implies a polynomial t ime algori thm for the par t i t ion problem. F r o m [9] we
conclude that the p - P T problem is P-complete. []

We now show that the LPT-schedule of the p-PT p rob lem is nea r opt imal for large n .
THEOREM 4. For the p- PT problem, the LPT-schedule yields an f such that f / f* -< 1

+ 2(m - 1)/n when n -> 2(m - 1)p. Thus the LPT-schedule is near optimal for large n.8
PROOF. Let T = {J1 , Jn} be ordered in nonincreas ing processing t ime. Suppose

that in the LPT-schedule , Jt is the task with the latest comple t ion t ime, ! _< n. We assume,
with no loss of general i ty , that J~ is scheduled on P~. T h e n the complet ion t ime of P , 2 _<
i _< m, is no earl ier than the start t tme of Ji. Hence f* -> f - [(m - 1)/m]lx(Jz) or f -< f* +
[(m - 1)/m]lx(Ji). Since/ , (J ,) >-/x(Jz) for all 1 -~ i <- l, f* >- (l/m)lz(Jz). Now (n - l) tasks
Jz+a, J~+2 Jn are scheduled on m - 1 processors during the processing time of Jr, and
/x(J,) ->/ , (J ,) for l + 1 -< i -< n . It follows that Ix(Jl) --> (n -- l)tz(Jn)/(m - 1). Clearly/x(Jt)
-< p ' /x (J0 for all I -< i -< n. Then n - l -< (m - 1) P-(Jz)/tz(J~) -< (m - 1)p, and so l -> n -
(m - 1)p. Assuming that n -> 2(m - 1)p, we have

f__ _ < f*+ [(m - 1)/m]tx(Jt) - < 1 + [(m - 1)/m]lx(Jt)

f * f * (l/m) P-(Jl)
m - 1 2 (m - 1)

= 1 + - < 1 + - - []
n - (m - 1)p n

REFERENCES

1 BRUNO, J , COFFMAN, E G. Ja , AND SETnl, R. Scheduling independent tasks to reduce mean finishing
time. Comm ACM 17, 7 (July 1974), 382-387

2 BRUNO, J , COFFMAN, E G. JR, AriD S~:rni, R Algonthm for minimizing mean flow time Information
Processing 74, North-Holland, Amsterdam, pp 504-510

3. COFFMAN, E.G. JR, AND SETm, R A generahzed bound on LPT sequencing Proc Int. Syrup. Comptr
Performance Modehng, Measurement and Evaluation, March 1976, pp 306-317. (available from ACM).

4 CONWAY, R W., MAXWELL, W L , AND MILLER, L W Theory of Scheduhng, Addison-Wesley Pubhsh-
mg Co , Reading, Mass , 1967

5 GONZALEZ, T , 1BARRA, O H , ANO SAHr~I, S Bounds for LPT schedules on umform processors. Comptr
Scl Tech Rep No 75-1, U of Minnesota, Mmneapohs, Mmn , 1974

6 GRAHAM, R L Bounds on multlprocessmg timing anomahes. SIAM J Apphed Math 17, 2 (March
1969), 416-429

7 Hoaowrrz, E , AND SAnNI, S Exact and approximate algorithms for scheduhng nomdentlcal processors
J ACM 23, 2 (Apnl 1976). 317-327

8 KARP, R M Reduobihty among combinatorial problems In Complextty of Computer Computations,
R E Miller and J W. Thatcher, Eds , Plenum Press, New York, 1972, pp, 85-103

9 SAHr~I, S Computatlonally related problems SIAMJ Comptg 3, 4 (Dec 1974), 262-279

289

_'~s~s, s,. But then (1/W)(s~ + • . . +

RECEIVED APRIL 1975; REVISED JULY 1976

s It was pointed out to us by the referee that a result similar to our Theorem 4 had appeared [3]

Journal of the Association for Computing Machinery, Vol 24, No 1, January 1977

