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ABSTRACT

HEURISTIC ALGORITHMS
FOR
THE TERMINAL ASSIGNMENT PROBLEM

by Teresa Li-Pei Chiu

In this research, applications of heuristic techniques for obtaining near optimal
solutions for the terminal assignment (TA) problem are investigated.

The terminal assignment problem originates in the network industry, where the task is
to assign terminals to concentrators in such a way that each terminal is assigned to one
(and only one) concentrator and the aggregate capacity of all terminals assigned to any
concentrator does not overload that concentrator. Under these two hard constraints, an

assignment with the lowest possible cost is to be sought. The proposed cost is taken to
be the distance between a terminal and a concentrator.

The intractability of this problem [6] is a motivation for the pursuit of heuristics that
produce approximate, instead of exact, solutions. To our knowledge, other than the
paper presented by Abuali et al. [2], no previous work on the TA problem has been
published in the literature. Consequently, the test cases adopted for this study are
solely based on the workbench as illustrated in [2].

The heuristic techniques that are incorporated in this research include greedy-based
algorithms, genetic algorithms (GA) [1], and grouping genetic algorithms (GGA) [3].
The encouraging results may serve as a good indication of the applicability of these
techniques on constrained problems such as the TA problem.
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Chapter 1 Introduction

The objective of the terminal assignment (TA) problem involves determining
minimum cost links to form a network by connecting a given collection of terminals to
a given collection of concentrators. The terminal sites and concentrator sites have fixed
locations and are known. The capacity requirement of each terminal is known and may
vary from one terminal to another. The capacities of all concentrators are known and,
in this research, assumed to be the same. The cost of the link from each terminal to
each concentrator is also known. The problem is now to identify for each terminal the
concentrator to which it should be assigned, under two constraints, in order to
minimize the total cost. The two constraints imposed on the TA problem are: (1) each
terminal must be connected to one and only one of the concentrators, and (2) the
aggregate capacity requirement of the terminals connected to any one concentrator must
not exceed the capacity of that concentrator. The TA problem has been proven to be
NP-Complete [22]. NP-Complete problems are problems that are not currently
solvable in polynomial time. However, they are polynomially equivalent in the sense
that any NP-Complete problem can be transformed into any other in polynomial time.

Thus, if any NP-Complete problem can be solved in polynomial time, they all can

[15].



In the literature of operations research, there are a number of combinatorial
optimization problems that share the name “assignment problem” but whose underlying
ideas are quite different from that of the terminal assignment problem. One such
example is a special case of the weighted matching problem [25].

The weighted matching problem is a much more involved version of the
matching problem and is defined as: Given a graph, G = (V, E), and a weight for each
edge, w: E - R, find a matching of G with the maximum possible sum of weights.
The weighted matching problem is considerably easier in its bipartite case. When the
graph is bipartite, this problem is usually called the assignment problem, for it models
the assignment of a set of tasks to a crew of workers. In that framework, the presence
of an edge (u;, v) indicates that worker i is capable of carrying out task j, and the
weight of that edge represents the profit to be derived from assigning worker i to task j.

A slight variation of the above description is the Hitchcock problem [26], which
is motivated by the following situation: We have m sources of some commodity, each
with a supply of g; units, i = 1, 2, . . ., m, and n terminals, each of which has a
demand of b; units, j = 1, 2, . . ., n. Furthermore, we know the cost ¢; of sending the
commodity from source i to terminal j. The aim is now to satisfy the demands at
minimum cost. When all the g; and b; are 1, the Hitchcock problem is called the

assignment problem.
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The objective of this research is to compare different heuristic algorithms
applied on the TA problem. For this study’s purpose, a greedy-based algorithm has
been implemented as well as a genetic algorithm (GA) implemented under different GA
packages. Genetic algorithms are powerful search algorithms based on the mechanisms
of natural genetics. The potential of such algorithms to yield good solutions even for
hard optimization tasks has been demonstrated by various applications [5, 12, 14].
This work illustrates the feasibility of applying GA on the TA problem. A recently
developed area in the GA research, grouping genetic algorithm (GGA) [13], is also
explored. The grouping genetic algorithms, as the name suggests, focus purely on
problems with the grouping properties, i.e., performing tasks equivalent of grouping
objects under certain restrictions. GGA adopts all the basic notions of GA with an
alteration in the representation of strings (candidate solutions). This study reports and
compares the results of the greedy algorithm with the results of the GAs performed on
several problem instances.

The remaining of this work is organized in the following fashion. Chapter 2
illustrates the formal definition of the terminal assignment problem. We also give a
small-sized example and detailed description of the structure and solution. Addressing
the different heuristic algorithms adopted in this work, Chapter 3 first introduces the
greedy technique, the general format of greedy algorithms and a specific
implementation for the TA problem. In Chapter 4, genetic algorithms are presented.

We discuss the GA operators and how the GAs differ from other algorithms. The GA
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implementation of the TA problem is given in Chapter 5. The two GA packages
adopted for this work, GENEsYs and LibGA, are presented in Chapter 6. Chapter 7
gives an introduction to the grouping genetic algorithms and the implementation of the
TA problem. The test cases used in this research are described in Chapter 8. In
Chapter 9 are the results and analyses of the performance of different heuristic

algorithms applied on the test cases. Conclusions are drawn in Chapter 10.
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Chapter 2 The Terminal Assignment Problem

The terminal assignment problem may arise in various contexts where one
wishes to distribute (assign) individual objects to a collection of groups while trying to
keep the cost as low as possible. The two constraints that have to be taken into
consideration are (1) each object belongs to one and only one group, and (2) any group
must be able to service the requirement (capacity) of all objects assigned to it.

2.1 Formal Definition

In the following, a formal definition of the terminal assignment problem is
presented by making use of Stinson’s terminology [33] for combinatorial optimization
problems. We introduce concepts and notations that we use in subsequent sections of
this work.

Problem instance:

Terminals : I, L, ... I
Weights  : wy, wy, . .., wp
Concentrators : ry, 1y, . . ., Fc

Each of the C concentrators is of capacity W. w; is the weight, or capacity
requirement of terminal /. The weights and capacity are positive integers and
w, < Wfori=1,2,...,T.

The T terminals and C concentrators are placed on the Euclidean grid, i.e., I

has coordinates (J;;, ;) and r; is located at (r;;, ).
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Feasible solution:

Assign each terminal to one of the concentrators such that no concentrator

exceeds its capacity. In other words, a feasible solution to the terminal

assignment problem is:

A vector X = x; x, . . . Xy where x; = j means that the ith terminal is assigned

to concentrator j such that
1 <x;<C andx; is an integer, fori = 1,2, ..., T
{ all terminals have to be assigned }

Zwi <W,forj=1,2,..., C {capacity of concentrator is not exceeded }
ieR,

where R; = {i | x; = j }; i.e., R, represents the terminals that are assigned to

concentrator j.
Objective function:
T
A function Z(x) = Zcostij, where X = x; x, . . . xr is a solution and x; = J,

i=1

for 1 <i<T, and cost; = round (\/(l“—rjl)2+(li2—rjz)2 ), i.e., the result of

rounding the distance between terminal i and concentrator j. In other words,
Z(x) denotes the overall cost of assigning individual terminals to concentrators
according to the solution represented by x.

Optimal solution:

A feasible vector x that yields the smallest possible Z(x).
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2.2 Example

In a given problem instance of the TA problem, available information includes
the numbers and locations of concentrator sites and terminal sites, the individual weight
requirements of the terminals, and the uniform capacity of the concentrators. The cost
of assigning each terminal to each concentrator is taken to be the Euclidean distance
between the two locations.

Table 1 indicates a collection of T = 10 terminal sites and C = 3 concentrator
sites. The weight requirement and the coordinates for each terminal site are specified
in Table 1(a). The coordinates for the concentrator sites are listed in Table 1(b).

Throughout this research, we assume the capacity of each concentrator to be W = 12.

Terminal | Weight Coordinates Concentrator | Coordinates
1 5 (54, 28) 1 (19, 76)
2 4 (28, 75) 2 (50, 30)
3 4 (84, 44) 3 (23, 79)
4 2 67, 17)
5 3 (90, 41)
6 1 (68, 67)
7 3 (24, 79)
8 4 (38, 59)
9 5 (27, 86)
10 4 07, 76)
(a) Terminal capacity requirements (weight) (b) Concentrator coordinates,
and terminal coordinates. capacity = 12.
Table 1
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The coordinates are based on a 100 X 100 Euclidean grid; each of the
terminals and concentrators occupies a fixed location on the grid. Different terminals
may have different capacity requirements as specified in the above figure.

As introduced in the definition, the cost of connecting a terminal to a
concentrator is obtained by rounding the Euclidean distance between the two sites to the
nearest integer. Table 2 illustrates the costs of all possible connections from terminals
to concentrators. For instance, the cost of assigning terminal 6 to the first concentrator

is 49, to the second concentrator is 41, and to the third concentrator is 46.

concentrator
terminal 1 2 3
1 59 04 59
2 09 50 06
3 72 36 70
4 76 21 76
5 79 41 77
6 49 41 46
7 05 55 01
8 25 31 25
9 12 60 08
10 12 62 16

Table 2. Terminal to concentrator
cost (distance) matrix.

Figure 1 illustrates an assignment of the first 9 terminals which cannot be
extended to the 10th terminal without introducing infeasibility; that is, none of the 3
concentrators is able to service the capacity requirement of terminal /;;,. The total cost,

computed as the sum of the costs for the 9 selected links, is 223.
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Figure 1. Terminal assignments to concentrators
Total cost = 223 with terminal 10 stranded.

In Figure 2, a feasible assignment of terminal sites to concentrator sites is
shown. By exhaustive case analysis, it is the optimal terminal assignment for this
specific problem instance. The total cost is 231, and is obtained by summing up the
costs of the 10 links: the cost from terminal /; to concentrator r, is 4, from /, to r; is 6,
from ; to ry is 72, from I, to r, is 21, from s to r, is 41, from [ to r, is 41, from [, to
ryis 1, from g to ry is 25, from I, to r; is 8, and from [,y to r; is 12. Moreover, after
the connections have been established, concentrator r; holds weight 12, r, holds weight

12, and r; holds weight 11. Therefore, all 10 terminals can be feasibly assigned

without overloading any concentrator.
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Figure 2. Terminal assignments to concentrators
Total cost = 231 with all terminals assigned.

It is conceivable that two different sites may occupy the same coordinates on the
grid since the locations are completely randomly gengrated. We do not rule out this
possibility in the sense that, in real practices, the grid is of a much larger scale. It is
not uncommon to permit two sites to be placed in the same location, e.g., an office,
with a negligible cost if they are to be connected. Furthermore, situations may also
arise where a number of concentrators and terminals form a straight line on the grid
such that, in order to connect two sites, the connection is bound to run into at least one
unrelated concentrator or terminal. We note that, in general, solving this problem does
not require major effort, and it is thus permissible in this study without any
modification to the established definition.

The problem addressed in this research assumes that the terminals have unequal
weight requirements. If one alternately assumes that all capacity requirements of the

terminals are equal, then the problem is no longer NP-complete. The alternating chain
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algorithms produce a provably optimal solution for the terminal assignment problem in
the situation where the weight requirements of the terminals are all equal [22].

In the next chapter, our first heuristic strategy based on the greedy technique is
introduced. We discuss the concepts behind and the strength of greedy-based
algorithms, and describe an implementation of greedy heuristic for the terminal

assignment problem.
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Chapter 3 Greedy Algorithms

Algorithms for combinatorial optimization problems typically go through a
sequence of steps, with a set of choices (guesses) at each step according to certain
rules.  Unfortunately, it is seldom possible to always make the correct choice
throughout the entire sequence. In general, optimality of the sequence of guesses
cannot be checked until most or all of the guesses have been made. In this chapter we
consider the algorithms, called greedy algorithms, that make decisions solely on the
basis of the information available at the time of the guess.

3.1 How Do Greedy Algorithms Work?

For each decision point, a greedy algorithm always makes the choice that looks
best at the moment. That is, it makes a locally optimal choice in the hope that this
choice will lead to a globally optimal solution. Since these choices are made on the
basis of short-term calculations rather than on the basis of a concern about future
choices, algorithms based on this approach are called greedy algorithms. The outline

of a greedy algorithm can be sketched as follows:
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Algorithm Greedy {C is the set of all the candidates}
S« ® {S is the set in which we construct the solution}
while net solution (S) and C = ® do
x < an element of C maximizing (minimizing) select (x)

CeC-{x}
if feasible (S U {x}) {procedure “feasible” checks to
S« Su {x} see whether S U {x} is feasible }
end while

if solution (S) return S { if a solution is successfully constructed }
else return “there is no solution”

end Greedy

Procedure “select” attempts to include an element in the solution under
construction. Depending on the results given by select, the greedy algorithm includes
the element yielding the largest (smallest) value.

The idea behind this strategy is that, as long as we have not exhausted all the
possibilities, we continue to look for the current best choice. However, a slightly
different strategy may sometimes be useful. Occasions may arise where the feasibility
of a solution depends on the feasibility of every single element included in that
solution; i.e., as soon as one element has been determined to be invalid, there is no
need to check other possibilities and the algorithm can return an error flag immediately.
Our implementation of the TA problem is an example of such cases; during the
construction of a solution, if a terminal cannot be feasibly assigned to any concentrator,
we are certain that the resulting solution can never be feasible—at least one

concentrator is overloaded. Therefore, the algorithm aborts this attempt and starts to

build the next candidate solution. The details are given in the next chapter.
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The greedy method is quite powerful and works well for a wide range of
problems, but it does not always produce optimal solutions. We consider the knapsack
problem as an example. The knapsack problem gets its name from the problem of a
backpacker who has a knapsack of fixed capacity M; a choice of n items to include,
each of which is associated with a weight w;, and a profit p; which can be realized only
if the item is included in the knapsack. The backpacker is then to decide which items
to include in order to maximize the profit. There are two variants of this problem,
depending on whether fractions of items can be included or not. If the answer is yes,
the problem is called the rational knapsack problem. Otherwise, we call the problem
the 0-1 knapsack problem, because the choice to be made is binary (0 or 1). A greedy
algorithm can be devised to solve the rational knapsack problem, i.e., it will produce
an optimal solution. However, no greedy algorithm can solve the 0-1 knapsack
problem [33]: the greedy solution, the solution yielded by the greedy algorithm, is not
necessarily an optimal solution. In general, the greedy solution is feasible but not
guaranteed to be optimal.

The design of a greedy algorithm is often straightforward. Although the
complexity will depend on the data structures used, we expect greedy algorithms to be
fast since we only focus on one particular solution—there is no element of look-ahead

or backtracking.
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The greedy algorithm first appeared in the combinatorial optimization literature
in an article by Edmonds [11] in 1971. More material on greedy algorithms can be
found in Lawler [24] and Papadimitriou and Steiglitz [26].

3.2 Implementation of the TA Problem

A greedy-based heuristic algorithm for the TA problem is to assign terminals to
the nearest available concentrators in a greedy fashion. Availability refers to the ability
of the concentrator to service terminal capacity requirements. Namely, for each
terminal, the algorithm looks for the concentrator that is closest to the terminal and
checks if there is enough capacity to satisfy the requirement of the particular terminal.
If there is, then the terminal is assigned to this concentrator; if the concentrator cannot
handle the terminal, the algorithm looks for the next closest concentrator and performs
the same evaluation. This process is repeated until an available concentrator is found
and the algorithm continues to assign the remaining terminals, if there are any.
Otherwise, no concentrator holds the required capacity and the attempt is declared a
failure and the solution is infeasible. The assignments are carried out in a random
fashion; i.e., the terminal to be connected next is selected at random. Specifically, a
greedy algorithm [22] is

while additional assignments of terminals to concentrators are possible

{ for a randomly chosen terminal, say

{ determine cost;;, the distance from /; to 7;

where 7; is the closest feasible concentrator for terminal /;
assign terminal /; to concentrator r;
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This greedy algorithm is likely to force the terminals that are considered last to
be connected to concentrators that are very far away. For instance, Table 2 in Section
2.2 indicates that terminal s is closest to concentrator r, with cost 41. However, as
illustrated in Figure 1, s is forced to be assigned to r; with cost 77. Again, terminal
is closest to concentrator r; with cost 8, but is assigned to r; with cost 12. Therefore,
we inéorporate a random sequence of terminal connections each time to help explore
the range of feasible assignments.

The greedy algorithm can fail to produce a feasible solution when: (1) the total
concentrator capacity is less than the total terminal capacity requirement, (2) there is
not a feasible solution to the problem instance, or (3) the algorithm misses the feasible
solution(s). We consider Figure 1 in the previous chapter. This particular infeasible
solution is obtained using the greedy algorithm outlined above; the exact solution may
be reproduced by trying to assign the terminals in their numerical order as listed in
Table 1(a) in Section 2.2. Table 1 indicates that the total concentrator capacity is
sufficient for the total terminal capacity requirement—the concentrators may service a
capacity requirement of 36 while the terminals altogether require 35. Moreover,
Figure 2 illustrates that this problem instance does have at least one feasible solution.
However, depending on the random order of terminals to be assigned, the algorithm

may occasionally miss the feasible solutions, as in this case.
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3.3 Variations

Abuali et al. [1] adopt a variation of the given greedy heuristic. A modification
of the algorithm computes a “tradeoff” that can lead to assigning a terminal /; to a
given concentrator even in the presence of another closer unassigned terminal /. The
modification may be advantageous if the alternative would be to attach / to the given
concentrator and to subsequently attach /; to a second concentrator that is much further
away [22].

In this study, we abandon the idea of computing a tradeoff in order to illustrate
the rudimentary principle of the greedy algorithms—the decisions are based purely
upon previous decisions without any knowledge of future decisions.

At the beginning of this research, a second greedy heuristic was also
implemented. The basic idea of this algorithm is as follows. All the connections from
terminals to concentrators are first sorted according to their costs in a non-decreasing
order. The algorithm then performs a traversal on the list of connections. If the
connection involves a terminal that has not yet been assigned to any concentrator, it is
immediately assigned to the one indicated by the connection if still available. If,
however, the terminal has already been taken care of, or if the concentrator does not
hold enough capacity to service the terminal, the algorithms ignores the connection and
moves down to the next in the list. The process halts either when all terminals have

been assigned, or when a terminal cannot be serviced by any concentrator.
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Unfortunately, this seemingly plausible algorithm has shown to produce
infeasible solutions for a majority of the test cases we adopt in this research.
Therefore, we have excluded this heuristic from the rest of the study. This particular
heuristic certainly agrees with the idea of the greedy strategy; however, the setup of
this algorithm has made it so inflexible that there is no room for improvement of the
solutions—there can only be one candidate solution, and once the algorithm determines
some terminals cannot be assigned, there are no tools for the algorithm to remedy this
problem. This is where the random order comes in handy as pointed out for the
algorithm specified in the previous section; if an order does not work out, the algorithm
can always proceed by employing another order. However, we note that the random
order does not apply in this case for, if we use a random instead of a sorted list, we
lose the essence of the greedy strategy to make the best choice at any given time.

In the following chapter we present our second heuristic technique—genetic
algorithms. Since the emergence in the 1970s, genetic algorithms (GA) have been
successfully applied to a number of combinatorial optimization problems as a heuristic
technique for obtaining near optimal solutions. GAs are theoretically and empirically
proven to provide robust search in complex spaces [16]. We will introduce

fundamental genetic operators and how they make genetic algorithms different from

other algorithms.
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Chapter 4 Genetic Algorithms

Genetic algorithms (GA) have shown to be powerful general purpose adaptive
search procedures in a variety of applications presented in literature. Genetic
algorithms have been developed by John Holland {21], his colleagues, and his students
at the University of Michigan. The goals of their research have been twofold: (1) to
abstract and rigorously explain the adaptive processes of natural systems, and (2) to
design artificial systems software that retains the important mechanisms of natural
systems. This approach has led to important discoveries in both natural and artificial
systems science.

Genetic algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. They combine survival of the fittest among string
structures with a structured yet randomized information exchange to form a search
algorithm with some of the innovative flair of human search. The algorithm proceeds
in steps called generations. In every generation, a new set of strings is created using
bits and pieces of the fittest of the old; an occasional new part is tried for good
measure. Randomized genetic algorithms are different from random walks. Instead,
they efficiently exploit the search space to speculate on new search points with expected
improvement of performance. One fundamental premise of genetic algorithms is that

they can solve complicated problems by simulating evolution.
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4.1 How Do Genetic Algorithms Differ from Traditional Methods?

Genetic algorithms are different from traditional optimization and search
procedures in several ways:

e GAs work with encodings for some parameter set rather than with the parameters
themselves.

¢ GAs search from a population of points, not a single point.

* GAs use objective function information rather than some other auxiliary knowledge,
e.g., derivatives.

e GAs use probabilistic, instead of deterministic, transition rules and application of
the genetic operators causes information from the previous generation to be carried
over to the next.

Genetic algorithms manipulate decision or control variable representations at the string

level to exploit similarities among high-performance strings while other methods

usually deal with functions and their control variables directly. Because GAs operate at
the encoding level, they are difficult to fool even when the function may be difficult for
traditional schemes. GAs work from a population while many other methods work

from a single point. In this way, GAs find safety in numbers. By maintaining a

population of well-adapted sample points, the probability of reaching a false peak is

reduced. GAs achieve much of their breadth by ignoring information except that
concerning payoff. Other methods rely heavily on such information, and in problems

where the necessary information is not available or difficult to obtain, these other
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techniques break down. GAs remain general by exploiting information available in any
search problem. Genetic algorithms process similarities in the underlying encoding
together with information ranking the structures according to their survival capability in
the current environment. Last but not least, the transition rules of genetic algorithms
are stochastic; many other methods have deterministic transition rules. A distinction
exists, however, between the randomized operators of GAs and other methods that are
simple random walks. Even though it may seem unusual to use chance to achieve
directed results (the best points), GAs use random choice to guide a highly exploitative
search.

Goldberg [16] and Holland [21] are good references on genetic algorithms for
interested readers who would like to know more about GAs. They provide detailed
explanations of the GA strategy and actual implementations of selected GA operators.

4.2 Simple Genetic Algorithms

A genetic algorithm is an iterative procedure which borrows the ideas of natural
selection and ‘survival of the fittest’ from natural evolution. By simulating natural
evolution, GAs can easily solve complex problems. Furthermore, by emulating
biological selection and reproduction techniques, GAs can effectively search the
problem domains in a general, representation-independent manner.

The genetic algorithm maintains a population or pool of candidate solutions for
a given objective function. The candidate solutions represent an encoding of the

problem into a form that is analogous to the chromosomes of biological systems. Each
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chromosome is made up of a string of genes. The chromosome is typically represented
in the GA as a string of bits. However, integers and floating point numbers have been
used. The chromosome also has associated with it a fitness value, which is obtained by
evaluating the chromosome with the objective function. It is the fitness of a
chromosome which determines its ability to survive and produce offspring for the next
generation. We consider the example of TA problem described in Section 2.2. Figure
3 indicates the chromosome representing the optimal solution.

1 2 3 45 6 7 8 9 10
213112121231 {3]1

Figure 3. Chromosome representing the
optimal solution to the example in Section 2.2,

The value carried by position i of the chromosome specifies the concentrator
that terminal i is to be assigned to; i.e., terminal 1 is assigned to concentrator 2,
terminal 2 to concentrator 3, terminal 3 to concentrator 1, and so on.

Once an initial pool has been generated and all of its members have been
evaluated, the genetic algorithm begins its emulation of the life cycle. At each step in
the iteration, chromosomes are probabilistically selected from the population for
reproduction. Offspring are generated through a process called crossover. Crossover
may be accompanied by another process called mutation, which randomly alter the
values (with small probability) in the chromosomes. The offspring are then placed
back in the pool, perhaps replacing other members of the pool. This process can be

modeled using either a ‘generational’ [16, 21] or a ‘steady-state’ [34] genetic
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algorithm. The generational GA saves offspring in a temporary location until the end
of a generation has been reached. At that time the offspring replaces the entire current
population. On the other hand, the steady-state GA immediately places offspring back
into the current population.
This informal description leads to the rough outline of a genetic algorithm given
below [19, 23]:
Algorithm GA is
t<0
initialize P(¢)
evaluate P(t)
while not terminate P(t) do
tet+1
P@) « select P(t - 1)
crossover P(f)
mutate P(f)
evaluate P(t)

end while
end GA

Genetic algorithms rely on genetic operators for selection, crossover, mutation,
and replacement. The selection operators use the fitness values to select a portion of
the population to be parents for the next generation. Parents are combined using the
crossover and mutation operators to produce offspring. This process combines the
fittest chromosomes and passes superior genes to the next generation, thus providing
new points in the search space. The replacement operators ensure that the ‘least fit’ or

weakest chromosomes of the population are displaced by more fit chromosomes.
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While the fundamental concepts of genetic algorithms are fairly simple and
straightforward, there are numerous implementation variations and options to
incorporate into a genetic algorithm [16]. For instance, there are various ways to
parameterize a model and encode it into a finite length chromosome. There are a
number of different selection techniques for determining chromosomes for crossover.
There are numerous possible crossover operators that have been developed in recent
years depending on the problem type and chromosome encoding scheme. There are
also several techniques for introducing some random changes to a chromosome, i.e.,
mutation.

4.3 GA Operators

The mechanics of a simple genetic algorithm are surprisingly straightforward,
involving nothing more complex than copying strings and swapping partial strings.
Simplicity of operation and power of effect are two of the main attractions of the
genetic algorithm approach. The genetic operations that shall be introduced in the
following sections take an initial population and generate successive populations that (in
general) improve over time. A simple genetic algorithm that yields good results in
many practical problems is composed of three operators:

e reproduction

e crossover

e mutation

page 24



4.3.1 Reproduction

Reproduction is a process in which individual strings are copied according to
their objective (fitness) function values. Intuitively, we can think of the function as
some measure of profit (cost) that we desire to maximize (minimize). Copying strings
according to their fitness values means that the strings with a better value have a greater
chance of contributing one or more offspring in the next generation. This is
accomplished with an artificial version of natural selection, a Darwinian survival of the
fittest among strings.

The reproduction operator may be implemented in algorithmic form in a number
of ways. Perhaps the easiest is to create a biased roulette wheel where each current
string in the population has a roulette wheel slot sized in proportion to its fitness value.
Table 3 lists a sample population of four strings and their respective fitness values.
Summing the fitness over all four strings, we obtain a total of 1168. The percentage of
population total fitness is also shown in the table. Figure 4 depicts the distribution of

the population on a weighted roulette wheel.

No. String Fitness Percentage
1 01101 231 19.8
2 11000 422 36.1
3 01000 154 13.2
4 10011 361 30.9
Total 1168 100.0

Table 3. Sample problem strings and fitness values.
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Figure 4. Simple reproduction allocates offspring strings
using a roulette wheel with slots sized according to fitness.

Each time we require another offspring, a spin of the weighted roulette wheel
yields the reproduction candidate. In this way, more highly fit strings have a higher
number of offspring in the succeeding generation. Once a string has been selected for
reproduction, an exact replica of the string is made. This string is then entered into a
mating pool, a tentative new population, for further genetic operator action.

4.3.2 Crossover

After reproduction, simple crossover may proceed in two steps. First, members
of the newly reproduced strings in the mating pool are mated at random. Second, each
pair of strings undergoes crossing over as follows: an integer position & along the string
is selected uniformly at random between 1 and the string length minus one [1, /-1].
Two new strings are created by swapping all characters between positions k+1 and [
inclusively. Namely, the mechanics of crossover are in the form of partial string
exchanges. For instance, consider two sample strings A, and A, from the Table 3 in

the previous section:
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A =0110]1
A, =1100]0.

Suppose in choosing a random number between 1 and 4, we obtain a k = 4 (as
indicated by the separator symbol |). The resulting crossover yields two new strings
where the prime (‘) means the strings are part of the new generation:

A, =01100
A, =11001

Thus, A;’ and A,’ are the offspring of A, and A,.

We note that the crossover operation is performed under the control of a
predefined crossover rate. In other words, crossover is not necessarily carried out
every time a new offspring is being generated. If the probability determines that
crossover is not performed, a replica of the parent is made and becomes the resulting
child.

The mechanics of reproduction and crossover are surprisingly simple, involving
random number generation, string copies, and some partial string exchanges. The
combined emphasis of reproduction and the structured, though randomized, information
exchange of crossover give genmetic algorithms much of the power. Consider a
population of n strings. Substrings within each string contain various notions of what
is important or relevant to the task. Viewed in this way, the population contains not
just a sample of n ideas; rather, it contains a multitude of notions and rankings of those
notions for task performance. Genetic algorithms ruthlessly exploit this wealth of

information by (1) reproducing high-quality notions according to their performance,
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and (2) crossing these notions with many other high-performance notions from other
strings. Thus, the action of crossover with previous reproduction speculates on new
ideas constructed from the high-performance building blocks of past trials.

4.3.3 Mutation

Mutation plays a decidedly secondary role in the operation or genetic
algorithms. Mutation is needed because, even though reproduction and crossover
effectively search and recombine existing notions, occasional they may become
overzealous and lose some potentially useful genetic material. In artificial genetic
systems, the mutation operator protects against such an irrecoverable loss. In the
simple GA, mutation is the occasional (with small probability) random alteration of the
value of a string position. If the binary coding is employed, this simply means
changing a 1 to a 0 and vice versa. By itself, if only mutation is used, it is a random
walk through the search space. When used sparingly with reproduction and crossover,
it is an insurance policy against premature loss of important notions.

We claim that the mutation operator plays a secondary role in the simple GA by
noting that the frequency of mutation to obtain good results in empirical genetic
algorithm studies is on the order of one mutation per thousand bit (position) transfers.
Mutation rates are similarly small (or smaller) in natural population, leading to the
conclusion that mutation is appropriately considered as a secondary mechanism of

genetic algorithm adaptation.
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Other genetic operators and reproductive plans have been abstracted from the
study of biological example. However, the three GA operators examined in this
section—reproduction, crossover, and mutation—have proved to be both
computationally simple and effective in tackling a number of important optimization
problems [16].

Genetic algorithms are intrinsically highly parallel algorithms. Holland’s
earliest speculative work [20] recognized the parallel nature of the reproductive
paradigm and the inherent efficiency of parallel processing. However, GAs have not
received great attention in the parallel processing literature considering the parallel
nature of natural genetic systems. Until recently very little work has been performed in
mapping genetic algorithms to existing and proposed parallel hardware. Theoretical
and implementation efforts are just now starting to receive increased attention.

In the next chapter, we present our GA implementation for the TA
problem—the chromosome representation with standard crossover and mutation

operators.
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Chapter S GA Implementation

In this research, we adopt a straightforward implementation for a genetic
algorithm. We use the simple chromosome representation as briefly mentioned in
Section 4.2, which is a mapping from the integers 1 through T, the number of terminal
sites, to the integers 1 through C, the number of concentrator sites. Standard crossover
and mutation operators are incorporated. A generational genetic algorithm strategy
with roulette wheel selection is used for evolving the populations.

5.1 Chromosome Representation

The first step for the GA implementation involves choosing a represen-tation for
the problem. We use non-binary strings of length T, say s, s, . . . st, where the value
of s; represents the concentrator to which the ith terminal is assigned. This
representation complies with the implementation of a simple genetic algorithm in that a
chromosome is built on a one gene for one object basis. This strategy can easily be
implemented under any GA package that permits integer permutations, such as LibGA.
However, for the sake of comparison, we have also adopted a second GA package,
GENEsYs, which allows only binary representations for strings. In this case, some
mapping from binary strings to non-binary strings is necessary. For instance, Figure 3
in Section 4.2 indicates a chromosome of length 10 in integer representation. The

equivalent chromosome in binary representation used by GENEsYs is illustrated in

Figure 5.
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Figure 5. Chromosome using binary representation
as incorporated in GENEsYs

Every two bits together represent one allele in the original chromosome; the
first two bits, 1 and 0, represent the 2 in the first position of the chromosome in Figure
3, and the next two bits, 1 and 1, represent the 3 in the second position. We should
note that, using the binary representation, the chromosome length is longer than that
using integer representation since it takes more than one bit for integers greater than 1.
In this case, the chromosome is twice as long for the largest integer used is 3, which
requires two bits when converting.

Another difficulty, nevertheless, arises when working with GENEsYs using this
particular representation. Consider a problem instance with 100 terminal sites and 27
concentrator sites. Using the binary scheme, it takes five bits to represent a
concentrator number, ranging from 1 to 27, for any terminal. However, since we have
no control over the random number generator and five bits may well represent any
number between 1 and 32 inclusively, this suggests that it is likely for a chromosome to
consist of not only infeasible but invalid information; e.g., concentrator 30 does not
exist in this caseT Therefore, it is essential to make sure that the elements in the
chromosomes are all valid. In case of an invalid concentrator number, we remedy this
problem by forcing the program to select another random number as a replacement
until a valid number is generated. The necessity of this repair method does, however,

affect the performance of the GA.
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5.2 GA Operators

Throughout this study, we use straightforward genetic operators such as roulette
wheel selection, uniform crossover, and uniform mutation.

When selecting two parents for generating new offspring, we incorporate the
roulette wheel selection technique as presented in Section 4.3.1; i.e., each string
occupies a slot on the roulette wheel according to its fitness value, a spin of the wheel
thus yielding a string in proportion to its probability. However, we should note that,
since the TA problem is a minimization problem, strings with smaller fitness values are
considered better. Therefore, a slight modification is required for this strategy.
Instead of allocating spaces on the roulette wheel to strings proportional to their fitness
values, we allocate each string a slot of size inversely proportional to the fitness value.
Hence, we can guarantee that a string with a smaller fitness value possesses greater
possibility of being selected using this technique.

We take a look again at tﬁe four strings given in Table 3 in Section 4.3.1. The
fitness values of these strings are 231 (19.8%), 422 (36.1%), 154 (13.2%), and 361
(30.9%), respectively. In case of a maximization problem, the percentages in
parentheses are also the percentages they receive on a roulette wheel. On the other
hand, if these four strings are used in a minimization problem, they are assigned sectors
inversely proportional to their fitness values. More specifically, instead of using the
fitness values of the strings, we use the reciprocals of these values when carrying out

the computation. Hence a smaller fitness value is associated with a larger sector and
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vice versa. The percentages the strings now receive are 27.1, 14.8, 40.7, and 17.4.
Figure 6 gives an illustration of the distribution.

@ (1

17.4%
27.1%

40.7% \ 14 8%

€)) )

Figure 6. Roulette wheel with slots sized
inversely proportional to fitness.

After we have selected the parent strings, we proceed by performing uniform
crossover. Namely, all alleles are assigned the same probability and are swapped
uniformly. One drawback of employing this technique is that it does not preserve the
order in the strings for alleles in different positions in the strings can still be exchanged
freely. This problem does have an impact on the TA implementation since the orders
are important in the sense that a terminal is not the same as any other terminal—all
terminals have different locations. However, we choose to work with uniform
crossover, the most straightforward and widely used strategy, for the sake of
comparisons between different GA packages.

Our implementation of the mutation operator is identical to that described in
Section 4.3.3. Mutation is achieved by traversing the strings and altering the values of

some positions according to a pre-defined probability. It is a common practice to use
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the reciprocal of the string length as the mutation rate. We will see in later sections
that this strategy does not apply well to our implementation.

5.3 Fitness Function with Penalty

Unlike many other approaches that handle constrained optimization problems by

a knowledge-based restriction of the search space to feasible solutions, our approach
uses a penalty function to cope with constraints. In other words, rather than ignoring
the infeasible regions and concentrating only on feasible ones, we do allow infeasibly
bred strings to join the population, but for a certain price. A penalty term incorporated
in the fitness function is activated, thus reducing the infeasible string’s strength relative
to the other strings in the population. If the penalty is too harsh, the search is similar
to the one that discards infeasible strings. On the other hand, a very mild penalty fails
to pressure the search towards feasible solutions. In designing fitness functions for
problems that do have infeasible strings, we follow the suggestion found in [23] and
make use of the following two principles:

e The fitness functions use graded penalty functions. Two infeasible strings are not
treated equally. The penalty is a function of the distance from feasibility. It has
been argued that such penalty functions generally outperform other modes of
penalties [29].

* The best infeasible string cannot be better than the weakest feasible string. Thus,
our fitness function always has an offset term to ensure the strict order between

feasible and infeasible strings.
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The fitness function implemented for the TA problem is the sum of two terms:

(1) the objective function as given in Section 2.1 which calculates the total cost of all

T
connections. Namely, Z(x) = " cost;;, where X = x; X, . . . Xr is a solution.

i=1
(2) a penalty function used to penalize infeasible strings, where the weight of the
penalty reflects the excessive load of the concentrators.

The penalty function employed here consists of the sum of two parts. The first part is
the product of the number of terminals and the maximum distance on the grid, which
forces an infeasible solution to have a fitness value greater than the largest possible sum
of costs. More specifically, the best infeasible solution will always have a greater
fitness value than will the worst feasible solution. The second part is the product of the
sum of excessive load of concentrators and the number of concentrators that are in fact
overloaded. This term imposes a heavier penalty on infeasible solutions with greater
excessive load and/or more overloaded concentrators, thus differentiating the degrees of
infeasibility among strings.

In the following chapter, we give an overview of the two GA software packages
used in this research—GENEsYs and LibGA. We discuss some of their unique

features and the options they provide to the users.
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Chapter 6 GA Packages

Over the years, there have been several software packages developed that
provide a workbench for genetic algorithm research. The majority of these packages
use the generational model inspired by GENESIS. A few have adopted the steady-state
model introduced in Genitor.

The first widely available genetic algorithm was GENESIS [18], written by
John Grefenstette in 1984. Since that time, a variety of genetic algorithm packages
haven been developed. Most of these use the generational model. However, a few
incorporate the steady-state model introduced with Genitor [34] in 1988. GAucsd [30]
is 2 GENESIS-based genetic algorithm. It offers several bug fixes and an improved
user interface. It can additionally distribute experiments over a network of machines.
Like GENESIS, GAucsd was designed primarily for use on bit string type
chromosomes, which does not work well with order-based problems [6]. While
GAucsd can encode the integers using grey-code bit strings, it does not ensure that
order is preserved. This can produce chromosomes with invalid allele orderings or
alleles with meaningless bit patterns. GAucsd uses a variant of roulette for selection, a
two-point crossover, and a bit inverting mutation.

Genitor is a steady-state GA which uses a rank-based, biased selection and
weakest chromosome replacement. It has the ability to work with bit, integer and

floating point types. However, steady-state genetic algorithms can converge
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prematurely. They require large pool sizes and many trials to increase the probability
that good solutions are found. Convergent behavior without guarantee of optimality
bothers many people who approach genetic algorithms from other, more traditional,
optimization backgrounds.  There are ways devised to slow down premature
convergence, but the fact is that genetic algorithms have no convergence guarantees in
arbitrary problems. They do sort out interesting areas of a space quickly, but they are
a weak method, without the guarantees of more convergent procedures. One solution
to this problem is to have the GA ferret out the best regions, then take a locally
convergent scheme and climb the local peaks. In this way, one can combine the
globality and parallelism of the GA with the more convergent behavior of the local
technique.

In this research, we implement genetic algorithms with two existing GA
software packages: GENEsYs and LibGA; the former incorporates binary string
representation of chromosomes, while the latter provides integer representation.

6.1 GENEsYs

Based on GENESIS 4.5, the GENEsYs 1.0 software package is implemented by
Thomas Bick [3]. Compared to the standard genetic algorithm as defined by Holland
in 1975, GENEsYs incorporates some extensions that we shall introduce here. These
extensions are developed to perform some experiments with genetic algorithms, and for
testing some features which originally stem from Evolution Strategies [28, 31] in the

framework of genetic algorithms. The code is a mixture of the original lines written by

page 37



Grefenstette and many changes done by Bidck. The software is implemented in C and

runs under the UNIX operating system.

Comparing GENESIS 4.5 and GENEsYs, the following extensions incorporated
in GENEsYs are most remarkable:

e Either command line options or the setup program can be used for invoking the
GA.

e Enhanced data collection features are provided.

e A function table is used, from which the user chooses an objective function when
invoking the GA.

e Several extension of the basic GA are implemented, e.g. m-point crossover,
uniform crossover, discrete and intermediate recombination, adaptive mutation
rates, and Boltzmann selection.

6.1.1 Interface

A typical call of the standard GA is as follows:
ga -P 500 -R 0.01 -C 0.6 -f 37 { -f 200.dat } -t 10000 -e 10 -E &

The options in the above example call configurate the GA to work with a population

size of 500 strings (option P), mutation rate 0.01 (option R), and crossover probability

0.6 (option C). In addition, objective function number 37 is selected by option f, and a

special parameter is passed to f3; by the { -f 200.dat } construction. In this particular

case, the special parameter is an input file containing one problem instance. Ten

independent optimization experiments will be performed (option e), each running for
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10,000 function evaluations (option t). Option E enables the elitism mechanism, which
will be explained in a later section.
6.1.2 Selection

A number of selection schemes are implemented in GENEsYs in order to allow
a comparison of different mechanisms. These special selection schemes include the
standard proportional selection [21], linear ranking [41, Whitley’s linear ranking [35],
uniform ranking [31], uniform ranking with copying, inverse linear ranking, and
Boltzmann selection [17]. Detailed descriptions of these schemes are provided in [2].

In general, each of the selection mechanisms can be used either in their
preservation or extinctive version. In preservation selection schemes, each individual is
assigned a non-zero probability of being selected. On the other hand, an extinctive
scheme does not allow some individuals to be selected by assigning them a selection
probability of zero; these will generally be the worst individuals. The user explicitly
defines the degree of extinctiveness of the GA during the startup process. The default
mechanism is preservation, but the number of individuals taken into account by
selection can be set by the user.

Furthermore, each selection scheme can be turned into an elitist one, thus
guaranteeing the best individual always gets to be copied at least once to the next
generation. The elitist selection strategy stipulates that the best performing structure
always survives from one generation to the next. In the absence of this strategy, it is

possible that the best structure disappears due to crossover and/or mutation. However,
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as De Jong [8] has pointed out, elitism improves local search at the expense of global
perspective.
6.1.3 Crossover

Among adjacent pairs of structures in the new population the crossover operator
exchanges information (the population is randomly shuffled during the selection phase).
In addition to the usual one-point crossover [21] which ex-changes information between
individuals starting at a position chosen at random, the generalizations to m-point
crossover, uniform crossover, discrete recombination, and intermediate recombination
are also available in the GENEsYs software package. Note that the latter two schemes
are taken from Evolution Strategies [31].

The crossover operators can not only be applied to bits which constitute the
alleles of an individual, but also to information which encodes mutation rates as will be
described in the following section.

6.1.4 Mutation

After the new population has been generated, the mutation operation is applied
to each chromosome in the new population. In addition to the commonly used standard
mutation mechanism, GENEsYs also provides some adaptive mutation schemes.

Using the standard mutation mechanism, each position a; € {0, 1} of an
individual {a,, a,, . . ., a;} is given a probability p of undergoing mutation [21], where
the default value of p is 0.001. If mutation does occur, a random value is chosen from

{0, 1} for the selected position.
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The general idea of adaptive mutation is to incorporate the mutation probability
into the individuals’ genotype and to allow for an adaptation of mutation rates by the
same mechanisms of selection, recombination, and mutation as used for adaptation of
the alleles. To accomplish this, each individual is extended by bits encoding either one
or more mutation rates. Each mutation rate is encoded by ! bits, where the default
value of / is 20. The genetic information of the mutation rates is initialized at random.
6.1.5 Options

GENEsYs may be started by using one of two different methods. The first one
is based on a program called “setup”, which explicitly asks for each parameter of the
GA to be input by the user. Default values are announced during this process.
Alternatively, all options may be given to the algorithm by specifying them on the
command line when calling the program ga. In general, this method is more
convenient to the user because the complete setup procedure, during which all possible
parameter and configuration options have to be passed, is rather a lengthy task. Using
command line options, defaults remain unchanged, and the user must only specify the
options s/he wishes to modify.

In the following we illustrate some pertinent options:

e General Options

-e  number of independent optimizations
-f  objective function to be optimized

-h  on-line help information
-t total number of function evaluations per experiment
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e GA-Specific Options
-C crossover rate
-E elitist selection strategy
-M  mutation scheme
-P  population size
-R  mutation probability
-S  selection scheme
-Y crossover scheme
6.1.6 Report
A report summarizing the performance of the GA is automatically generated by
the “report” program. The report contains the mean, variance and range of several
measurements, including on-line performance, off-line performance, the average
performance of the current population, and the current best value. On-line
performance is the mean of all evaluations, and off-line performance is the mean of the

current best evaluations [9].

6.2 LibGA

Incorporating many of the different options and variations of already existing
GA packages, LibGA is developed specifically for order-based problems by Arthur L.
Corcoran and Roger L. Wainwright [6]. LibGA includes a variety of genetic operators
for reproduction, crossover, and mutation. Routines are provided which implement
both generational and steady-state genetic algorithms using the genetic operators.
Other routines are provided for initialization, reading the configuration file, and
generating reports. Moreover, LibGA offers a unique feature of a dynamic generation

gap. Similar to GENEsYs, LibGA is also implemented in C under a UNIX platform.
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6.2.1 Interface

In the main function, GA_config(“ga.cfg”, obj fun) is first called to initialize
and configure the global parameters as specified in the configuration file. A pointer to
these parameters is returned and assigned to ga info. The argument “ga.cfg” is the
path-name of the configuration file and obj fun is a pointer to the user’s objective
function. GA_run() is then invoked to carry out the genetic algorithm using the
parameters in ga_info.

The user’s objective function is called whenever the genetic algorithm needs to
evaluate a chromosome. A pointer to the chromosome in question is passed to the
objective function. The objective function must decode the chromosome (if necessary),
compute the fitness value, and assign that value to the chromosome.

The recommended way to change LibGA’s configuration from the defaults is
through the use of a configuration file. The file is parsed by LibGA using a free
format. Initially, the entire file contains comments (text following a ‘#° character),
meaning all options are supplied by default values. The user need only remove the ‘#’
character to use the new directive to change the configuration for a program.

6.2.2 Selection

The selection mechanisms provided by LibGA are uniform-random, roulette,
and rank-biased. Uniform-random selection simply picks a member of the pool at
random, completely ignoring fitness or other factors. Each chromosome in the pool is

equally likely to be selected. Roulette selection is the classical selection operator for
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generational genetic algorithms as described in Goldberg [16]. Each member of the
pool is assigned space on a roulette wheel proportional to its fitness value. The
members with the best (max or min) fitness value have the highest probability of being
selected. Rank-biased selection is the selection method used in Genitor. The pool is
sorted by fitness value and chromosomes are selected using a selection bias parameter.
The bias (ranging form 1.0 to 2.0) specifies the amount of preference to be given to the
best members of the pool.

Also available in the LibGA package are different replacement mechanisms:
append, by-rank, first-weaker, and weakest. Used in the classical generational GA to
place offspring in the new pool, the append replacement operator appends new
chromosomes to an existing pool. The by-rank operator works with a pool ranked by
sorted fitness values. If the chromosome has a good enough fitness, it is placed in the
pool. In the case of the weakest and first-weaker operators, a chromosome may only
be placed in the pool if it can find a weaker chromosome to displace. The first-weaker
operator performs a linear scan through the pool to find a weaker chromosome and
replaces the first encountered, while the weakest operator replaces the weakest member
of the pool with the new chromosome unless the new chromosome is itself weaker.
6.2.3 Crossover

Simple crossover is used for traditional bit string encodings of the chromosome.
A random crossover point is selected which divides each parent into two parts.

Alternate parts are contributed by each parent to generate two offspring. This is also
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known as single point crossover. This does not work for order-based problems as
order is not being preserved. Other crossover operators included in LibGA are:
orderl, order2, position, cycle, PMX, and asexual, where all serve the purpose of
preserving order information. The orderl, order2, position, cycle, and PMX operators
are discussed in Starkweather et al. [32]. The asexual operator is a simple swap of two
randomly selected genes.
6.2.4 Mutation

LibGA offers 3 different mutation operators: simple-invert, simple-random, and
swap. The simple-invert and simple-random operators are used in bit string
chromosome representations. They both mutate at random, based on the mutation rate.
They also randomly pick the bit to be mutated. The difference lies in that simple-invert
inverts the bit and simple-random selects the value randomly. Since the random
selection could choose the same bit value, one would expect simple-random to invert
the bit only half of the time that mutation occurs. The swap mutation operator is
implemented for inter chromosome representations. As the other operators, it
randomly mutates based on the mutation rate; however, the mutation swaps two
randomly selected alleles.
6.2.5 Dynamic Generation Gap

Generation gap is a parameter used in genetic algorithms to specify the amount
of overlap among generations desired. In generational genetic algorithms, the offspring

are saved in a separate pool until there are as many individuals as in the original pool.
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Then the offspring’s pool replaces the parent’s pool for the next generation. The
situation is quite different in the steady-state genetic algorithm where the offspring and
parents occupy the same pool. Clearly, these two cases represent the two extremes of
overlap between the generations.

In one of his papers, De Jong [10] concluded that generation gap has little
importance in a genetic algorithm. He further concluded that the choice of selection
and replacement strategies have the most profound effect. However, De Jong based his
results on tests performed on genetic algorithms without crossover or mutation.
Therefore, this is still an open question.

In the following chapter, we introduce the third heuristic technique used in this
research—grouping genetic algorithms. We discuss the implementation issues and why

and when the grouping genetic algorithms should be considered.
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Chapter 7 Grouping Genetic Algorithms

An important class of computational problems are grouping problems, where the
aim is to group together members of a set; namely, to find a proper partition of the set.
The standard GAs fare poorly in this domain because of their inherent difficulty of
capturing the grouping information pertinent to these problems. A new encoding
scheme and genetic operators specially tailored for the grouping problems have been
proposed by Emanuel Falkenauer [13], leading to the notion of Grouping Genetic
Algorithms (GGA).

7.1 The Grouping Problems
Many a problem arising in practice consist in partitioning a set U of objects into
a collection of mutually disjoint subsets U; of U such that
v =U
and
UnU =0, ifi#j.

Such problems may also be viewed as those where the aim is to group the
members of the set U into one or more groups of objects, with each object in exactly
one group. In most of these problems, not all possible groupings are allowed: a

feasible solution to the problem must comply with various hard constraints. That is,

usually an object cannot be grouped with all possible subsets of the remaining objects.
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The objective of the grouping is to optimize a fitness function defined over the
set of all valid groupings. We consider the well-known Bin Packing Problem as an
example. The bin packing problem (BPP) consists in placing n objects, each of which
has a weight (w; > 0), in the minimum number of bins, such that the total weight of
the objects in each bin does not exceed the bin’s capacity. All bins are assumed to
have the same capacity (C > 0). In other words, the goal here is to partition n positive
numbers (the weights) into the smallest possible number of subsets B; (the bins), such
that the sum of the integers in each subset does not exceed a positive number C. The
BPP belongs to the class of NP-hard problems [27]. The hard constraint to be met in
this problem is that the sum of sizes of objects in any group (bin) must not exceed the
specified capacity, C, and the objective function to be optimized (minimized in this
case) is the number of bins used. This is an example of a minimization grouping
problem as we would like to use as few bins (groups) as possible.

The bin packing problem can serve as a good indication that the grouping
problems are characterized by objective functions that depend on the composition of the
groups as a whole instead of on the individuals in any particular group; that is, an
object taken in isolation has little or no meaning to the feasibility of a solution.

7.2 Features of GGA

Developed to work with the grouping problems, the grouping genetic algorithm

differs from a standard GA in two aspects: (1) a special encoding scheme is used to
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incorporate relevant information of grouping problems, and (2) given the new
encoding, special genetic operators are designed to suit the chromosomes.
7.2.1 The Encoding

Neither the standard nor the order-based genetic operators are appropriate for
the grouping problems, the reason being that the structure of the simple chromosomes
only deal with the objects and ignore group entities. As we have noted, the objective
function of a grouping problem depends on the groups, but there is no structural
counterpart in the chromosomes that is capable of keeping track of this piece of
important information. To remedy this problem, the following encoding scheme has
been devised: a simple (standard) chromosome is augmented with a group part, where
the groups are encoded on a one gene for one group basis.

More concisely, we consider a chromosome for the bin packing problem.
Assume a problem instance with 6 objects. Labeling them from 0 through 5, the object
part of the chromosome is of the following form:

O 1 2 3 4 5

A D B C A B
meaning objects 0 and 4 are placed in the bin labeled A, 2 and 5 in bin B, 3 in C, and
1in D. Up to this point, it is a straightforward encoding of chromosomes in simple
GA. The group part of the chromosome contains the grouping information (bins in
BPP):

A B C D.
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By looking up the information in the object part, we can easily establish what the group
names stand for. Specifically,

A=1{0,4},B={2,5},C={3},and D = {1}.
The essence of GGA lies in that the genetic operators will now work with the group
part of the chromosomes while the standard object part merely serves to identify the
group each object belongs to. This also implies that the operators must be capable of
dealing with chromosomes of variable length.

In short, the encoding scheme adopted here makes the genes represent the
groups. The rationale is that, in grouping problems, it is the groups that are the
meaningful building blocks, i.e., the smallest piece of a solution that conveys
information on the expected quality of the solution. This is crucial for the very idea
behind the GA paradigm is to perform an exploration of the search space so that the
promising regions are identified, together with an exploitation of the information thus
gathered, by an increased search effort in those regions. If, on the contrary, the
encoding scheme does not allow the building blocks to be exploited and simultaneously
serve as estimators of quality of the regions of the search space they occupy, then the
GA strategy inevitably fails and the algorithm is little more than a random search.

7.2.2 Crossover

As pointed out in the previous section, a remarkable feature of the crossover

operator in GGA is that it works with chromosomes of variable length where the genes

represent the groups.
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Due to the fact that the hard constraints and the objective function vary among
different grouping problems, an approach to combine groups of one problem does not
necessarily apply to another problem. Thus, the crossover strategy will not be the same
for all problems. However, it will follow the general pattern outlined in the following:
1. Randomly select two crossing sites for each of the two parents. Note that we are

working with the group part of the chromosomes, meaning we select a crossing
section among the groups.

2. Insert the contents between the two crossing sites of the first parent to the second
parent. The position to insert the information may be fixed, say, at the beginning of
the crossing section, or may be randomly generated. This process inserts some of
the groups from the first parent into the second.

3. Eliminate all objects that now occur twice from their “old” groups in the second
parent. Semantically, this means the new membership forces the old to give way.
As a consequence, some of the original groups in the second parent have to be
altered, and they may not contain all the objects since some of them have to be
eliminated.

4. If necessary, local problem-dependent heuristics can be performed according to the
hard constraints and the objective function to be optimized.

5. Apply steps 2 through 4 to the two parents with their roles exchanged in order to

generate the second offspring.
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We now illustrate the above procedures using BPP as an example. A
crossover’s task consists of producing offspring out of two parents in such a way that
the children inherit as much as possible of the meaningful information from both
parents. Since it is the group (bin) that conveys important information in BPP, we
must find a way to transmit bins from the parents to the children. We consider two

chromosomes (with emphases on the group part):

0O 1t 2 3 4 5

A D B C A B : A B C D
and

0O 1 2 3 4 5

b ¢ a ¢ b ¢ : a b c

First, two crossing sites are chosen at random for each of the two parents,
yielding, for instance,
A B | CD |
and
| a b | c
Next, the bins between the crossing sites in the second chromosome are inserted
into the first at the first crossing site, yielding
A Bab CD.
Now some of the objects appear twice in the solution and must be eliminated.
The object part of the second chromosome reveals that objects labeled 0, 2, and 4 are
to be eliminated from their original membership. Thus, we eliminate group A and B,

leaving

a b CD.
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With the elimination of the two bins, however, we have also eliminated object 5
entirely. To fix this problem, a local heuristic may be applied to reinsert the missing
object. For instance, the First Fit Decreasing Algorithm first sorts the objects by their
weights in decreasing order and then uses the First Fit Algorithm which places an
object in the first bin that has enough space.

After the first child has been created, we reverse the roles of the two parent
strings and repeat the above procedure in order to generate the second child, as
instructed by step 5.

7.2.3 Mutation

Similar to the crossover operator, mutation for the grouping problems must also
work with the group part of the chromosomes rather than the object part. The
implementation details of the mutation operator depend on the particular problem to be
optimized; however, two general strategies can be sketched here: (1) creating a new
group, and (2) eliminating an existing group. For some problems, a third strategy can
also be applied: shuffle a small number of randomly selected objects among their
respective groups.

In the case of BPP, we may incorporate a simple mutation operator: given a
chromosome, select at random a few bins (groups) and eliminate them; the objects that
compose these bins are thus missing from the solution. Taking the chromosome from

the previous section as an example, we have
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O 1 2 3 4 5
A D B C A B A B C D.

Suppose at random bins A and C are selected to be eliminated during this phase;
namely, objects labeled 0, 3, and 4 are to be eliminated. The remaining group part
becomes

C D.

We can now apply the First Fit algorithm to insert the missing objects back into

the solution.

7.3 GGA Implementation of the TA Problem

The setup of the GGA implementation is similar to that of the simple GA. We
use an augmented form of the simple chromosome as suggested in the previous section.
In addition, modifications on some of the GA operators are made in order to work with
the group part of the chromosomes. The fitness functions used for the two heuristics
are identical and have been introduced in Section 5.3.

In our GGA implementation, a chromosome that represents the optimal solution

to the problem instance given in Section 2.2 is of the following form:

2312223131 : A3 810B145¢6¢C2709

Figure 7. Chromosome in GGA representing
optimal solution to the example in Section 2.2.

where the first half, identical to the entire chromosome in GA, is the object part and
the second half is the group part. In the object part, the value in the ith position

indicates the concentrator to which the ith terminal is assigned. In the group part, we
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gather all the terminals connected to one concentrator and specify this relationship by
listing these terminals following the concentrator. For instance, terminals 3, 8, and 10
are assigned to concentrator A. In this example, concentrators are labeled with letters
to be separated from the labels of terminals. However, in our actual implementation,
since it is difficult to handle a data structure that permits both letters and integers, we
still label the concentrators with integers. We make the distinction by using larger
numbers for concentrators. For example, given a problem instance of 10 terminal sites
labeled from 1 through 10, the concentrators will be labeled starting 11, thus different
from all terminal labels.

In GGA, we use the same roulette wheel selection as we do in GA. Since the
new chromosome architecture does not affect the fitness value of a string, there is no
need to modify the existing selection strategy. The crossover operator, however, has
been altered to work solely with the group part.

Crossover is accomplished by first selecting a crossing section for both parent
chromosomes. The entire crossing section of the second parent is then injected into the
first parent at the beginning of its crossing section. Since new groups are now
included, we eliminate the equivalent groups that are originally in the first parent.
Consider the group parts of two chromosomes.

Ist: A 3 8 10|B 1 4

5 6|lc 2
2nd: B 1 3 6 7 9 10]|Cc 2 5

7 9
8 A 4 |
Assume the delimiters (¢ | “) indicate the crossing sections. After we inject the crossing

section of the second parent into the first parent, we have :
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A3 810 C2 5 844 B1456C271709
Now we have two groups labeled A and two labeled C. We resolve this redundancy by
eliminating groups A and C from their old membership, yielding

C 2 5 8 A 4 B 1 4 5 6.
The string is now free of duplicate groups; however, it is likely that it still contains
duplicate objects. In this case, terminals 4 and 5 are duplicate. We need to remove
these objects from their old memberships as well, resulting in
C 2 5 8 A 4 B 1 6.

This leaves out terminals 3, 7, 9, and 10 from any group. At this stage we carry out
the first-fit heuristic to re-assign these objects: visits the groups one at a time, assigns
the object to the first group that is able to service, or to a randomly selected group if
none is available.

After the first offspring has been generated, we reverse the roles of the two
parents and start the construction of the second offspring. This implementation
complies with the steps listed in Section 7.2.2.

The mutation operator is in essence quite different from a random alteration of
values in the chromosomes as done in GA implementation. We adopt the strategy of
probabilistically removing some groups from the chromosome and reassigning the
missing objects. We consider the chromosome in Figure 7. Assume concentrator
(group) B is removed due to probability. In doing so, we leave terminals (objects) 1,

4, 5, and 6 unassigned. Consequently, we need to perform a first-fit heuristic on these
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objects. Namely, for each unassigned terminal, the algorithm looks into the
concentrators one by one. The terminal is assigned to the first concentrator that is able
to service. The strength of this mutation strategy lies in that, if before mutation a
string is feasible, it is highly likely that it will still be feasible after mutation. This is
due to the fact that, in the worst case when no other concentrators are available, all the
terminals may again be assigned to the original concentrator(s) they belong to.

In the next chapter we present the problem instances we use in this research.
These are randomly generated but highly constrained cases. We also discuss a similar

work in the literature on the TA problem using the same test cases.
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Chapter 8 Test Cases

The greedy algorithm, genetic algorithm, and grouping genetic algorithm are
applied to ten different collections of 100 terminal sites and to one collection each of
200, 300, and 400 terminal sites [1]. In each case, the capacity of each concentrator is
assumed to be 12, and the capacity requirement (weight) of each terminal is selected to
be a random integer in the range 1 - 6. For each problem instance, the number of
concentrators is determined in the following fashion: a quotient, Q, is computed by
dividing the sum of capacity requirements of the terminals by the capacity of a single
concentrator. The number of concentrators is then selected to be the floor of the
number that is 7% in excess of Q. For example, the total weight requirement of 100
terminals in the first test case is 364. The computed quotient Q is then 30.33, 7% in
excess of which is 32.46. Therefore, the resulting number of concentrator in this case

is 32. Table 4 records the number of concentrators for each problem instance.

Number of Terminals 100

Number of Concentrators | 32| 32| 31 33127 27| 31 {27 31 ] 31

Number of Terminals 200 300 400

Number of Concentrators 63 96 128

Table 4. Number of concentrator sites used
for each problem instance.
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The locations for both the terminal sites and the concentrator sites are randomly
generated on a 100 X 100 Euclidean grid. In each case, the cost of a connection
between a terminal site and a concentrator site is taken to be the rounded Euclidean
distance.

The thirteen problem instances specified in Table 3 have been proposed and
experimented by Abuali et al. [1]. The derived conclusion in this particular work was
that the resulting GA implementation of the TA problem outperformed the greedy
algorithm in all of the test cases. In tightly constrained cases, the GA implementation
was able to find good solutions while the greedy algorithm was often unable to find a
feasible solution. Moreover, for the nine out of ten cases of 100 terminal sites where
the greedy algorithm found a solution, the mean percentage improvement of the best
genetic algorithm solution over the best greedy algorithm solution was 10.4%. The
results for the data sets of 200, 300, and 400 terminals sites are similar and show
significant improvement for the genetic algorithm over the greedy heuristic. The
average improvement is 11.8%.

The results revealed in [1] are very encouraging and provide a good indication
of the capability of the genetic algorithms when applied on the TA problem. However,
in their work only the best costs are recorded; the actual assignments of the terminals
(best assignment strings) are not available through either public or private channels.

Moreover, there is no indication in their paper of the number of generations each run

undergoes.
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In the following chapter, we present and compare the results of executing our

heuristic algorithms on these test cases.
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Chapter 9 Experiments

The three heuristic algorithms are applied to the test cases.

results we have obtained followed by an analysis.

9.1 Results

We present the

Tables 5.1 and 5.2 summarize the results of executing the heuristic algorithms

on all 13 test cases.

Greedy Genetic Algorithm

Algorithm GENEsYs LibGA GGA

100 1 1203 1153 1138 1115
100 2 1253 1180 1159 1166
100 3 1274 1216 1181 1170
100 4 1438 1394 1344 1359
100 5 1600 1540 1500 1469
100_6 1446 1393 1373 1388
100_7 1961 1917 1838 1863
100_8 1865 1803 1702 1781
100 9 1564 1492 1425 1412
100_10 1367 1251 1216 1225

Figure 5.1. Best solutions of applying heuristics
on test cases of 100 terminals each.
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Greedy Genetic Algorithm
Algorithm GENEsYs LibGA GGA
200 2002 1939 1898 1919
300 2673 2607 2579 2595
400 3432 3327 3282 3316

Table 5.2. Best solutions of applying heuristics
on test cases of 200, 300, and 400 terminals.

The solutions yielded by the GAs and GGA are based on seeding; i.e., the initial
population is not randomly generated, but rather a set of feasible solutions given by the
greedy algorithm.

9.2 Analysis

The results listed under the greedy algorithm are the best solutions yielded by
the our implementation of greedy algorithm after 20,000 executions in each case. All
experiments are independent of all others, and the order of assignments is entirely
determined by the random number generator. Consequently, we cannot guarantee that
the orders in the 20,000 runs are all distinct. In other words, there may be exact
duplicates among the solutions. However, we believe the chance of this situation
arising is slim considering the number of permutations of 100 integers is extremely
large. We also believe the solution should definitely improve if more runs are

performed to explore a wider range of the search space. We force the algorithm to stop
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after 20,000 iterations in order to make a comparison with the genetic algorithms which
also iterate for 20,000 generations.

The three columns under genetic algorithms are results given by our
implementations of genetic algorithm using GENEsY's and LibGA, and of the grouping
genetic algorithm. We have to pay attention to the issue that these results are obtained
using seeding; i.e., the initial population is not entirely randomly generated but rather
supplied by sources such as an iﬁput file containing feasible strings alone. Seeding is a
widely used technique when approaching optimization problems provided there exists
efficient means to confine the search space to feasible instead of random strings. This
method is useful since it allows the GA to reach feasible regions very fast; otherwise,
the GA may have to wander for a large number of generations in the search space
before the feasible regions can be identified. Seeding is not a necessary ingredient in
GA implementations. We incorporate this strategy in our research because, without
seeding, our GAs fail to produce better solutions than does the greedy algorithm given
the same condition.

Since our greedy algorithm runs very efficiently and yields feasible solutions
consistently, we use the greedy algorithm to help identify the feasible regions for the
GAs. We run the greedy algorithms for 20,000 iterations and record all the feasible
solutions it encounters. From the set of feasible solutions we then randomly choose
500 strings to be used as the initial population for the GAs. This suggests that we use a

population size of 500 for all our GA experiments throughout the study.
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For each of the GA experiments, we use the same number of generations
(20,000), the same population size (500) and the same crossover rate (0.6). Depending
on the GA implementation, we adopt different mutation rates. For simple GAs using
GENEsYs and LibGA, we abandon the commonly used strategy of taking the
reciprocal of chromosome length as the mutation rate; e.g., for a chromosome of
length 100, the mutation rate is 0.01. Instead, we take on a higher mutation rate for
the experiments; €.g., 0.1 for the same problem instance. This is to cope with the
highly constrained nature of the test cases. Namely, the feasible regions are rather
sparse compared to the search space. We use higher mutation rate in the hope of
discovering other feasible regions in the search space. As it turns out, the better results
yielded by higher mutation rates appear to support our assumption.

On the other hand, for the GGA experiments, we use the reciprocal of the
number of groups as the mutation rate; e.g., for a problem instance of 30
concentrators, the mutation rate is 0.033. This is not surprising since GGA works with
groups.

As indicated in Tables 5.1 and 5.2, for a large majority of the problem instances
(9 out of 13), the genetic algorithm implemented using LibGA consistently yields the
best solution among the 4 heuristics. The greedy algorithm is the fastest algorithm, but
it does not always produce near optimal solutions as can be derived from the tables: the
improvement from the greedy algorithm to the GAs ranges between 3.5% and 11%. In

all cases, GENEsYs does not perform as well as the other two GA implementations.
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The results also seem to suggest that using GGA does not necessarily lead to better
solutions even though the TA problem certainly possesses the properties of grouping
problems. However, we would like to point out that, since the implementation of GGA
is problem dependent in terms of the crossover and mutation operators, the strategies
we adopt in this work are possibly not the most suitable for the TA problem. Other

possible ways of implementing the GA operators may make a difference.
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Chapter 10 Conclusion

This research has demonstrated the applicability of heuristic techniques to find
approximate solutions for the terminal assignment problem. In this work, we
considered a greedy algorithm, a genetic algorithm, and a grouping genetic algorithm.
While the greedy algorithm is specially devised for the TA problem, genetic algorithms
are general purpose evolutionary heuristics designed for a wide range of problems
instead of any specific problem. However, the genetic algorithms have shown to
outperform the greedy algorithm in all thirteen test cases used in this study. Even
though our findings may not be conclusive, the results tend to suggest that the genetic
algorithms work well with this particular problem. Moreover, it is very possible that

different representations and genetic operators can lead to even better solutions.
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GREEDY ALGORITHM



/****************************************************

file : GREEDY.C
author : Teresa L. Chiu July 27, 1994

purpose : Implementation of a greedy algorithm for
Terminal Assignment Problem

****************************************************/

/* include section */
#include <stdio.h>
#include <stdlib.hs
#include <time.h>
#include <math.h>
#include <values.h>

/* constant */
##define TRUE 1
#define FALSE 0

/* typedef section */
struct node_type

int conc;
int dist;
struct node_type *next;

’

typedef struct node_type *NODE;

struct cost_type

NODE head;
NODE tail;
int terminal;

struct cost_type *next;

bi
typedef struct cost_type *C_NODE;
struct c_list

C_NODE head;
C_NODE tail;

4
typedef struct c_list *COSTS;

/* function prototype */

void read_input (FILE *, int, int, int *, int **, int **);
void get_cost (int, int, int **, int **, COSTS *);

int connect (int, int, int, int *, COSTS, int **, long int *);
void print_table (FILE *, int, int **, long, int);

void free_list (COSTS *);
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/* function implementation */
int main (int argc, char **argv)

int TerSize, /* number of terminals */
ConSize, /* number of concentrators */
Capacity, /* capacity requirement of concentrators */
J.
count, /* number of terminals unassigned */
num = 0; /* number of feasible solutions #*/
long i,
runs, /* number of runs - command line parameter */
cost, /* fitness value for one solution */
best = MAXLONG; /* overall best cost obtained */
int *TerWeight, /* weight requirements of terminals */
**TerCoord, /* coordinates of terminals */
**ConCoord, /* coordinates of concentrators */
**ConnectList; /* actual assignment of terminals */
time_t t; /* for random number generator */
COSTS CostList; /* costs from terminals to concentrators */
FILE *fpw, /* output file - command line parameter */
*fpr; /* input file - command line parameter */

if (argc!=4)

printf ("\nUSAGE : greedy inputfile outputfile runs\n\n");

exit (1);

if ((fpw = fopen (argv([2], "w")) == NULL)
printf ("\nCould not open file for writing.\n");
exit (1);

fprintf (fpw, "\n***x*x% g *x*x*x%*x*\n ", argv[i]);

/* convert command line argument */
runs = atol (argv([3]);
srand ((unsigned) time (&t));

if ((fpr=fopen(argv([l], "r")) == NULL)
printf ("\nCould not open %s for reading.\n", argvli]);

exit (1);

/* obtain basic information of problem instance - number of terminals,
number of concentrators, and concentrator capacity */
fscanf (fpr, "%d %d %d", &ConSize, &TerSize, &Capacity);

if ((TerWeight = (int *) calloc (TerSize, sizeof (int))) == NULL |
(TerCoord = (int **) calloc (TerSize, sizeof (int *))) == NULL ||
(ConCoord = (int **) calloc (ConSize, sizeof (int *))) == NULL)

printf ("\nNot enough memory.\n") ;
exit (1);
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for (i=0; i<TexSize; i++)
if ((TerCoord{i] = (int *) calloc (2, sizeof (int))) == NULL)

printf ("\nNot enough memory.\n");
exit (1);

for (i=0; i<ConSize; i++)
if ((ConCoordli] = (int *) calloc (2, sizeof (int))) == NULL)

printf ("\nNot enough memory.\n");
exit (1);

/* obtain information of terminals and concentrators */
read_input (fpr, TerSize, ConSize, TerWeight, TerCoord, ConCoord) ;
/* compute costs of linking terminals to concentrators */
get_cost (TerSize, ConSize, TerCoord, ConCoord, &CostList);

if ((ConnectList = (int **) calloc (TerSize, sizeof (int *))) == NULL)

printf ("\nNot enough memory.\n");
exit (1);

for (j=0; j<TerSize; j++)
%f ((ConnectList [j] = (int *) calloc (2, sizeof (int))) == NULL )

printf ("\nNot enough memory.\n");
exit (1);

}
for (i=0; i<runs; i++)

/* attempt to connect the terminals to concentrators */
count = connect (TerSize, ConSize, Capacity, TerWeight, CostList,
ConnectList, &cost);

/* test if all terminals have been assigned */
if (count==0)

/* test if the cost if better than previous ones */
if (cost<best)

print_table (fpw, TerSize, ConnectList, i, cost);
best = cost;

}

/* another feasible solution */
num++;

}
}

fprintf (fpw, "\nTotal of %d feasible solution(s).\n", num);
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if (nums>o0)
fprintf (fpw, "Best cost calculated for this run : %1d\n\n", best);

/* clean up memory locations and close files*/
for (j=0; j<TerSize; j++)
free (ConnectList[j]);
free (Connectlist);
free (TerWeight);

for (i=0; i<TerSize; i++)
free (TerCoordiil);
free (TerCoord);

for (i=0; i<ConSize; i++)
free (ConCoord(il);

free (ConCoord);

free_list (&CostList);

fclose (fpr);
fclose (fpw);

return 0;

}

/* Reads information of terminals (weights and coordinates) and
concentrators {(coordinates).
*/
void read_input (FILE *fp, int TerSize, int ConSize, int *TerWeight,
int **TerCoord, int **ConCoord)

int i, j;

/* terminal coordinates and weights */
for (i=0; i<TerSize; i++)
fscanf (fp, "%d %4 %d4", &(TerCoord[i] [0]), &(TerCoordl[il] [1]),
&(TerWeight [i])) ;

/* concentrator coordinates */
for (i=0; i<ConSize; i++)
fscanf (fp, "%d %d", &(ConCoord[i] [0]), &(ConCoordli] [1]1));

/* Computes individual costs of linking terminals to concentrators.
Cost is taken to be the rounded Euclidean distance between two
locations.
*/
void get cost (int TerSize, int ConSize, int **TerCoord, int **ConCoord,
{ COSTS *CostList)

int i, j, cost, holdl, hold2;

NODE ntemp, hold;

C_NODE ctemp;

if (((*CostList) = (COSTS) malloc (sizeof (struct c_list))) == NULL)

printf ("\nNot enough memory.\n");
exit (1);
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}

(*CostList) ->head
(*CostList) ->tail

NULL;
NULL;

(||

/* store costs of linking terminal i to all concentrators */
for (i=0; i<TexrSize; i++)

ctemp = (C_NODE) malloc (sizeof (struct cost_type)) ;
if (ctemp==NULL)

printf ("\nNot enough memory.\n");
exit (1);

ctemp->head NULL;
ctemp->tail NULL;
ctemp->terminal = i;
ctemp-s>next = NULL;

/* link to the end of cost_list */
if ((*CostlList)-~->head == NULL)
(*CostList) ->head = ctemp;
else
(*CostList) ->tail->next = ctemp;
(*CostList) ->tail = ctemp;

/* individual costs are being computed here */
for (j=0; j<ConSize; j++)

hold1l TerCoord[i] [0] - ConCoorxd[j] [0];
hold2 TerCoord[i] [1] - ConCoord[j] [1];
cost = sqgrt (holdl * holdl + hold2 * hold2);

ntemp = (NODE) malloc (sizeof (struct node_type));
if (ntemp==NULL)

printf ("\nNot enough memory.\n");
exit (1);

ntemp->conc = j;
ntemp->dist = cost;
ntemp->next = NULL;

/* link to ctemp in increasing order of cost */
if (ctemp->head==NULL)

ctemp->head = ctemp->tail = ntemp;
Tlse

/* start sorting */

hold = ctemp-s>head;

if (hold->dist>ntemp->dist)

ntemp->next
ctemp->head

hold;
ntemp;
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else

while (hold->next!=NULL && hold-s>next->dist<ntemp->dist)
hold = hold-s>next;
if (hold->next==NULL)

ctemp->tail-s>next = ntemp;
ctemp->tail = ntemp;

else

{
ntemp->next = hold-snext;
hold-s>next = ntemp;

/* Connects terminals to concentrators in a random order. A terminal
is connected to its closest concentrator possible. Returns the number
of terminals that cannot be assigned.
*/
int connect (int TerSize, int ConSize, int Capacity, int *TerWeight,
COSTS CostList, int **ConnectList, long *cost)

int i, term no, num,
count = TerSize,
done = FALSE,
flag;
int *ConWeight; /* capacity taken up in concentrators */
C_NODE ctemp, hold;
NODE ntemp;

if ((ConWeight = (int *) calloc (ConSize, sizeof (int))) == NULL)
printf ("\nNot enough memory.\n");
exit (1);

for (i=0; i<ConSize; i++)
ConWeight [i] = 0;

*cost = 0;

/* assign a randomly chosen terminal */
do

{

num = ConSize;
term no = rand () % count;

/* go to the appropriate terminal */
ctemp = CostList-shead;
for (i=0; i<term no; i++)

hold = ctemp;
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ctemp = ctemp->next;

/* number of terminal that is now to be assigned */
term_no = ctemp->terminal;

flag = FALSE;
ntemp = ctemp->head;

/* £ind the closest concentrator that still has room */
do

/* connect if concentrator not overloaded */
if (ConWeight [ntemp->conc]+TerWeight [term_no] <=Capacity)

ConWeight [ntemp->conc] += TerWeight [term no];
ConnectList [term_no] [0] ntemp->conc;
ConnectList [term_no] [1] ntemp->dist;

*cost += ntemp->dist;

flag = TRUE;

else

/* try the next closest concentrator */
num--;
ntemp = ntemp->next;

} while (num>0 && !flag);

if (num==0)
/* some terminal cannot be assigned at all */
done = TRUE;
?lse
/* move the terminal to the end of list */
CostList->tail->next = ctemp;
CostList->tail = ctemp;
if (ctemp==CostList->head)
CostList->head = ctemp->next;
else
hold->next = ctemp->next;
ctemp->next = NULL;
count--;

}

while (!done && count > 0);

free (ConWeight) ;
return count;

/* Prints out the assignment of terminals and the total cost if the

solution is feasible.

void print_table (FILE *fp, int TexrSize, int **ConnectList, long num,

int cost)
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int 1i;

fprintf (fp, "\nTotal cost of run %14 : %d\n", ++num, cost);
fprintf (fp, "\nThe assignment : \n");
for (i=0; i<TerSize; i++)

fprintf (fp, "%d ", ++ConnectList[i] [0]);
fprintf (£p, "\n");
fprintf (fp, "\n=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=\nll) ;

}

/* Frees up memory location of CostList.
*/
void free_list (COSTS *CostList)

C_NODE ctemp;
NODE ntemp;

while (({(*CostList)-s>head!=NULL)

ctemp = (*CostList)->head;
while (ctemp->head!=NULL)

ntemp = ctemp->head;
ctemp->head = ctemp-s>head->next;
free (ntemp);

(*CostList) ->head = ctemp->next;
free (ctemp);
free (*CostList);

[HIkkIkk kg kkkkkkkkkkkkhkkdk BEnd of File *kkkkkkkdkkkknkddhdhhhhhhhhkks/
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IMPLEMENTATION
OF
GENETIC ALGORITHM

(GENEsYs)



/******k*********************************************************/

/* */
/* Copyright (¢) 1996 */
/* Teresa L. Chiu */
/* */
/* Department of Math & Computer Science */
/* San Jose State University */
/* San Jose, CA 95192 */
/* */
/* e-mail: chiu@mathcs.sjsu.edu */
/* * /
/* Permission is hereby granted to copy all or any part of */
/* this program for free distribution. The author’s name */
/* and this copyright notice must be included in any copy. */
* *
5****************************************************************;
/*

* file: £ 37.c

*

* author: Teresa L. Chiu, March 25, 1996

*

* Terminal Assignment Problem

*

/* include section */
#include "../define.h"
#include "../extern.h"

/* constant */

#define MAX DIST 141 /* maximum distance on 100 X 100 grid */
#define TRUE 1
##define FALSE 0

extern FUNCTION f_tabl(];

double

f 37 (x, Length, FsbFlg)
register int x[];
register int Length;
register int *FsbFlg;

static int Flg = TRUE,

TerSize, /* number of terminals */

ConSize, /* number of concentrators */

Capacity, /* capacity requirement of concentrators */

bit_no; /* bits required for each terminal */
static int *TerWeight, /* weight requirements of terminals */

*ConWeight, /* capacity taken up in concentrators */

**TerCoord, /* coordinates of terminals */

**ConCoord, /* coordinates of concentrators */

**Costs, /* costs from terminals to concentrators */

*y; /* integer representation of strings */
double terml, term2, log(), sqrt(), pow();
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int i, j, hold,

CostSum = 0, /* cost of an assignment */

Violation = 0, /* number of overloaded concentrators */
Penalty = 0; /* penalty for infeasible strings */

FILE *fp; /* information of problem intance */
%f (Flg)

/* retrieve input data */
if ((fp = fopen (f_tab[F nbr].DatFilNam, "x")) == NULL)

printf ("%s/f_37 : Couldn’t open datafile (%s)\n", _Ga,
f_tab[F_nbr] .DatFilNam) ;
exit (2);

/* number of concentrators */
readval (fp, "%d", &ConSize);
if (ConSize < 1)

printf ("%s/f_37 : Can’t connect terminals to %d concentrators\n",

_GA, ConSize);
exit (2);

/* calculate number of bits in vector x needed for one terminal */
bit_no = ceil (log ((double) ConSize) / log (2.0));

/* number of terminals */
readval (fp, "%d", &TerSize);
if (TerSize * bit_no != Length)

printf ("%s/f_37 : Wrong data dimension (%d, %d, %d)\n",
_GA, TerSize, Length, bit_no);
exit (2);

/* concentrator capacity */
readval (fp, "%d", &Capacity);
if (Capacity < 1)

printf ("%s/f_37 : Unacceptable concentrator capacity (%d)\n",
GA, Capacity);

exit (2)7;
if ((TerWeight = (int *) calloc (TerSize, sizeof (int))) == NULL ||
(TerCoord = (int **) calloc (TerSize, sizeof (int *))) == NULL
(ConCoord = (int **) calloc (ConSize, sizeof (int *))) == NULL
(Costs = (int **) calloc (TerSize, sizeof (int *))) == NULL |
(ConWeight = (int *) calloc (ConSize, sizeof (int))) == NULL |
(y = (int *) calloc (TerSize, sizeof (int))) == NULL)

printf ("%s/f_37 : Calloc failed\n", _GA);
exit (2);
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for (i=0; i<TerSize; i++)
if ((TerCoord[i] = (int *) calloc (2, sizeof (int))) == NULL ||
(Costs[i] = (int *) calloc (ConSize, sizeof (int))) == NULL)

printf ("%s/f_37 : Calloc failed\n", _GA);
exit (2);

for (i=0; i<ConSize; i++)
if ((ConCoord[i] = {(int *) calloc ( 2, sizeof (int))) == NULL)

printf ("%$s/f_37 : Calloc failed\n", _GA);
exit (2);

/* terminal coordinates and weights */
for (i=0; i<TerSize; i++)

readval (fp, "%d", &(TerCoordlil [0]));
readval (fp, "%d", &(TexrCoordl[i] [1]));
readval (fp, "%d", &(TerWeight[i]));

/* concentrator coordinates */
for (i=0; i<ConSize; i++)

readval (fp, "%d", &(ConCoord([i] [0]

));
readval (fp, "%d4d", &(ConCoord[il] [1]));

/* compute the costs of linking terminals and concentrators */
for (i=0; i<TerSize; i++)
for (j=0; j<ConSize; j++)

terml = (double) (TerCoord[i] [0] - ConCoordl[j] [0]);
term2 = (double) (TerCoord[i] [1] - ConCoord[j] [1]);
Costs[i] [j] = (int) sqrt (terml * terml + term2 * term2);

fclose (£p);
Flg = FALSE;

}

/* convert binary vector x into equivalent integer vector y */
for (i=0; i<TerSize; i++)

yl[il = 0;
for (j=0; j<bit_no; j++)

y[i] += x[i*bit_no+j] * (int)pow(2, bit_no-j-1);
if (y[i] >= ConSize)

yvI[i] rand () % ConSize;
hold = yI[i];
for (j=0; j<bit_no; Jj++)

x[i*bit_no+j]l = hold/(int)pow(2, bit no-j-1);
hold -= x[i*bit_no+j];
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}
}
}

*FsbFlg = TRUE;
for (i=0; i<ConSize; i++)
ConWeight [i] = 0;
for (i=0; i<TerSize; i++)
ConWeight [y [i]] += TerWeight[i];
for (i=0; i<ConSize; i++)
/* any overloaded concentrator makes the assignment infeasible */
if (ConWeight[i] > Capacity)

*FsbFlg = FALSE;
Violation++;
Penalty += (ConWeight[i] - Capacity);

/* cost of assignment */
for (i=0, CostSum=0; i<TerSize; i++)
CostSum += Costs[i] [y[il];

if (!*FsbFlg)

return (CostSum + PenConst * TerSize + Penalty * Violation);
else :

return CostSum;

int

f_37R (x, n)
register double xI[];
register int n;

return 0;

[FrIEII RS Ihk ko kkkkkdhkkdkdk* BEnd Of File *kkkkkdkkkkhkdhdhdkhhkhhhhhhn/
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/****************************************************************/

/* */
/* Copyright (c) 1992 */
/* Thomas Baeck */
/* Computer Science Department, LSXI * /
/* University of Dortmund * /
/* Baroper Str. 301 * /
/* P.O. Box 50 05 00 *x/
/* D-4600 Dortmund 50 */
/* Germany * /
/* */
/* e-mail: baeck@home.informatik.uni-dortmund.de */
/* baeck@lsll.informatik.uni-dortmund.de */
/* */
/* Permission is hereby granted to copy all or any part of * /
/* this program for free distribution. The author’s name */
/* and this copyright notice must be included in any copy. */
/* */
/****************************************************************/
/*

* file: define.h

*

* author: Thomas Baeck

*

* created: October 7th, 1992

*

* purpose: Type and constant definitions for the

* Genetic Algorithm software.

*

* modified: January 13th, 1992

*

* Added a constraint component to the function table

* entries. Rst returns 1, if a constant is violated,

* 0 else.

*

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.hs>

/*******************************************************************/

#define

INTSIZE 32 /* bits per unsigned int */

/*******************************************************************/

#define
f#define
##define
#define
f##define
##define
#define
#define

C_LBRACE r{

S_LBRACE "

C_RBRACE %

S_RBRACE wiw
S_WHITESPACE " \t\r\n\v\£"
S_STRDEL " \ s \ nn
C_COMMENT T’

S_COMMENT iy
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left curly brace */
right curly brace */
white space characters */

list of string delimiters */
comment character */



/*

* Several constants for parameterization etc.

*/
#define

#define
#define
#define
#define

#define

#idefine
#idefine

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#idefine

#idefine
#define
#define
#define
f#define
#define

/*

_PTHSEP

_GA
~S1z
_LARGE_VAL
_EPS

_FEW
GA_GRY COD
GA_STD_COD

GA_STD_MTT
GA_ADT MTT
GA_ADX_MTT

GA_STD_SEL
GA_BZM_SEL
GA_BRK_SEL
GA_IRK_SEL
GA_WRK_SEL
GA_MLR_SEL
GA_MLC_SEL
GA_TRN_SEL

GA_STD_REC
GA_UFM_REC
GA_DCT_REC
GA_IMD_REC
GA_RID_REC
GA_NOP_REC

u/n

/* filename separator */

"GENEsYs 2.11"

128

1.0e+39
1.0e-2

(ga->ga_Ldaval / 20)

IGI
IBI

ISI
IAI
IXI

IPI
IBI
IRI
III
IWI
IMI
ICI
ITI

ISI
IUI
IDI
III
IRI
’ I

/* message sizes */
/* large floating point value */
/* small value */

/* a few bits */

/* gray code */
/* standard binary code */

standard mutation */
adaptive mutation rates, AMIM */
adaptive mutation rates, AMEM */

proportional selection */
Boltzmann selection */

Baker’s ranking method */
inverse Baker’s ranking */
Whitley’s ranking method */
(m,1l) -selection, randomized */
(m,1) -selection as in ES */
tournament selection */

standard x-point crossover */
uniform crossover */

discrete recombination as in ES */
intermediate recombination (ES) */
random intermediate recombination */
no recombination */

* Default values. These are chosen such that by default
* a standard GA (according to GENESIS) results.

*/

#define
#define
#define
#define

#define
#define

#define
#define
#define

#define
#define
#define

D_INBIAS
D_FCTNBR
D_FCTDIM
D_CODE

D_TOTEXP
D_TOTTRL

D_MUEVAL
D_LDAVAL
D_RHOVAL

D_CRSRAT
D_CRSPNT
D_RECSCM

(double)0.5
0

30
GA_GRY_COD

1
1000

50
50
1

0.6
2
n S "

/*
/*
/*
/*

/*

default
default
default
default

bias for RNG */

objective function index */
objective function dimens. */
code is Gray */

default
default

total
total

number of exp. */
number of trials */

default
default
default

value of mue (popsize) */
value of lambda */
left extinctive bound */

default
default
default

crossover rate */
number of crossover points */
recombination mechanism */
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#define
#define
#define
#define
#define

#define
#define
#idefine
#define
#define
f#idefine
#define
#idefine

#define
#idefine
#define

D_MTTSCM
D_MTTNXT
D_MTTRAT
D_SIGNBR
D_MTTBIT

D_SLTSCM
D_WDWSIZ
D_ETAVAL
D_TRNSIZ
D_TMPCTL
D_THSHLD
D_ACTTMP
D_CHNLGT

D_GENGAP
D_ORGSED

D_GFXIVL

GA_STD _MTT
0oL

0.001

0

0

GA_STD SEL
5

1.1

2

0.99

0.5

10.0

5

1.0
123456789

10

/* default mutation mechanism */

/* default initial mut. position */

/* default mutation rate */

/* default number of adaptive rates */
/* default number of mutation bits */
/* default selection mechanism */

/* default window size for scaling */
/* default expected value for ranking */
/* default tournament size */

/* default temperature (Boltzmann) */
/* default threshold (Boltzmann) */

/* default initial temp (Boltzmann) */
/* default chain length (Boltzmann) */
/* default generation gap */

/* default seed for RNG */

/* default graphics update interval */

/*******************************************************************/

/*

* The general parameter structure of the GA.

*/
typedef struct ({

unsigned long

int

int

char

int

int

ga_TotTrl,
ga_OrgSed;

ga_AllFlg,
ga_DonFlg,
ga_DbgFlg,
ga_QryFlg,
ga_GfxFlg,
ga_ObjFlg,
ga_MttFlg,
ga_BitFlg;

ga_FctNbr,
ga_FctDim,
ga_TotExp,
ga_GenCnt,
ga_TrlCnt,
ga_GfxIvl,
ga_Dtalvl;

ga_CodScm;

ga_ObjLen,
ga_ObjTot;

ga_MueVal,
ga_Ldaval,
ga_Rhoval;

/*

an GA_Dsc structure */

total number of trials */
original seed for RNG */

evaluate all structures */
termination flag */

debugging flag */

directory name query flag */
flag for online-visualization */
output flag object variables */
output flag mutation rates */
output flag bitmap dumps */

/* objective function index */

/* objective function dimension */
/* total number of experiments */
/* generation counter */

actual trial counter */
graphics update interval */
data collection interval */

encoding mechanism */

length per object variable */
total genotype length */

number of parents */
number of offspring */
left extinctive boundary */
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char
int
double

char
unsigned long
int

double

char
int

double

double
double

char

double

double
int

double

int

ga_RecScm([3] ;

ga_CrsPnt;
ga_CrsRat;

ga_MttScm;
ga_MttNxt;
ga_SigNbr,
ga_MttLen,
ga_MttTot;
ga_MttRat;

ga_SltScm;
ga |  WdwSiz,
ga_ChnLgt,
ga_TrnSiz,
ga_EltFlg;
ga_Etaval,
ga_TmpCtl,
ga_ThsH1d,
ga_ActTmp,
ga Worst,

*ga_ WstHst;

ga_GenGap;

ga_InBias;

ga_Suffix[ SIZ],
ga_OutFil[ S1Z],
ga_RepFil[ sIzl,
ga_varFil[ sIzl,
ga_LogFil[ SIZ],
ga_ObjFil[ sIz],
ga_MttFil[ s1z],
ga_BitFil[_sIzl,
ga_FmtStr[ SIZ];

ga_AllBst,
ga_CurBst,
ga_Curavg,
ga_CurWst,
ga_BstAvg,
ga MttMin,
ga_MttAvyg,
ga_MttMax;

ga_BiasVl;
ga_LostBt,
ga_ConvBt;

ga_Online,
ga_Ofline;

*ga_ObjBit,
*ga MttBit,
*ga_IndBit;

recombination mechanism */
number of crossover points */
crossover rate */

mutation mechanism */

next position for mutation */
number of mutation rates */

number of bits per mutation rate */
total mutation rate bits */
mutation rate */

selection mechanism */

scaling window gize */

markov chain length */

tournament selection size */
elitist selection flag */

maximum expected value */
temperature control value */
threshold for Boltzmann selection */
actual temperature Boltzmann */
worst within WdwSiz generations */
history of last worst values */

generation gap */
bias for population initialization */

/* file name suffix */

/* output file name */

/* report file name */

/* variance file name */

/* logging file name */

/* file for object variables */
/* file for mutation rates */
/* bitmap dump file */

/* format string */

all time best performance */
current best performance */
current average performance */
current worst performance */
average of mue best individuals */
minimum mutation rate */

average mutation rate */

maximum mutation rate */

bias value */
number of lost bits */
number of converged bits */

online measure */
offline measure */

output specification object vars. */

output specification mut. rates */
output specification individuals */
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} GA_Dsc;

/*
* An individual.
*/
typedef struct { /* an GA_Ind structure */
int *ind ObjBit, /* object variable genotype */
*ind MttBit; /* mutation rate genotype */
double *ind_ObjVar, /* object variable vector */
*ind_ MttRat, /* standard deviation wvector */
ind_SltPrb, /* selection probability */
ind_Fctval, /* objective function value */
ind Fitval; /* fitness value */
int ind_EvlFlg, /* evaluation flag */
ind_FsbFlg; /* feasibility flag */
} GA_Ind;

/*******************************************************************/

typedef struct { /* a scoring tuple for selection */
int ind_Score, /* scoring value */
ind_Index; /* index of individual */
} GA Score;

/*******************************************************************/

/*

*

The RNG stems from Grefenstette’s original GENESIS program.
Note, that it needs a global variable
* 'unsigned int Seed’, which is updated by the RNG.

*

*/
##define MASK ~(~0<< (INTSIZE-1))
##define PRIME 65539
##define SCALE 0.4656612875e-9
#define Rand() ((Seed = ((Seed * PRIME) & MASK)) * SCALE)
/*
##define Rand() ( drand4s{) )
*/

#define Randint (Lo,Hi) ((int) ((Lo) + ((Hi)-(Lo)+1l) * Rand()))

/*******************************************************************/

typedef struct { /* a statistical measures structure for performing
the Kolmogoroff-Smirnov test */
double ks _Bstval, /* best value after a run */
ks _RelFrgqg, /* relative frequency of that value */
ks EstPrb, /* estimated probability */
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int

} KS_Ent

ks_NorPrb,
ks _Deltal,
ks Delta2;

ks _BstCnt;

ry:

probability from normal distrib. */
delate to previous */
actual delta */

frequency counter */

/*******************************************************************/

* Function table primitives go here; from GENEsYs 1.0

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
*/
#idefine MOPT 3
#idefine VRBL 0
##define STRC 1
#define EXCP 2
#idefine REAL 0
#define PERM 1
#define BINY 2
f#idefine DUMMY "dummy "
/*
* The objective function structure
*/
typedef struct {
int dim;
int DimObl;
int MrkFct;
double umin,
umax;
double (*f) ();
int (*Rst) () ;
char *fnm;
char *descr;
char DatFilNam[_SIZ];
double CstVval [MOPT];
char *CstDsc [MOPT] ;
struct
int Oval;
char *0ODsc [MOPT] ;
char *QTtl;
} Fctopt [MOPT] ;
} FUNCTION;

/*** end of file ***/

maximum option number per function */

variable dimension */
strict dimension setting */
an exception */

real vectors */
permutations */
pseudoboolean function */

dummy string */

from GENEsYs 1.0

dimension of the function */
dimension obligate flag */
function characteristic marker */
lower and upper bounds for */
each object variable */

pointer to the function */
pointer to constraint function */
filename of the function */
textual description */

data file name */

constant external parameters */
constant description */

integer option value */

option description */

option title */

integer options and descriptions */
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/****************************************************************/

/* */
/* Copyright (c) 1992 */
/* Thomas Baeck */
/* Computer Science Department, LSXI */
/* University of Dortmund */
/* Baroper Str. 301 */
/* P.0O. Box 50 05 00 */
/* D-4600 Dortmund 50 */
/* Germany */
/* */
/* e-mail: baeck@home.informatik.uni-dortmund.de * /
/* baeck@lsll.informatik.uni-dortmund.de */
/* */
/* Permission is hereby granted to copy all or any part of */
/* this program for free distribution. The author’s name */
/* and this copyright notice must be included in any copy. *x/
/* */
/****************************************************************/
/*

* file: extern.h

*

* author: Thomas Baeck

*

*  created: July 20th, 1992

*

* purpose: Compatibility file for function table,

* extern declarations.

*

* modified:

*

*/
extern FUNCTION f _tabl[]; /* function table */
extern unsigned int Seed; /* Seed for random number generator */
extern int Gen; /* -> eps_GenCnt */
extern int FctNbr; /* -> eps_FctNbr + 1 */
extern int F_nbr; /* -> eps_FctNbr */

/**% end of file #**%/
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/************************************************************
file : TA.C
author : Teresa L. Chiu October 18, 1995

purpose : Implementation of Genetic Algorithm for Terminal
Assignment Problem

************************************************************/
/* include section */
#include "ga.h"
#include "getopt.h"

/* constant */

#define TERM 141 /* maximum distance on 100 X 100 grid */
long TerSize, /* number of terminals */
ConSize, /* number of concentrators */
Capacity, /* capacity requirement of concentrators */
Violation; /* number of overloaded concentrators */
long *TerWeight, /* weight requirements of terminals */
*ConWeight, /* capacity taken up in concentrators */
**TerCoord, /* coordinates of terminals */
*%ConCoord, /* coordinates of concentrators */
**Costs; /* costs from terminals to concentrators */

/* function prototype */
long obj_fun ();

void getdata (FILE *);
void getcost ();

int feasible (Chrom_Ptr);
long cost (Chrom_ Ptr);
long penalty (Chrom_Ptrx);
void cleanup (FILE *);

/* function implementation */
int main (int argc, char **argv)

int c; /* extract user option */

FILE *fp; /* information of problem instance */
GA_Info_Ptr ga_info; /* pointer to pertinent GA information */
char filename [BUFSIZ] = "ta.cfg";

/* configuration file for GA */

/* extract user option */
while ((c = getopt (argc, argv, "£:h")) != EOF)

switch (c)

case 'f’: /* get input file name */
sscanf (optarg, "%s", filename) ;
break;

case 'h’: /* usage information */
usage () ;
exit (1);
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break;

}

/* initialize the genetic algorithm */
ga_info = GA_config ("ta.cfg", obj fun);

if ((fp = fopen (filename, "x")) == NULL)

perror (filename);
exit (1);

/* initialize problem data */

getdata (fp);

/* compute costs of connecting terminals to concentrators */
getcost ();

/* redefine some settings */
ga_info->chrom_len = TerSize;
ga_info->rand_minint = 1;
ga_info->rand_maxint = ConSize;

/* run the GA */
GA_run (ga_info);

/* reset the GA */
GA_reset (ga_info, "ta.cfg");

cleanup (fp);
return 0;

}

/* Outputs usage information of program execution. This program takes

1 command line argument, the input file.
*/

int usage ()

fprintf (stderr, "\nusage : ta [-f input-file] [-h]l\n\n");
return 0;

/* User specified objective function. If string is feasible, return
the total cost of connections; if not, penalty is calculated.
*/
long obj_fun (Chrom Ptr chrom)
if (feasible (chrom))
chrom->fitness = cost (chrom);
else
chrom->fitness = cost (chrom) + penalty (chrom);

return 0;

/* Reads problem instance from input file. Information includes number
of concentrators, number of terminals, capacity requirement of
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concentrators, terminal coordinates, terminal weights, and
concentrator coordinates.

*/
void getdata (FILE *fp)
long 1i;
/* number of concentrators and number of terminals */
fscanf (fp, "%d", &ConSize);
fscanf (fp, "%d", &TerSize);
if (ConSize<l)
printf ("can‘t connect terminals to %¥d concentrators\n", ConSize):;
exit (2);
/* concentrator capacity */
fscanf (fp, "%d", &Capacity);
if (Capacity<l)

printf ("unacceptable concentrator weight...\n");

exit (2);
if ((TerWeight = (long*) calloc (TerSize, sizeof (long))) == NULL |
(TerCoord = (long**) calloc (TerSize, sizeof (long*))) == NULL
(ConCoord = (long**) calloc (ConSize, sizeof (long*))) == NULL
(Costs = (long**) calloc (TerSize, sizeof (long*))) == NULL
(ConWeight = (long*) calloc (ConSize, sizeof (long))) == NULL)
printf ("calloc failed...\n");
exit (2);
for (i=0; i<TerSize; i++)
if ((TerCoord[i] = (long*) calloc (2, sizeof (long))) == NULL ||

(Costs{i] = (long*) calloc (ConSize, sizeof (long)))== NULL)

printf ("calloc failed...\n");
exit (2);

}
for (i=0; i<ConSize; i++)
}f ((ConCoord[i] = (long*) calloc (2, sizeof (long))) == NULL)

printf ("calloc failed...\n");
exit (2);

}

/* terminal coordinates and weights */
for (i=0; i<TerSize; i++)
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fscanf (fp, "%d %d %d", &(TerCoord[i] [0]), &(TerCoord([i] [1]),
& (TerWeight [i])) ;

/* concentrator coordinates */
for (i=0; i<ConSize; i++)
} fscanf (fp, "%d %d", &(ConCoord[i] [0]), &(ConCoord[i] [1]));

/* Computes the costs of assigning terminals to concentrators. The cost
is taken to be the rounded Euclidean distance between two locations.
*/

void getcost ()

long i, J;
double terml, term2; /* components in computing distance */

for (i=0; i<TerSize; i++)
/* distance between two locations on grid */
for (j=0; j<ConSize; j++)

terml (double) (TerCoord[i] [0] - ConCoord(jl] [0]);
term2 = (double) (TerCoord[il] [1] - ConCoordl[j] [1]);
Costs[il [j] = (long) sqgrt (terml * terml + term2 * term2);

it

}

/* Returns 1 if chromosome is feasible, and 0 otherwise. If any

concentrator is overloaded, the string is infeasible.
*/
int feasible (Chrom_Ptr chrom)

long i, flag = TRUE;

for (i=0; i<ConSize; i++)
ConWeight [i] = 0;

for (i=0; i<chrom->length; i++)
ConWeight [ (int) (chrom->gene[i])-1] += TerWeight [i];

Violation = 0;

for (i=0; i<ConSize; i++)
/* any overloaded concentrator makes the assignment infeasible */
if (ConWeight[i]>Capacity)

flag = FALSE;
Violation++;

return flag;

}

/* Computes the total cost of a given assignment. This excludes the
penalty term for infeasible strings.

*/

long cost (Chrom Ptr chrom)
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long i,
CostSum = 0; /* sum of costs */

for (i=0; i<TerSize; i++)
CostSum += Costs{i] [(int) (chrom->gene[i]) -1];

return CostSum;

}

/* Compute the penalty term of given chromosome. If string is feasible,
penalty is 0. First term of the penalty function forces the best
infeasible string worse than the worst feasible string, while the
second term differenciates between infeasible strings.

*/

long penalty (Chrom_ Ptr chrom)

long i,
sum = 0; /* total excess load of concentrators */

for (i=0; i<ConSize; i++)
sum += MAX (ConWeight[i] - Capacity, 0);

sum *= Violation; /* graded penalty */
sum += TerSize * TERM; /* penalty term */

return sum;

}

/* Frees up memory locations and closes input file.
*/
void cleanup (FILE *fp)

long i;

free (TerWeight);

for (i=0; i<TerSize; i++)
free (TerCoord[il);

free (TerCoord);

for (i=0; i<ConSize; i++)
free (ConCoordl[il);

free (ConCoord);

free (ConWeight);
free (Costs);

fclose (£fp);

}

[rrxxx Ik kkkkkkkkkkkhkkkkkkxk End of File *kkkkkkkkkkdkdhdhkkhkrhkkhdhhdk /
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(c) Copyright Arthur L. Corcoran, 1992, 1993. All rights reserved.
Genetic Algorithm Definitions - GA.H

Goldberg’s Terminology
Chromosome
Gene
Allele
Locus
Genotype

string

feature, character, detector

feature value

string position

structure

Phenotype parameter set, alternative solution, a decoded structure
Epistasis nonlinearity

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>

#if defined(_ BORLANDC_ )
#include <process.h>
#include <alloc.h>

#elif !defined(__ STDC_ )
#include <malloc.h>
#endif

#define VERSION "1.03j"

#define COPYRIGHT " (c) Copyright Arthur L. Corcoran, 1992, 1993.
All rights reserved.\n\
Modifications (c) Copyright joke@Germany.EU.net, 1995.
All rights reserved."®

#define FALSE 0

#define TRUE ! (FALSE)

#idefine OK 0

#define ERROR ! (OK)

#define UNSPECIFIED -1

/*--- Data type --- */
#define DT _BIT

#define DT_INT

#define DT_INT PERM
#define DT_REAL

/* Bit string */

/* Integers */

/* Integer Permutation */
/* Reals */

whEHo

/*--- Method to generate initial pool --- */
#define IP_NONE 0x00
#define IP_INTERACTIVE 0x01
#define IP_FROM FILE 0x02
#define IP_RANDOM 0x04
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/*--- Type of output report --- */

#idefine
#define
#define
#define

RP_NONE 0
RP_MINIMAL 1
RP_SHORT 2
RP_LONG 3

/*--- Magic cookies for validation ---%/

#define
#define
#define
#define

/*--- A function pointer ---%*/

typedef

NL _cookie 0x00000000
CF_cookie 0x11111111
PL_cookie 0x22222222
CH_cookie 0x33333333

int (*FN_Ptr) ();

/*--- A function table ---*/

typedef

struct

char *name;
FN_Ptr fun;

FN_Table_ Type, *FN_Table Ptr;

/*
/*
/*
/*

/*
/*

NULL coockie */

ga_info (config) cookie */
pool cookie */

chrom cookie */

Function name */
Function pointer */

/*¥--- A Gene (or allele) is a bit, int, float, etc. ---%/
typedef double Gene_ Type, *Gene_ Ptr;

/*--- A Chromosome ---%*/

typedef

stxruct

long magic_cookie;
Gene_Ptr gene;

int length;

double fitness;

float

ptE;

int index;

int idx_min, idx_max;
int parent_1, parent 2;
int xpl, xp2;

Chrom_Type, *Chrom_ Ptr;

/*--- A Pool ---%/
typedef struct

long magic_cookie;
Chrom_Ptr *chrom;

int size, max_size;

double total fitness;
double min, max, ave, var,
int min_index, max_index;
int best_index;

int minimize;

int sorted;

For validation */

Encoding */

Length of gene */

Fitness value of chromosome */
Percent of total fitness */
My index */

Reserved */

Indices of parents */
Crossover points */

/* For validation */

/* Chromosomes */

/* Number of chromosomes */

/* Total fitness of pool */

/* Current pool fitness stats */
/* Index of min/max chromosomes */
/* Index of best chromosome */

/* Minimize pool [y/nl? */

/* Is pool sorted [y/n]? */
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Pool Type, *Pool_ Ptr;

/*--- GA configuration info ---%*/

typedef struct

/*--- Basic info ---%*/
long magic_cookie;
char user_data([80];
int rand_seed;
int rand_minint;

int rand maxint;

int datatype;

int ip_flag;

char ip data(80];
int pool_size;

int chrom_len;

int iter, max_iter;
int minimize;

int elitist;

int converged;

int use_convergence;
float bias;

float gap;

float x rate;

float mu_rate;
float scale_factor;

/*--- Functions ---*/
FN_Ptr GA_fun;

FN_Ptr SE_fun;

FN Ptr X fun;

FN_Ptr MU_fun;

FN_Ptr EV_fun;

FN_Ptr RE_fun;

/*--- Reports ---*/
int rp_type;

int rp_interval;
FILE *rp_fid;

char rp_file[80];

/*--- Pools ---%*/
Pool_Ptr old_pool, new_pool;

/*--- Stats ---%/
Chrom_Ptr best;
int num mut, tot_mut;

GA_Info_Type, *GA_Info Ptr;

#ifdef GENESIS_RNG
#define INTSIZE

For validation */

User data file (unused) */

Seed for random number generator */
Minimal random integer in initial pool
(-joke) */

Maximal random integer in initial pool
(-joke) */

Data type flag */

Initial pool generation method flag */
Data file name (IP_FROM FILE) */

Pool size (IP_RANDOM) */

Chromosome size (IP_RANDOM) */

Number of iterations for ga */
Minimize EV_fun? */

Use elitism? */

Has ga converged? */

Use convergence? */

Selection bias */

Generation gap */

Crossover rate */

Mutation rate */

Scale for fitness <= 0 */

GA */
Selection */
Crossover */
Mutation */
Evaluation */
Replacement */

Type of output report */
Output report interval */
Output report fid */
Output report file name */

Best chromosome */
Mutation statistics */
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#define MASK ~{(~0<< (INTSIZE-1))

j#idefine PRIME 65539

#define SCALE 0.4656612875e-9

#define Rand() ((Seed = ((Seed*PRIME) & MASK) ) *SCALE)
#define Randint (low,high) ((int) ((low) + ((high)-(low)+1) * Rand()))
#define SEED_RAND (seed) Seed = (unsigned long)seed

#define RAND FRAC () Rand ()

#define RAND DOM(lo, hi) Randint (1o, hi)

#define RAND BIT() Randint (0,1)

extern unsigned long Seed;

#else

/*--- random number in [0..1] ---%*/

#if defined(_ BORLANDC )
#define SEED_RAND (seed) (srand((seed)))
#define RAND FRAC() ((double)rand()/RAND MAX)

#else

#define SEED_RAND (seed) (srandom( (seed)))

#define RAND FRAC() ((double)random()*(1.0/2147483647.0))
#endif

/*--- random number in domain [lo..hi] ---%*/

#define RAND DOM(lo,hi) ((int)
floor (RAND_FRAC() * (((hi) - (10))+0.999999)) +(1lo))

/*~--- random bit ---*/

#define RAND BIT() ((RAND _FRAC()>=.5)? 1 : 0 )
#endif

/*--- min and max ---%/

#define MIN(a,b) ((a < b) ? (a) : (b))
#define MAX(a,b) ((a > b) ? (a) : (b))

#define UT_warn(message) {fprintf (stderr,"WARNING: %s\n", message) ;)

#define UT_error (message) {fprlntf(?tderr,"ERROR %s\n", message);
exit (1) ;

#define UT_iswap(a, b) {int tmp; tmp = *(a); *(a) = *(b); *(b) = tmp;}

extern char *GA name (), *SE_name (), *X_name (), *MU_name (),
*RE_name (); extern char *FN name ();

extern Chrom Ptr SE_fun (), CH_alloc ();

extern Pool Ptr PL_ alloc (),

extern GA_ Info Ptr GA _config (), CF_alloc ();

/*************************** End of File ***************************/
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/* Declarations for getopt : GETOPT.H
Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#ifndef GETOPT H_
#define _GETOPT H_

/* For communication from ‘getopt’ to the caller.
When ‘getopt’ finds an option that takes an argument,
the argument value is returned here.
Also, when ‘ordering’ is RETURN_IN_ORDER,
each non-option ARGV-element is returned here.

*/

extern char *optarg;

/* Index in ARGV of the next element to be scanned.
This is used for communication to and from the caller
and for communication between successive calls to ‘getopt’.

On entry to ‘getopt’, zero means this is the first call; initialize.
g P

When ‘getopt’ returns EOF, this is the index of the first of the
non-option elements that the caller should itself scan.

Otherwise, ‘optind’ communicates from one call to the next
how much of ARGV has been scanned so far.

*/

extern int optind;

/* Callers store zero here to inhibit the error message ‘getopt’ prints
for unrecognized options.

*/

extern int opterr;

/* Describe the long-named options requested by the application.
The LONG_OPTIONS argument to getopt_long or getopt_ long only is a
vector of ‘struct option’ terminated by an element containing a name
which is zero.

The field ‘has_arg’ is:
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no_argument (or 0) if the option does not take an argument,
required_argument (oxr 1) if the option requires an argument,
optional_argument (or 2) if the option takes an optional argument.

If the field ‘flag’ is not NULL, it points to a variable that is set
to the value given in the field ‘val’ when the option is found, but
left unchanged if the option is not found.

To have a long-named option do something other than set an ‘int’ to
a compiled-in constant, such as set a value from ‘optarg’, set the
option’s ‘flag’ field to zero and its ‘val’ field to a nonzero
value (the equivalent single-letter option character, if there is
one). For long options that have a zero ‘flag’ field, ‘getopt’
returns the contents of the ‘val’ field.

*/

struct option

#ifdef _ STDC
const char *name;
#else
char *name;
#endif

/* has_arg can’t be an enum because some compilers complain about
type mismatches in all the code that assumes it is an int.

*/

int has_arg;

int *flag;

int val;

}i
/* Names for the values of the ‘has_arg’ field of ‘struct option’. */
enum _argtype

no_argument,
required_argument,
optional_ argument

.
']

#ifdef _ STDC _
extern int getopt (int argc, char *const *argv, const char *shortopts);
extern int getopt_long (int argc, char *const *argv,
const char *shortopts,
const struct option *longopts, int *longind) ;
extern int getopt_long_only (int argc, char *const *argv,
const char *shortopts,
const struct option *longopts, int *longind);

/* Internal only. Users should not call this directly. */

extern int _getopt_internal (int argc, char *const *argv,
const char *shortopts,
const struct option *longopts, int *longind,
int long_only) ;
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#else /* not _ STDC__ */
extern int getopt ();

extern int getopt_long () ;
extern int getopt_long only ();

extern int _getopt internal ();
#endif /* not __ STDC__ */

$endif /* GETOPT H */

/*************************** End of File khkkkkkkkkhkhkkkhkkkhhkkkkdk /
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User data file
This information is not used by the GA, however, it is a convenient
way to input a data file name or other information to your application.

Seed for random number generator

Usage: rand_seed my_pid
rand_seed number

my pid = use system pid as random seed
number = seed for random number generator, a positive integer

DEFAULT: rand_seed 1

rand_seed my pid
# rand_seed 1

HHHFEHFHHFIFHHFE

Usage: datatype [bit | int | int_perm | real]

= bit string
int = integers
int_perm = permutation of integers
real = real numbers

#
#
#
#
#
# bit
#
#
#
#
#
#

# datatype bit
datatype int

# datatype int_perm
# datatype real

o m o m o m e e m e e e e e e
# How to initialize the pool

#

# Usage: initpool [random | from_file filename | interactive]
#

# random = generate at random based on

# datatype, chrom len, & pool_size

# from file = read from a file

# filename = the name of the file to read from

# interactive = read from stdin

#

#

DEFAULT: initpool random
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#

initpool random

initpool from file initpool.dat

#

ettt 3

+*

#
#
#
#
#
#
#

#
#

initpool interactive

Chromosome length, needed when "initpool random" selected
Usage: chrom_len length

length = chromosome length, a positive integer

DEFAULT: chrom_len 10

Pool size, needed when "initpool random" selected
Usage: pool_size size
size = pool size, a positive integer

DEFAULT: 100

Convergence means when the variance = 0, or equivalently, when
all the fitness values in the pool are identical.

Iterations means the number of generations for the generational
model and the number of trials for the steady state model. Numbers
must be given as positive integers. It takes roughly pool_size/2
iterations of the steady state model to equal one iteration of

the generational model.

Usage: stop_after convergence
stop_after number [use_convergence | ignore convergence]

convergence - stop when the GA converges

number - stop after specified number of iterations
use_convergence - will stop early if GA converges (default)
ignore_convergence WILL NOT stop early even if GA converges

stop_after convergence
stop_after 500

stop_after 20000 use_convergence

#

stop_after 1000 ignore_convergence
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Usage: ga [generational | steady state]
generational = generational GA
steady_state = steady-state GA

WARNING: This directive has the following side effects:

#

#

#

#

#

#

#

# GA type Directives set as a side effect
B m e e Moo e e
# generational selection roulette

# replacement append

# rp_interval 1

#

#

#

#

#

#

steady-state selection rank_biased
replacement by rank
rp_interval 100

DEFAULT: ga generational

ga generational # most commonly used
ga steady state # used by Genitor

333

Generation gap:

The generation gap represents a percentage of the population to
copy (clone) to the new pool at each generation. This only makes
sense in a GA with two pools as in the generational model. A gap
of 0.0 is the traditional generational algorithm. As the gap
increases, it becomes more like a steady-state algorithm. A gap
of 1.0 essentially disables crossover since only reproduction
occurs.

Usage: gap number
number = generation gap, valid range = [0.0 .. 1.0]

DEFAULT: gap 0.0

B G o G o o o

Selection method:

Usage: selection [roulette | rank biased | uniform_ random]

roulette
rank_biased
uniform_ random

Roulette wheel
Ranked, biased selection as in Genitor
Pick one at random

DEFAULT: selection roulette

selection roulette # use with generational GA
selection rank_biased # use with steady-state GA
selection uniform random # experimental
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# Selection bias

#

# Usage: bias number

#

# number = selection bias, valid range = [1.0 .. 2.0]

# Only used for rank_biased selection

#

# DEFAULT: bias 1.8

B mmm e m e o e e e e mm e m e m e m e
# bias 1.1

B m o m e oo o e e e e e e e e e e e e e e e m -
# Crossover method:

#

# Usage: crossover [simple | uniform | orderl | order2 | position |
# cycle | pmx | uox | rox | asexual]

#

# simple = children get alternate "halves" of parents

# uniform = alleles swapped uniformly

# orderl = order based

# order2 = order based

# position = order based

# cycle = order based

# pmx = orxrder based

# uox = uniform order

# rox = relative order

# asexual = swap two alleles

#

# DEFAULT: crossover oxrderl

# crossover simple
crossover uniform

# crossover orderl # use ony with integer permutations

# crossover order2 # use ony with integer permutations

# crossover position # use ony with integer permutations

# crossover cycle # use ony with integer permutations

# crossover pmx # use ony with integer permutations

# crossover uox # use ony with integer permutations

# crossover rox # use ony with integer permutations

# crossover asexual # use ony with integer permutations

o o e e e e e e e e e e e e e e e e e e e—
# Crossover Rate

#

# Usage: x_rate number

#

# number = crossover rate (percentage), valid range = [0.0 .. 1.0]

# A crossover rate of 0.0 disables crossover

#

# DEFAULT: x_rate 1.0

B o e m o e e e e e e e e e e e e e
X rate 0.6

o oo e e e e e o e e e e e e
# Mutation method:

#

# Usage: mutation [simple_invert | simple random | swap]
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invert a bit
random bit wvalue
swap two alleles

simple_invert
simple_random
swap

nonun

DEFAULT: mutation swap

HHHHIHIHHHHE

mutation simple invert # use only with bits
mutation simple_random # use only with bits
mutation swap # use with any datatype
B o m m e e e e e e e e e e e
# Mutation Rate
#
# Usage: mu_rate number
#
# number = mutation rate (percentage), valid range = [0.0 .. 1.0]
# A mutation rate of 0.0 disables mutation
#
# DEFAULT: mu_rate 0.0

mu_rate 0.1

Replacement method:

Usage: replacement [append | by _rank | first weaker | weakest]
append = append to new pool, as in generational GA
by _rank = insert in sorted order, as in Genitor
first_weaker = replace first weaker found in linear scan of pool
weakest = replace weakest member of the pool

DEFAULT: replacement append

replacement append # use with roulette (generational GA)
replacement by_rank # use with rank biased (steady-state GA)
replacement first weaker # experimental

replacement weakest # experimental

Skt I

Objective of GA:
Usage: objective [minimize | maximize]

minimize = minimize evaluation function
maximize = maximize evaluation function

DEFAULT: objective minimize

objective minimize
objective maximize

etttk

Elitism

= etk

Elitism has two actions. For a generational GA, elitism makes two
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S R o R S

ettt d NN

copies of the best performer in the old pool and and places them in
the new pool, thus ensuring the most fit chromosome survives. The
other action works with both models. In this case, elitism picks
the best two chromosomes from the parents and children. Thus, if a
child is not as fit as either parent, it will not be placed in the
new pool. Selecting elitism in LibGA performs both actions.

Usage: elitism [true | false]

true = ensure best members survive until next generation
false = no guarantee best will survive

DEFAULT: elitism true

elitism true
elitism false

Report type

Usage: rp_type [none | minimal | short | long]

none = output nothing

minimal = output configuration and final result
short = output minimal + statistics only
long = output short + dump pool

DEFAULT: rp_type short

rp_type none
rp_type minimal
rp_type short
rp_type long

Report interval
Usage: rp_interval number
number = interval between reports, a positive integer

DEFAULT: rp_interval 1

Output report filename
Usage: rp_file file name [file_mode]

file name
file mode
a
w

name of report file

optional file mode for fopen()
append (DEFAULT)

overwrite

DEFAULT: (write to stdout)



# rp_file ga.out
# rp_file ga.out a
# rp_file ga.out w

[rrkI KAk kkkkkkkhkhkkkhkkkxkkkx* End of File **kkkkkkdhdkhdkkrhhkhhhrdchhks /
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IMPLEMENTATION

OF

GROUPING GENETIC ALGORITHM



/*************************************************************

File : GGA.C

Author : Teresa L. Chiu

Purpose

January 5, 1996

Implementation of the Grouping Genetic Algorithm,

specifically designed for the Terminal Assignment

Problem.

*************************************************************/

/* include section */

#include <stdio.h>

#include

#include <math.h>

#include

#include <time.h>

/* constant */

#define MAX DIST 141

#define TRUE 1
#define FALSE 0

/* variable declaration

long

long

long

long

long

int
float

double

FILE

/* function prototype

PoolsSize,
Generation,
TexrSize,
ConSize,
Capacity;
**TerCoord,
**ConCoord,
*TerWeight,
*ConWeight,
**Cost;
**Pool,
**MatePool;
**[ist,
*Mix,
*Conc,
*Dup,
*Best;
texrm,

size,

len,

min = MAXINT;

Feasible;
X Over,
Mutation;
FitSum,
pProb;
*info,
*init;

void usage ();
void getdata ();

<stdlib.h>

<values.h>

/* maximum distance on 100 X 100 grid */

pool size - command line parameter */
generation - command line parameter */
number of terminals */

number of concentrators */

capacity requirement of concentrators */
coordinates of terminals */

coordinates of concentrators */

weight requirements of terminals */
capacity taken up in concentrators */
costs from terminals to concentrators */
population pool */

mating pool for genetic operators */
terminals assigned to each concentrator */
temporary array for crossover */
temporary array for crossover */
temporary array for mutation */

overall best assignment obtained */

first term in penalty function (fixed) */
length of each string in pool */

length of array Mix */

overall minimum cost of assignment */
feasibility of an individual string */
crossover rate - command line parameter */
mutation rate - command line parameter */
total sum of fitness values (for selection) */
random probability (for crossover) */
information of problem instance */

initial population strings */
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void calc_cost ();

void init_pool ();

long fitness (long *);

long penalty (long *);

void run ();

long roulette () ;

void swap (long *, long *);

void crossover (long, long, long, long, long, long);
void heuristic (long, long, long, long);
void first fit (long, long);

void mutate (long);

void stat (long);

void copy_back ();

void print_best ();

void cleanup ();

/* function implementation */
int main (int argc, char **argv)

long i;
time_t t; /* for random number generator */

if (argc !'= 7)

usage ();
exit (1);
if ((info = fopen (argv[l], "r")) == NULL ||
(init = fopen (argv[6], "r")) == NULL)

printf ("\nCan’t open file for read...\n");
exit (2);

srand ( (unsigned) time(&t));

/* save the command line parameters */
printf ("\n");
for (i=0; 1i<7; i++)

printf ("$s ", argv([i]);

/* convert the command line parameters */
PoolSize = atoi (argv([2]);

Generation = atoi (argv([3]);

X _Over = atof (argvl4]);

Mutation = atof (argvI[5l);

/* store information of problem instance */
getdata ();

/* compute costs of connecting terminals to concentrators */
calc_cost ();

/* initialize the population by seeding */
init_pool ();

for (i=0; i<Generation; i++)

{
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/* perform genetic operations */

run ();

/* gather statistics of current generation */

stat (i+1);

/* replace the population pool by the mating pool - generational GA */
copy_back () ;

}

/* output best assignment after a specified number of generations */
print_best () ;
cleanup ();

return 0;

}

/* Outputs usage information of program execution.
This program takes a total of 7 command line arguments.
*/

void usage ()

printf ("\nusage : gga inputfile poolsize generation crossover ");
printf ("mutation initpool\n\n");

/* Reads problem instance from input file. Information includes number
of concentrators, number of terminals, capacity requirement of
concentrators, terminal coordinates, terminal weights, and
concentrator coordinates.

*/

void getdata ()

long i;

/* numbers of concentrators and terminals, and concentrator capacity */
fscanf (info, "%1ld", &ConSize);

fscanf (info, "%14d", &TerSize);

fscanf (info, "%1d", &Capacity);

/* first term in penalty function */
term = MAX DIST * TerSize;

/* length of each string in pool */

size = (2 * TerSize) + ConSize + 2;

/* length of array Mix */

len = 2 * (TerSize + ConSize);

if ((TerWeight = (long *) calloc (TerSize, sizeof (long))) == NULL
(ConWeight = (long *) calloc (ConSize, sizeof (long))) == NULL
(TerCoord = (long **) calloc (TerSize, sizeof (long *))) == NULL
(ConCoord = (long **) calloc (ConSize, sizeof (long *))) == NULL
(List = (long **) calloc (ConSize, sizeof (long *))) == NULL ||
(Mix = (long *) calloc (len, sizeof (long))) == NULL
(Dup = (long *) calloc (TerSize, sizeof (long))) == NULL ||
(Best = (long *) calloc (size, sizeof (long))) == NULL ||
(Conc = (long *) calloc (ConSize, sizeof (long))) == NULL)

printf ("\nCalloc failed...\n");
exit (3);
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}

for (i=0; i<TerSize; i++)
if ((TerCoord[i] = (long *) calloc (2, sizeof (long))) == NULL)

printf ("\nCalloc failed...\n");
} exit (3);

for (i=0; i<ConSize; i++)
if ((ConCoord([i] = (long *) calloc (2, sizeof (long))) == NULL ||
(List [i] = (long *) calloc (TerSize+l, sizeof (long))) == NULL)
printf ("\nCalloc failed...\n");
exit (3);

}

/* terminal coordinates and weights */
for (i=0; i<TexSize; i++)
fscanf (info, "%1d%1d%ld", &(TerCoord[i] [0]), &(TerCoord[i] [1]),
&TerWeight [i]) ;

/* concentrator coordinates */
for (i=0; i<ConSize; i++)
fscanf (info, "%1d%1d", &(ConCoord[i][0]), &(ConCoord[i][1]));

/* Computes the costs of assigning terminals to concentrators. The cost

*/

void calc_cost ()

is taken to be the rounded Euclidean distance between two locations.

long i, 3;:
double terml, term2; /* components in computation of distance */

if ((Cost = (long **) calloc (TerSize, sizeof (long *))) == NULL)
printf ("\nCalloc failed...\n");
exit (3);
for (i=0; i<TerSize; i++)
if ((Costii] = (long *) calloc (ConSize, sizeof (long))) == NULL)
printf ("\nCalloc failed...\n");
exit (3);
/* distance between two locations on grid */
for (j=0; j<ConSize; j++)
terml (double) (TerCoord[i] [0] - ConCoord[j] [0])

term2 (double) (TerCoord[i] {1] - ConCoord[j][l]);
Cost [i] [j] = (long) (sqrt(terml*terml+term2*term2))

[
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}

/* Creates the initial population. Seeding is used in this program;
i.e., a specified number of strings are being read from input file.

*/
void init_pool ()

long i, j, k, pos, index;

if ((Pool = (long **) calloc (PoolSize, sizeof (long *))) == NULL ||
(MatePool = (long **) calloc (PoolSize, sizeof (long *))) == NULL)

printf ("\nCalloc failed...\n");
exit (3);

FitSum = 0.0;

for (i=0; i<PoolSize; i++)
if ((Pool[i]l = (long *) calloc (size, sizeof (long))) == NULL ||

(MatePool [i] = (long *) calloc (size, sizeof (long))) == NULL)

printf ("\nCalloc failed...\n");
exit (3);

for (j=0; j<ConSize; j++)
List[j]l [0] = 0O;
/* store the strings in population pool as well as in the array
List according to the concentrator each terminal belongs to */
for (j=0; j<TerSize; j++)
fscanf (init, "%1d", &(Pool[i] [j]));
List [Pool [i] [j]1] [++List [Pool [i] [§1]1[0]] = j;

pos = TerSize;

/* copy the sorted information inList back to population pool */
for (j=0; j<ConSize; j++)

Pool[i] [pos++] = j + TerSize;

for (k=0; k<List[j] [0); k++)
Pool [i] [pos++] = List[j] [k+1];

/* compute the fitness value of string */
Pool [i] [pos] = fitness (Pool(i]);

/* save the best assignment so far encountered */
if (Pool[i] [pos] < min)

min = Pool [i] [pos] ;
index = i;
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FitSum += 1.0 / Pool[i] [pos++];
Pool [i] [pos] = Feasible;

for (i=0; i<size; i++)
Best [i] = Pool [index] [i];

printf ("\n\nINITIAL GENERATION : BEST FITNESS VALUE = %1d\n", min);

}

/* Computes the fitness value of the given string. Fitness value is the
total sum of assignment costs, plus penalty term if infeasible.
*/

long fitness (long *chrom)

long 1i,
sum = 0; /* sum of costs */

for (i=0; i<TerSize; i++)
sum += Cost[i] [chrom[i]];

return (sum + penalty (chrom));

/* Computes the penalty term of the given string. If string is feasible,
penalty is 0. First term of the penalty function forces the best
infeasible string to be worse than the worst feasible string, while
the second term differenciates between infeasible strings.

*/

long penalty (long *chrom)

long i,
sum = 0, /* total excess load of concentrators */
violation = 0; /* number of overloaded concentrators */

for (i=0; i<ConSize; i++)
ConWeight [i] = 0;

/* capacity taken up in each concentrator */
for (i=0; i<TerSize; i++)
ConWeight [chrom[i]] += TerWeight [i];

Feasible = TRUE;

for (i=0; i<ConSize; i++)
/* any overloaded concentrator makes the string infeasible */
if (ConWeight[i] > Capacity)

sum += ConWeight [i] -~ Capacity;
violation++;
Feasible = FALSE;

if (Feasible)
return 0;
else
return (sum * violation + term);
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}

/* Selects two strings from the population pool and performs crossover
and mutation. Elitism is incorporated meaning that the best string
in previous generation is preserved in the new generation

*/

void run ()

{

long matel, /* first parent */
mate2, /* second parent */
site 11, /* first crossing site of first parent */
site 12, /* second crossing site of first parent */
site_21, /* first crossing site of second parent */
site_22; /* second crossing site of second parent */
long i;

/* elitism - preserving the best string in previous generation */
for (i=0; i<size; i++)

MatePool [0] [i]
MatePool [1] [i]

Best [i];
Best [i];

for (i=2; i<PoolSize; i+=2)

/* use roulette wheel to select the two parents */
matel roulette ();
mate2 roulette ();

/* randomly choose two crossing sites for each parent */
site 11 = rand () % (ConSize+l);
do
site 12 = rand () % (ConSize+l);
while (site_12 == site 11);

if (site_12 < site_11)
swap (&site_11, &site 12);

site 21 = rand () % (ConSize+l);
do

site 22 = rand () % (ConSize+1);
while (site_22 == site_21);

if (site_22 < site_21)
swap (&site_21, &site_22);

/* probability for crossover */
prob = (double) rand () / RAND MAX;

/* generate first offspring */

crossover (matel, mate2, site 11, site_21, site_22, i);
mutate (i) ;

/* generate second offspring */

crossover (mate2, matel, site_21, site_11, site_12, i+1);
mutate (i+1);
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/* Selects strings using the roulette technique. Each string has a
probability of being selected inversely proportional to its fitness
value; strings with smaller fitness values have higher chance of
being chosen. */

long roulette ()

long i=-1;
double goal, /* sector on wheel to be met */
sum = 0.0; /* accumulated sectors */

/* sector on the roulette wheel to be met */
goal = (double) rand () / RAND MAX;

/* look for the string that falls into the specified sector */
if (sum == goal)
return 0;

while (sum < goal && 1 < PoolSize-1)
sum += (1.0 / Pool{++i] [size-2]) / FitSum;

return i;

/* Swaps the values of two variables.

*

void swap (long *first, long *second)
long change;

change *first;
*first *gsecond;
*gecond = change;

}

/* Performs crossover of two strings. Contents between the two crossing
sites of the second parent are injected in the first crossing site
of the first parent.

*/

void crossover (long matel, long mate2, long sitel, long site2,

{ long site3, long pos)

long i,
loc = 0, /* number of elements in array Mix */
num = 0, /* number of concentrators being injected */
total = 0; /* number of duplicates after injection */
long indexl = TerSize,
index2 = TerSize;

/* perform crossover if probability is under crossover rate */
if (prob < X Over)

/* copy contents before first crossing site of matel */
for (i=0; i<sitel; i++)

Mix[loc++] = Pool[matel] [index1];
while (Pool [matel] [++indexl] < TerSize)
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Mix[loc++] =

Pool [matel] [indexl] ;

/* copy contents between two crossing sites of mate2 */

for (i=0; i<site2; i++)

while (Pool [mate2] [++index2] < TerSize);

for (i=site2; i<sitel3; i++)

{
Mix[loc] =
Conc [num++] =
loc++;

Mix[loc] ;

Pool [mate2] [index2] + ConSize;

while (Pool [mate2] [++index2] < TerSize)

Mix [loc++]
Dup[total++] =

}

= Pool [mate2] [index2] ;
Pool [mate2] [index2];

/* copy contents after the first crossing site of matel */

i<size-2; i++)
Pool [matel] [i];

for (i=index1;
Mix [loc++] =

/* perform heuristic algorithm to handle duplicate elements */

heuristic (pos, total, loc,

?lse
for (i=0; i<TerSize;
MatePool [pos] [i] =

i++)

for (i=TerSize; i<size-2; i++)
MatePool [pos] [i] =

Mix [i-TerSize] =

for (i=size-2; i<size; i++)

MatePool [pos] [i] =

}

num) ;

/* no crossover performed */

Pool [matel] [i];

Pool [matel] [i] ;
Pool [matel] [i];

Pool [matel] [1];

/* Performs a heuristic strategy to remove redundent concentrators;
the old concentrators give way to newly injected concentrators.

*/

void heuristic (long pos, long total, long loc, long num)

long i, j, index, hold_c, hold n, done, sum;

long hold = TerSize + ConSize;

/* remove
labels
for (i=0;

are injected */
i<num; i++)

j=-1;

/* maximum label of concentrators */

old concentrators if new concentrators with the same
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/* look for the ith concentrator to be replaced */

while (Mix[++j] != Conc[i] -ConSize) ;
hold ¢ = j;
hold n = 1;

while (++j<loc && Mix[j] <TerSize)
hold n++;

/* remove the concentrator by advancing the rest of the array to
overwrite the concentrator and the terminals assigned to it */
loc -= hold n;
if (hold_c < loc)
for (j=hold_c; j<loc; j++)
Mix[j] = Mix[j+hold _n];

/* after we remove the duplicate concentrators, we may still need
to remove duplicate elements in the remaining concentrators */
for (i=0; i<total; i++)

j = 0;
done = FALSE;

/* look for the ith duplicate element */
while (j<loc && !done)

if (Mix[j]l>=hold)
while (++j<loc && Mix([jl<TerSize);
else

if (Mix[j++]==Dupl[i])

hold n = j-1;
done = TRUE;

} }

/* if the element is found to be duplicated */
if (done)

/* remove the element by advancing the remainder of the array
by one position */
for (j=hold n; j<loc-1; j++)
Mix{j] = Mix[j+1];
loc--;

}

/* relabel the newly injected concentrators */
for (i=0; i<loc; i++)
if (Mix[i] >= hold)
Mix[i] -= ConSize;

/* check if all terminals are assigned */
for (i=0; i<TerSize; i++)
Dup[i] = 1i;
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hold = 0;
for (i=0; i<loc; i++)
if (Mix[i] »>= TerSize)
index = Mix[i] - TerSize;
else
MatePool [pos] [Mix[i]] = index;
hold++;
Dup [Mix[i]] = -1;

}

for (i=0; i<ConSize; i++)
List[i] [0] = O;

if (hold < TerxrSize) /* not all terminals are assigned */

for (i=0; i<ConSize; i++)
ConWeight [i] = 0;

index = 0;
for (i=0; i<ConSize; i++)
j = Mix[index] - TerSize;
while (++index<loc && Mix[index]<TerSize)

List [j] [++List [§]1 [0]] = Mix[index];
ConWeight [j] += TerWeight [Mix[index]];

}

/* use the first-fit technique to assign usassigned terminals */
first_fit (pos, TerSize-hold);

else /* all terminals are assigned */
for (i=0; i<TerSize; i++)
List [MatePool [pos] [i]] [++List [MatePool [pos] [i]] [0]] = i;
index = TerSize;

hold = -1;

/* copy the resulting offspring to matepool */
for (i=0; i<ConSize; i++)

while (Mix[++hold]<TerSize);

MatePool [posg] [index++] = Mix[hold];
hold c¢ = Mix[hold] - TerSize;

for (3=0; j<List[hold_c] [0]; j++)
MatePool [pos] [index++] = List [hold c] [j+1];
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)

MatePool [pos] [index++] = fitness (MatePool [pos]);
MatePool [pos] [index] = Feasible;

/* Uses the first-fit technique to assign terminals. For terminals that
are not assigned, find the first concentrator that can accommodate
its capacity requirement. If no such concentrators exist, this
terminal is randomly assigned to one concentrator.

*/

void first_fit (long pos, long total)

long i, j, done, index = -1;

/* assign all terminals currently not connected to any concentrator */
for (i=0; i<total; i++)

/* look for the next unassigned terminal */

while (Dup[++index] == -1);
done = FALSE;
j=0;

/* try to assign to the first available concentrator */
while (j<ConSize && !done)

if (TexWeight [Dup [index]]+ConWeight [j] <= Capacity)

done = TRUE;

List[j] [++List [j] [0]] = Duplindex];
ConWeight [j] += TerWeight [Dup[index]];
MatePool [pos] [Dup [index]] = j;

else
J++;
}

if (!done) /* randomly choose a concentrator */

j = rand () % ConSize;
List [j] [++List [§] [0]] = Dupl[index];
ConWeight [j] += TerWeight [Duplindex]];
} MatePool [pos] [Dup [index]] = j;
}
}

/* Performs mutation on given string. The mutation operator walks
through the group part of the string; for each concentrator it
determines if mutation is to occur. If yes, all the terminals
originally assigned to that concentrator are to be reassigned
using the first fit strategy.

*/

void mutate (long pos)

long i, j, index, hold;
long total = 0, /* number of unassigned terminals */
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flag = FALSE,
loc = TexrSize + ConSize;
long hold ¢, hold _n, done;

for (i=TerSize; i<size-2; i++)
Mix[i-TerSize] = MatePool [pos] [i];

hold = -1;

for (i=0; i<TerSize; i++)
Dup[i] = -1;

/* test each concentrator */
for (i=0; i<ConSize; i++)

/* look for the next concentrator */
while (Mix[++hold]<TerSize) ;

/* perform mutation if the probability is less than mutation rate */
if ((double) rand () / RAND MAX < Mutation)

flag = TRUE;
hold ¢ = hold + 1;
hold n = 0;

/* remove all terminals assigned to this concentrator */
while (hold+l<loc && Mix[hold+1l]<TerSize)

hold n++;

hold++;

Dup [Mix [hold]] = Mix[hold];
total++;

}

loc -= hold n;
if (hold c < loc)
for (j=hold c; j<loc; j++)
} Mix[j] = Mix[j+hold_n];
}

/* if mutation is ever performed, some elements are missing from
the assignment and thus need to be reassigned */
if (flag)

for (i=0; i<ConSize; i++)
List [i] [0] = 0;

for (i=0; i<ConSize; i++)
ConWeight [i] = 0;

index = 0;
for (i=0; i<ConSize; i++)

j = Mix[index] - TerSize;
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while (++index<loc && Mix[index] <TerSize)

List [j] [++List[j] [0]] = Mix[index];
ConWeight [j] += TerWeight [Mix[index]];

}

/* use the first-fit technique to assign usassigned terminals */
first fit (pos, total);

index = TerSize;
hold = -1;

/* copy the resulting offspring to matepool */
for (i=0; i<ConSize; i++)

while (Mix[++hold]<TerSize);

MatePool [pos] [index++] = Mix[hold];
hold_c = Mix[hold] - TerSize;

for (j=0; j<List(hold_c] [0]; j++)
MatePool [pos] [index++] = List[hold_c] [j+1];

MatePool [pos] [index++] = fitness (MatePool [pos]);
MatePool [pos] [index] = Feasible;

}
}

/* Calculates the sum of fitness values for roulette wheel selection
for the next generation. Also saves the best assignment obtained
up to the current generation.

*/

void stat (long gen)
long i, j, hold, count = -1;
FitSum = 0.0;

for (i=0; i<PoolSize; i++)

hold = MatePool[i] [size-2];
FitSum += 1.0 / hold;

/* test if the fitness value is better than the best so far */
if (hold < min)

min = hold;
count = i;

}

if (count != -1)
for (i=0; i<size; i++)
Best [i] = MatePool [count] [i];
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if (gen%50==0)
printf ("\nGENERATION %1d : BEST FITNESS VALUE = %1d\n", gen, min);

/* Replaces the entire population pool by the mating pool.
This is the strategy used by generational genetic algorithms.

*/
void copy back ()

long i, j;

for (i=0; i<PoolSize; i++)
for (j=0; j<size; j++)
Pool [i] [j] = MatePool(i] [j];

/* Outputs the overall best assignment obtained, both the cost and the
actual assignment from terminals to concentrators.

*/

void print_best ()
long i;
printf ("\nBEST ASSIGNMENT FOR THIS RUN (COST = %1d) :\n\n", min);
for (i=0; i<TerSize; i++)
printf ("%d ", Best(i]);
printf ("\n");

}

/* Frees up memory locations and closes files.
;éid cleanup ()
long i;
for (i=0; i<ConSize; i++)
free (ConCoord([il);
free (List[il);
for (i=0; i<TerSize; i++)
free (TerCoord([i]);
free (Cost[il);
for (i=0; i<PoolSize; i++)
free (Pool[il);

free (MatePool [i]);

free (TerCoord) ;
free (ConCoord);
free (TerWeight) ;
free (ConWeight) ;
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free (Cost);
free (Pool);
free (MatePool) ;
free (List);
free (Mix);

free (Dup);

free (Best);
free (Conc);

fclose (info);
fclose (init);

}

/**************************** End of File ****************************/
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