# Heuristic Algorithms for Scheduling Independent Tasks on Nonidentical Processors 

OSCAR H. IBARRA AND CHUL E. KIM<br>Universty of Minnesota, Minneapolss, Minnesota


#### Abstract

The finıshing time properties of several heuristic algorthms for scheduling $n$ independent tasks on $m$ nonidentical processors are studied In particular, for $m=2$ an $n \log n$ time-bounded algorithm is given which generates a schedule having a finishing time of at most $(\sqrt{ } 5+1) / 2$ of the optımal finishing time $A$ simplified scheduling problem involving identical processors and restricted task sets is shown to be P-complete However, the LPT algonthm appled to this problem yrelds schedules which are near optimal for large $n$ key words and phrases finishing time, heuristic algorithm, scheduling independent tasks, nonidentical processors, identical processors, time-bounded algorithm, LPT schedule, SPT schedule, P-complete problem, time complexity


CR CATEGORIES. 4 32, 539

## 1. Introduction

We are given $m \geq 2$ processors $P_{1}, \ldots, P_{m}$ and a set $T$ of $n \geq 2$ independent tasks $J_{1}, \ldots, J_{n}$. The processors are nonidentical in the sense that processing time functions $\mu_{1}$, $\ldots, \mu_{m}$ are defined on $T$ so that a task $J_{2}$ requires $\mu_{1}\left(J_{2}\right)$ time to process on processor $P_{1}$, $1 \leq \jmath \leq m .{ }^{1}$ This model of a multiprocessor system was introduced in [1,2], where it was shown that an $O\left(\max \left(m n^{2}, n^{3}\right)\right)$ time-bounded algorithm exists which obtains a schedule (of $T$ on the $m$ processors) having the least mean flow time. In this paper we are concerned with the problem of finding a schedule whose finishing time is as small as possible (such a schedule will be called optimal). This problem is known to be $\mathbf{P}$ complete [7-9]. ${ }^{2}$ Hence it seems unlikely that a polynomial time-bounded algorithm exists for this problem. In [7] a dynamic programming type algorithm of exponential time complexity was given to find an optimal schedule. It was also shown in [7] that a polynomial time-bounded algorithm exists which obtains a schedule with a finishing time arbitrarily close to the optimal finishing time. However, the complexity of the algorithm was $O\left((1 / \epsilon) \cdot n^{2 m}\right)$, where $\epsilon$ is the relative error. A special case of our problem when $\mu_{s} / \mu_{1}$ $=s$, (1.e. the processors have uniform speeds) was studied in [5,7].

In Section 2 we look at several simple heuristic algorithms and analyze their worst-case behavior as measured by the ratio $\hat{f} / f^{*}$, where $\hat{f}$ is the finishing time of the schedule obtained by the algorithm and $f^{*}$ is the optimal finishing time. In Section 3 we consider the case of there being only two processors. An $n \log n$ algorithm that has a better worstcase behavior than any of the algorithms developed in Section 2 is presented. Finally, in

[^0]Section 4, we consider the special case of a multiprocessor system in which all the processors are identical, i.e. $\mu_{\imath}=\mu_{\jmath}=\mu$ for all $\iota \neq j$, and the processing time of each task does not vary "too much," i.e. $\max _{2} \mu\left(J_{2}\right) / \min _{2} \mu\left(J_{2}\right)=\rho$ for some $\rho>1 .{ }^{3}$ We show that this simplified problem remains P-complete, but the LPT scheduling strategy [6] applied to this problem produces schedules with $\hat{f} / f^{*} \rightarrow 1$ as $n \rightarrow \infty$.

## 2. Nonidentical Multiprocessor Scheduling

In this section we consider five different heuristic algorithms and study their worst-case behaviors. Some employ very simple heuristics and may seem inferior to others. However, it can be shown that for any pair of these algorithms, examples exist for which one gives a better result than the other Several such examples are discussed.

In every algorithm that we shall consider, the input/output are as follows:
Input. $\quad T=$ set of $n$ independent tasks $J_{\imath}\left(\mu_{1}\left(J_{i}\right), \ldots, \mu_{m}\left(J_{V}\right)\right), 1 \leq i \leq n$.
Output. $\hat{L}=\left\{L_{0} \mid 1 \leq j \leq m\right\}$ and $\hat{f}$. $L_{0}$, is the set of tasks scheduled on processor $P_{j}$, and $\hat{f}$ is the finishing time of the schedule, $\hat{f}=\max _{,}\left\{\sum_{J \in L_{j}} \mu_{j}(J)\right\}$.
$A$-schedule. The $i$ th task in the list $T$ is scheduled on the processor that minimizes its finishing time.
ALGORITHM A( $\left.T, \hat{L}_{\mathrm{A}}, \hat{f}_{A}\right)$
Step 1 (Inttahze $L_{j}$ and $t_{j}$ ) $L_{j} \leftarrow \varnothing$ and $t_{j} \leftarrow 0$ for $1 \leq J \leq m$
Step 2 (Schedule the tasks and find $\hat{f}_{A}$ )

## For $: \leftarrow 1$ to $n$ step 1 do

find the smallest ${ }_{j}$ such that $t_{j}+\mu_{j}\left(J_{i}\right) \leq t_{l}+\mu_{l}\left(J_{i}\right)$ for all $1 \leq l \leq m, L, \leftarrow L_{j} \cup\left\{J_{i}\right\}, t_{j} \leftarrow t_{j}+\mu_{j}\left(J_{i}\right)$ end,
$\hat{f}_{A} \leftarrow$ max $_{j} t_{j}$, return
$B$-schedule. For each task $J$, let $\mu_{\text {min }}(J)=\min _{3} \mu_{,}(J)$. Algorithm $\mathbf{B}\left(T, \hat{L}_{\mathrm{B}}, \hat{f}_{\mathrm{B}}\right)$ first orders the tasks in $T$ according to nonincreasing $\mu_{\min }(J)$, and then calls Algorithm A to schedule $T$.
$C$-schedule. For each task $J$ in $T$, let $\mu_{\max }(J)=\max \mu_{J}(J)$. Algorithm $\mathrm{C}\left(T, \hat{L}_{\mathrm{C}}, \hat{f}_{\mathrm{C}}\right)$ orders the tasks in $T$ according to nonincreasing $\mu_{\max }(J)$ and calls Algorithm A.
$D$-schedule. After having scheduled $i$ tasks, the algorithm schedules a task (from among the remaining ( $n-i$ ) tasks) which gives the least finishing time.
ALGORITHM D $\left(T, \hat{L}_{\mathrm{D}}, \hat{f}_{\mathrm{D}}\right)$
Step 1 (Inttalize $L_{j}$ and $t_{j}$ ) $L_{j} \leftarrow \varnothing$ and $t_{j} \leftarrow 0$ for $1 \leq \jmath \leq m$
Step 2 (Completed') If $T=\varnothing$ then $\left[\hat{f}_{\mathrm{D}} \leftarrow \max _{3} t_{3}\right.$, return].
Step 3 (Schedule a task). Find a task $J$ in $T$ such that $\min _{j}\left\{t_{j}+\mu_{j}(J)\right\} \leq \min _{j}\left\{t_{j}+\mu_{j}\left(\gamma^{\prime}\right)\right\}$ for all $J^{\prime} \in T$, let $j$ be such that $t_{j}+\mu_{j}(J)$ is mınımum $; L_{j} \leftarrow L_{j} \cup\{J\}, t_{j} \leftarrow t_{j}+\mu_{j}(J), T \leftarrow T-\{J\}$, go to step 2

E-schedule. Algorithm $\mathrm{E}\left(T, \hat{L}_{\mathrm{E}}, \hat{f}_{\mathrm{E}}\right)$ is the same as Algorithm D except that step 3 is replaced with
Step 3 Find a task $J$ in $T$ such that $\min _{,}\left\{t_{j}+\mu_{j}(J)\right\} \leq \min _{3}\left\{t_{j}+\mu_{j}\left(J^{\prime}\right)\right\}$ for all $J^{\prime} \in T$, let $\boldsymbol{j}$ be such that $t_{j}+\mu_{j}(J)$ is minımum, $L_{j} \leftarrow L_{j} \cup\{J\}, t_{j} \leftarrow t_{j}+\mu_{j}(J), T \leftarrow T-\{J\}$, go to step 2

Theorem 1. The table below summarizes the behavior of the algorithms presented above.

| Algorthm | Run time | Worst-case <br> bound for $\hat{f} / f^{*}$ | Is the bound the <br> best possible? |
| :---: | :--- | :---: | :---: |
| $A$ | $O(n)$ | $m$ | yes |
| $B$ | $O(n \log n)$ | $m$ | yes |
| $C$ | $O(n \log n)$ | $m$ | yes |
| $D$ | $O\left(n^{2}\right)$ | $m$ | $?{ }^{4}$ |
| $E$ | $O\left(n^{2}\right)$ | $m$ | yes |

[^1]Proof.
(1) Run time. It is obvious that Algorithm A runs in time $O(n)$. Evaluating $\mu_{\min }(J)$ or $\mu_{\max }(J)$ for all $J$ in $T$ takes $O(n)$ time, and sorting $T$ takes $O(n \log n)$ time. It follows that Algorithms B and C have time complexity $O(n \log n)$. For Algorithms D and E, scheduling a task after $i$ tasks have been scheduled takes $O(n-i)$ time. So the run time of the algorithms is $O\left(n^{2}\right)$.
(2) Worst-case bound for $\hat{f} / f^{*}$. Let $g(n)=\sum_{i=1}^{n}\left(\min _{1 \leq j \leq m} \mu_{j}\left(J_{i}\right)\right)$. Clearly $f^{*}(n) \geq$ $(1 / m) g(n)$. For Algorithm A, it is an easy induction on $n$ to show that $\hat{f}_{\mathrm{A}}(n) \leq g(n)$. Therefore $\hat{f}_{\mathrm{A}} / f^{*} \leq m$. Since Algorithms B and C employ Algorithm A it follows that $\hat{f}_{\mathrm{B}} / f^{*}$ $\leq m$ and $\hat{f}_{\mathrm{C}} / f^{*} \leq m$. Now we show that $\hat{f}_{\mathrm{D}} \leq g(n)$ by induction on $n$. Trivially, $\hat{f}_{\mathrm{D}}(1) \leq g(1)$. Assume that $f_{\mathrm{D}}(k) \leq g(k)$, and consider a set $T_{k+1}$ of $k+1$ tasks. Suppose that $J_{k+1}$ is the task that is scheduled last by Algorithm D. For the set of $k$ tasks $T_{k}=T_{k+1}-\left\{J_{k+1}\right\}, \hat{f}_{\mathrm{D}}(k)$ $\leq g(k)$ by the induction hypothesis. Thus for $T_{k+1}$ the algorithm gives $\hat{f}_{\mathrm{D}}(k+1) \leq \hat{f}_{\mathrm{D}}(k)+$ $\min _{1 \leq j \leq m} \mu_{g}\left(J_{k+1}\right) \leq g(k+1)$. Thus $\hat{f}_{\mathrm{D}} \leq g(n)$ and so $\hat{f}_{\mathrm{D}} / f^{*} \leq m$. A similar argument shows that $\hat{f}_{\mathrm{E}} / f^{*} \leq m$.
(3) The bounds are the best possible for all but Algorithm $D$. The following example shows that the bounds for Algorithms A and B can be approached. Consider the set of $m$ tasks,

$$
\begin{aligned}
& J_{1}(u, u, \ldots, u), \\
& J_{2}(u, 2 u-1, \ldots, 2 u-1), \\
& J_{3}(2 u, u, 3 u-2, \ldots, 3 u-2) \\
& \vdots \\
& J_{l}((l-1) u,(l-2) u, \ldots, 2 u, u, l u-(l-1), \ldots, l u-(l-1)), \\
& \vdots \\
& J_{m}((m-1) u,(m-2) u, \ldots, 2 u, u, m u-(m-1)) .
\end{aligned}
$$

(See Figure 1.) So $\hat{f}_{\mathrm{A}}=\hat{f}_{\mathrm{B}}=m u-(m-1), f^{*}=u$, and $\hat{f}_{\mathrm{A}} / f^{*}=\hat{f}_{\mathrm{B}} / f^{*}=m-(m-1) /$ $u \rightarrow m$ as $u \rightarrow \infty$. Now we show that the bound for Algorithms C and E can be approached. Consider the set of $(m-1) m+1$ tasks, where $u \gg m$ :

$$
\begin{aligned}
& J_{1}(u, u, \ldots, u), J_{2}(1, u, \ldots, u), \ldots, J_{m}(1, \ldots, 1, u) \\
& J_{m+1}(u-1, u-1, \ldots, u-1), J_{m+2}(1, u-1, \ldots, u-1), \ldots, J_{2 m}(1, \ldots, 1, u-1), \\
& \vdots \\
& J_{(m-2) m+1}(u-(m-2), u-(m-2), \ldots, u-(m-2)), J_{(m-2) m+2}(1, u-(m-2), \ldots \\
& u-(m-2)), \ldots, J_{(m-1) m}(1,1, \ldots, 1, u-(m-2)), \\
& J_{(m-1) m+1}(u-(m-1), u-(m-1), \ldots, u-(m-1))
\end{aligned}
$$

(See Figure 2.) Thus
$\hat{f}_{\mathrm{C}} / f^{*}=\hat{f}_{\mathrm{E}} / f^{*}=[m u-m(m-1) / 2] /[u+(m-2) m+1]$

$$
=[m-m(m-1) / 2 u] /\{1+[(m-2) m+1] / u\} \rightarrow m
$$

as $u \rightarrow \infty$.

## Remarks.

(1) It is interesting to note that $\hat{f}_{\mathrm{A}} \geq \hat{f}_{\mathrm{B}}, \hat{f}_{\mathrm{A}} \geq \hat{f}_{\mathrm{C}}, \hat{f}_{\mathrm{A}} \geq \hat{f}_{\mathrm{D}}$, and $\hat{f}_{\mathrm{A}} \geq \hat{f}_{\mathrm{E}}$ are not

$$
\begin{equation*}
\hat{L}_{A}=\hat{L}_{B} \tag{*}
\end{equation*}
$$


$m u-(m-1)=\hat{f}$


Fig 1. A worst-case example for Algorithms A and B

necessarily true, as the following examples show. Consider the set $T_{1}=\left\{J_{1}(u-1,2 u)\right.$, $\left.J_{2}(u, u)\right\}$. Then $\hat{f}_{\mathrm{A}}=f^{*}=u$ and $\hat{f}_{\mathrm{B}}=2 u-1$. For the set $T_{2}=\left\{J_{1}(u, 2 u, 2 u), J_{2}(u-1, u\right.$, $3 u)\}, \hat{f}_{\mathrm{A}}=f^{*}=u$ and $\hat{f}_{\mathrm{C}}=2 u-1$. For $T_{3}=\left\{J_{1}(u+1,2 u), J_{2}(u, u)\right\}, \hat{f}_{\mathrm{A}}=f^{*}=u+1$ and $\hat{f}_{\mathrm{D}}=2 u$. Finally, for $T_{4}=\left\{J_{1}(u, 2 u), J_{2}(u+1, u+1)\right\}$, we have $\hat{f}_{\mathrm{A}}=f^{*}=u+1$ and $\hat{f}_{\mathrm{E}}=$ $2 u$.
(2) The following shows that $\hat{f}_{\mathrm{B}} \geq \hat{f}_{\mathrm{D}}$ and $\hat{f}_{\mathrm{B}} \geq \hat{f}_{\mathrm{E}}$ are not necessarily true: For $T_{3}$ in (1), $\hat{f}_{\mathrm{B}}=u+1$ and $\hat{f}_{\mathrm{D}}=2 u$, and in the last example of Theorem $1, \hat{f}_{\mathrm{B}}=f^{*}=u+$ $(m-2) m+1$ while $\hat{f}_{E}=m u-(m-1) m / 2$.
(3) It is not necessary that $\hat{f}_{\mathrm{C}} \geq \hat{f}_{\mathrm{D}}$ and $\hat{f}_{\mathrm{C}} \geq \hat{f}_{\mathrm{E}}$. For example, $\hat{f}_{\mathrm{C}}=u+1$ and $\hat{f}_{\mathrm{D}}=2 u$ for the set $T_{3}$ in (1), and $\hat{f}_{\mathrm{C}}=u+1$ and $\hat{f}_{\mathrm{E}}=2 u$ for $T_{4}$ in (1).
(4) We are unable to show that the bound $m$ can be approached for Algorithm D when $m \geq 3$. In fact, we have no example that yields $\hat{f}_{\mathrm{D}} / f^{*}>2$. However, the example involving the set $T_{3}$ in (1) shows that $\hat{f}_{\mathrm{D}} / f^{*}$ can approach 2 . Hence the bound for Algorithm D is the best possible for $m=2$. A slight modification of the example will show that $\hat{f}_{\mathrm{D}} / f^{*}$ can approach 2 for $m$-processor scheduling for any $m \geq 2$.
(5) Now suppose that the processors are identical, i e. $\mu_{\imath}(J)=\mu_{g}(J)$ for all $1 \leq t$, $j \leq m$. Then Algorithms A and D become arbitrary list scheduling and SPT scheduling, ${ }^{5}$ respectively $[4,6]$. These schedules yield $\hat{f} / f^{*} \leq 2-1 / m[6]$. Algorithms B, C, and E, on the other hand, reduce to the LPT scheduling algorithm which has a bound $\hat{f} / f^{*} \leq 4 / 3$ $-1 / 3 m$ [6].

## 3. Scheduling on Two Nonidentical Processors

Every algorithm in Section 2 was shown to have a worst-case bound of $m$ for the ratio $\hat{f} / f^{*}$. Moreover, this bound is the best possible for all but Algorithm D. For this algorithm, we were only able to show that the ratio $m$ is approachable for $m=2$. We now

[^2]present a simple heuristic algorithm for the two-processor system that has a better worstcase behavior than any of the algorithms of Section 2 . We have not been able to extend the idea used in the algorithm to the case $m \geq 3$.

We first describe the algorithm informally. The algorithm begins by temporarily scheduling the tasks in such a way that each task is assigned to the processor for which the task has a smaller processing time. If the finishing times of both processors are the same, the schedule is obviously optimal. However, if one processor is idle while the other is not, then the schedule may not be optimal. Without loss of generality, assume that $P_{1}$ has a longer finishing time. Then it may be possible to reduce the finishing time by reassigning some of the tasks on $P_{1}$ onto $P_{2}$. The idea is to decrease the finishing time of $P_{1}$ as much as possible while minimizing the increase in the finishing time of $P_{2}$. Thus if two tasks $J_{1}$ and $J_{2}$ on $P_{1}$ are such that $\mu_{1}\left(J_{1}\right) / \mu_{2}\left(J_{1}\right) \geq \mu_{2}\left(J_{2}\right) / \mu_{2}\left(J_{2}\right)$, then $J_{1}$ may be the better candidate than $J_{2}$ for the reassignment. The algorithm lists the tasks on $P_{1}$ in this order, and then reassigns them to $P_{2}$ as long as the finishing time can be reduced. The formal description of the algorithm follows.

## ALGORITHM $\mathrm{F}(T, \hat{L}, \hat{f})$

Step 1. (Inıtialize) $L_{1} \leftarrow \varnothing ; L_{2} \leftarrow \varnothing, t_{1} \leftarrow 0, t_{2} \leftarrow 0$
Step 2 (Schedule each task on the processor with the shorter processing time and check which processor finishes last).

```
For \(t \leftarrow 1\) to \(n\) step 1 do
    if \(\mu_{1}\left(J_{i}\right) \leq \mu_{2}\left(J_{i}\right)\)
        then \(\left[L_{1} \leftarrow L_{1} \cup\left\{J_{i}\right\} ; t_{1} \leftarrow t_{1}+\mu_{1}\left(J_{i}\right)\right]\)
        else \(\left[L_{2} \leftarrow L_{2} \cup\left\{J_{i}\right\} ; t_{2} \leftarrow t_{2}+\mu_{2}\left(J_{1}\right)\right]\) end
    If \(t_{1}=t_{2}\) then [ \(\hat{f} \leftarrow t_{1}\), return]
    If \(t_{1}>t_{2}\) then \([\alpha \leftarrow 1 ; \beta \leftarrow 2\), go to step 3]
        else \([\alpha \leftarrow 2 ; \beta \leftarrow 1]\)
```

Step 3 ( $t_{\alpha}>t_{\beta}$, sort $L_{\alpha}$ and reschedule some tasks in $L_{\alpha}$ onto $P_{\beta}$ )
3.1 Sort $L_{\alpha}$ so that, by changeng subscripts if necessary, $L_{\alpha}=\left\{J_{1}, \quad, J_{k} \mid k \leq n\right\}$ and $\mu_{\alpha}\left(J_{i}\right) / \mu_{\beta}\left(J_{i}\right) \leq$ $\mu_{\alpha}\left(J_{i+1}\right) / \mu_{\beta}\left(J_{i+1}\right)$ for $1 \leq \imath \leq k-1$
32 For $: \leftarrow k$ to 1 step -1 do

$$
\text { if } t_{\alpha}>t_{\beta}+\mu_{\beta}\left(J_{2}\right) \text { then }\left[L_{\alpha} \leftarrow L_{\alpha}-\left\{J_{i}\right\} ; t_{\alpha} \leftarrow t_{\alpha}-\mu_{\alpha}\left(J_{2}\right) ; L_{\beta} \leftarrow L_{\beta} \cup\left\{J_{\imath}\right\} ; t_{\beta} \leftarrow t_{\beta}+\mu_{\beta}\left(J_{i}\right)\right] \text { end }
$$

3.3 If $t_{\alpha} \geq t_{\beta}$ then $\left[\hat{f} \leftarrow t_{\alpha} ;\right.$ return]
else [ $\hat{f} \leftarrow t_{\beta}$, return]
Lemma 1. Algorithm $F$ has time complexity $O(n \log n)$.
Proof. We look at the time needed for each step of the algorithm. Step 1 takes a constant amount of time while step 2 takes $O(n)$ time. For step 3 let $\left|L_{\alpha}\right|=m \leq n$. Then steps 3.1 and 3.2 take $O(m \log m)$ and $O(m)$ time, respectively. Step 3.3 takes a constant amount of time. It follows that the algorithm runs in $O(n)+O(m \log m)+O(m) \leq$ $O(n \log n)$ time.

Consider the case $t_{1}>t_{2}$ after step 2. (The case $t_{2}>t_{1}$ is treated similarly.) Suppose that at this time $L_{1}=\left\{J_{1}, \ldots, J_{k}\right\}$ and $L_{2}=\left\{J_{k+1}, \ldots, J_{n}\right\}$, where $\mu_{1}\left(J_{i}\right) / \mu_{2}\left(J_{t}\right) \leq$ $\mu_{1}\left(J_{\imath+1}\right) / \mu_{2}\left(J_{\imath+1}\right)$ for $1 \leq i \leq k-1$. Let $l$ be the first (largest) integer such that $t_{1} \leq t_{2}+$ $\mu_{2}\left(j_{l}\right)$ during the execution of 3.2 of step 3 . We consider this intermediate schedule $\tilde{L}, \bar{L}_{1}=\left\{J_{1}, \ldots, J_{l}\right\}$ and $\bar{L}_{2}=\left\{J_{l+1}, \ldots, J_{n}\right\}$. We let $R=\bar{L}_{1}, U=\left\{J_{k+1}, \ldots, J_{n}\right\}$, and $V=$ $\left\{J_{l+1}, \ldots, J_{k}\right\}$ (see Figure 3). An optimal schedule $L^{*}$ will have a configuration shown on Figure 4. Note that $\bar{f}=\max \left\{\sum_{j \in \bar{L}_{1}} \mu_{1}(J), \sum_{f \in \bar{L}_{2}} \mu_{2}(J)\right\}$ and $f^{*}=\max \left\{\sum_{J \in \mathcal{L}_{1}^{*}} \mu_{1}(J)\right.$,
 1,2 let $r_{j}=\sum_{J \in R_{j}} \mu_{j}(J), u_{j}=\sum_{J \in U_{j}} \mu_{j}(J)$, and $v_{j}=\sum_{J \in V_{j}} \mu_{j}(J)$.

We need two lemmas before we can prove the result of this section.
Lemma 2. Suppose $\bar{f}=r>w$ (Figure 3 (a)). Then $\bar{f} / f^{*} \leq(\sqrt{ } 5+1) / 2$.
Proof. Let $s=\mu_{1}\left(J_{l}\right)$ and $q=\mu_{2}\left(J_{l}\right)$. Obviously $f^{*} \geq s$. If $r<[(\sqrt{ } 5+1) / 2] s, \hat{f} / f^{*} \leq$ $r / s<(\sqrt{ } 5+1) / 2$. So assume that $r \geq[(\sqrt{ } 5+1) / 2] s$.

Let $d=r-w$. Clearly $q \geq d$ and $d \leq r$. We claim that a reduction of the finishing time of $P_{1}$ by $z$ increases the finishing time of $P_{2}$ by at least $(q / s) \cdot z$, where $q / s \geq 1$. Also if


Fig 3 Schedule $\bar{L}$


$$
R=R_{1} \cup R_{2}, \quad U=U_{1} \cup U_{2} \text { and } V=V_{1} \cup V_{2} .
$$

Fig 4 An optimal schedule $L^{*}$
$d-z$ becomes smaller than $(q / s) \cdot z$, then the finishing time of the schedule starts increasing. Let $y$ be the largest $z$ satisfying $d-z \geq(q / s) \cdot z$, i.e. $d-y=(q / s) \cdot y$ or $y=$ $(s \cdot d) /(s+q)$. Then in fact our claim is that $f^{*} \geq r-y$. Now we prove this. If $r_{1}+u_{1}+v_{1}$ $\geq r-y$, then obviously $f^{*} \geq r-y$. So assume that $r_{1}+u_{i}+v_{1}<r-y$. Then

$$
\begin{aligned}
f^{*} \geq r_{2} & +u_{2}+v_{2} \geq u_{2}+v_{2}+\left(r-r_{1}\right) \cdot q / s>u_{2}+v_{2}+\left(u_{1}+v_{1}+y\right) \cdot q / s=u_{2}+u_{1} \cdot q / s \\
& +v_{2}+v_{1} \cdot q / s+y \cdot q / s \geq u+v+y \cdot q / s=w+y \cdot q / s=w+d-y=r-y .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\bar{f}}{f^{*}} \leq \frac{r}{r-y}=\frac{r}{r-(s \cdot d) /(s+q)} \leq \frac{r}{r-(s \cdot d) /(s+d)} & \\
& \leq \frac{r}{r-(s \cdot r) /(s+r)}=\frac{s+r}{r} \leq \frac{\sqrt{ } 5+1}{2},
\end{aligned}
$$

since $r \geq[(\sqrt{ } 5+1) / 2] s$.
Lemma 3. Suppose $\bar{f}=w \geq r($ Figure $3(b))$. Then $\bar{f} / f^{*} \leq(\sqrt{ } 5+1) / 2$.

Proof. Let $s=\mu_{1}\left(J_{l+1}\right)$ and $q=\mu_{2}\left(J_{l+1}\right)$. Clearly $f^{*} \geq s$. Then

$$
\begin{equation*}
\frac{\bar{f}}{f^{*}} \leq \frac{w}{s} \leq \frac{r+s}{s}=1+\frac{r}{s} \tag{1}
\end{equation*}
$$

Now consider the schedule which results from the one in Figure 3(b) by moving the task $J_{l+1}$ back to $P_{1}$. As in the proof of Lemma 2, we claim that the finishing time of an optimal schedule cannot be reduced from $r+s$ by more than $z$, where $z$ must satisfy $(w-q)+(q / s) \cdot z \leq r+s-z$. Let $y$ be the maximum possible $z$. Then $y$ satisfies $(w-q)$ $+(q / s) \cdot y=r+s-y$. Thus we are claiming that $f^{*} \geq r+s-y=w-q+y \cdot(q / s)$. So assume that $r_{1}+u_{1}+v_{1}<r+s-y$. Then

$$
\begin{aligned}
f^{*} & \geq r_{2}+u_{2}+v_{2} \geq u_{2}+v_{2}+\left(r-r_{1}\right) \cdot(q / s)>u_{2}+v_{2}+\left(u_{1}+v_{1}+y-s\right) \cdot(q / s) \\
& =u_{2}+u_{1} \cdot(q / s)+v_{2}+v_{1} \cdot(q / s)+y \cdot(q / s)-q \geq u+v+y \cdot(q / s)-q-w-q \\
& +y \cdot(q / s) .
\end{aligned}
$$

Now $f^{*} \geq w-q+y \cdot(q / s)$ imples that $y \cdot(q / s) \leq q$. It follows that

$$
\begin{equation*}
\frac{\bar{f}}{f^{*}} \leqslant \frac{w}{w-q+y \cdot(q / s)}=\frac{w-q+q}{w-q+y \cdot(q / s)} \leq \frac{q}{y \cdot(q / s)}=\frac{s}{y} . \tag{2}
\end{equation*}
$$

Also, since $w-q+y \cdot(q / s)=r+s-y$, we have

$$
\begin{equation*}
\frac{\bar{f}}{f^{*}} \leq \frac{w}{w-q+y \cdot(q / s)}=\frac{w}{r+s-y} \leq \frac{r+s}{r+s-y}=1+\frac{y}{r+s-y} . \tag{3}
\end{equation*}
$$

Now (1) becomes $\bar{f} / f^{*} \leq 1+r / s \leq 1+y / s$ if $y \geq r$, and (3) reduces to $\bar{f} / f^{*} \leq 1+y / s$ if $r \geq y$. In either case we have

$$
\begin{equation*}
\frac{\bar{f}}{f^{*}} \leq 1+\frac{y}{s} . \tag{4}
\end{equation*}
$$

Combıning (2) and (4), we have $\bar{f} / f^{*} \leq \min \{s / y, 1+y / s\}$. The maxımum of this minımum occurs when $s / y=1+y / s$ or $s=[(\sqrt{ } 5+1) / 2] y$. Hence $\bar{f} / f^{*} \leq$ $(\sqrt{ } 5+1) / 2$.

Theorem 2. Algorithm $F$ has time complexity $O(n \log n)$ and produces a schedule with the finushing time $\hat{f}$ satisfying $\hat{f} / f^{*} \leq(\sqrt{ } 5+1) / 2$. Moreover, the bound is the best possible.

Proof. The time is given by Lemma 1 . Since $P_{1}$ and $P_{2}$ are symmetric, by Lemmas 2 and $3, \bar{f} / f^{*} \leq(\sqrt{ } 5+1) / 2$. ( $\bar{f}$ is interpreted in the same way for the case $t_{1}<t_{2}$ after step 2 of the algorithm.) It is obvious that $\hat{f} \leq \bar{f}$. Thus $\hat{f} / f^{*} \leq(\sqrt{ } 5+1) / 2$. Now we give an example which shows that the bound can be approached. Let $T=\left\{J_{1}(u,[(\sqrt{ } 5+1) / 2] u)\right.$, $\left.J_{2}([(\sqrt{ } 5+1) / 2] u,[(\sqrt{ } 5+3) / 2] u-1)\right\}$. Algorithm F yields $L_{1}=\left\{J_{1}\right\}$ and $L_{2}=\left\{J_{2}\right\}$. Hence $\hat{f}=[(\sqrt{ } 5+3) / 2] u-1$. The optimal schedule has $L_{1}^{*}=\left\{J_{2}\right\}$ and $L_{2}^{*}=\left\{J_{1}\right\}$, giving $f^{*}=$ $[(\sqrt{ } 5+1) / 2] u$. Thus

$$
\frac{\bar{f}}{f^{*}}=\left(\frac{\sqrt{ } 5+3}{2} u-1\right) / \frac{\sqrt{ } 5+1}{2} u=\frac{\sqrt{ } 5+1}{2}-\frac{\sqrt{ } 5-1}{2 u} \rightarrow \frac{\sqrt{ } 5+1}{2}
$$

as $u \rightarrow \infty$.

## 4. Identical Multtprocessor Scheduling

In this section we look at the case in which all processors are identical; i.e. the processing time of a task is the same on every processor. ${ }^{6}$ Even for this case there is no known nonenumerative algorithm for finding a schedule with the optimal (least) finishing time. Finding an optimal schedule is computationally as difficult as solving such problems as the traveling salesman, knapsack, partition, and maximum clique. These problems are

[^3]called P-complete problems [8, 9]. It is well known, however, that the LPT schedule produces an $\hat{f}$ such that $\hat{f} / f^{*} \leq \frac{4}{3}-1 / 3 m$ [6]. The following example shows that this bound is the best possible for any number of jobs, $n \geq 5$ : Consider the set of $n$ tasks $T=$ $\left\{J_{1}(3), J_{2}(3), J_{3}(2), J_{4}(2), J_{5}(2), J_{6}(x), \ldots, J_{n}(x)\right\}$ to be scheduled on two identical processors, where $x \ll 1 / n$. Then the LPT schedule yields $\hat{f}=7$ while $f^{*}=6+$ $[(n-5) / 2] x$. Hence $\hat{f} / f^{*}=7 /\{6+[(n-5) / 2] x\} \rightarrow \frac{7}{6}$ as $x \rightarrow 0$. Similar examples show that the bound can be approached for any $m \leq 2$.

We shall show that the above problem remains P-complete even when a reasonable restriction is imposed on the processing time. However, the LPT schedule applied to this problem yields an $\hat{f}$ which is near optimal for large $n$. The simplified problem is the following:
$\rho$-PT (processing time) problem ( $\rho>1$ ). Given a set of tasks, $T=\left\{J_{1}\left(\mu\left(J_{1}\right)\right), \ldots\right.$, $\left.J_{n}\left(\mu\left(J_{n}\right)\right)\right\}$ satisfying $\max _{\imath} \mu\left(J_{2}\right) / \min _{\imath} \mu\left(J_{\imath}\right)=\rho$, find a schedule with the minimum finishing time.

In order to prove that the $\rho$-PT problem is P-complete, we make use of the partition problem, a known member of the P-complete class [8].

Partition problem. Given a multiset $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of positive integers, find partition $S_{1}$ and $S_{2}$ of $S$ such that $\left|\sum_{s_{t} \in S_{1} S_{2}}-\sum_{s_{f} \in S_{2} S_{j}}\right|$ is minimum; i.e. minimize the size of the larger partition.

Suppose a partition problem $K$ has a multiset $S=\left\{s_{1}, \ldots, s_{n}\right\}$. We construct a $\rho$-PT problem $H$ that is equivalent to $K$; i.e. a solution to $K$ gives a solution to $H$ and vice versa. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, where $\delta_{1}=2 \rho-\lfloor 2 \rho]$ and $\delta_{2}=[2 \rho]-2 \rho$. If $\delta \neq 0$, define $W=(3 / \delta) \cdot \sum_{1}^{n} s_{j}$, and if $\delta=0$, define $W=2 \sum_{1}^{n} s_{j}$. We construct the problem $H$ as follows: Let $T$ be the set of $2 n+2$ tasks defined by

$$
T=T_{1} \cup T_{2} \cup T_{3}=\left\{J_{1}, \ldots, J_{n}\right\} \cup\left\{J_{n+1}, \ldots, J_{2}\right\} \cup\left\{J_{2 n+1}, J_{2 n+2}\right\},
$$

where $\mu\left(J_{2}\right)=1+q_{i}=1+s_{i} / W$ for $J_{2} \in T_{1}, \mu\left(J_{i}\right)=1$ for $J_{2} \in T_{2}, \mu\left(J_{t}\right)=\rho$ for $J_{2} \in T_{3} .{ }^{7}$ The set of tasks in $T$ is to be scheduled on two identical processors in such a way that the finishing time is minimal.

We note that $\sum_{1}^{n} q_{2}=\delta / 3$ if $\delta \neq 0$ and $\sum_{1}^{n} q_{2}=\frac{1}{2}$ if $\delta=0$. If $\delta=0$, then $\rho \geq 1.5$, and if $\delta \neq 0$, then $\rho \geq 1+\delta / 2$. Thus $\mu\left(J_{i}\right) \leq \rho$ for all $1 \leq i \leq 2 n+2$. Hence $H$ is a $\rho$-PT problem. It is obvious that $K$ can be transformed in $H$ in polynomial time.

Lemma 4. In the case $\delta \neq 0$, any optimal schedule of $T$ has $J_{2 n+1}$ and $J_{2 n+2}$ scheduled on different processors.

Proof. Suppose both $J_{2 n+1}$ and $J_{2 n+2}$ are scheduled on the same processor, say $P_{1}$. Then the fractional part of the finishing time of $P_{1}, \nu_{1}$, is given by $\delta_{1} \leq \nu_{1} \leq 1-\delta_{2}+\delta / 3$. For if no task in $T_{1}$ is scheduled on $P_{1}, \nu_{1}=\delta_{1}$, and if every task in $T_{1}$ is scheduled on $P_{1}, \nu_{1}=\delta_{1}+\delta / 3=1-\delta_{2}+\delta / 3$. So $\nu_{1}$ lies between $\delta_{1}$ and $1-\delta_{2}+\delta / 3$. Similarly the fractional part of the finishing time of $P_{2}, \nu_{2}$, is given by $0 \leq \nu_{2} \leq \delta / 3$. Thus the difference between the finishing times of the two processors $d$ is at least $\min \left\{\delta_{1}-\delta / 3, \delta_{2}\right.$ $-\delta / 3\}$. Since $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}, d \geq \frac{2}{3} \delta$. This schedule, however, cannot be optimal. For consider the schedule in which $T_{1} \cup\left\{J_{2 n+1}\right\}$ is scheduled on $P_{1}$ and $T_{2} \cup\left\{J_{2 n+2}\right\}$ is scheduled on $P_{2}$ : The difference between the finishing times of $P_{1}$ and $P_{2}$ is $\delta / 3$. So this schedule is strictly better than any schedule with $J_{2 n+1}$ and $J_{2 n+2}$ scheduled on the same processor.
$\mathrm{L}_{\mathrm{L}} \mathrm{EmMA}$ 5. Suppose $\delta=0$. Then there is an optimal schedule of $T$ with $J_{2 n+1}$ and $J_{2_{n+2}}$ scheduled on different processors.

Proof. Consider the case in which $\rho$ is not an integer. Since $\delta$ is zero, $\delta_{1}=\delta_{2}=0$. Then $\rho=m+\frac{1}{2}$ for some integer $m \geq 1$. Let us consider a schedule $L^{\prime}$ in which both tasks $J_{2 n+1}$ and $J_{2 n+2}$ are scheduled on the same processor, say $P_{1}$. Since $\sum_{J \in T} \mu(J)=$ $2(n+\rho)+\frac{1}{2}$, the finishing time of $L^{\prime}$ is greater than or equal to $n+\rho+\frac{1}{4}$. We compare $L^{\prime}$ with a schedule $L$ in which $P_{1}$ processes $J_{2 n+1}, J_{n+1}$, and all tasks in $T$ except $J_{1}$, and

[^4]$P_{2}$ processes $J_{2 n+2}, J_{1}$, and all tasks in $T_{2}$ except $J_{n+1}$. The finishing time of this schedule is $\max \left\{\rho+n+\sum_{2}^{n} q_{i}, \rho+n+q_{1}\right\}<n+\rho+\frac{1}{2}$ since $0<q_{2}<\frac{1}{2}$ and $\sum_{1}^{n} q_{2}=\frac{1}{2}$.

Case 1. $P_{1}$ finishes last in $L^{\prime}$. Then $P_{1}$ must process at least $n-[\rho]$ tasks from $T_{1} \cup$ $T_{2}$. Otherwise the finishing time of $P_{1}$ is less than $2 \rho+\left(n-\lfloor\rho\rfloor+\frac{1}{2}\right)-1=n+\rho$. This contradicts the assumption that $P_{1}$ finishes last. So $P_{1}$ is greater than or equal to $n+\rho+$ $\frac{1}{2}$. However, this schedule cannot be optimal since $L$ has a smaller finishing time.

Case 2. $P_{2}$ finishes last in $L^{\prime}$. Then $P_{2}$ should process at least $n+\lfloor\rho\}+1$ tasks from $T_{1} \cup T_{2}$. Otherwise, its finishing time is less than or equal to $n+\lfloor\rho\rfloor+\frac{1}{2}=n+\rho$, which is a contradiction. So the finishing time of $P_{2}$ is greater than or equal to $n+\rho+\frac{1}{2}$. Again, this cannot be optimal.

Cases 1 and 2 show that an optimal schedule must have $J_{2 n+1}$ and $J_{2 n+2}$ on different processors.

Consider now the case in which $\rho$ is an integer greater than or equal to $n$. Suppose that in an optimal schedule $J_{2 n+1}$ and $J_{2 n+2}$ are on the same processor. Then the finushing time would be greater than or equal to $\rho+n+\frac{1}{2}$ for $\rho=n$ and greater than or equal to $\rho+n$ +1 for $\rho>n$. But this is a contradiction since the schedule $L$ described above has a finishing time less than $\rho+n+\frac{1}{2}$.

Finally, if $\rho$ is an integer less than $n$ and an optimal schedule has both $J_{2 n+1}$ and $J_{2 n+2}$ on the same processor, say $P_{1}$, then we can get another optimal schedule by interchanging $J_{2 n+2}$ on $P_{1}$ with $\rho$ tasks on $P_{2}$ which are in $T_{2}$. (At least $\rho$ tasks from $T_{2}$ are on $P_{2}$ since otherwise the finishing time would be greater than or equal to $2 \rho+n-\rho+1=\rho+n+$ 1.)

Corollary 1. There is an optimal schedule of $T$ which assigns $J_{2 n+1}$ on $P_{1}$ and $J_{2 n+2}$ on $P_{2}$, and $P_{1}$ and $P_{2}$ process the same number of tasks.

Proof. That there is an optimal schedule of $T$ in which $J_{2 n+1}$ is on $P_{1}$ and $J_{2 n+2}$ is on $P_{2}$ follows from Lemmas 4 and 5. If $P_{1}$ and $P_{2}$ do not process the same number of tasks, then one of these processors will have a finishing time of at least $\rho+n+1$. But then the schedule cannot be optimal, since a schedule with $J_{1}, \ldots, J_{n}, J_{2 n+1}$ on $P_{1}$ and $J_{n+1}, \ldots$, $J_{2 n}, J_{2 n+2}$ on $P_{2}$ yields a finshing time equal to $\rho+n+\sum_{1}^{n} q_{2}<\rho+n+1$.

Theorem 3. The $\rho-P T$ problem is $P$-complete.
Proof. We prove that the problems $K$ and $H$ are equivalent by showing that a solution to one gives a solution to the other.

Suppose, by rearranging elements in $S$ if necessary, that a solution to $K$ is the partition $S_{1}=\left\{s_{1}, \ldots, s_{l}\right\}$ and $S_{2}=\left\{s_{l+1}, \ldots, s_{n}\right\}$, and assume that $S_{1}$ is the larger partition. Then the schedule with $Q_{1}=\left\{J_{1}, \ldots, J_{l}, J_{n+1}, \ldots, J_{2 n-l}, J_{2 n+1}\right\}$ on $P_{1}$ and $Q_{2}=\left\{J_{l+1}, \ldots, J_{n}, J_{2 n-l+1}\right.$, $\left.\ldots, J_{2 n}, J_{2 n+2}\right\}$ on $P_{2}$ is optimal, with $Q_{1}$ determining the finishing time. Suppose not. Without loss of generality we may assume that $P_{1}$ finıshes last in an optimal schedule. By Corollary $1, H$ has an optimal schedule with $Q_{1}^{\prime}=\left\{J_{h_{2}}, \ldots, J_{h_{v}}\right\} \cup$ $\left\{J_{n+1}, \ldots, J_{2 n-v}\right\} \cup\left\{J_{2 n+1}\right\}$ on $P_{1}$ and the remaining tasks on $P_{2}$, where $\left\{J_{h_{1}}, \ldots, J_{h_{v}}\right\}$ $\subseteq T_{1}$. By assumption

$$
\begin{aligned}
& \left(1+q_{1}\right)+\cdots+\left(1+q_{i}\right)+\underbrace{1+\cdots+1}_{n-1}+\rho \\
& >\left(1+q_{h_{1}}\right)+\cdots+\left(1+q_{h_{v}}\right)+\underbrace{1+\cdots+1}_{n-v}+\rho .
\end{aligned}
$$

Then $q_{1}+\cdots+q_{l}>q_{h_{1}}+\cdots+q_{h_{v}}$, and so $s_{1}+\cdots+s_{l}>s_{h_{1}}+\cdots+s_{h_{v}}$. This contradicts the assumption that the partution $S=S_{1} \cup S_{2}$ is a solution to $K$. Hence the schedule $Q_{1}$ on $P_{1}$ and $Q_{2}$ on $P_{2}$ is an optimal schedule of problem $H$. Conversely by Corollary 1 and by rearranging $T_{1}$ if necessary, a solution to $H$ is a schedule with $Q_{1}=$ $\left\{J_{1}, \ldots, J_{k}\right\} \cup\left\{J_{n+1}, \ldots, J_{2 n-k}\right\} \cup\left\{J_{2 n+1}\right\}$ on $P_{1}$ and $Q_{2}=\left\{J_{k+1}, \ldots, J_{n}\right\} \cup\left\{J_{2 n-k+1}, \ldots, J_{2 n}\right\}$ $\cup\left\{\mathrm{J}_{2 n+2}\right\}$ on $P_{2}$. We assume that $P_{1}$ finishes last, i.e. $\sum_{J, \in Q_{1}} \mu\left(J_{J}\right) \geq \sum_{J_{j} \in Q_{2}} \mu\left(J_{3}\right)$. We claim that $S_{1}=\left\{s_{1}, \ldots, s_{k}\right\}$ and $S_{2}=\left\{s_{k+1}, \ldots, s_{n}\right\}$ is a solution to $K$. Suppose not and assume that $K$ has a solution having the partition $S=S_{1}^{\prime} \cup S_{2}^{\prime}$ such that $S_{1}^{\prime}=\left\{s_{h_{1}}, \ldots, s_{h_{u}}\right\}$, and it is
the larger partition. This implies that $\sum_{g_{j} \in S_{1}^{\prime}} s_{j}<\sum_{s_{j} \in S_{1}} s_{y}$. But then $(1 / W)\left(s_{h_{1}}+\cdots+\right.$ $\left.s_{h_{k}}\right)<(1 / W)\left(s_{1}+\cdots+s_{k}\right)$,

$$
\begin{aligned}
& \left(1+q_{h_{1}}\right)+\cdots+\left(1+q_{h_{u}}\right)+\underbrace{1+\cdots+1}_{n-u}+\rho \\
& <\left(1+q_{1}\right)+\cdots+\left(1+q_{k}\right)+\underbrace{1+\cdots+1}_{n-k}+\rho,
\end{aligned}
$$

and so $\sum_{J_{j} \in Q_{1}} \mu\left(J_{j}\right)<\sum_{J_{j} \in Q_{i}^{\prime}} \mu\left(J_{j}\right)$, where $Q_{1}^{\prime}=\left\{J_{h_{1}}, \ldots, J_{h_{u}}\right\} \cup\left\{J_{n+1}, \ldots, J_{2 n-u}\right\} \cup$ $\left\{J_{2 n+1}\right\}$. ( $W$ is as defined previously.) This is a contradiction.

Thus the partition problem is reducible to the $\rho$-PT problem. Since the reduction can be carried out in polynomial time, it follows that a polynomial time algorithm for the $\rho$ PT problem implies a polynomial time algorithm for the partition problem. From [9] we conclude that the $\rho$-PT problem is P -complete.

We now show that the LPT-schedule of the $\rho$-PT problem is near optimal for large $n$.
Theorem 4. For the $\rho$-PT problem, the LPT-schedule yields an $\hat{f}$ such that $\hat{f} / f^{*} \leq 1$ $+2(m-1) / n$ when $n \geq 2(m-1) \rho$. Thus the LPT-schedule is near optimal for large $n .{ }^{8}$
Proof. Let $T=\left\{J_{1}, \ldots, J_{n}\right\}$ be ordered in nonincreasing processing time. Suppose that in the LPT-schedule, $J_{l}$ is the task with the latest completion time, $l \leq n$. We assume, with no loss of generality, that $J_{l}$ is scheduled on $P_{1}$. Then the completion time of $P_{2}, 2 \leq$ $i \leq m$, is no earlier than the start tıme of $J_{l}$. Hence $f^{*} \geq \hat{f}-[(m-1) / m] \mu\left(J_{l}\right)$ or $\hat{f} \leq f^{*}+$ $[(m-1) / m] \mu\left(J_{l}\right)$. Since $\mu\left(J_{l}\right) \geq \mu\left(J_{l}\right)$ for all $1 \leq i \leq l, f^{*} \geq(l / m) \mu\left(J_{l}\right)$. Now $(n-l)$ tasks $J_{l+1}, J_{l+2}, \ldots, J_{n}$ are scheduled on $m-1$ processors during the processing time of $J_{l}$, and $\mu\left(J_{l}\right) \geq \mu\left(J_{n}\right)$ for $l+1 \leq i \leq n$. It follows that $\mu\left(J_{l}\right) \geq(n-l) \mu\left(J_{n}\right) /(m-1)$. Clearly $\mu\left(J_{l}\right)$ $\leq \rho \cdot \mu\left(J_{\imath}\right)$ for all $l \leq i \leq n$. Then $n-l \leq(m-1) \mu\left(J_{l}\right) / \mu\left(J_{n}\right) \leq(m-1) \rho$, and so $l \geq n-$ ( $m-1$ ) $\rho$. Assuming that $n \geq 2(m-1) \rho$, we have
$\frac{\hat{f}}{f^{*}} \leq \frac{f^{*}+[(m-1) / m] \mu\left(J_{l}\right)}{f^{*}} \leq 1+\frac{[(m-1) / m] \mu\left(J_{l}\right)}{(l / m) \mu\left(j_{l}\right)}$

$$
=1+\frac{m-1}{n-(m-1) \rho} \leq 1+\frac{2(m-1)}{n} .
$$

## REFERENCES

1 Bruno, J, Coffman, E G. Jr, and Sethi, R. Scheduling independent tasks to reduce mean finishing time. Comm ACM 17, 7 (July 1974), 382-387
2 Bruno, J, Coffman, E G. JR, and Sethi, R Algonithm for minimizing mean flow time Information Processing 74, North-Holland, Amsterdam, pp 504-510
3. Coffman, E.G. Jr, and Sethi, R A generalized bound on LPT sequencing Proc Int. Symp. Comptr Performance Modeling, Measurement and Evaluation, March 1976, pp 306-317. (avalable from ACM).
4 Conway, R W., Maxwell, W L , and Miller, L W Theory of Scheduling. Addison-Wesley Pubhshing Co , Reading, Mass , 1967
5 Gonzalez, T , Ibarra, O H , and Sahni, S Bounds for LPT schedules on uniform processors. Comptr Sci Tech Rep No 75-1, U of Minnesota, Minneapolis, Minn , 1974
6 Graham, R L Bounds on multiprocessing timing anomalies. SIAM J Applied Math 17, 2 (March 1969), 416-429

7 Horowitz, E, and SAHNi, S Exact and approximate algorithms for scheduling nonidentical processors $J$ ACM 23, 2 (April 1976). 317-327
8 KARP, R M Reducibility among combinatorial problems In Complexty of Computer Computations, R E Miller and J W. Thatcher, Eds , Plenum Press, New York, 1972, pp. 85-103
9 Sahni, S Computatıonally related problems SIAMJ Comptg 3, 4 (Dec 1974), 262-279
recerved april 1975; Revised july 1976

[^5]
[^0]:    Copyright © 1977, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprintung privileges were granted by permission of the Association for Computing Machinery
    This research was supported by the National Scrence Foundation under Grant DCR72-03728-A01 and by University of Minnesota Research Grant 435-0806-8520-02.
    Authors' present addresses. O H. Ibarra, Department of Computer Science, University of Minnesota, Minneapolis, MN 55455; C E. Kım, Department of Computer Science, University of Maryland, College Park, MD 20742
    ${ }^{1}$ For conventence, we shall usually write a task $J_{2}$ as $J_{i}\left(\mu_{1}\left(J_{t}\right), \quad, \mu_{m}\left(J_{t}\right)\right)$
    ${ }^{2}$ The terminology "P-complete" is defined in [9] Karp's notion of "completeness" is slightly different from this

[^1]:    ${ }^{3}$ max $_{1} \mu\left(J_{i}\right)$ is an abbreviation for $\max _{2}\left\{\mu\left(J_{i}\right)\right\}$
    ${ }^{4}$ The bound can be approached for $m=2$ (see Remark (4)).

[^2]:    ${ }^{5}$ An SPT (LPT) schedule is a schedule obtained as a result of an algonthm which, whenever a processor becomes free, assigns the task whose processing tume is the shortest (largest) of those tasks not yet assigned.

[^3]:    ${ }^{6}$ For this system, a task is denoted by $J(\mu(J))$, $J$ being the identity of the task and $\mu(J)$ its processing time

[^4]:    ${ }^{7}$ The fractional parts are represented by ordered patrs of integers, ie $n / m$ by $(n, m)$.

[^5]:    ${ }^{8}$ It was pointed out to us by the referee that a result similar to our Theorem 4 had appeared [3]

