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HEURISTIC AND SPECIAL CASE ALGORITHMS 
FOR DISPERSION PROBLEMS 

S. S. RAVI, D. J. ROSENKRANTZ and G. K. TAYI 
University at Albany-SUNY, Albany, New York 

(Received August 1991; revision received June 1992; accepted June 1992) 

The dispersion problem arises in selecting facilities to maximize some function of the distances between the 
facilities. The problem also arises in selecting nondominated solutions for multiobjective decision making. It is known 
to be NP-hard under two objectives: maximizing the minimum distance (MAX-MIN) between any pair of facilities and 
maximizing the average distance (MAX-AVG). We consider the question of obtaining near-optimal solutions. For 
MAX-MIN, we show that if the distances do not satisfy the triangle inequality, there is no polynomial-time relative 
approximation algorithm unless P = NP. When the distances satisfy the triangle inequality, we analyze an efficient 
heuristic and show that it provides a performance guarantee of two. We also prove that obtaining a performance 
guarantee of less than two is NP-hard. For MAX-AVG, we analyze an efficient heuristic and show that it provides a 
performance guarantee of four when the distances satisfy the triangle inequality. We also present a polynomial-time 
algorithm for the 1-dimensional MAX-AVG dispersion problem. Using that algorithm, we obtain a heuristic which 
provides an asymptotic performance guarantee of ir/2 for the 2-dimensional MAX-AVG dispersion problem. 

M any problems in location theory deal with the 
placement of facilities on a network to mini- 

mize some function of the distances between facilities 
or between facilities and the nodes of the network 
(Handler and Mirchandani 1979). Such problems 
model the placement of "desirable" facilities such as 
warehouses, hospitals, and fire stations. However, 
there are situations in which facilities are to be located 
to maximize some function of the distances between 
pairs of nodes. Such location problems are referred 
to as dispersion problems (Chandrasekharan and 
Daughety 1981, Kuby 1987, Erkut and Neuman 1989, 
1990, and Erkut 1990) because they model situations 
in which proximity of facilities is undesirable. One 
example of such a situation is the distribution of 
business franchises in a city (Erkut). Other examples 
of dispersion problems arise in the context of placing 
"undesirable" (also called obnoxious) facilities, such 
as nuclear power plants, oil storage tanks, and ammu- 
nition dumps (Kuby 1987, Erkut and Neuman 1989, 
1990, and Erkut 1990). Such facilities need to be 
spread out to the greatest possible extent so that an 
accident at one of the facilities will not damage any 
of the others. The concept of dispersion is also useful 
in the context of multiobjective decision making 
(Steuer 1986). When the number of nondominated 
solutions is large, a decision maker may be interested 

in selecting a manageable collection of solutions which 
are dispersed as far as possible with respect to the 
objective function values. Other applications of facil- 
ity dispersion are discussed in Erkut (1990) and Erkut 
and Neuman (1989, 1990). 

Analytical models for the dispersion problem 
assume that the given network is represented by a set 
V = {vI, v2, ..., Vn} of n nodes with nonnegative 
distance (also called edge weight) between every pair 
of nodes. The distances are assumed to be symmetric 
and so the network can be thought of as an undirected 
complete graph on n nodes with a nonnegative weight 
on each edge. The weight of the edge {vi, vjI (i $ j) is 
denoted by w(vi, vj). We assume that w(vi, vi) = 0 for 
1 s i s n. The objective of the dispersion problem is 
to locate p facilities (p s n) among the n nodes of the 
network, with at most one facility per node, such that 
some function of the distances between facilities is 
maximized. Two of the optimality criteria considered 
in the literature (Kuby 1987, Erkut 1990, and Erkut 
and Neuman 1989) are MAX-MIN (i.e., maximize 
the minimum distance between a pair of facilities) 
and MAX-AVG (i.e., maximize the average distance 
between a pair of facilities). Under either criterion, 
the problem is known to be NP-hard, even when the 
distances satisfy the triangle inequality (Wang and 
Kuo 1988, Hansen and Moon 1988, and Erkut 1990). 
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Although many researchers have studied the disper- 
sion problem (see Erkut and Neuman 1989 for a 
survey and an extensive bibliography), except for 
White (1991), the question of whether there are effi- 
cient heuristics with provably good performance has 
not been addressed. This question forms the main 
focus of this paper. We show that if the distances do 
not satisfy the triangle inequality, then for any con- 
stant K 3 1, no polynomial time algorithm can pro- 
vide a performance guarantee of K for the MAX-MIN 
dispersion problem unless P = NP. When the dis- 
tances satisfy the triangle inequality, we analyze a 
known heuristic and prove that it provides a perfor- 
mance guarantee of 2 for the MAX-MIN dispersion 
problem. This is an improvement over the perfor- 
mance guarantee of 3 proven in White (1991) using a 
different heuristic. (This improvement was obtained 
independently by White 1992.) We also show that no 
polynomial-time algorithm can provide a perfor- 
mance guarantee of less than 2 unless P = NP. We also 
analyze an efficient heuristic for the MAX-AVG dis- 
persion problem with triangle inequality, and prove 
that it provides a performance guarantee of 4. An 
efficient algorithm for the 1-dimensional MAX-MIN 
dispersion problem is presented in Wang and 
Kuo. We provide an efficient algorithm for the 
1-dimensional MAX-AVG dispersion problem. We 
also show how this algorithm can be used to obtain a 
heuristic with an asymptotic performance guarantee of 

1.571 for the 2-dimensional MAX-AVG dispersion 
problem. 

The remainder of this paper is organized as follows. 
Section 1 contains the formal definitions and a dis- 
cussion of the previous work on the dispersion prob- 
lem. Sections 2 and 3 address the dispersion problem 
under the MAX-MIN and MAX-AVG criteria, 
respectively. Section 4 presents our results for the 
1- and 2-dimensional dispersion problems. Section 5 
contains tables which summarize prior results, our 
contributions, and open problems. 

1. DEFINITIONS AND PREVIOUS WORK 

We begin with the specifications of the MAX-MIN 
and MAX-AVG dispersion problems in the format of 
Garey and Johnson (1979). 

MAX-MIN Facility Dispersion (MMFD) 

Instance: A set V = Iv1, v2, ..., VnI of n nodes, a 
nonnegative distance w(vi, v;) for each pair vi, v; of 
nodes, and an integer p such that 2 < p < n. 

Requirement: Find a subset P = Ivil, vi2, ..., 

of V with I PI = p, such that the objective function 
f(P) = minxpA w(x, y)} is maximized. 

MAX-AVG Facility Dispersion (MAFD) 

Instance: As in MMFD. 

Requirement: Find a subset P= {vil, vi2, ..., vij of 
V with I PI = p, such that the objective function 

g(P) = 
2 

W(X, A) 
P(P - 1) XyeP 

is maximized. 

The objective function for MAFD has the above 
form because the number of edges among the nodes 
in P is p(p - 1)/2. Note that maximizing the average 
distance is equivalent to maximizing the sum of 
the distances. We point out that maximizing the 
average would sometimes produce solutions which 
are far from the optimum with respect to the 
MAX-MIN criterion and vice versa. 

The distances specified in an instance of MMFD or 
MAFD satisfy the triangle inequality if for any three 
distinct nodes vi, vj, and Vk, w(vi, vJ) + w(vj, VOk) 

w(vi, Vk). The set P of nodes at which an algorithm 
places the p facilities is called a placement. Given a 

placement P for an MMFD instance, the quantity 
f(P) defined by 

f(P) = minIw(x, y)j (1) 
xYEP 

is called the solution value corresponding to P. Simi- 
larly, given an MAFD instance and a placement P, 
the solution value g(P) corresponding to P is defined 
by 

2 
g(P) = i w(x, y). (2) 

p - 1) XJYEP 

Both MMFD and MAFD are known to be NP- 
hard, even when the edge weights satisfy the triangle 
inequality (Wang and Kuo 1988, Hansen and Moon 
1988, and Erkut 1990). Much of the work on the 
dispersion problem reported in the literature (see the 
bibliography in Erkut and Neuman 1989) falls into 
two categories. Papers in the first category deal with 
branch-and-bound algorithms and heuristics (see 
Kuby 1987, Erkut, Baptie and von Hohenbalken 
1990, Erkut 1990, Erkut and Neuman 1989, 1990, 
and the references cited therein). However, except for 
White (1991), only experimental studies of the per- 
formance of the heuristics have been reported. White 
(1991) presents a heuristic for MMFD when the nodes 
are points in d-dimensional Euclidean space and 
the distance between a pair of points is their Euclidean 
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distance. He shows that the heuristic always produces 
a placement whose solution value is within a factor of 
3 of the optimum solution value. In the next section, 
we improve that result by considering a different 
heuristic which guarantees a placement whose solu- 
tion value is within a factor of 2 of the optimal solution 
value for any instance of MMFD in which the dis- 
tances satisfy the triangle inequality. We also show 
that unless P = NP, no polynomial-time algorithm 
can provide a better performance guarantee. 

Papers in the second category deal with restricted 
versions and variants of MMFD and MAFD. For 
example, 1- and 2-dimensional versions of MMFD 
were studied by Wang and Kuo. They present a poly- 
nomial algorithm for the 1-dimensional MMFD and 
prove that the 2-dimensional MMFD is NP-hard. We 
note that problems MMFD and MAFD defined above 
are discrete in nature because each facility must 
be placed at one of the given nodes. Researchers 
have also considered continuous versions of the 
dispersion problems (Church and Garfinkel 1978, 
Chandrasekharan and Daughety 1981, and Tamir 
1991) where facilities may be placed at any point on 
the edges of a given network. In Chandrasekharan and 
Daughety a polynomial algorithm is presented for the 
continuous version of MMFD on tree networks. 
Church and Garfinkel present a polynomial algorithm 
for locating one facility on an edge of a connected 
(but not necessarily complete) network to maximize a 
weighted sum of the distances from the facility to the 
nodes of the network. Tamir presents an improved 
algorithm for the same problem. In addition, he estab- 
lishes the NP-hardness of the continuous versions of 
MMFD and MAFD and presents results concerning 
performance guarantees for the continuous version of 
MMFD. Dasarathy and White (1980) assume the 
nodes of the network to be points in k-dimensional 
space and consider the problem of finding a point 
within a given convex polyhedron to maximize the 
minimum Euclidean distance between the point and 
the nodes. They present polynomial algorithms for 
k = 2 and k = 3. For k = 2, this problem is referred 

to as the largest empty circle (LEC) in the computa- 
tional geometry literature (see subsection 6.4 of 
Preparata and Shamos 1985). The LEC problem can 

be solved in O(n log n) time, which is known to be 

optimal (Preparata and Shamos). A problem similar 
to LEC but with a different distance function is studied 
in Melachrinoudis and Cullinane (1986). A weighted 
version of the problem for k = 2 is studied in Erkut 
and Oncu (1991). For a discussion of other variants, 
we refer the reader to Erkut and Neuman (1989, 
1990). 

In this paper, we consider only the discrete versions 
of the dispersion problems. Our focus is on the analy- 
sis of heuristics for MMFD and MAFD. By a heuristic 
we mean a polynomial-time approximation algorithm 
which produces feasible, but not necessarily optimal, 
solutions. Heuristics are commonly classified as abso- 
lute or relative depending on the types of performance 
guarantees that can be established for them (Horowitz 
and Sahni 1984). An absolute approximation algo- 
rithm guarantees a solution that is within an additive 
constant of the optimal value for every instance of the 
problem. A relative approximation algorithm guar- 
antees a solution that is within a multiplicative con- 
stant of the optimal value for every instance of the 
problem. It is easy to show, using the technique pre- 
sented in Garey and Johnson (pp. 138-139), that there 
are no absolute approximation algorithms for MAFD 
or for MMFD, unless P = NP. So we restrict our 
attention to the study of relative approximation 
algorithms. 

2. NEAR-OPTIMAL SOLUTIONS TO MAX-MIN 
FACILITY DISPERSION 

We first consider MMFD without requiring the dis- 
tances to satisfy the triangle inequality and prove a 
negative result concerning relative approximation 
algorithms. 

Theorem 1. If the distances are not required to satisfy 
the triangle inequality, then there is no polynomial- 
time relative approximation algorithm for MMFD 
unless P = NP. 

Proof. Suppose that A is a polynomial-time approxi- 
mation algorithm which provides a performance guar- 
antee of K , 1 for MMFD. We show that A can be 
used to devise a polynomial-time algorithm for a 
problem which is known to be NP-complete. This 
contradicts the assumption that P ? NP and, hence, 
will establish the theorem. 

The known NP-complete problem used here is 
CLIQUE, whose definition is as follows (Garey and 
Johnson). 

Problem CLIQUE 

Instance: An undirected graph G(N, E) and a positive 

integer J < 
INI . 

Question: Does G contain a clique of size : J (i.e., is 
there a subset N' C N such that I N' 1 > J and every 
pair of vertices in N' is joined by an edge in E)? 

Consider an arbitrary instance of CLIQUE defined 
by a graph G(N, E) and integer J. Let n = INI and 
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N= { XI, x2, ..., Xn We construct an instance of 
MMFD (without triangle inequality) as follows. The 
node set V= {v1, v2, . . . , Vn of the MMFD instance 
is in one-to-one correspondence with N. The number 
of facilities p is set equal to J and the distances are 
defined as follows. Let w(v,, vj) = K + 1 if {xi, xj; is 
in E; otherwise, let w(vi, v;) = 1. Clearly, this construc- 
tion can be carried out in polynomial time. We will 
show that for the resulting MMFD instance, the solu- 
tion value of a placement produced by A is greater 
than 1 iff G has a clique of size J. 

Suppose that G has a clique of size J. Let 
$xi, xi2, ..., xiJ denote the vertices of the clique. 
Consider the placement P = {Ivi, vi2, . . . , viJ. By our 
definition of the distances, the weight of every edge in 
P is equal to K + 1. Therefore, the solution value of 
the placement P is also K + 1. Since A provides a 
performance guarantee of K, the solution value of the 
placement returned by A is at least (K + 1)/K, which 
is greater than 1. 

Now suppose that G does not have a clique of size 
J. In this case, notice that no matter which subset of 
p = J nodes is chosen as the placement, there will 
always be at least one pair of nodes vi and v; with 
w(vi, v>) = 1. Therefore, the solution value correspond- 
ing to any placement is at most 1. In particular, the 
solution value of a placement produced by A is also 
at most 1. Thus, by merely comparing the solution 
value of the placement produced by A with 1, we can 
solve an arbitrary instance of the CLIQUE problem. 
This completes the proof. 

Even though Theorem 1 provides a strong negative 
result, it is not applicable in many practical situations 
because distances often satisfy the triangle inequality. 
Therefore, it is of interest whether there is an efficient 
relative approximation algorithm for MMFD when 
the distances satisfy the triangle inequality 
(MMFD-TI). The remaining theorems in this section 
precisely characterize the performance guarantees 
obtainable for MMFD-TI. 

A greedy heuristic (which we call GMM) for 
MMFD-TI is shown in Figure 1. This heuristic is 
essentially the same as the "furthest point outside 
the neighborhood" heuristic, described in Steuer 
(Chapter 1 1), using a different format. An experimen- 
tal study of the performance of this heuristic is carried 
out in Erkut and Neuman (1990). In describing this 
heuristic, we use P to denote the set of nodes at which 
GMM places the p facilities. The heuristic begins by 
initializing P to contain a pair of nodes in V which 
are joined by an edge of maximum weight. Subse- 
quently, each iteration of GMM chooses a node v 

Step 1. Let vi and uj be the endpoints of an edge of maximum weight. 

Step 2. P - {xtu, vj}. 

Step 3. while ( P1 < p ) do 

begin 

a. Find a node v E V - P such that min {w( , v')} is maximum 

among the nodes in V - P. 

b. Pe- P tt} 

end 

Step 4. Output P. 

Figure 1. Details of heuristic GMM. 

from V - P such that the minimum distance from v 
to a node in P is the largest among all the nodes in 
V - P. In each step, ties are broken arbitrarily. 
Heuristic GMM terminates when I P I = p. The solu- 
tion value of the placement P produced by GMM is 
equal to minx and w(x, y)I. 

We now present an example to illustrate the GMM 
heuristic. Consider an MMFD-TI instance with five 
nodes (denoted by Vt, V2, V3, V4, and V5) and let p = 3. 
The edge weights which satisfy the triangle inequality 
are: w(v1, v2)= 3, W(V2, V3) = W(V2, V4) = W(V2, V5) = 

1, and all other edges are of weight 2. To begin, GMM 
will place two of the facilities at vt and v2 because 
w(v1, v2) = 3 is the maximum edge weight. Now, no 

matter where the third facility is placed, the solution 
value of the placement is 1 because each of the remain- 
ing nodes (V3, V4, and v5) has an edge of weight 1 to 
v2. However, an optimal placement consists of the 
three nodes V3, V4, and vs and has a solution value of 
2. Thus, for this example, the solution value produced 
by GMM differs from the optimal value by a factor 
of 2. Our next theorem shows that the performance 
of GMM is never worse. (This result was obtained 
independently by White 1992.) Moreover, we will also 
show (Theorem 3) that unless P = NP, no polynomial- 
time heuristic can provide a better performance 
guarantee. 

Theorem 2. Let I be an instance of MMFD-TI. Let 
OPT(I) and GMM(I) denote, respectively, the solution 
values of an optimal placement and that produced by 
GMMfor the instance L Then OPT(I)/GMM(I) < 2. 

Proof. Consider the set-valued variable P in the 
description of GMM. Let f(P) = minxyp w(x, y)}. 
We will show by induction that the condition 

f(P) 3_: OPT(I)12 (3) 

holds after each addition to P. Since GMM(I) = f(P) 
after the last addition to P, the theorem then follows. 

Since the first addition inserts two nodes joined by 
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an edge of the largest weight into P, (3) clearly holds 
after the first addition. So, assume that the condition 
holds after k additions to P for some k - 1. We will 
prove that the condition holds after the (k + l)st 
addition to P as well. 

To that end, let P* = {v*, v!, ..., vI} denote an 
optimal placement. For convenience, we use /* for 
OPT(I). The following observation is an immediate 
consequence of the definition of the solution value 
corresponding to a placement for an MMFD instance. 

Observation 1. For every pair vi, v7 of distinct nodes 
in P*, w(v', v*) > 1*. 

Let Pk = {x1, x2, ..., Xk+II denote the set P after 
k additions. (Note that I Pk I = k + 1, because the first 
addition inserts two nodes into P.) Since GMM adds 
at least one more node to P, the following is a trivial 
observation. 

Observation 2. PkI =k+ 1 <p. 

For each vi E P* (I < i s p), define S*= 
{ E VI w(v0', u) < 1*/2}. That is, SP' is the set of all 
nodes whose distances from vi* are less than 1*/2. The 
following claim provides two useful properties of these 
sets. 

Claim I 

a. For 1 < i < p, SP' is nonempty. 
b. For i #1 , SP' and Sj* are disjoint. 

Proof of Claim 1 

Part a: This is obvious, because vi* E S#' for 1 < 

i < p. 

Part b: Suppose that S# n Sj* f 0 for some i # j. Let 
u E SP' U Si*. Thus, w(v#, u) < 1*/2 and w(vj*, u) < 

1*/2. By Observation 1, w(v', vj*) , 1*. These three 
inequalities together imply that the triangle inequality 
does not hold for the three nodes u, vi* and vj*. 
Claim lb follows. 

We now continue with the main proof. Since Pk has 
less than p nodes (Observation 2) and there are p 
disjoint sets So*, St, ..., Sp*, there must be at least 
one set, say Sr* (for some r, 1 < r < p), such that 
Pk n Sr* - 0. Therefore, by the definition of S*, we 
must have for each u E Pk, w(vr*, u) : 1*/2. Since 
rV* is available for selection by GMM, and GMM 

selects a node v E V - Pk for which minced pkw(v, v') 
is a maximum among the nodes in V - Pk, it follows 
that (3) holds even after the (k + 1)st addition to P. 
This completes the proof of Theorem 2. 

Our next theorem shows that if P ? NP, GMM 
provides the best possible performance guarantee 
obtainable in polynomial time for MMFD-TI. 

Theorem 3. If P $ NP, no polynomial-time relative 
approximation algorithm can provide a performance 
guarantee of (2 - e) for any e > O for MMFDT-TI. 

Proof. We use a construction similar to that presented 
in the proof of Theorem 1, except that the edge weights 
are chosen as follows. Let w(vi, v;) = 2 - e/2 if {xi, xj; 
is in E; otherwise, let w(vi, vj) = 1. Using the fact that 
0 < e < 1, it is easy to verify that the resulting distances 
satisfy the triangle inequality. The proof that the solu- 
tion value of a placement produced by A for 
MMFD-TI is greater than 1 if G has a clique of 
size J is virtually the same as that of Theorem 1. 

3. NEAR-OPTIMAL SOLUTIONS TO MAX-AVG 
FACILITY DISPERSION 

In this section, we discuss a relative approximation 
algorithm for MAFD under the triangle inequality 
assumption (MAFD-TI). This heuristic, which we call 
GMA, is shown in Figure 2. It is identical to the 
GMM heuristic of Figure 1, except that in Step 3a, 
we choose a node v E V - P for which Zv'eP w(v, v') 
is maximum among all the nodes in V - P. Note that 
the solution value of the placement P produced by 
GMA is equal to 2/p(p - 1) X,3EP w(x, y). 

An experimental study of this heuristic is carried 
out in Erkut and Neuman (1990). We focus on deter- 
mining the performance guarantee provided by 
this heuristic. Our next theorem shows that GMA 
is indeed a relative approximation algorithm for 
MAFD-TI. Before presenting that theorem, we 
introduce some notation which will also be used in 
Section 4. Let A and B be disjoint subsets of V. 
Define W(A) = X,,y w(x, y) and W(A, B) = 

xeA,yEB w(x, y). (Note that W(A, B) = W(B, A).) 
Also, for x E A, let W(x, B) = Z,,B w(x, y). We now 

Step 1. Let v; and oj be the endpoints of an edge of maximum weight. 

Step 2. P <- {vi, o;}. 

Step 3. while ( JP1 < p ) do 

begin 

a. Find a node v E V - P such that X: w ( vo, v') is maximum 
EP 

among the nodes in V - P. 

b. PNP {P}. 

end 

Step 4. Output P. 

Figure 2. Details of heuristic GMA. 
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give two lemmas which are used several times in the 
proof of the performance bound for the GMA heuris- 
tic. The first is an immediate consequence of the 
pigeon hole principle (Roberts 1984). 

Lemma 1. Let A and B be nonempty and disjoint 
subsets of V. Then there is a node x E A such that 
W(x, B) > W(A, B)/IA 1 

Lemma 2. Given an instance of MAFD-TI, let A 
and B be nonempty and disjoint subsets of V with 
I B I : 2. Then W(A, B) : IA I W(B)/(IB I - 1). 

Proof. Let v be an arbitrary node in A. Let I B I = t 
and B = lb,, b2, ..., b1[. Since t = IBI : 2, there is 
at least one edge in B. For each edge bin, bjl in 
B(i #1 ), we have by the triangle inequality, 

w(v, bi)+ w(v, bj), w(b, bj) 1 < i< js t. (4) 

If we sum the inequalities shown in (4), the left-hand 
side of the sum is (t - 1) W(v, B) because each edge 
weight w(v, bi)(1 s i - t) appears exactly (t - 1) times 
in the sum. The right-hand side of the sum is simply 
W(B). Therefore, we get (t - 1) W(v, B) > W(B), or 

W(v, B) - W(B)/(t - 1) = W(B)/(IBI - 1). (5) 

Since inequality (5) holds for each v E A, we get 
W(A,B) -Al W(B)/(IBI -1). 

Theorem 4. Let I be an instance of MAFD-TI. Let 
OPT(I) and GMA (I) denote, respectively, the solution 
values of an optimal placement and that produced by 
GMA for the instance L Then OPT(I)/GMA(I) < 4. 

Proof. We show by induction that after each addition, 
the average weight of an edge in P is at least 
OPT(I)/4. 

The statement is clearly true after the first addition 
(which brings two nodes into P) because an edge of 
maximum weight is added to P. So, assume that p > 

3 and the statement holds after k additions for some 
k > 1. We will prove that the statement holds after 
the (k + 1)st addition as well. 

For convenience, we use /* for OPT(I). Let Pk 

denote the set P after k additions. We have the follow- 
ing two-part observation. The first part is due to the 
fact that GMA adds at least one more node to P. The 
second is an immediate consequence of the inductive 
hypothesis. 

Observation 3 

a. W(Pk) = k + 12 /P- */. 
b. W(Pk) :,; k(k + 1)/2 1*/4. 

To prove the inductive hypothesis for Pk,1, it suffices 
to show that there is a node x E V - Pk such that 
W(x, Pk) > (k + 1)1*/4, because this condition in 
conjunction with Observation 3b implies that the 
average edge weight is at least 1*/4 after the (k + 1)st 
addition to P as well. We now state this condition 
formally as a claim and present its proof. 

Claim 2. There is a node x E V - Pk such that 
W(x, Pk) > (k + 1)1*/4. 

Proof of Claim 2. Let P* denote the set of p nodes in 
an optimal placement. By the definition of 1*, we have 

W(P*) = p(P 
- 

1)1* (6) 2 

We have two cases to consider, depending upon 
whether or not Pk and P* are disjoint. 

Case 1. (Pk and P* are disjoint.) We apply Lemma 2 
with Pk as the set A and P* as the set B. (We can do 
so because Pk and P* are disjoint and I P* I = p > 3.) 
We get 

W(Pk, P*) > I Pk I W(P*)/(P - 1) (7) 

= (k + 1)pl*12 (using 6). 

Since W(Pk, P*) = W(P*, Pk), we have W(P*, Pk) > 

(k + 1)pl*12. Now, by Lemma 1, there must be a 
node x E P* such that 

W(x, Pk) > W(P*, Pk)/P 

> (k + 1)1*/2 (using 7). 

Thus, the node x satisfies a condition which is even 

stronger than that required by Claim 2. 

Case 2. (Pk and P* are not disjoint.) Let Y = P* n Pk 

and let X = P* - Y. Since Y is nonempty, we must 
have: 

IXI <p - 1. (8) 

Since X and Y are disjoint and P* = X U Y, we have 

W(P*) = AP - 1) I* 
2 

= W(X) + W(Y) + W(X, Y). (9) 

We have two subcases depending on IlXI. 

Case 2a. (IXI < 1.) Note that X ? 0, otherwise, Y = 

P* = Pk and so IPkl = p, contradicting Observation 
la. Therefore, in this subcase, we need to consider 
only the possibility that IXI = 1. Then, Pk = Y and 
so Pk consists of p - 1 nodes from P*. Let x be the 
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node in X. Since GMA selects a node v E V - Pk for 
which XV'epk w(v, v') is a maximum among the nodes 
in V- Pk, and x is available for selection, it follows 
that GMA will produce an optimal solution in this 
subcase. 

Case 2b. (IXI > 1 (i.e., IXI , 2).) Here, from (9), 
we can conclude that either W(X) : W(P*)/2 or 
W( Y) + W(X, Y) - W(P*)/2. We consider these two 
possibilities separately. 

Case 2b.i. (W(X) > W(P*)/2) We use Lemma 2 with 
Pk as set A and X as set B (we can do so because 
IXI > 2) toget 

W(X, Pk) = W(Pk, X) 

> (k l+ 1) W(X) 

(k + 1 
IXI -) W(P*)/2 

(k + 1) pp - 1)1*/4 (using 6). (10) 

From Lemma 1, there is a node x E X such that 
W(x, Pk) > W(X, Pk)/ lXI. Combining this observa- 
tion with (10), we get 

APp- 1) ( )*4 W(X, Pk) IXI(IXI - 1) ( )1*14. 

Since p - 1 > IXI (from 8), the quantity p(p - 1)/ 
(IXI(IXI - 1)) is greater than 1. Therefore, we get 
W(x, Pk) > (k + 1)1*/4 as required. 

Case b.ii. (W(Y) + W(X, Y) > W(P*)/2) First note 
that if I Yi = 1, then W(Y) = 0 and so W(X, Y) > 
W(P*)/2. Since Y C Pk and the edge weights are 
nonnegative, we must have W(X, Pk) > W(X, Y). 
Therefore, W(X, Pk) 2 W(P*)/2 = p(p - 1)1*/4, and 
by Lemma 1, there must be a node x E X such that 

W(X, Pk) 
A 

|P - 1*/4 

> pl*/4 (from 8) 

> (k + 1)1*/4 (from observation la) 

and so Claim 2 holds when I Yl = 1. Therefore, for 
the remainder of this proof, we assume that I Yi > 2. 

Since in this subcase we are assuming that W( Y) + 

W(X, Y) > W(P*)/2, and as observed above, 
W(X, Y) < W(X, Pk), we have 

W( > W(P) - W(X, Pk) (11) 
2 

Let Q = Pk - Y. Note that Q and Y are disjoint and 
so IQI = IPkI - Iyl = (k + 1)- IYI. We apply 
Lemma 2 with Q as the set A and Y as set B (recall 
that I YI : 2). We get 

(k + 1 - |y)(2 W(Q, Y) 
( I YI) w(Y) (12) 

(I YI - 1) 

Since Pk = Q U Y and the sets Q and Y are disjoint, 
we also have, 

W(Pk) ? W(Y) + W(Q, Y) 

W(Y) IY-l + l ] (from 12) 

- W((Y) I l) (13) 

We now apply Lemma 2 with X as the set A and Pk 

as the set B. We get, 

W(X, Pk) 

> XI W(Pk)/(IPkI - 1) 

= I Xl W(Pk)/k (from Observation la) 

> IXI W(Y)/(I YI - 1) (from 13) 

1 (I Y [ W(P*)/2 - W(X, Pk)] 

(from (ll) (14) 
Rearranging (14) we get, 

WKX Pk) 
1X + 

JYJ 1 
I 

>1 |X Yl W(P*)12. 

Noting that IXI + I Y = P* I = p, substituting for 
W(P*) from (6), and eliminating the common denom- 
inator I YI - 1, we get 

W(X, Pk)(p - 1) I XI p(p - 1)1*/4. 

That is, W(X, Pk) I XI pl*/4. From this inequality 
and Lemma 1, we conclude that there must be node 
x E X such that W(x, Pk) , pl*/4 > (k + 1)1*/4 (from 
Observation la). 

This completes the proof of Claim 2 and also that 
of Theorem 4. 

Theorem 4 shows that the performance guarantee 
provided by GMA is no worse than 4. However, the 
guarantee may well be less. The following result shows 
that the guarantee cannot be less than 2. 

Theorem 5. For any instance I of MAFD-TI, let 
OPT(I) and GMA(I) denote, respectively, the solution 
values of an optimal placement and that produced by 
GMA for the instance L For any e > 0, there is an 
instance I, for which OPT(IE)/GMA(IJ) > 2 - e. 
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Proof. Consider the MAFD instance I described 
below. This instance has a total of 2p nodes and p 
facilities are to be located. For convenience in descrip- 
tion, we partition the set of 2p nodes into three sets 
called X, Y, and Z. The set X has p nodes (denoted by 
xi, x2, . . ., xp), the set Y has p - 2 nodes (denoted 
by Yi, Y2, . . ., YP-2), and Z has two nodes (denoted by 
z1 and z2). The edge weights are chosen as follows. For 

any distinct nodes xi and xj E X, w(xi, xj) = 2. Also 
w(z1, z2) = 2. All other edge weights are 1. It is 
straightforward to verify that the distances satisfy the 
triangle inequality. The set X is an optimal placement 
and its solution value (OPT(I)) is 2 (because every 
edge in X has a weight of 2). We can force GMA to 
place the first two facilities at z1 and z2 because 
w(zI, Z2) = 2 is a maximum edge weight. It is easy to 
verify that in the subsequent (p - 2) steps, GMA can 
be forced to choose all the (p - 2) nodes from the set 
Y. Thus, we force GMA to return Z U Y as the 
placement. The solution value (GMA(I)) correspond- 
ing to this placement is given by 

GMA(I)= 2 +) 
P p- 1)2 

because in the placement, one edge (namely, that 
between z, and z2) is of weight 2 and each remaining 
edge is of weight 1. A bit of simplification shows 
that GMA(I) = 1 + 2/(p(p - 1)). The ratio 
OPT(I)/GMA(I) is given by 

OPT(I) 2 

GMA(I) 1+ 2/(p(p -1)) 

Clearly, the ratio can be made arbitrarily close to 2 by 
choosing p to be sufficiently large. 

4. DISPERSION PROBLEMS IN ONE AND TWO 
DIMENSIONS 

The 1-dimensional dispersion problems are restricted 
versions of MMFD and MAFD, where the node 
set V consists of a set of n points (denoted by xl, 
x2, ... , xn) on a line. Thus w(xi, xj) = Ixi - xjl. We 
denote these problems by 1D-MMFD and 
1D-MAFD, respectively. Similarly, in the case of the 
2-dimensional dispersion problems (denoted by 
2D-MMFD and 2D-MAFD, respectively), the node 
set V is a set of n points in ,2 and the distance 
between a pair of points is the Euclidean distance. It 
is known that 1D-MMFD can be solved in polynomial 
time using a dynamic programming approach and 
that 2D-MMFD is NP-hard (Wang and Kuo). Accord- 
ingly, we consider 1D-MAFD and 2D-MAFD in this 
subsection. 

4.1. A Polynomial-Time Algorithm for 1D-MAFD 

Our polynomial-time algorithm for 1D-MAFD is also 
based on a dynamic programming approach. It runs 
in O(max{n log n, pnj) time. In the development of 
the dynamic programming formulation for this prob- 
lem, we use the notation introduced in Section 3. In 
studying the formulation, the reader should bear 
in mind that maximizing the average distance is equiv- 
alent to maximizing the sum of the distances. 

We begin by sorting the points into increasing order. 
Let V = {x,, x2, .. ., x"} denote the points in sorted 
order. Consider a point x; and an integer k s 
min(j, p). For each such combination of xj and k, the 
dynamic programming algorithm considers choosing 
k points from {xl, x2, . . ., xjI to maximize a certain 
quantity described below. Let C = A U B be a set of p 
points consisting of a subset A C {xi, . . ., xj such 
that IA l = k, and a subset B C Ixjl, . . ., x"} 
such that I B I = p - k. For each pair of points xu in 
A and x, in B, we have 

w(xU, xv) = w(xj, xU) + W(xj, xe). (15) 

If we sum (15) over the points in B, we get 

W(xu, B) = (p - k)w(xj, xu) + W(xj, B). (16) 

If we sum ( 16) over the points in A, we get 

W(A, B) = (p - k)W(xj, A) + kW(xj, B). (17) 

Hence, 

W(C) = W(A U B) 

= W(A) + W(B) + W(A, B) 

= W(A) + (p-k)W(xj, A) 

+ W(B) + kW(xj, B). (18) 

The optimization goal of 1D-MAFD is to maximize 
W(C). Suppose that for a given k, we want to choose 
a set C maximizing W(C), but subject to the constraint 
that A contains k points and B contains p - k points. 
Equation (18) shows that under this constraint, the 
choice of B has no effect on the choice of A. For a 
given subset A 5 xi, . . , xjI such that IA I = k, define 

fkj(A) = W(A) + (p - k)W(xj, A). (19) 

Let OPTkj be a k-element subset of lx1, . . ., xj4 that 

maximizesfkj. Note that OPTp,, is the solution to the 
1D-MAFD problem instance. The dynamic program- 
ming algorithm computes all the values of 
fkj(OPTkj), and then uses these values to find an 
optimal solution to the 1D-MAFD instance. The algo- 
rithm finds the values of fk,j(OPTk,j) by considering 
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increasing values of j. For a given value of j, the 
algorithm considers increasing values of k. 

Now consider how to compute fkj(OPTkj). Note 
that OPTkj either includes the point xj or excludes it. 
if xi 4 OPTk,j, then OPTkj must be OPTk,j]1, for 
which we have, using (19), 

fkj(OPTk,j} I ) 

= W(OPTkj1l) + (p - k) W(x,, OPTk,j11) 

= W(OPTk,j-1) + (p - k) W(x,-1, OPTk,j X) 

+ k(p - k)(xj - xj- ) 

= fk,j-,(OPTk,j-l) + k(p - k)(xj - x- 1). (20) 

If xj E OPTk,j, then OPTk,j must be OPTk1,,j1l Ufjxf, 
and again using (19) we have, 

fk,j(OPTk-l,j-l U fxj) 

= W(OPTk-l,j1,) + (p - k)( W(xj-1, OPTklj_1) 

+ (k - 1)(x -xj-x)) + W(xj-1, OPTklj_1) 

? (k - )(xj - xj,) 

= W(OPTk-l,1j_) + (p - k + 1)W(Xj1, OPTkjlj1l) 

+ (k - l)(p - k + 1)(xj - x,-,) 

=fk-,1j-l(OPTk-1,j-l) 

+ (k - l1)( p - k + l1)(x, - xj-,). (21 ) 

Equations (20) and (21) show that given the 
sets OPTkjI and OPTklj-1, and the values of 

fk,j-l(OPTk,j-1) and fk-,j-l(OPTk-lj-l), we can com- 
pute OPTkj andfkj(OPTkj). To complete the dynamic 
programming formulation, we note that the boundary 
conditions are OPToj = 0, foj(OPToj) = 0(1 j <n), 

OPT1,I = Ixi 1, and fi,I(OPT,,1) = 0. 

The details of the algorithm are shown in Figure 3. 
The algorithm first computes (Step 4) the entries 
of the array F (which corresponds to the function 
f in the above dynamic programming formulation) 
and then uses these entries to construct an optimal 
placement P (Step 5). This implementation obviates 
the need for the sets OPTkj used in the formulation. 
The running time of the algorithm is O(n log n) for 
sorting plus O(pn) to carry out the dynamic program- 
ming (there are O(pn) entries to compute, and each 
entry can be computed in constant time). Thus, the 
overall running time is O(max(n log n, pn)). 

The above discussion is summarized in the follow- 
ing theorem which will be used in the next subsection. 

Theorem 6. An optimal solution to any instance of 
1D-MAFD given by a set V of n points and an integer 
p < n can be obtained in O(maxf n log n, pnj) time. 

4.2. A Heuristic for 2D-MAFD 

It is open whether 2D-MAFD is NP-hard. Note that 
GMA (Section 3) provides a performance guarantee 
of 4 for 2D-MAFD. Here, we first present a heuristic 
for 2D-MAFD which provides a performance guar- 
antee of 4(,I2 - 1) - 1.657 and then show how this 
heuristic can be modified to obtain another heuristic 
which provides an asymptotic performance guarantee 
of r/2 - 1.571. These heuristics use our polynomial 
algorithm for 1D-MAFD. 

We assume that an instance of 2D-MAFD is given 
by a set V = lVI, v2, . . ., v") of n points (where each 
point vi is specified by a pair of coordinates (xi, yi)) 
and an integer p < n. The steps of this heuristic (called 
PROJECTL4) are shown in Figure 4. The perfor- 
mance guarantee provided by PROJECTL4 is indi- 
cated in the following theorem. 

Theorem 7. Let I be an instance of 2D-MAFD. Let 
OPT(I) and PROJECTA4(I) denote, respectively, the 
solution values of an optimal placement and that pro- 
duced by PROJECTL4 for the instance I. Then 
OPT(I)/PROJECTI4(I) < 4(V/ - 1). 

Proof. Recall that maximizing average distance is 
equivalent to maximizing the sum of the distances. So 
we will present the proof in terms of the sum of the 
distances between pairs of points. 

Let P* be an optimal placement. For convenience, 
we use the term edge to refer to the line segment 
between a pair of (distinct) points in P*. For an edge 
e E P*, let l(e) denote its length (i.e., the Euclidean 
distance between the end points of e). Note that 
OPT(I) = Zeep* l(e). Given an edge e, let 

lx(e), ly(e), l,(e), and lw(e) denote the magnitudes of 
the projections of e on the X, Y, V and W axes, 
respectively. We have the following claim. 

Claim 3. lx(e) + ly(e) + lQ(e) + lw(e) , (1 + V2)l(e). 

Proof of Claim 3. Since we are considering the sum of 
the projections, assume without loss of generality that 
the angle 0 of e with respect to the X axis is between 
00 and 450, as shown in Figure 5. From that figure, we 
have 

lx(e) = l(e)cos 0, ly(e) = l(e)sin 0, 

lQ(e) = l(e)cos(45? - 0), and lw(e) = l(e)sin(45? - 0). 
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(*- - In the following, array F represents the function f in the formulation. - -*) 

Step 1. Sort the given points, and let {x, x2, x,} denote the points in increasing order. 

Step 2. for j:= I to n do 

F [OJ] -- 0; 

Step 3. F [1,1] - 0. 

Step 4. (*- - Compute the value of an optimal placement - 

forj =2 to n do 

for k:= I to min (p,j) do 

begin 

tI - F[k, j- 1] + k(p - k)(xj- xj-); 

t2 - F[k - I,j-I] + (k - I)(p - k + I)(xj -xj I); 

if tl > t2, then (*- - do not include xj - 

F[k, J] < t- 

else (*- - Include xj - 

F[k,J] <- t2; 

end; 

Step 5. (*- - Construct an optimal placement - 

P - {xx }; k - p; j -- n; 

while k > I do 

begin 

if F[k,J] = F[k- I, j-1] + (k- 1)(p-k+ I)(xj-xj-1), 

then (*- - xj to be included in optimal placement - 

begin 

P <- P u {xj; k - k - I; 

end; 

j*-j- I; 

end; 

Step 6. Output P. 

Figure 3. Details of the algorithm for 1D-MAFD. 

Step 1. Obtain the projections of the given set V of points on each of the four axes defined by the 

equations y = 0 (X axis), y = X(Vaxis), {= 0 (Yaxis), and y = -{(W~axis). 

Step 2. Find optimal solutions to each of the four resulting instances of I D-MAFD. 

Step 3. Return the placement corresponding to the best of the four solutions found in Step 2. 

Figure 4. Details of heuristic PROJECT_4. 

W Y v Let s(e) = l,(e) + ly(e) + l,(e) + lw(e). Using well 
known trigonometric identities and the fact that sin 

450 = cos 45? = I/N/, it is not difficult to verify that 

____ _______ 0 - s(e) = l(e)[sin 0 + (1 + ./2)cos 0]. (22) 

From (22), it is easy to verify that the minimum value 
of s(e) occurs when 6 = 00 or 0 = 450 and that this 
minimum value is (1 + 2I5)I(e). This completes the 
proof of Claim 3. 

We now continue with the main proof. Note that 
Figure 5. Proof of claim 1. Claim 3 holds for each edge in P*. So if we sum up 
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the result of Claim 3 over all the edges in P*, we get 

E Ix(e) + ly(e) + I(e) + lw(e) 
eEP* 

(1 + A) I(e) 
eEP* 

-(1 + V)OPT(I). (23) 

If we let Sx = Caps lx(e), and use analogous defini- 
tions for S, So, and SW, we get from (23), 

Sx + Sy + S, + S, , (1 + V;2)OPT(I). (24) 

From the last inequality, it follows that 

max(Sx, Sy, Sun S) 
+ N/2) OPT(I). (25) 

Since PROJECU4 chooses the best placement from 
optimal solutions for the four 1D-MAFD instances, it 
follows that PROJECT14(I) , max (Sx, Sy, Sv, Sw). 
We thus have from inequality (25), 

OPT(I) 
PROJECT.A(I) 4/(1 + VJ) = 4(12 - 1) 

as indicated in the statement of the theorem. 

The performance guarantee provided by 
PROJECT4 is approximately 1.657. By projecting 
the given set of points on more axes, it is possible to 
achieve an asymptotic performance guarantee of 
ir/2 ~ 1.57 1, as shown below. 

Theorem 8. Let I be an instance of 2D-MAFD and 
let OPT(I) denote the solution value of an optimal 
placement for L Then, for any fixed e > 0 there is a 
polynomial-time approximation algorithm P, which 
produces a placement with solution value PE(I) such 
that OPT(I)/PE(I) < (Xr/2 + e). 

Proof. Given e > 0, let k be the smallest even positive 
integer satisfying the condition 

k tan(r/2k) s r/2 + E. (26) 

Such a k exists because limka k tan(r/2k) = 

r/2, and this limit is approached from above. 
Algorithm P, first projects the given set of points on k 
axes (denoted by X1, X2, .. . , Xk) such that the angle 
between any pair of successive axes is ink. It then 
solves the 1D-MAFD problem on each of the k axes 
and outputs the best of the placements found. In view 
of (26), Theorem 8 would follow by proving that 
OPT(I)/Pe(I) is bounded by k tan(r/2k). 

The proof is very similar to that of Theorem 7. Let 
P* denote an optimal placement and consider an edge 
e of length l(e) in P*. Without loss of generality, let 

0 (O < 0 < ir/k) be the angle of e with respect to the 
X1 axis. Let li(e) denote the magnitude of the projec- 
tion of e on the Xi axis (1 < i < k), and let s(e) = 

Xk=, li(e). It is easy to verify that 

- k12 k12- 1- 

s(e) =I(e) [ cos(r r/k -0) + E cos(rir/k + 0)]. (27) 

Tedious, but straightforward, calculations show that 

s(e) = 1(e) [sin 0 + sin(r/k- 0)] (28) 

From (28), it is easy to verify that the minimum value 
of s(e) occurs when 0 = 0 or 0 = ir/k and that this 
minimum value is l(e)/tan(r/2k). Thus s(e) ; I(e)/ 
tan(r/2k). The remainder of the proof to show that 
OPT(I)/P,(I) < k tan(r/2k) is virtually the same as 
of Theorem 7 (keeping in mind that the number of 
axes is k instead of 4). 

We note that Theorem 8 generalizes the bound of 
Theorem 7 in that choosing e = 4(V2 - 1) - ir/2 
(~0.086 1) leads to projection on k = 4 axes. Also, to 
achieve a performance guarantee of 1.571 (an approx- 
imate value of gr/2), 80 projections are needed; in 
general, the number of projections goes to oo, as 
e approaches 0. 

5. CONCLUSIONS 

The results of this paper, prior results, and open 
problems are summarized in two tables. Table I shows 
the complexity results for solving these problems opti- 
mally, while Table II shows performance guarantee 
results for heuristics. In these tables, prior results 
are indicated through appropriate citations; our 
results are indicated by specifying the corresponding 
theorems. 
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Table I 
Complexity Results for Dispersion Problems 

Problem MAX-MIN MAX-AVG 

General NP-hard NP-hard 
(Erkut 1990) (Hansen and Moon 1988) 

Triangle Inequality NP-hard NP-hard 
(Erkut 1990) (Hansen and Moon 1988) 

ID Version 0 (max I pn, n log nJ) 0 (max I pn, n log n ) 

(Wang and Kuo 1988) (Theorem 6) 
2D Version NP-hard Open 

(Wang and Kuo 1988) 

Table II 
Performance Guarantee Results for NP-hard Dispersion Problems 

MAX-MIN MAX-AVG 

Upper Bound Lower Bound Upper Bound Lower Bound 
(Best Known (Intrinsic Limit, (Best Known (Intrinsic Limit, 

Problem Guarantee) Assuming P # NP) Guarantee) Assuming P # NP) 

General - No guaranteed ratio Open Open 
(Theorem 1) 

Triangle Inequality 2 2 4 Open 
(Theorem 2) (Theorem 3) (Theorem 4) 

2D Version 2 Open 7r/2 asymp. Open 
(Theorem 2) (Theorem 8) 
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