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Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have

demonstrated high correspondence between predictions and outcomes. At the same time, judgment has

been well modeled in the form of as if linear models. Accepting the probabilistic nature of the

environment, the authors use statistical tools to model how the performance of heuristic rules varies as

a function of environmental characteristics. They further characterize the human use of linear models by

exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and

simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using

the same tasks, the authors estimate the performance of both heuristics and humans where the latter are

assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching

characteristics of rules and environments and highlight the trade-off between using linear models and

heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement.

However, heuristics require knowledge to indicate when they should be used.
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Two classes of models have dominated research on judgment

and decision making over past decades. In one, explicit recognition

is given to the limits of information processing, and people are

modeled as using simplifying heuristics (Gigerenzer, Todd, & the

ABC Research Group, 1999; Kahneman, Slovic, & Tversky,

1982). In the other, it is assumed that people can integrate all the

information at hand and that this is combined and weighted as if

using an algebraic—typically linear—model (Anderson, 1981;

Brehmer, 1994; Hammond, 1996).

The topic of heuristics has generated many interesting findings,

as well as controversy (see, e.g., Gigerenzer, 1996; Kahneman &

Tversky, 1996). However, whereas few scholars doubt that people

make extensive use of heuristics (as variously defined), many

questions are unresolved. One important issue—and key to the

controversy—has been the failure to explicate the relative efficacy

of heuristics and especially to define a priori the environmental

conditions when these are differentially accurate.

At one level, this failure is surprising in that Herbert Simon—

whose work is held in high esteem by researchers with opposing

views about heuristics—specifically emphasized environmental

factors. Indeed, some 50 years ago, Simon stated,

if an organism is confronted with the problem of behaving approxi-

mately rationally, or adaptively, in a particular environment, the kinds

of simplifications that are suitable may depend not only on the

characteristics—sensory, neural, and other—of the organism, but

equally on the nature of the environment. (Simon, 1956, p. 130)

At the same time that Simon was publishing his seminal work

on bounded rationality, the use of linear models to represent

psychological processes received considerable impetus from Ham-

mond’s (1955) formulation of clinical judgment and was subse-

quently bolstered by Hoffman’s (1960) argument for “paramor-

phic” representation (see also Einhorn, Kleinmuntz, &

Kleinmuntz, 1979). Contrary to work on heuristics, this research

has shown concern for environmental factors.

Specifically—as illustrated in Figure 1—Hammond and his

colleagues (Hammond, Hursch, & Todd, 1964; Hursch, Ham-

mond, & Hursch, 1964; Tucker, 1964) depicted Brunswik’s

(1952) lens model within a linear framework that defines both

judgments and the criterion being judged as functions of cues in

the environment. Thus, the accuracy of judgment (or psycho-

logical achievement) depends on both the inherent predictabil-

ity of the environment and the extent to which the weights
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humans attach to different cues match those of the environment.

In other words, accuracy depends on the characteristics of the

cognitive strategies that people use and those of the environ-

ment. Moreover, this framework has been profitably used by

many researchers (see, e.g., Brehmer & Joyce, 1988; Cooksey,

1996; Hastie & Kameda, 2005). Other techniques, such as

conjoint analysis (cf. Louvière, 1988), also assume that people

process information as though using linear models and, in so

doing, seek to quantify the relative weights given to different

variables affecting judgments and decisions (see also Anderson,

1981).

In many ways, the linear model has been the workhorse of

judgment and decision-making research from both descriptive and

prescriptive viewpoints. As to the latter, consider the influence of

linear models on decision analysis (see, e.g., Keeney & Raiffa,

1976), prediction tasks (Camerer, 1981; Dawes, 1979; Dawes &

Corrigan, 1974; Einhorn & Hogarth, 1975; Goldberg, 1970;

Wainer, 1976), and the statistical–clinical debate (Dawes, Faust, &

Meehl, 1989; Kleinmuntz, 1990; Meehl, 1954).

Despite the ubiquity of the linear model in representing human

judgment, its psychological validity has been questioned for many

decision-making tasks. First, when the amount of information

increases (e.g., more than three cues in a multiple-cue prediction

task), people have difficulty in executing linear rules and resort to

simplifying heuristics. Second, the linear model implies trade-offs

between cues or attributes, and because people find these difficult

to execute—both cognitively and emotionally (Hogarth, 1987;

Luce, Payne, & Bettman, 1999)—they often resort to trade-off-

avoiding heuristics (Montgomery, 1983; Payne, Bettman, & John-

son, 1993).

This discussion of heuristics and linear models raises many

important psychological issues. Under what conditions do people

use heuristics—and which heuristics—and how accurate are these

relative to the linear model? Moreover, if heuristics neglect infor-

mation and/or avoid trade-offs, how do these features contribute to

their success or failure, and when?

A further issue relates to how heuristic performance is evalu-

ated. One approach is to identify instances in which heuristics

violate coherence with the implications of statistical theory (see,

e.g., Tversky & Kahneman, 1983). The other considers the extent

to which predictions match empirical realizations (Gigerenzer et

al., 1999). These two approaches, labeled coherence and corre-

spondence, respectively (Hammond, 1996), may sometimes con-

flict in the impressions they imply of people’s judgmental abilities.

In this article, we follow the second because our goal is to

understand how the performance of heuristic rules and linear

models is affected by the characteristics of the environments in

which they are used. In other words, we speak directly to the need

specified by Simon (1956) to develop a theory of how environ-

mental characteristics affect judgment (see also Brunswik, 1952).

This article is organized as follows. We first outline the frame-

work within which our analysis is conducted and specify the

particular models used in our work. We then briefly review liter-

ature that has considered the accuracy of heuristic decision models.

For the most part, this has involved empirical demonstrations and

simulations, and thus, conclusions cannot be easily generalized. In

Figure 1. Diagram of lens model.
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contrast, our approach, developed in the subsequent section, ex-

plicitly recognizes the probabilistic nature of the environment and

exploits appropriate statistical theory. This allows us to make

theoretical predictions of model accuracy in terms of both percent-

age of correct predictions and expected losses. We emphasize here

that these predictions are theoretical implications, as opposed to

forecasts made by fitting models to data and extrapolating to new

samples. Briefly, the rationale for this approach—discussed fur-

ther below—is to capture the power of theory to make claims that

can be generalized. To facilitate the exposition, we do not present

the underlying rationales for all models in the main text but make

use of appendices. We demonstrate the power of our equations

with theoretical predictions of differential model performance over

a wide range of environments, as well as using simulation. This is

followed by our examination of empirical data using a meta-

analysis of the lens model literature. Finally, we consider psycho-

logical, normative, and methodological implications of our work,

as well as suggestions for future research.

Framework and Models

We conduct our analyses within the context of predicting

(choosing) the better of two alternatives on the basis of several

cues (attributes). Moreover, we assume that the criterion is proba-

bilistically related to the cues and that the optimal equation for

predicting the criterion is a linear function of the cues.1 Thus, if the

decision maker weights the cues appropriately (using a linear

model), he or she will achieve the maximum predictive perfor-

mance. However, this could be an exacting standard to achieve.

Thus, what are the consequences of abandoning the linear rule and

using simpler heuristics? Moreover, when do different heuristics

perform relatively well or badly?

Specifically, we consider five models and, to simplify the anal-

ysis, consider only three cues. Two of these models are linear, and

three are heuristics. Whereas we could have chosen many varia-

tions of these models, they are sufficient to illustrate our approach.

First, we consider what happens when the decision maker can be

modeled as if he or she were using a linear combination (LC) of the

cues but is inconsistent (cf. Hoffman, 1960). Note carefully that we

are not saying that the decision maker actually uses a linear formula

but that this can be modeled as if. We justify this on the grounds that

linear models can often provide higher level representations of un-

derlying processes (Einhorn et al., 1979). Moreover, when the infor-

mation to be integrated is limited, the linear model can also provide a

good process description (Payne et al., 1993).

Second, the decision maker uses a simplified version of the

linear model that gives equal weight (EW) to all variables (Dawes

& Corrigan, 1974; Einhorn & Hogarth, 1975).2

Third, the decision maker uses the take-the-best (TTB) heuristic

proposed by Gigerenzer and Goldstein (1996). This model first

assumes that the decision maker can order cues or attributes by

their ability to predict the criterion. Choice is then made by the

most predictive cue that can discriminate between options. If no

cues discriminate, choice is made at random. This model is “fast

and frugal” in that it typically decides on the basis of one or two

cues (Gigerenzer et al., 1999).3

There is experimental evidence that people use TTB-like strat-

egies, although not exclusively (Bröder, 2000, 2003; Bröder &

Schiffer, 2003; Newell & Shanks, 2003; Newell, Weston, &

Shanks, 2003; Rieskamp & Hoffrage, 1999). Descriptively, the

two most important criticisms are, first, that the stopping rule is

often violated in that people seek more information than the model

specifies and, second, that people may not be able to rank-order the

cues by predictive ability (Juslin & Persson, 2002).

The fourth model, CONF (Karelaia, 2006), was developed to

overcome the descriptive shortcomings of TTB. Its spirit is to

consult the cues in the order of their validity (like TTB) but not to

stop the process once a discriminating cue has been identified.

Instead, the process only stops once the discrimination has been

confirmed by another cue.4 With three cues, then, CONF requires

only that two cues favor the chosen alternative. Moreover, CONF

has the advantage that choice is insensitive to the order in which

cues are consulted. The decision maker does not need to know the

relative validities of the cues.5

Finally, our fifth model is based solely on the single variable

(SV) that the decision maker believes to be most predictive. Thus,

this differs from TTB in that, across a series of judgments, only

one cue is consulted. Parenthetically, this could also be used to

model any heuristic based on one variable, such as judgments by

availability (Tversky & Kahneman, 1973), recognition (Goldstein

& Gigerenzer, 2002), or affect (Slovic, Finucane, Peters, &

MacGregor, 2002). In these cases, however, the variable would not

be a cue that could be observed by a third party but would

represent an intuitive feeling or judgment experienced by the

decision maker (e.g., ease of recall, sensation of recognition, or a

feeling of liking).

It is important to note that all these rules represent feasible

psychological processes. Table 1 specifies and compares what

needs to be known for each of the models to achieve its maximum

performance. This can be decomposed between knowledge about

the specific cue values (on the left) and what is needed to weight

the variables (on the right). Two models require knowing all cue

values (LC and EW), and one only needs to know one (SV). The

number of cue values required by TTB and CONF depends on the

characteristics of each choice faced. As to weights, maximum

performance by LC requires precise, absolute knowledge; TTB

requires the ability to rank-order cues by validity; and for SV, one

1 Whereas the linear assumption is a limitation, we note that many

studies have shown that linear functions can approximate nonlinear func-

tions well provided the relations between the cues and criterion are con-

ditionally monotonic (see, e.g., Dawes & Corrigan, 1974).
2 In all of the models investigated, we assume that if the decision maker

uses a variable, he or she knows its zero-order correlation with the

criterion.
3 In Gigerenzer and Goldstein’s (1996) formulation, TTB operates only

on cues that can take binary values (i.e., 0/1). We analyze a version of this

model based on continuous cues where discrimination is determined by a

threshold, that is, a cue discriminates between two alternatives only if the

difference between the values of the cues exceeds a specified value t (�0).
4 In our subsequent modeling of CONF, we assume that any difference

between cue values is sufficient to indicate discrimination or confirmation.

In principle, one could also assume a threshold in the same way that we

model TTB.
5 Parenthetically, with k � 3 cues, CONF is also insensitive to cue

ordering as long as the model requires at least k/2 confirming cues when k

is even and at least (k � 1)/2 confirming cues when k is odd (Karelaia,

2006).
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needs to identify the cue with the greatest validity. Neither EW nor

CONF requires knowledge about weights.

Whereas it is difficult to tell whether obtaining values of cue

variables or knowing how cues vary in importance is more taxing

cognitively, we have attempted an ordering of the models in Table

1 from most to least taxing. LC is the most taxing ceteris paribus.

The important issue is to characterize its sensitivity to deviations

from optimal specification of its parameters. CONF, at the other

extreme, is not demanding, and the only uncertainty centers on

how many variables need to be consulted for each decision.

In our analysis, we adopt a Brunswikian perspective by exploit-

ing properties of the well-known lens model equation (Hammond

et al., 1964; Hammond & Stewart, 2001; Hursch et al., 1964;

Tucker, 1964). We combine this with more recent analytic meth-

ods developed to determine the performance of heuristic decision

rules (Hogarth & Karelaia, 2005a, 2006a; Karelaia, 2006). Using

these tools, we are able to describe how environmental character-

istics interact with those of the different heuristics in determining

the performance of the latter.

The novelty of our approach is that we are able to compare and

contrast heuristic and linear model performance within the same

analytical framework. Moreover, noting that different models re-

quire different levels of knowledge (see Table 1), we see our work

as specifying the demand for knowledge in different regions of the

environment. In other words, to make accurate decisions, how

much and what knowledge is needed in different types of situa-

tions?

In brief, our analytical results show that the performance of

heuristic rules is affected by how the environment weights cues,

cue redundancy, the predictability of the environment, and loss

functions. Heuristics predict accurately when their characteristics

match the demands of the environment; for example, EW is best

when the environment also weights the cues equally. However, in

the absence of a close match between characteristics of heuristics

and the environment, the presence of redundancy can moderate the

relative predictive ability of different heuristics. Both cue redun-

dancy and noise (i.e., lack of predictability) also reduce differences

between model performances, but these can be augmented or

diminished according to the loss function. We also show that

sensible models often make identical predictions. However, be-

cause they disagree across 8%–30% of the cases we examine, it

pays to understand the differences.

We exploit the mathematics of the lens model (Tucker, 1964) to

ask how well decision makers need to execute LC rule strategies to

perform as well as or better than heuristics in binary choice using

the criterion of predictive accuracy (i.e., correspondence). We find

that performance using LC rules generally falls short of that of

appropriate heuristics unless decision makers have high linear

cognitive ability, or ca (which we quantify). This analysis is

supported by a meta-analysis of lens model studies in which we

estimate ca across 270 tasks and also demonstrate that, within the

same tasks, individuals vary in their ability to outperform heuris-

tics using LC models. Finally, we illustrate how errors in the

application of both linear models and heuristics affect performance

and thus the nature of potential trade-offs involved in using dif-

ferent models.

Evidence on the Accuracy of Simple, Heuristic Models

Interest in the use of heuristics has fueled much research (and

controversy) in judgment and decision making. Simon’s work on

bounded rationality (Simon, 1955, 1956) emphasized the need for

humans to use heuristic methods (or to “satisfice”) because of

inherent cognitive limitations. Moreover, as noted above, Simon

stressed the importance of understanding how the structure of the

environment affects the performance of these heuristics.

This environmental concern, however, was largely lacking from

the influential research on heuristics and biases spearheaded by

Tversky and Kahneman (1974; see also Kahneman et al., 1982).

As stated by these researchers, “these heuristics are highly eco-

nomical and usually effective, but they lead to systematic and

predictable errors” (Tversky & Kahneman, 1974, p. 1131). Unfor-

tunately, no environmental theory was offered specifying the con-

ditions under which heuristics are or are not accurate (see also

Hogarth, 1981). Instead, the argument rested on demonstrating that

some responses did not cohere with the dictates of statistical

theory.

Nonetheless, the positive side of heuristic use has also been

emphasized. One line of research has emphasized EW models, the

accuracy of which was demonstrated through simulations and

empirical examples (Dawes, 1979; Dawes & Corrigan, 1974). In

further simulations, Payne et al. (1993) explored trade-offs be-

tween effort and accuracy. Using continuous variables and a

weighted additive model as the criterion, they investigated the

Table 1

Knowledge Required to Achieve Upper Limits of Model Performance

Model

Values of variablesa Weights ordering

Cue 1 Cue 2 Cue 3 Exactb Firstc Alld None

Linear combination (LC) Yes Yes Yes Yes
Equal weighting (EW) Yes Yes Yes Yes
Take-the-best (TTB) Yes Yes/no Yes/no Yes
Single variable (SV) Yes Yes
CONF Yes Yes Yes/no Yes

a Yes � value of cue required; Yes/no � value of cue may be required.
b Exact values of cue weights required.
c First � most important cue identified.
d All � rank order of all cues known a priori.
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performance of several simple choice strategies and specifically

demonstrated the effects of two important environmental variables,

dispersion in the weighting of variables and the extent to which

choices involved dominance (see also Thorngate, 1980). Also

using simulations, McKenzie (1994) showed how simple strategies

of covariation judgment and Bayesian inference can achieve im-

pressive performance.

The predictive accuracy of TTB was first demonstrated by

Gigerenzer and Goldstein (1996) in an empirical illustration and

subsequently replicated over 18 further data sets (Gigerenzer et al.,

1999). Specifically, these studies showed that TTB predicts more

accurately (on cross-validation) than EW and multiple regression

when the criterion is the percentage of correct predictions (in

binary choice). However, there was little concern as to whether

these outcomes were the result of favorable environmental condi-

tions. Voicing these concerns, Shanteau and Thomas (2000) con-

structed environments that they reasoned would be “friendly” or

“unfriendly” to different models and demonstrated these effects

through simulations. However, they did not address the issue of the

relative frequencies of friendly and unfriendly environments in

natural decision-making contexts.

Environmental effects were also demonstrated by Fasolo, Mc-

Clelland, and Todd (2007) in a simulation of multiattribute choice

using continuous variables (involving 21 options characterized by

six attributes). Their goal was to assess how well choices by

models with differing numbers of attributes could match total

utility, and in doing so, they varied levels of average intercorre-

lations among the attributes and types of weighting functions.

Results showed important effects for both. When true utility in-

volved differential weighting, the most important attribute cap-

tured at least 90% of total utility. With positive intercorrelation

among attributes, there was little difference between equal and

differential weighting. With negative intercorrelation, however,

equal weighting was sensitive to the number of attributes used (the

more, the better).

Despite these empirical demonstrations involving simulated and

real data, there has been relatively little theoretical work aimed at

elucidating the environmental conditions under which heuristic

models are and are not accurate. This is an important gap in

scientific knowledge. That is, scientists know that various heuris-

tics have been successful in some environments, but they do not

know why and the extent to which results might generalize to other

environments.

Some work has, however, considered specific cases. Einhorn

and Hogarth (1975), for example, developed a theoretical rationale

for the accuracy of EW relative to multiple regression. Klayman

and Ha (1987) provided an illuminating account of why the so-

called positive-test heuristic is highly effective when testing hy-

potheses in many types of environments. Martignon and Hoffrage

(1999, 2002) and Katsikopoulos and Martignon (2006) explored

the conditions under which TTB or EW should be preferred in

binary choice. Hogarth and Karelaia (2005b, 2006b) and Baucells,

Carrasco, and Hogarth (in press) have examined why TTB and

other simple models perform well with binary attributes in error-

free environments. Finally, in related work (Hogarth & Karelaia,

2005a, 2006a), we have provided an analytical framework for

determining what we named regions of rationality, that is, the

identification of environmental and model characteristics that

specify when heuristics do and do not predict accurately. The

current article builds on these foundations.

The next section is technical. We first briefly explain the logic

of the lens model and the lens model equation (Tucker, 1964). We

then derive equations for the predictive ability of the heuristics we

examine in terms of expected proportion of correct predictions in

binary choice as well as squared-error loss functions. An important

difference between studies of heuristic judgment and those using

the lens model is that the empirical criterion for the latter—known

as achievement—is measured by the correlation between judg-

ments and outcomes as opposed to percentage of correct predic-

tions in binary choice. To compare paradigms, we transform

correlational achievement into equivalent percentage correct in

binary choice.

Theoretical Development

Accepting the probabilistic nature of the environment (Brun-

swik, 1952), we use statistical theory to model both how people

make judgments and the characteristics of the environments in

which those judgments are made. To motivate the theoretical

development, imagine a binary choice that involves selecting one

of two job candidates, A and B, on the basis of several character-

istics such as level of professional qualifications, years of experi-

ence, and so on. Further, imagine that a criterion can be observed

at a later date and that a correct decision has been taken if the

criterion is greater for the chosen candidate. Denote the criterion

by the random variable Ye such that if A happened to be the correct

choice, one would observe yea � yeb.6

Within the lens model framework—see Figure 1—we can

model assessments of candidates by two equations: one, the model

of the environment; the other, the model of the judge (the person

assessing the job candidates). That is,

Ye � �
j � 1

k

�e,jXj � εe, (1)

and

Ys � �
j � 1

k

�s,jXj � εs, (2)

where Ye represents the criterion (subsequent job performance of

candidates) and Ys is the judgment made by the decision maker, the

Xjs are cues (here, characteristics of the candidates), and εe and εs

are normally distributed error terms with means of zero and

constant variances independent of the Xs.

The logic of the lens model is that the judge’s decisions will

match the environmental criterion to the extent that the weights the

judge gives to the cues match those used by the model of the

environment, that is, the matches between �s,j and �e,j for all j �

1, . . . , k—see Figure 1.

6 We use uppercase letters to denote random variables, for example, Ye,

and lowercase letters to designate specific values, for example, ye. As

exceptions to this practice, we use lowercase Greek letters to denote

random error variables, for example, εe, as well as parameters, for example,

�e,j.
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Moreover, assuming that the error terms in Equations 1 and 2

are independent of each other, it can be shown that the achieve-

ment index—or correlation between Ye and Ys—can be expressed

as a multiplicative function of three terms (Tucker, 1964). These

are, first, the extent to which the environment is predictable as

measured by Re, the correlation between Ye and �
j � 1

k

�e,jXj; second,

the consistency with which the person uses the linear decision rule

as measured by Rs, the correlation between Ys and �
j � 1

k

�s,jXj; and

third, the correlation between the predictions of both models, that

is, between �
j � 1

k

�e,jXj and �
j � 1

k

�s,jXj. This is also known as G, the

matching index. (Note that G � 1 if �e,j � �s,j, for all j �

1, . . . , k.)

This leads to the well-known lens model equation (Tucker,

1964) that expresses judgmental performance or achievement in

the form

�YeYs
� GReRs � �εeεs

�(1 � Re
2)(1 � Rs

2), (3)

where, for completeness, we show the effect of possible nonzero

correlation between the error terms of Equations 1 and 2.

Assuming that the correlation �εeεs
is zero, we consider below

two measures of judgmental performance. One is the traditional

measure of achievement, GReRs. The other is independent of the

level of predictability of the environment and is captured by GRs.

Lindell (1976) referred to this as performance. However, we call it

linear cognitive ability, or ca, to capture the notion that it measures

how well someone is using the linear model in terms of both

matching weights (G) and consistency of execution (Rs).

First, however, we develop the probabilities that our models

make correct predictions within a given population or environ-

ment. As will be seen, these probabilities reflect the covariance

structure of the cues as well as those between the criterion and the

cues. It is these covariances that characterize the inferential envi-

ronment in which judgments are made.

The SV Model

Imagine that the judge does not use a linear combination rule but

instead simply chooses the candidate who is better on one variable,

X1 (e.g., years of experience). Thus, the decision rule is to choose

the candidate for whom X1 is larger, for example, choose A if

x1a � x1b. Our question now becomes, what is the probability that

A is better than B using this decision rule in a given environment,

that is, what is P{(Yea � Yeb) � (X1a � X1b)}?

To calculate this probability, we follow the model presented in

Hogarth and Karelaia (2005a). We first assume that Ye and X1 are

both standardized normal variables (i.e., with means of 0 and

variances of 1) and that the cue used is positively correlated with

the criterion.7 Denote the correlation by the parameter �YeX1
(�0).

Given these facts, it is possible to represent Yea and Yeb by the

equations

Yea � �YeX1
X1a � vea (4)

and

Yeb � �YeX1
X1b � veb, (5)

where vea and veb are normally distributed error terms, each with

mean of 0 and variance of �1 � �YeX1

2 ), independent of each other

and of X1a and X1b.

The question of determining P{(Yea � Yeb) � (X1a � X1b)} can

be reframed as determining P{(d1 � 0) � (d2 � 0} where d1 �

Yea � Yeb � 0 and d2 � X1a � X1b � 0. The variables d1 and d2

are bivariate normal with variance–covariance matrix

Mf_SV � � 2 2�YeX1

2�YeX1 2 �
and means of 0. Thus, the probability of correctly selecting A over

B can be written as

�
0

��
0

�

f(d) dd, (6)

where f(d) is the normal bivariate probability density function with

d	 � (d1,d2).

To calculate the expected accuracy of the SV model in a given

environment, it is necessary to consider the cases where both

X1a � X1b and X1b � X1a such that the overall probability is given

by P{((Yea � Yeb) � (X1a � X1b)) U ((Yeb � Yea) � (X1b � X1a))},

which, because both its components are equal, can be simplified as

2P{(Yea � Yeb) � (X1a � X1b)} � 2�
0

��
0

�

f(d) dd. (7)

The analogous expressions for the LC, EW, CONF, and TTB

models are presented in Appendix A, where the appropriate cor-

relations for LC and EW are �YeYs
and �YeX, respectively.

Loss Functions

Equation 7, as well as its analogues in Appendix A, can be used

to estimate the probabilities that the models will make the correct

decisions. These probabilities can be thought of as the average

percentage of correct scores that the models can be expected to

achieve in choosing between two alternatives. As such, this mea-

sure is equivalent to a 0/1 loss function that does not distinguish

between small and large errors. We therefore introduce the notion

that losses from errors reflect the degree to which predictions are

incorrect.

Specifically, to calculate the expected loss resulting from using

SV across a given population, we need to consider the possible

losses that can occur when the model does not select the best

alternative. We model loss by a symmetric squared error loss

function but allow this to vary in exactingness, or the extent to

which the environment does or does not punish errors severely

(Hogarth, Gibbs, McKenzie, & Marquis, 1991). We note that loss

occurs when (a) X1a � X1b but Yea 
 Yeb and (b) X1a 
 X1b but

Yea � Yeb. Capitalizing on symmetry, the expected loss (EL)

associated with the population can therefore be written as

7 We consider the implications of our normality assumption in the

General Discussion.
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ELSV � 2P{(Yea 
 Yeb) � (X1a � X1b)}L, (8)

where L � �(Yeb � Yea)2. The constant of proportionality, � (�0),

is the exactingness parameter that captures how heavily losses

should be counted.

Substituting �(Yeb � Yea)2 for L and following the same ratio-

nale as when developing the expression for accuracy, the expected

loss of the SV model can be expressed as

ELSV � 2�(Yeb � Yea)
2P{(Yea 
 Yeb) � (X1a � X1b)}

� 2��
��

0 �
0

�

d1
2f(d)dd. (9)

As in the expression for accuracy, the function f(d) for SV

involves the variance–covariance matrix Mf _SV. The expected

losses of LC and EW are found analogically, using their appro-

priate variance–covariance matrices.

In Table 2, we summarize the expressions for accuracy and loss

for SV, LC, and EW. In Appendix B, we present the formulas for

the loss functions of CONF and TTB. Finally, note that expected

loss, as expressed by Equation 9, is proportional to the exacting-

ness parameter, �, that models the extent to which particular

environments punish errors.

Exploring Effects of Different Environments

We first construct and simulate several task environments and

demonstrate how our theoretical analyses can be used to compare

the performance of the models in terms of both expected percent-

age correct and expected losses. We also show how errors in the

application of both linear models and heuristics affect performance

and thus illustrate potential trade-offs involved in using different

models. We further note that, in many environments, heuristic

models achieve similar levels of performance and explicitly ex-

plore this issue using simulation. To link theory with empirical

phenomena, we use a meta-analysis of lens model studies to

compare the judgmental performance of heuristics with that of

people assumed to be using LC models.

Constructed and Simulated Environments: Methodology

To demonstrate our approach, we constructed several sets of

different three-cue environments using the model implicit in Equa-

tion 1. Our approach was to vary systematically two factors: first,

the weights given to the variables as captured by the distribution of

cue validities, and second, the level of average intercue correlation.

As a consequence, we obtained environments with different levels

of predictability, as indicated by Re (from low to high). We could

not, of course, vary these factors in an orthogonal design (because

of mathematical restrictions) and hence used several different sets

of designs.

For each of these, it is straightforward to calculate expected

correct predictions and losses for all our models8 (see equations

above), with one exception. This is the LC model, which requires

specification of �YeYs
, that is, the achievement index, or the corre-

lation between the criterion and the person’s responses (see Ap-

pendix A). However, given the lens model equation—see Equation

3 above—we know that

�YeYs
� GReRs, (10)

where Re is the predictability of the environment and GRs or ca is

the measure of linear cognitive ability that captures how well

someone is using the linear model in terms of both matching

weights and consistency of execution.9 In short, our strategy is to

vary ca and observe how well the LC model performs. In other

words, how accurate would people be in binary choice when

modeled as if using LC with differing levels of knowledge (match-

ing of weights) and consistency in execution of their knowledge?

For example, it is of psychological interest to ask when the

validity of SV equals that of an LC strategy, that is, when �YeX1
�

caRe or ca � �YeX1
/Re. This is the point of indifference between

making a judgment based on all the data (i.e., with LC) and relying

on a single cue (SV), such as when using availability (Tversky &

Kahneman, 1973) or affect (Slovic et al., 2002).

Relative Model Performance: Expected Percentage

Correct and Expected Losses

We start by a systematic analysis of model performance in three

sets of environments—A, B, and C—defined in Table 3. As noted

8 For the TTB model, we defined a threshold of .50 (with standardized

variables) to decide whether a variable discriminated between two alter-

natives. Whereas the choice of .50 was subjective, investigation shows

quite similar results if this threshold is varied between .25 and .75. We use

the threshold of .50 in all further calculations and illustrations.
9 The assumption made here is that �εeεs

� 0; see Equation 3. Recall also

that using is employed here in an as if manner.

Table 2

Key Formulas for Three Models: SV, LC, and EW

Model Variance–covariance matrix (Mf)

Single variable (SV) � 2 2�YeX1

2�YeX1 2 �
Linear combination (LC) � 2 2�YeYs

2�YeYs 2 �
Equal weights (EW) � 2 2�YeX�X

2�YeX�X 2�
X

2 �
Note. 1. The expected accuracy of models is estimated as the probability
of correctly selecting A over B or B over A and is found as

2�
0

��
0

�

f(d) dd,

where f(d) is the normal bivariate probability density function with d	 �
(d1, d2).
2. The expected loss of models is found as

2��
��

0 �
0

�

d1
2f(d) dd,

where � (� 0) is the exactingness parameter.
3. The variance–covariance matrix Mf is specific for each model.

4. �YeX � ��YeX� k

1�(k � 1)��XiXj

,

where k � number of X variables, ��YeX
� average correlation between Y

and the Xs, and ��XiXj
� average intercorrelations amongst the Xs.

5. �X��1

k
(1�(k � 1)��XiXj

).
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above, we consider two main factors. First are distributions of cue

validities. We distinguish three types: noncompensatory, compen-

satory, and equal weighting. Environments are classified as non-

compensatory if, when cue validities are ordered in magnitude, the

validity of each cue is greater than or equal to the sum of those

smaller than it (cf. Martignon & Hoffrage, 1999, 2002). All other

environments are compensatory. However, we distinguish between

compensatory environments that do or do not involve equal

weighting, treating the former as a special case. Case A in Table 3

involves equal weighting, whereas Case B is noncompensatory and

Case C is compensatory (but not with equal weighting).

Second, we use average intercue correlation to define redun-

dancy. When positive, this can be large (.50) or small (.10). It can

also be negative. Thus, the variants of all cases with indices 1 (i.e.,

A1, B1, C1) have small positive levels of redundancy, the variants

with indices 2 (i.e., A2, B2, C2) have large positive levels, and the

last variant of Case C (i.e., C3) involves a negative intercue

correlation.10

Taken together, these parameters imply different levels of en-

vironmental predictability (or lack of noise), that is, Re, which

varies from .66 to .94. In the right-hand column, we show values

of �YeX1
/Re. These indicate the benchmarks for determining when

SV or LC performs better. Specifically, LC performs better than

SV when ca exceeds �YeX1
/Re.

Figure 2 depicts expected percentages of correct predictions for

the different models as a function of linear cognitive ability ca. We

emphasize that our models’ predictions are theoretical implications

as opposed to estimates of predictability gained from fitting mod-

els to data and forecasting to new samples of data. These two uses

of prediction are quite different, and we return to this issue in the

General Discussion, below.

We show only the upper part of the scale of expected percentage

correct because choosing at random would lead to a correct deci-

sion in 50% of choices. We stress that, in these figures, we report

the performance of SV and TTB, assuming that the cues were

ordered correctly before the models were applied. We relax this

assumption further below to show the effect of human error in the

use of heuristics.

A first comment is that relative model performance varies by

environments. In Case A1 (equal weighting and low redundancy),

EW performs best (as it must). CONF is more accurate than TTB,

and SV lags behind. In Case A2, where the redundancy becomes

larger, the performance of all models except SV deteriorates. This

is not surprising given that the increase in cue redundancy reduces

the relative validity of information provided by each cue following

the first one, and thus the overall predictability of the environment

decreases (i.e., Re in Case A1 equals .81, whereas, in A2, it

decreases to .66). EW, of course, still performs best. However, the

other heuristic models, in particular CONF and TTB, do not lag

much behind.

This picture changes in the noncompensatory environment B.

When redundancy is low (i.e., Case B1), TTB performs best,

followed by SV and the other heuristics. When redundancy is

greater (i.e., Case B2), the performance of TTB drops some 5%.

This is enough for SV, which is insensitive to the changes in

redundancy, to have the largest expected performance. EW and

CONF lose in performance and remain the worst heuristic per-

formers here.

The compensatory environment C shows different trends. With

low positive redundancy (i.e., Case C1), EW and TTB share the

best performance, and SV is the worst of the heuristics. Higher

positive cue redundancy in Case C2 allows SV to become one of

the best models, sharing this position with TTB. Finally, in the

presence of negative intercue correlation (i.e., Case C3), EW does

best, whereas TTB stays slightly behind it. SV is again the worst

heuristic. Given the same cue validities across the C environments,

negative intercue correlation increases the predictability of the

environment to .94 (from .75 in C1 and .66 in C2). This change

triggers improvements in the performance of all models and mag-

nifies the differences between them (compare Case C3 with Cases

C1 and C2).

Now consider the performance of LC as a function of ca. First,

note that, in each environment, we illustrate (by dotted vertical

lines) the level of ca at which LC starts to outperform the worst

heuristic. When the latter is SV, this point corresponds to the

critical point of equality between LC and SV enumerated in the

last column of Table 3. Thus, LC needs ca of from .62 to .80 (at

least) to be competitive with the worst heuristic in these environ-

ments. The lowest demand is posed on LC in Cases A1 (minimum

ca of .62) and C3 (.64). These cases are the most predictable of all

examined in Figure 2 (Res of .81 and .94, respectively). In the least

predictable environments, A2, C1, and C2, the minimum ca

10 Defining redundancy by average cue intercorrelation could, of course,

be misleading by hiding dispersion among correlations. In fact, with the

exception of Case C3, the intercorrelations of the variables within cases

were equal—see Table 3.

Table 3

Environmental Parameters: Cases A, B, and C

Case

Cue validities
Cue

intercorrelations

R �YeX1
/R�YeX1

�YeX2
�YeX3

�X1X2
�X1X3

�X2X3

A1 .5 .5 .5 .1 .1 .1 .81 .62
A2 .5 .5 .5 .5 .5 .5 .66 .76
B1 .7 .4 .2 .1 .1 .1 .80 .88
B2 .7 .4 .2 .5 .5 .5 .76 .93
C1 .6 .4 .3 .1 .1 .1 .75 .80
C2 .6 .4 .3 .5 .5 .5 .66 .91
C3 .6 .4 .3 �.4 .1 .1 .94 .64
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needed to beat the worst heuristic is much larger: .76, .80, and .78,

respectively.

Interestingly, in all the environments illustrated, ca has to be

quite high before LC starts to be competitive with the better

heuristics. In the most predictable environment, C3, LC has the

best performance when ca starts to exceed .85. In the other

environments, LC starts to have the best performance only when

levels of ca are even higher.

The simple conclusion from this analysis—which we explore

further below—is that unless ca is high, decision makers are better

off using simple heuristics, provided that they are able to imple-

ment these correctly.

In Figure 3, we use the environment A1 to show differential

performance in terms of expected loss where the exactingness

parameter, �, is equal to 1.00 or .30. A comparison of expected

loss with � � 1.00 on the left panel of Figure 3 and expected

accuracy in Case A1 in Figure 2 shows the same visual pattern of

results in terms of relative model performance, a finding that was

not obvious to us a priori. However, the differences between the

models are magnified when the criterion of expected loss is used.
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Figure 2. Model performance measured as expected percentage correct: Cases A, B, and C. SV � single

variable model; EW � equal weight model; LC � linear combination model; CONF � CONF model; TTB �

take-the-best model.
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To note this, compare the ranges of model performance at ca � .20

(extreme left point) in the two figures. When expected percentage

correct is used as the decision criterion, the best model (EW in this

case) is some .25 points (� 80% � 55%) above the worst model

(LC). When expected loss is used, the difference increases to about

.70 points (� .80 of LC � .11 of SV).

The panel on the right of Figure 3 shows the effects of less

exacting losses when � � .30. Comparing it with the left panel of

Figure 3, we find the same relative ordering between models but

differences in expected loss are much smaller (as follows from

Equation 9).

The Effect of Human Error in Heuristics

In Environments A, B, and C, we assume that the cues are

ordered correctly before the heuristics are applied. However, this

excludes the possibility of human error in executing the heuristics.

To provide more insight, we relax this assumption in a further set

of environments D. Similar to the environments described above,

we consider two variants of D: D1, with low positive cue redun-

dancy, and D2, with a higher level of redundancy (see Table 4). To

show additionally the effect of predictability, Re, within environ-

ments, we include eight subcases (i–viii) in both variants. The

distribution of cue validities is noncompensatory in Subcases i, ii,

and iii; compensatory in Subcases iv, v, and vi; and equal weight-

ing in the last two subcases, vii and viii. A consequence of these

specifications is a range of environmental predictabilities, Re, from

.37/.39 to .85/.88 across all eight sets of subcases.

In Table 4, we report both expected percentage correct and

losses (for � � 1.00) for all models. To illustrate effects of human

error, we present heuristic performance under the assumption that

the decision maker fails to order the cues according to their

validities and thus uses them in random order. This error affects

the results of SV and TTB. EW and CONF, however, are immune

to this lack of knowledge of the environmental structure. For SV

and TTB, we present in addition results achieved with correct

knowledge about cue ordering. To illustrate the effect of knowl-

edge on the performance of LC in the same environments, we

show results using three values for ca: ca � .50 for LC1, ca � .70

for LC2, and ca � .90 for LC3.

The trends in Table 4 are illustrated in Figures 4 and 5, which

document percentage correct and expected loss, respectively, of

the different models as a function of the validity of the most valid

cue, �YeX1
. Because, here, �YeX1

is highly correlated with environ-

mental predictability Re, the horizontal axis of the graphs can also

be thought of as capturing noise (more, on the left, to less, on the

right).

In the upper (lower) panel of the figures, we show the effect of

error on the performance of SV (TTB). The performances of SV

and TTB under random cue ordering are illustrated with the

corresponding lines. The range of possible performance levels of

the models from best (i.e., achieved under the correct cue ordering)

to worst (i.e., achieved when the least valid cue is examined first,

the second least valid second, etc.) is illustrated with the shaded

areas.

First, we compare performance among the heuristic models.

Note that, as noise in the environment decreases, there is a general

trend for differences in heuristic model performance to increase, in

addition to a tendency for performance to improve (see Figure 4).

Second, relative model performance is affected by distributions of

cue validities and redundancy (see Table 4). In noncompensatory

environments with low redundancy (Subcases i–iii), TTB performs

best, provided that the cues are ordered correctly (Figure 4, lower

panel, the right-hand part of Case D1, the upper limit of the range

of TTB). However, as these environments become more redun-

dant, the advantage goes to SV (Figure 4, upper panel, the right-

hand side of Case D2, the upper limit of the range of SV). When

Figure 3. Model performance measured as expected loss (for � � 1.00 and � � .30): Case A1. SV � single

variable model; EW � equal weight model; LC � linear combination model; CONF � CONF model; TTB �

take-the-best model.
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environments involve equal weighting (Subcases vii and viii), EW

is the most accurate, followed by CONF. In the compensatory

environments (Subcases iv–vi), EW does best when redundancy is

low, but this advantage switches to TTB (provided that the cues are

ordered correctly) when redundancy is higher. We discuss these

trends again below.

Second, comparing Figures 4 and 5, we note again that expected

loss rank-orders the models similarly to expected percentage cor-

rect. The differences among the models are more pronounced and

evident, however, when expected loss is used.

Third, extreme errors in ordering the cues according to their

validities decrease the performance of SV and TTB so much that

even in the most predictable environments (observe the lower

bounds of SV and TTB at the right-hand side of illustrations in

Figures 4 and 5), this can fall almost to the levels of performance

corresponding to the most noisy environments (same bounds at the

left-hand side of the illustrations). In addition, SV is punished

relatively more than TTB by ordering the cues incorrectly (com-

pare the vertical widths of the SV and TTB shaded ranges in both

Figures 4 and 5). When knowledge about the structure of the

environment is lacking, more extensive cue processing under EW

and CONF hedges the decision maker irrespective of the type of

environment (i.e., compensatory or not).

Note that, in equal-weighting environments (i.e., Subcases vii

and viii, �YeX1
� .10 and .20), it does not matter whether SV and

TTB identify the correct ordering of cues because each has the

same validity. In these environments, the ranges of performance of

SV and TTB coincide with the model performance under random

cue ordering.

Fourth, when expected loss is used instead of expected percent-

age correct, the decrease in performance due to incorrect cue

ordering is more pronounced. This is true for both SV and TTB.

(Compare the vertical width of the shaded ranges between Figures

4 and 5, within the models. Note that the scales used in Figures 4

and 5 are different and that using equivalent scales would mean

decreasing all the vertical differences in Figure 4).

Fifth, for the LC model, it is clear (and unsurprising) that more

ca is better than less. Interestingly, as the environment becomes

more predictable, the accuracy of the LC models drops off relative

to the simpler heuristics. In the environments examined here, the

best LC model (with ca � .90) is always outperformed by one of

the other heuristics when �YeX1
� .60 (see Table 4). Error in the

application of heuristics, however, can swing the advantage back

to LC models even in the most predictable environments (the

right-hand side of illustrations in Figure 4, below the upper bounds

of SV and TTB). In addition, errors in the application of heuristic

Figure 4. The effect of human errors on expected percentage correct: Case D. SV � single variable model;

EW � equal weight model; LC � linear combination model; CONF � CONF model; TTB � take-the-best

model.
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models mean that LC can be relatively more accurate at the lower

levels of ca.

Agreement Between Models

In many instances, strategies other than LC have quite similar

performance. This raises the question of knowing how often they

make identical predictions. To assess this, we calculated the prob-

ability that all pairs of strategies formed by SV, EW, TTB, and

CONF would make the same choices across several environments.

In fact, because calculating this joint probability is complicated,

we simulated results on the basis of 5,000 trials for each environ-

ment.

Table 5 specifies the parameters of the E environments, the

percentage of correct predictions for each model in each environ-

ment,11 and the probabilities that models would make the same

decisions. There are two variants, E1 and E2 (with low and higher

redundancy), each with eight subcases (i–viii). For both cases, the

environments of Subcases i–v are noncompensatory, Subcase vi is

compensatory, and Subcases vii and viii involve equal weighting.

Across each case, predictability (Re) varies from high to low.

We make three remarks. First, there is considerable variation in

percentage-correct predictions across different levels of predict-

ability that are consistent with the results reported in Table 4.

However, agreement between pairs of models hardly varies as a

function of Re and is uniformly high. In particular, the rate of

agreement lies between .70 and .92 across all comparisons and is

11 We also calculated the theoretical probabilities of the simulated per-

centage of correct predictions. Given the large sample sizes (5,000),

theoretical and simulated results are almost identical.

Figure 5. The effect of human errors on expected loss (for � � 1.00): Case D. SV � single variable model;

EW � equal weight model; LC � linear combination model; CONF � CONF model; TTB � take-the-best

model.
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probably higher than one might have imagined a priori.12 At the

same time, this means that differences between the models occur

in 8%–30% of choices, and from a practical perspective, it is

important to know when this happens and which model is more

likely to be correct. Second, as would be expected, the effect of

increasing redundancy is to increase the level of agreement be-

tween models. Third, for the environments illustrated here, CONF

and EW have the highest level of agreement whereas SV-EW and

SV-TTB have the lowest. The latter result is surprising in that both

SV and TTB are so dependent on the most valid cue.

Relative Model Performance: A Summary

Synthesizing the results of the 39 environments specified in

Tables 3, 4, and 5, we can identify several trends in the relative

performance of the models.

First, the models all perform better as the environment becomes

more predictable. At the same time, differences in model perfor-

mance grow larger.

Second, relative model performance depends on both how the

environment weights cues (noncompensatory, compensatory, or

equal weighting) and redundancy. We find that when cues are

ordered correctly, (a) TTB performs best in noncompensatory

environments when redundancy is low; (b) SV performs best in

noncompensatory environments when redundancy is high; (c) ir-

respective of redundancy, EW performs best in equal-weighting

environments in which CONF also performs well; (d) EW (and

sometimes TTB) performs best in compensatory environments

when redundancy is low; and (e) TTB (and sometimes SV) per-

forms best in compensatory environments when redundancy is

high.

Third, subject to the differential predictive abilities noted, the

heuristic models exhibit high rates of agreement.

Fourth, any advantage of LC models falls sharply as environ-

ments become more predictable. Thus, a high level of ca is

required to outpredict the best heuristics. On the other hand, error

in the execution of heuristics can result in more accurate perfor-

mance by LC models.

Fifth, when the decision maker does not know the structure of

the environment and therefore cannot order the cues according to

their validity, the more extensive EW and CONF models are the

best heuristics, irrespective of how the environment weights cues

and redundancy. This is an important result in that it justifies use

of these heuristics when decision makers lack knowledge of the

environment, that is, these are good heuristics for states of com-

parative ignorance (see also Karelaia, 2006).

We discuss this summary again below.

Comparisons With Experimental Data

The above analysis has been at a theoretical level and raises the

issue of how good people are at making decisions with linear

models as opposed to using heuristics. To answer this question, we

undertook a meta-analysis of lens model studies to estimate ca.

This involved attempting to locate all lens model studies reported

in the literature that provided estimates of the elements of Equation

12 In the populations A–C, the analogous rates of agreement were .64 to

.92. Interestingly, it was the environment with negative intercue correlation

that had the lowest rates of agreement (mean agreement between models

.70).

Table 5

Rates of Agreement Between Heuristic Strategies for Different Environments

Case &
subcase

Cue validities
Cue

redundancy Re

Percentage correct Rates of agreement

1 2 3 SV EW TTB CONF SV-EW SV-CONF SV-TTB CONF-EW TTB-EW CONF-TTB

E1 0.1
i 0.8 0.6 0.2 0.96 80 82 86 79 0.72 0.77 0.72 0.87 0.80 0.77
ii 0.7 0.5 0.2 0.84 75 77 79 74 0.73 0.77 0.73 0.86 0.80 0.77
iii 0.6 0.4 0.2 0.73 71 72 73 69 0.72 0.77 0.72 0.86 0.80 0.77
iv 0.5 0.3 0.2 0.63 66 67 67 66 0.71 0.76 0.71 0.85 0.78 0.76
v 0.4 0.2 0.2 0.54 62 63 63 61 0.73 0.77 0.73 0.86 0.80 0.78
vi 0.3 0.2 0.2 0.49 59 61 61 61 0.70 0.76 0.70 0.85 0.78 0.76
vii 0.2 0.2 0.2 0.45 57 59 58 58 0.72 0.78 0.72 0.86 0.79 0.76
viii 0.1 0.1 0.1 0.38 53 54 53 53 0.71 0.77 0.71 0.85 0.79 0.76

Mean 65 67 68 65 0.72 0.77 0.72 0.86 0.79 0.77
E2 0.5

i 0.8 0.6 0.2 0.90 80 73 79 71 0.81 0.83 0.81 0.91 0.88 0.85
ii 0.7 0.5 0.2 0.78 74 70 74 68 0.81 0.84 0.81 0.91 0.88 0.85
iii 0.6 0.4 0.2 0.67 71 67 70 65 0.81 0.83 0.81 0.91 0.88 0.84
iv 0.5 0.3 0.2 0.58 67 64 66 63 0.80 0.83 0.80 0.91 0.88 0.85
v 0.4 0.2 0.2 0.50 64 61 63 60 0.80 0.83 0.80 0.91 0.87 0.84
vi 0.3 0.2 0.2 0.44 59 59 60 59 0.81 0.84 0.81 0.91 0.87 0.84
vii 0.2 0.2 0.2 0.42 58 59 58 59 0.80 0.83 0.80 0.91 0.88 0.85
viii 0.1 0.1 0.1 0.38 53 54 53 53 0.80 0.83 0.80 0.92 0.88 0.84

Mean 66 63 65 62 0.81 0.83 0.81 0.91 0.88 0.85
Overall mean 66 65 66 64 0.76 0.80 0.76 0.88 0.84 0.81

Note. Results are from simulations with 5,000 trials for each environment. SV � single variable model; EW � equal weight model; TTB � take-the-best
model; CONF � CONF model.
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3. Studies therefore had to have a criterion variable and involve the

judgments of individuals (as opposed to groups of people).13

Moreover, we considered only cases in which there was more than

one cue (with one cue, G � 1.00 necessarily). We located 84

(mainly) published studies that allowed us to examine judgmental

performance across 270 different task environments (i.e., environ-

ments that vary by statistical parameters and/or substantive con-

ditions).14

In Table 6, we summarize statistics from the meta-analysis (for

full details, see Karelaia & Hogarth, 2007). First, we note that

these studies represent much data. They are the result of approx-

imately 5,000 participants providing a total of some 320,000

judgments. In fact, many of these studies involved learning, and

because we characterize judgmental performance by that achieved

in the last block of experimental trials reported, the participants

actually made many more judgments. Second, we provide several

breakdowns of different lens model and performance statistics that

are the means across studies of individual data that have been

averaged within studies (i.e., the units of analysis are the mean data

of particular studies). We distinguish between expert and novice

participants, laboratory and field studies, environments that in-

volved different numbers of cues, different weighting functions,

and different levels of redundancy (or cue intercorrelation).

Briefly, we find no differences in performance between partic-

ipants who are experts or novices (the latter, however, are assessed

after learning). Holding the predictability of the environment con-

stant (i.e., Re), performance is somewhat better with fewer cues

and when the environment involves equal weighting as opposed to

being compensatory or noncompensatory. Controlling for the num-

ber of the cues, there is no difference in performance between

laboratory and field studies.

Overall, the LC accuracy reported in the right-hand column of

Table 6 is about 70%. This represents the percentage correct in

binary choice of a person whose estimated linear cognitive ability

(ca or GRs) is .66. Moreover, this figure is a mean estimate across

individual studies, each of which is described by the mean of

individual data. Table 6 obscures individual variation, which we

discuss further below.

To capture the differences in performance between LC and the

heuristic models, one needs to have specific information on the

statistical properties of tasks (essentially the covariation matrix

13 We also excluded studies from the interpersonal conflict paradigm in

which the criterion for one’s person’s judgments is the judgment of another

person (see, e.g., Hammond, Wilkins, & Todd, 1966).
14 It is important to bear in mind that, although investigators in the lens

model paradigm model judgments as though people are using linear mod-

els, judges may, in fact, be using quite different processes (Michael E.

Doherty, personal communication, July 2006).

Table 6

Description of Studies in Lens Model Meta-Analysis

Characteristics of tasks
Number of

studies

Average number Mean lens model statistics
LC accuracy

(%)Judges Judgments ra
a Ga Re Rs Ca GRs

All studies 270 20 86 0.56 0.80 0.79 0.80 0.05 0.66 70
Participants

Experts 61 15 153 0.53 0.74 0.72 0.83 0.12 0.62 69
Novices 206 20 66 0.57 0.83 0.82 0.80 0.03 0.67 71
Unclassified 3 53 66 0.24 0.45 0.72 0.74 0.00 0.24 58

Type of study
Laboratory 214 20 86 0.57 0.83 0.80 0.80 0.04 0.68 71
Field 53 16 87 0.50 0.72 0.75 0.83 0.08 0.60 68
Unclassified 3 22 96 0.41 0.52 0.81 0.88 0.00 0.44 65

Number of cues
2 69 26 48 0.63 0.88 0.79 0.79 0.07 0.71 73
3 90 19 93 0.55 0.88 0.80 0.81 0.00 0.72 70
�3 108 16 105 0.52 0.71 0.79 0.81 0.07 0.58 69
Unclassified 3 21 56 0.17 0.32 0.74 0.86 �0.01 0.02 56

Type of weighting function
Equal weighting 42 29 65 0.66 0.91 0.82 0.81 0.02 0.75 75
Compensatory 91 16 97 0.56 0.83 0.79 0.82 0.04 0.68 70
Noncompensatory 60 22 40 0.56 0.81 0.85 0.75 0.04 0.64 70
Unclassified 77 16 120 0.49 0.72 0.74 0.82 0.08 0.60 68

Cue redundancyb

None 106 20 50 0.61 0.89 0.82 0.81 0.03 0.73 72
Low–medium 89 19 91 0.55 0.78 0.79 0.83 0.03 0.65 70
High 25 26 101 0.54 0.76 0.76 0.80 0.10 0.64 69
Unclassified 50 15 150 0.48 0.72 0.76 0.74 0.10 0.53 67

Note. LC � linear combination model.
a These statistics correspond to the sample estimates of the elements of the lens model equation presented in the text—Equation 3 (ra is the estimate of the
“achievement” index, �YeYs

; G is the estimate of the matching index; and C is the estimate of the correlation between residuals of the models of the person
and the environment, �εeεs

).
b We define redundancy level by the average intercue correlation: None denotes 0.0; low–medium denotes absolute value � 0.4; and high otherwise.
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used to generate the environmental criterion) and to make predic-

tions for each environment. Recall also that, in the lens model

paradigm, performance—or achievement—is measured in terms

of correlation. We therefore transformed this measure into one of

performance in binary choice using the methods described above.

Thus, to estimate the accuracy of LC relative to any heuristic in a

particular environment, we considered the difference in expected

predictive accuracies between LC based on the mean ca observed

in the environment and that of the heuristic. In other words, we

asked how well the average performance levels of humans using

LC compare with those of heuristics.

In Table 7, we summarize this information for environments

involving three and two cues (details are provided in Appendices

C and D). Unfortunately, not all studies in our meta-analysis

provided the information needed, and thus, our data are limited to

approximately two thirds of tasks involving three cues and one half

of tasks involving two cues. We also note, parenthetically, that

although some environments had identical statistical properties,

they can be considered different because they involved different

treatments (e.g., how participants had been trained, different feed-

back conditions, presentation of information, etc.).

The upper panel of Table 7 summarizes the data from Appendix

C. The first column (on the left) shows the maximum performance

that could be achieved in environments characterized by equal-

weighting, compensatory, and noncompensatory functions, respec-

tively. This captures the predictability of the environments—81%

for equal-weighting and noncompensatory and 79% for compen-

satory environments. These environments are also marked by little

redundancy. About 77% have mean intercue correlations of 0.00.

In the body of the table, we present performance in terms of

percentage correct for LC—based on mean ca observed in each of

the experimental studies—as well as the performance that would

have been achieved by the different heuristics in those same

environments.

As would be expected, the EW strategy performs best in equal-

weighting environments (80%) and the TTB strategy best in the

noncompensatory environments (78%). Interestingly, in the com-

pensatory environments here, it is the EW model that performs

best (76%). The mean LC model never has the best performance.

Compared with the heuristic models, its performance is relatively

better in the equal-weighting as opposed to the other environments.

In the discussion so far, we have concentrated on effects of error

in using LC (by focusing on ca). However, the columns headed

SVr and TTBr illustrate the effects of making errors when using

heuristics (the suffix –r indicating models with random cue order-

ings).15 This shows that the performance of LC (at mean ca level)

is as good as or better than SVr and TTBr across all three types of

environments.

In the lower panel of Table 7, we present the data based on

analyzing studies with two cues, where, once again, most environ-

ments involve orthogonal cues (76%)—details are provided in

Appendix D. Conclusions are similar to the three-cue case. EW is

necessarily best when the environment involves an equal-

weighting function, and TTB performs well in the noncompensa-

tory environments, although it is bettered here by the SV model

(just).16

Because most published studies do not report individual data, it

is difficult to assess the importance of individual variation in

performance and, specifically, how individual LC performance

compares with heuristics. Two studies involving two cues did

report the necessary data (Steinmann & Doherty, 1972; York,

Doherty, & Kamouri, 1987). Table 8 summarizes the comparisons.

This shows (reading from left to right) the number of participants

in each task, statistical properties of the tasks, percentage perfor-

mance correct by the LC model (mean and range), and the per-

15 The TTBr model is identical to what Gigerenzer et al. (1999) referred

to as MINIMALIST.
16 The following rule was used to adapt the CONF model for two cues:

If both cues suggest the same alternative, choose it. Otherwise, choose at

random.

Table 7

Performance of Heuristics and Mean LC in Three-Cue and Two-Cue Environments

Weighting
function

Maximum possible
percentage correct

Performance—percentage correct
Numbers of

environmentsLCa SV SVr EW CONF TTB TTBr

Three-cue environmentsb

Equal weighting 81 72 65 65 80 74 71 70 9
Compensatory 79 69 69 64 76 71 73 67 25
Noncompensatory 81 68 74 64 75 71 78 68 30

Subtotal 64
Two-cue environmentsc

Equal weighting 88 77 71 71 87 71 78 78 17
Noncompensatory 84 69 76 67 73 67 75 70 21

Subtotal 38
Total 102

Note. Boldface indicates largest percentage correct in each row. LC � linear combination model; SV � single variable model; SVr � SV executed under
random cue order; EW � equal weight model; CONF � CONF model; TTB � take-the-best model; TTBr � TTB executed under random cue order.
a Based on empirically observed mean linear cognitive ability (ca).
b Averages calculated on the 64 environments detailed in Appendix C.
c Averages calculated on the 38 environments detailed in Appendix D.
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centages of participants who have better performance with LC than

with particular heuristics.

Clearly, one cannot generalize from the four environments pre-

sented in Table 8. However, it is of interest to note, first, that there

is a large range of individual LC performances and, second, that

for a minority of participants, LC performance is better than that of

heuristics.

Summary

At a theoretical level, we have shown that the performance of

heuristic rules is affected by several factors: how the environment

weights cues, that is, noncompensatory, compensatory, or equal

weighting; cue redundancy; the predictability of the environment;

and loss functions. Heuristics work better when their characteris-

tics match those of the environment. Thus, EW predicts best in

equal-weighting situations and TTB in noncompensatory environ-

ments. However, redundancy allows SV to perform better than

TTB in noncompensatory environments. When environments are

compensatory, redundancy further mediates the relative perfor-

mances of TTB, SV, and EW (TTB and SV are better with

redundancy). As environments become more predictable, all mod-

els perform better, but differences between models also increase.

However, when the environmental structure is unknown, the heu-

ristics involving more extensive information processing, EW and

CONF, dominate the lexicographic-type simple models, that is, SV

and TTB, irrespective of cue redundancy and of how environments

weight cues. Finally, the effect of loss functions is to accentuate or

dampen differences between evaluations of model predictions.

We have also used simulation to investigate the extent to which

models agree with each other. At one level, all the models we

investigated are sensible and use valid information. As such, they

exhibit much agreement. The extent of the agreement, however, is

surprising. Even when the predictability of the environment varies

greatly, the level of agreement between particular models hardly

changes (see Table 5). From a predictive viewpoint, this might be

thought comforting. However, it also accentuates the need to know

which heuristic is more likely to be correct in the 8%–30% of cases

in which they disagree. In addition, whereas some differences

between models may seem small on single occasions, cumulative

effects could be large if people were to persist in using inappro-

priate heuristics across many decisions.

The differential impact of environmental factors is illustrated

quantitatively in Table 9, which reports the results of regressing

performance of the heuristics (percentage correct) on environmen-

tal factors: type of weighting function, redundancy (cue intercor-

relation), and predictability (Re). This is done for the 39 popula-

tions specified in Tables 3, 4, and 5. Results show the importance

of noncompensatory and compensatory environments (vs. equal

weighting) as well as of redundancy on SV (positive). Both EW

and CONF depend (negatively) on whether environments are

noncompensatory, EW being affected additionally by redundancy

(negatively). Interestingly, for the conditions examined here, the

performance of TTB is not affected by these factors (it is fully

explained by predictability Re), thereby suggesting a heuristic that

is robust to environmental variations (as has also been demon-

strated theoretically by Hogarth & Karelaia, 2005b, 2006b; and

Baucells, Carrasco, & Hogarth, in press). Finally, all these models

benefit from greater predictability.

When cues are ordered at random, the SV and TTB models

(denoted by SVr and TTBr, respectively) become less dependent

on predictability Re (compare also the intercepts for SV and SVr

and for TTB and TTBr). The LC model is explained almost equally

by environmental predictability, Re, and linear cognitive ability, ca

or GRs—see Regression LC(a). On the other hand, when purposely

omitting predictability, Re, from the LC regression, compensatory

and noncompensatory characteristics (vs. equal weighting) become

significant (positive), as well as redundancy (negative)—see re-

gression LC(b). Moreover, the value of the intercept increases

(from 29.4 to 48.2).

An important conclusion from our theoretical analysis is that

unless ca is high, people are better off relying on trade-off-

avoiding heuristics as opposed to linear models. At the same time,

however, the application of heuristic rules can involve error (i.e.,

variables not used in the appropriate order in SV and TTB). This

therefore raises the issue of estimating ca from empirical data and

noting when this is large enough to do without heuristics.

Our theoretical analyses suggest that ca needs to be larger than

about .70 for LC models to perform better than heuristics. Across

the 270 task environments of the meta-analysis, we estimate ca to

be .66. However, this is a mean and does not take account of

differences in task environments. For those environments in which

precise predictions could be made, LC models based on mean ca

estimates perform at a level inferior to the best heuristics but equal

Table 8

Levels of Individual Performance Relative to Heuristics

Study
Number of
participants

Statistical properties of
tasks LC performance (% correct)

Percentage of participants with better LC
performance than:

Re �YeX1
�YeX2

�X1X2
Mean Maximum Minimum SV SVr TTB TTBr EW CONF

Steinmann & Doherty (1972) 22 0.95 0.69 0.65 0.00 73 85 58 45 50 18 18 0 50
York, Doherty, & Kamouri

(1987)
Group 1 15 0.86 0.78 0.37 0.00 70 84 53 7 57 7 36 7 57
Group 2 15 0.86 0.78 0.37 0.00 67 78 54 0 29 0 21 0 29
Group 3 15 0.86 0.78 0.37 0.00 72 80 54 14 71 0 57 0 71

Note. LC � linear combination model; SV � single variable model; SVr � SV executed under random cue order; TTB � take-the-best model; TTBr �
TTB executed under random cue order; EW � equal weight model; CONF � CONF model.
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to or better than heuristics executed with error. Unfortunately, the

data do not allow us to make a thorough investigation of individual

variation in ca values.

General Discussion

Our article has shown how different views of heuristic decision

making can be reconciled within a framework that also encom-

passes the representation of human judgment as linear models.

Central to our work is the importance of understanding the effects

of different environments that we have characterized by their

statistical properties. We now consider implications that are, first,

psychological; second, normative; and third, methodological. We

also outline extensions for further work.

Psychological Implications

All of the models (heuristics) we have examined represent ideal

types. Thus, it is legitimate to ask how their mathematical repre-

sentations capture underlying psychological processes. This is not

a new issue (see, e.g., Einhorn et al., 1979; Hoffman, 1960). Apart

from predictive tests, we believe the answer lies in assessing

consistency between the assumptions of models and the

information-processing operations actually performed by humans.

Consider, for example, the models that are arguably the most

simple and complex, namely, the SV and LC models. For the

former, we can argue that the psychological process is modeled

correctly if the assumption that the judgment is based on a single

cue is verified. It does not matter, for example, if the individual

looks at other cues and then ignores them. For the latter, checking

for consistency is more complex. Were all cues examined? Were

weights attached to the cues? Were the weighted sums aggregated

to form a global judgment? Note that there is no need to say that

actual mathematical formulae were used. All one needs to show is

that mental operations that led to outcomes consistent with the

operations took place. Nor does one need to indicate the micro-

processes that underlie the cognitive operations, although, in an

ideal world, these would also be consistent with the postulated

framework. The evidence that would argue most against the LC

model would be the demonstration that part of the information was

ignored.

Thus, from a psychological viewpoint, the claim that the differ-

ent models capture mental processes is made at a level of analysis

that represents these in an as if manner. Moreover, by defining the

statistical properties of task environments, we have shown at a

theoretical level how characteristics of models and tasks affect

performance. This is an important contribution because it provides

the basis for developing an environmental theory of judgmental

performance (cf. Brunswik, 1952; Hammond & Stewart, 2001;

Simon, 1956).

The environment, however, is not captured by statistical prop-

erties alone because context can be important. Within our frame-

work, contextual effects are reflected in how people use decision

rules. Consider, for example, what happens when cue variables are

inappropriately labeled. For LC, this would reduce ca because less

appropriate weights would be given to the variables. With the TTB

model, cues might be used in an inappropriate order. In short, our

approach is built on a statistical analysis of environmental tasks.T
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The mediating effects of context are captured by their impact on

how people use decision rules.

One claim we do make is that the range of models we have

considered covers the types of heuristics discussed in the literature

as well, of course, as the linear model. Thus, the SV model

captures what happens when people base decisions on a single cue,

such as availability (Tversky & Kahneman, 1973), recognition

(Goldstein & Gigerenzer, 2002), or affect (Slovic et al., 2002). All

these models have in common the notion that people use a single

cue that has imperfect validity. However, whether this implies that

people are misguided or justified in relying on a single cue cannot

be decided on an a priori basis but depends—in particular

cases—on how valid the single cue is, what other relevant infor-

mation is available, and the costs of making errors. It is under-

standable that some researchers see “the glass as half empty,”

whereas others see it “as half full.”

An important contribution of our analysis is to highlight the role

of error in the use of different models—as opposed to error or

noise in the environment. Within LC, error is measured by the

extent to which linear cognitive ability (ca or GRs) falls short of

1.00. Here, error can have two sources: incorrect weighting of

variables and inconsistency in execution. With the TTB model, the

analogous error results from using variables in an inappropriate

order (and, in SV, from using less valid cues). Thus, the errors in

the two types of models involve both knowledge and execution,

although, in the latter, execution errors are less likely given the

simpler processes involved.

In future work, a more complete analysis could investigate

effects of other types of processing errors on heuristic perfor-

mance. For example, all our models are assumed to know the

first-order correlations between cues and criterion without error.

However, people typically learn this kind of information through

samples of experience acquired across time. Interesting issues

therefore focus on how sensitive models are to sampling variation

in terms of both size and bias. One could speculate, for example,

that models that need to know only the relative, as opposed to the

absolute, importance of variables (e.g., SV and TTB vs. LC) would

be less sensitive to sampling errors. Second, one could also model

errors in the perception of cue values. Here, we suspect that

models that rely on only one or two cues (e.g., SV and TTB) would

be more liable to make errors.

An advantage of our meta-analysis of lens model studies is that

one can say something about the effects of errors within the LC

framework. Across all our studies, the mean estimates for match-

ing (G) and consistency (Rs) are both .80 (see Table 6). Moreover,

only 11% of GRs values exceed .90. That is, the meta-analysis

reveals error in both knowledge and execution, although it is an

open issue as to whether these error rates are high or low. One

issue they raise, however, is how much effort—say, in learning

through experience and/or explicit instruction—might be needed

for people to be able to outperform the better heuristics. Should

people persist in using LC strategies, or should they simply seek to

use the most appropriate heuristics?

We note also that although G and Rs are positively correlated,

.41 ( p 
 .001), neither G nor Rs is correlated with the predict-

ability of the environment (Re)—.06 for G and .09 for Rs. In other

words, there is a trend for people to be more consistent in execut-

ing strategies when these are more valid. Perhaps more valid

strategies lead to better feedback and are self-reinforcing? How-

ever, there is no relation between how predictable an environment

is and people’s judgmental strategies.

An important issue we did not address in this work is the extent

to which people use heuristics or the linear model in tacit (i.e.,

intuitive), deliberate (i.e., analytic), or even quasi-rational modes

(cf. Hammond, 1996; Hogarth, 2001). The importance of this

distinction is that tacit processes have little or no information-

processing costs, and thus, even what may appear to be the

cognitively complex operations of the LC model are not demand-

ing. Many models of this type—or as if versions—are clearly used

when judgmental processes have been automated such that people

do not need to think about executing trade-offs. Imagine, for

example, basic processes such as perception or situations in which

past practice has been sufficient to hone a person’s skills. These

include the judgments that most people can exercise when driving

an automobile and that experts exhibit in different activities such

as controlling complex systems, playing music, or even different

sports (cf. Shanteau, Friel, Thomas, & Raacke, 2005). At the same

time, many simple heuristics are undoubtedly tacit in nature.

An interesting feature of most tasks studied in the decision-

making literature is that they are difficult precisely because people

lack the experience necessary to take action without explicit

thought and thus are unable to invoke valid, automatic processes.

For example, the illuminating work conducted by Payne et al.

(1993) demonstrated clear effort–accuracy trade-offs (involving

models with different numbers of mental operations). However,

these investigations were limited to relatively unfamiliar choices in

which processing would have been deliberate rather than auto-

matic. This issue emphasizes the need to understand the natural

ecology of decision-making tasks (Dhami, Hertwig, & Hoffrage,

2004). Judgmental strategies can be characterized not only by

apparent analytical complexity but also by the extent to which they

are executed in a tacit or deliberate manner, where the latter

undoubtedly depends on the level of past experience as well as on

human evolutionary heritage.

Normative Implications

Our work has many normative implications in that it spells out

the conditions under which different heuristics are accurate. More-

over, the fact that this is achieved analytically—instead of through

simulation—represents an advance over current practice (see also

Hogarth & Karelaia, 2005a, 2006a). The analytical methods have

more potential to develop results that can be generalized.

An interesting normative implication relates to the trade-offs in

different types of error when using heuristics or linear models. As

noted above, one way of characterizing our empirical analysis is to

say that judgmental performance using the LC models is roughly

equal to that of using heuristics with error, that is, of SV and TTB

under random cue ordering (SVr and TTBr). However, is there a

relation between ca and the knowledge necessary to know when

and how to apply heuristic rules?

Given our results, how should a decision maker approach a

predictive task? Much depends on prior knowledge of task char-

acteristics and thus on how the individual acquired the necessary

knowledge. Basically—at one extreme—if either all cues are ap-

proximately equally valid or one does not know how to weight

them, EW should be used explicitly. Indeed, our results specifi-

cally demonstrate the validity of using the EW or CONF heuristics
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in the absence of knowledge about the structure of the environ-

ment. Similarly—at the other extreme—when facing a noncom-

pensatory weighting function, TTB or SV would be hard to beat

with LC.

The problem lies in tasks that have more compensatory features.

The key, therefore, lies in assessing ca. How likely is the judge to

know the relative weights to give the variables? How consistent is

he or she in using the judgmental strategy? On the basis of our

meta-analysis, we expect that a minority of persons can meet these

conditions but that much also depends on the nature of the task and

the individual’s experience. For example, one would be justified in

trusting the judgments of the weather forecasters studied by Stew-

art, Roebber, and Bosart (1997) but not those of Einhorn’s (1972)

physicians.

Our analysis points to the importance of knowledge—about the

kind of task and the capacity to handle task demands. In Table 1,

we identified the levels of knowledge necessary to achieve max-

imum performance by all the heuristics we considered. In addition,

knowledge for LC is captured by the G term of Equation 3.

However, in many cases, people probably make judgments with

less than perfect knowledge. This therefore raises important psy-

chological issues of how people acquire such knowledge or are

helped to do so. In addition, how do people encode characteristics

of the environment that suggest which model to use (Rieskamp &

Otto, 2006)? Overall, our results suggest that for many tasks, the

errors incurred by using LC strategies are greater than those

implicit in using heuristics. Thus, judgmental performance could

be improved if people explicitly used appropriate heuristics instead

of relying on what is often their untested and unaided judgment

(see also Bröder & Schiffer, 2006). However, that people resist

doing so has been documented many times (Dawes et al., 1989;

Kleinmuntz, 1990). It seems that a high level of sophistication is

needed to understand when to ignore information and use a heu-

ristic. Perhaps LC strategies are psychologically attractive pre-

cisely because they allow people to feel they have considered all

information (Einhorn, 1986).

Methodological Implications

Our work involves methodological innovations. Not only have

we developed analytical tools for problems that frequently use

simulation but also we have provided a common framework within

which linear and heuristic models can be compared. This therefore

opens the way to compare and contrast different ways of studying

judgment and decision making.

The best predictive test of a heuristic is whether, once estimated

on a sample of data, it can accurately predict a criterion in a new

sample of data. The reader can therefore legitimately ask why we

have not adopted this empirical strategy in our work. The reason is

that there already exists evidence of successful empirical predic-

tion by heuristics (see, e.g., Gigerenzer et al., 1999). However,

these demonstrations have provided little insight as to why specific

heuristics perform well and how environmental factors affect dif-

ferential predictive ability. That is, they have not contributed to

building appropriate theories of the environment (Brunswik, 1952;

Simon, 1956). The need met by this article, therefore, is to specify

how heuristics might be expected to perform under different en-

vironmental circumstances, and we believe that this issue is better

framed at a theoretical level rather than relying on empirical

demonstrations alone. Given the probabilistic nature of the envi-

ronment, our goal has been to create generalizable knowledge

about the factors that affect heuristic performance.

It is important to point out that our theoretical approach has

been tested empirically in related research (Hogarth & Karelaia,

2005a, 2006a). In that work, we used simulation to assess

out-of-sample predictive accuracy and found almost perfect

outcomes in repeated sampling (see also footnote 11, above).

We speculated that one key to the success of heuristics is that

few parameters need to be fit to the data. We noted, for

example, that when regression models were also estimated from

the same data, there was considerable shrinkage from fit to

prediction (in excess of what one might expect from formulae

for adjusted R2). In addition to simulations, this work also made

predictions for empirical data sets and found similar results,

that is, in terms of both accuracy and the fact that out-of-sample

predictions were better when fewer parameters needed to be

estimated. We believe that an important problem for future

research will be to characterize how estimating parameters of

heuristics on samples of different sizes affects out-of-sample

predictive ability under different environmental conditions.

Our work paid a price for analytical tractability in that there

were limitations in the situations we examined. Relaxing these

limitations suggests paths for further work. First, we used a binary

choice paradigm involving three cues. This can be extended in two

ways: to consider, first, more alternatives and, second, more cues.

Our previous work (Hogarth & Karelaia, 2006a) suggests that

changing the number of alternatives will not have a major influ-

ence on relative performance of different models. Increasing the

number of cues, however, could have important impacts depending

on the nature of intercue correlation.

Second, our analysis depends entirely on a linear model of the

environment and, when looking at LC, a linear model of judgment.

We believe it would be illuminating to relax these assumptions and

assess the extent to which our main results change. We speculate,

for example, that at a more macro level, conclusions such as the

need for matching between characteristics of models of the envi-

ronment and heuristics would still hold. However, given the ability

of TTB to perform well across a variety of linear weighting

functions, it will be instructive to see how well different heuristics

perform in different, specific, nonlinear environments.

Third, all our statistical analyses have been conducted using

normal distributions, and it would be of interest to see the effects

of changing this assumption. In particular, what would happen in

applications in which distributions are skewed and/or have fatter

tails than the normal distribution? Which heuristics would have

performance that is robust relative to these kinds of environmental

changes and why? Further interesting complications could involve

effects where models have serially correlated error terms.

Fourth, although our work has innovated in this domain by

showing the effects of loss functions, we varied only the exact-

ingness parameter and not the symmetric nature of losses. It would

be of interest to explore asymmetries in loss.

Fifth, as noted above, our work has identified different

sources of error—in both the environment and the use of

decision rules. Modeling the joint effects of such errors will be

a challenging task.
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Concluding Comments

This article has sought to define the environmental circum-

stances under which different heuristics are more or less accurate,

as well as the degree of skill (linear cognitive ability) that people

need to justify using linear models. An important implication of

our analysis is that people do not need much computational ability

to make accurate judgments but that, lacking this, they do need

knowledge of when to use particular rules or heuristics. As such,

the key to effective judgmental performance lies in having the

knowledge necessary to guide the selection of appropriate decision

rules. Important challenges for future research therefore involve

both defining such knowledge explicitly and understanding how

people develop this through experience.
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Appendix A

The Expected Accuracies of LC, EW, CONF, and TTB

The LC Model

Following the same rationale as the single variable (SV) model, we can also determine the

probability that using a linear combination (LC) of cues will result in a correct choice. That is,

expressing Yea and Yeb as functions of Ysa and Ysb, define appropriate error terms, a and b, and

substitute �YeYs
for �YeX1

, and Ysa and Ysb for X1a and X1b, respectively. Thus, 2P{(Yea � Yeb) �

(Ysa � Ysb)} can also be found through Equation 7, with f(d) defined as in SV. The only difference

between SV and LC lies in the variance–covariance matrix, Mf, that, for the LC model, is

Mf_LC � � 2 2�YeYs

2�YeYs 2 �.

The EW Model

Equal weighting (EW) is, of course, a special case of LC. Define d2 � Xa � Xb, where

Xa �
1

k
�

j � 1

k

Xja and Xb �
1

k
�

j � 1

k

Xjb, and note that d2 is a normal variable with a mean of 0. (The variable

d1 for EW is the same as for LC: d1 � Yea � Yeb.) Thus, the expected accuracy of EW can be defined

by Equation 7, taking into consideration that the appropriate variance–covariance matrix is

Mf_EW � � 2 2�YeX�X

2�YeX�X 2�
X

2 �.

(Note that from Equation 3, it follows that �YeX � �ŶeXRe, assuming �εeεs
� 0.)

The CONF Model

CONF examines cues sequentially and makes a choice when two cues favoring one alternative are

encountered. Therefore, this model selects the better alternative out of two with the probability given by

2� P{(Yea � Yeb) � (X1a � X1b) � (X2a � X2b)} �

P{(Yea � Yeb) � (X1a � X1b) � (X2a 
 X2b) � (X3a � X3b)} �

P{(Yea 
 Yeb) � (X1a � X1b) � (X2a 
 X2b) � (X3a 
 X3b)}
�

� 2��
0

��
0

��
0

�

f1(d) dd � �
0

��
0

��
��

0 �
0

�

f2(d) dd � �
��

0 �
0

��
��

0 �
��

0

f2(d) dd� , (A1)

where both f1(d) � f1(d1,d2,d3) and f2(d) � f2(d1,d2,d3,d4) are the normal multivariate probability

density functions, the variance–covariance matrix specific to each being

Mf1 � � 2 2�YeX1
2�YeX2

2�YeX1 2 2�X1X2

2�YeX2
2�X1X2 2

�
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and

Mf2 � �
2 2�YeX1

2�YeX2
2�YeX3

2�YeX1 2 2�X1X2
2�X1X3

2�YeX2
2�X1X2 2 2�X2X3

2�YeX3
2�X1X3

2�X2X3 2
	.

The TTB Model

The take-the-best (TTB) model also assesses cues sequentially. It makes a choice when a

discriminating cue is found. In this article, we consider TTB with a fixed threshold t (�0). Thus, the

model stops consulting cues and makes a decision when |xia � xib| � t. This involves both cases

when xia � xib � t and cases when xib � xia � t. Because the two cases are symmetric, the

probability that TTB selects the better alternative is

2� P{(Yea � Yeb) � (X1a � X1b � t)} �

P{(Yea � Yeb) � (
X1a � X1b
 
 t) � (X2a � X2b � t)} �

P{(Yea � Yeb) � (
X1a � X1b
 
 t) � (
X2a � X2b
 
 t) � (X3a � X3b � t)}
�

� P{(Yea � Yeb) � (
X1a � X1b
 
 t) � (
X2a � X2b
 
 t) � (
X3a � X3b
 
 t)}

� 2��
0

��
t

�

f3(d)dd � �
0

��
�t

t �
t

�

f1(d)dd � �
0

��
�t

t �
�t

t �
t

�

f2(d)dd� � �
0

��
�t

t �
�t

t �
�t

t

f2(d)dd, (A2)

where both f1(d) � f1(d1,d2,d3) and f2(d) � f2(d1,d2,d3,d4) are the same as in CONF and f3(d) �

f3(d1,d2) is defined similarly, using the appropriate variance–covariance matrix:

Mf3 � � 2 2�YeX1

2�YeX1 2 �.

Appendix B

The Expected Loss of the CONF and Take-the-Best (TTB) Models

The expected loss of CONF is

2L� P{(Yea
Yeb) � (X1a � X1b) � (X2a � X2b)} �

P{(Yea 
 Yeb) � (X1a � X1b) � (X2a 
 X2b) � (X3a � X3b)} �

P{(Yea � Yeb) � (X1a � X1b) � (X2a 
 X2b) � (X3a 
 X3b)}
�

�2���
��

0 �
0

��
0

�

d1
2f1(d)dd � �

��

0 �
0

��
0

�

d1
2f2(d)dd � �

0

��
0

��
��

0 �
��

0

d1
2f2(d)dd�, (B1)

where f1(d) and f2(d) are as defined in Appendix A.

The expected loss of TTB is

2L� P{(Yea 
 Yeb) � (X1a � X1b � t)} �

P{(Yea 
 Yeb) � (
X1a � X1b
 
 t) � (X2a � X2b�t)} �

P{(Yea 
 Yeb) � (
X1a � X1b
 
 t) � (
X2a � X2b
 
 t) � (X3a � X3b�t)}
�

� LP{(Yea 
 Yeb) � (
X1a � X1b
 
 t) � (
X2a � X2b
 
 t) � (
X3a � X3b
 
 t)}

� �� 2��
��

0 �
t

�

d1
2f3(d)dd � �

��

0 �
�t

t �
t

�

d1
2f1(d)dd � �

��

0 �
�t

t �
�t

t �
t

�

d1
2f2(d)dd�

� �
��

0 �
�t

t �
�t

t �
�t

t

d1
2f2(d)dd� , (B2)

where f1(d), f2(d), and f3(d) are as defined in Appendix A.
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m

en
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2
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.
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re

h
m

er
&
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9
8
6
)

A
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ia
l

p
re

d
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o
n

ta
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2
2
0

1
5

0
.7

7
–
1
.0

0
0
.7

4
–
0
.7
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0
.7

1
–
0
.7

5
8
.

D
ea

n
e,

H
am

m
o
n
d
,

&
S

u
m

m
er

s
(1

9
7
2
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x
p
er
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2
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l
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d
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o
n

ta
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2
4
0
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0

0
.9
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0
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0
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0
.6
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0
.8
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.
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,
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m
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)
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n
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3
3
0

2
0
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.
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o
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E
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9
8
1
)

A
rt

if
ic

ia
l

p
re

d
ic

ti
o
n

ta
sk

9
1
8
2

2
5

0
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.
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7
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n
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0
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4
–
0
.6
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.
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L
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0
5
)
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l

p
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d
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n
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4
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7
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0
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0
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–
0
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2
0
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0
.8

7
1
2
.
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o
u
m
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s
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S
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n
e

(2
0
0
5
)

P
re
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o
n

o
f
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m
e
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v
el

s
4

1
1
7

5
0

0
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4
0
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5
–
0
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2
0
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8
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0
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T

o
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l
6
4

1
,0
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9
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A
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n
s
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t
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r

S
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d
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s
7
a
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d

7
b
.

T
h
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e
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u
d
ie
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8
,

9
,

an
d

1
0

—
w

er
e
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h
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e
id

en
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l

p
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et

er
s.

H
o
w
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er

,
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er
e

m
u
st

h
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e
b
ee

n
so

m
e
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u
n
d
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g
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n
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p
o
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r
R
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.
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u
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.
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)
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d
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n
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4
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0
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0
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0
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0
.9
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.
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)
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l
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n
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0
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0
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.
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m
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m
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.
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)
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d
ic
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0
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0
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0
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.
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)
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0
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0
.9
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.
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,
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8
8
)
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er
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ia
l

p
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d
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o
n

ta
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3
4
5

2
5

0
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9
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.0

0
0
.7
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–
0
.7
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0
.7
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0
.9
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er

im
en

t
6

A
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l
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re
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o
n

ta
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0
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0
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.
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d
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.
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.
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)
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1
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0
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0

0
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0
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0
.1
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0
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p
er
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2
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0
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0
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0
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1
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.
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m
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n
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D
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7
2
)
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g
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k
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.
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,
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)
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0
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0
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0
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4
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l
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1
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T
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p
an

ts
in

S
tu

d
ie

s
3

an
d

9
ar

e
ap

p
ro

x
im

at
io

n
s

b
ec

au
se

th
is

in
fo

rm
at

io
n

is
n
o
t

av
ai

la
b
le

.
In

S
tu

d
y

1
1
,

h
u
m

an
p
er

fo
rm

an
ce

w
as

m
ea

su
re

d
th

ro
u
g
h

m
ed

ia
n
s.

R
ec

ei
v
ed

N
o
v
em

b
er

2
9
,

2
0
0
6

R
ev

is
io

n
re

ce
iv

ed
M

ar
ch

1
2
,

2
0
0
7

A
cc

ep
te

d
M

ar
ch

1
3
,

2
0
0
7

�

758 HOGARTH AND KARELAIA


