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ABSTRACT 

Cellular Manufacturing System (CMS) is an application of Group Technology (GT) that allows decomposing a manu-
facturing system into subsystems. Grouping the machines and parts in a cellular manufacturing system, based on simi-
larities is known as cell formation problem (CFP) which is an NP-hard problem. In this paper, a mathematical model is 
proposed for CFP and is solved using the Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Simulated An-
nealing (SA) meta-heuristic methods and the results are compared. The computational results show that the GA method 
is more effective in solving the model. 
 
Keywords: Cell Formation Problem, Ant Colony Optimization, Genetic Algorithm, Simulated Annealing, Sequence  
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1. Introduction 

Cellular Manufacturing System (CMS) is an application 
of the Group Technology (GT) philosophy that allows 
decomposing a manufacturing system into subsystems 
which makes its management easier than the entire man-
ufacturing system. It has been shown that CMS is an ac-
cepted solution to the problem of productivity in batch 
production which includes a large portion of world man-
ufacturing [1]. The main idea in CMS is the principle of 
“Similar things should be done similarly” which means 
the similar manufacturing processes should be identified 
and grouped in dedicated manufacturing cells. 

Manufacturing systems employing CMS can improve 
the productivity to a large extent. It has been found that 
CMS can increase the productivity of manufacturing 
system by three major factors [2]: 
 improvement in quality of the work-force, 
 increase in the availability of capital, 
 improvement in the production technology. 
Based on the simulation results performed by Morris 

and Tersine [3], the superiority of CM over batch pro-
duction is significant especially when the setup/operation 
ratio is high, demand is stable, one-way intercellular 
flows and considerable materials handling are concerned.  

Due to different solution approaches, different group-
ing solutions may be proposed for a certain problem. 

Therefore there should be some criteria to compare these 
solutions and choose the best one. There are several ob-
jectives to measure the effectiveness of CMS such as: 
 Minimum number of intercellular/intracellular 

moves, 
 Greatest proportion of part operations performed 

within a single cell, 
 Maximum machine utilization, 
 Minimal total costs by reducing set-up times, and 

WIP (Work-in-Process), 
 Minimal capital investment, 
 Minimum number of voids in the cells. 
With respect to the benefits mentioned above, CMS 

has attracted the attention of researchers for the last dec-
ades. Some researches related to the work presented in 
this paper are reviewed in the following. 

Burbidge [4] defines group technology as: “an ap-
proach to the organization of work in which the organ-
izational units are relatively independent groups, each 
responsible for the production of a given family of prod-
ucts”. In this approach, the main goal is to form manu-
facturing groups in which, some machines are located in 
dedicated cells associated with some similar parts based 
on a machine-part incidence matrix. In each cell, some 
operations are done on the parts by machines, so that the 
main objective is to maximize the intra-cell operations, 
and to minimize the number of inter-cell movements 
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(exceptional elements). It is shown that the machine-part 
cell formation (MPCF) is a NP-hard problem [5]. There-
fore, it takes a long time to obtain an optimal solution for 
medium-sized problems while it is computationally in-
tractable for large-sized problems. Thus, development 
and application of heuristic techniques has attained the 
interest of researchers in this area. 

Joines et al. [6] offered a classification of the tech-
niques available for manufacturing cell formation. Indi-
vidual techniques are aggregated into methodological 
groups including array-based clustering, hierarchical 
clustering, non-hierarchical clustering, graph theoretic 
approach, artificial intelligence, mathematical program-
ming, and heuristic approaches.  

Table 1 provides a review of the researches related to 
the current work in terms of the solution approach or 
problem perspective. The works pointed out in this table 
suffer from at least one of the following drawbacks: 

1) Intercellular movements have been calculated re-
gardless of production volume though it is directly af-
fected by this parameter. 

2) Sequence of operations has only been taken into 
account in the calculation of similarity between the parts. 
However, this parameter directly affects the number of 
movements of parts between the cells. 

3) In a large number of researches, the total number of 
“ones” fell out of diagonal blocks is considered as a 
measure of the number of intercellular movements be-
tween the cells. However, this value is seriously dictated 
by the sequence through which parts are processed. 
Suppose a certain operation of a part is processed out of 
the associated cell. If this is the first or the last operation 
of the part, a single intercellular movement takes place 
whereas it is counted twice in otherwise. The mathe-
matical model attempted in this paper provides a formula 
to calculate the intercellular movements in this way.  

In this paper, a mathematical model is proposed for 
solving the cell formation problem, and the model is 
solved using Genetic Algorithm (GA), Simulated An-
nealing (SA) and Ant Colony Optimization (ACO). Per-
formance of these methods is compared using two exam-
ples selected from the literature. The comparison shows  

 
Table 1. Summary of literature review 

 

Reference 
Applied 

Methodology 
Sequence of 

operation 
Production 

Volume 

Exceptional 
Elements 
(Voids) 

Intercellular 
Movements 

Islier [7] Ant algorithm No No No No 

Prabhaharan et al. [8] Ant algorithm Yes Yes No Yes 

Mak et al. [9] Ant algorithm Yes No No No 

Spiliopoulos and Sofianopoulou [10] Ant algorithm Yes No No Yes 

Kesen et al. [11] Ant algorithm Yes No No No 

Satolgu and Suresh [12] Goal Programming No No No No 

Kao and Fu [13] Clustering Algorithm No No No No 

Pandian and Mahapatra [14] Neural Networks Yes No Yes Yes 

Mahdavi et al. [15] Genetic Algorithm Yes No Yes No 

Mahdavi and Shirazi [16] Heuristic Algorithm Yes No Yes No 

Arkat et al. [17] Simulated Annealing No Yes No No 

Ahi et al. [18] TOPSIS Yes No Yes No 

Wang et al. [19] Scatter Search Yes Yes No No 

Murugunandam et al. [20] GA + Tabu Search Yes Yes No No 
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the effectiveness of GA method. 

2. Problem Formulations 

2.1 Notations 

C, M, P: Total number of Cells, Machines, and Parts. 
i,j,c: Index of machines, parts and cells respectively. 
Dj: Demand for part j. 
Lc: Minimum number of machines which should be 

assigned to cell c. 
yjc: Boolean decision variable, which is 1 if part j is 

assigned cell  c, and 0 otherwise. 
xic: Boolean decision variable, which is 1 if machine i 

is assigned to cell c, and 0 otherwise. 
ij: Boolean parameter, which is 1 if part j needs ma-

chine i for completion, and 0 otherwise. 
βij: Boolean parameter, which is 1if machine i is the 

first or the last machine needed for part j, and 0 other-
wise. 

2.2 Mathematical Formulation  

The objective function of the proposed model is to mini-
mize the total number of intercellular movements (f1) and 
total number of voids (f2) which can be formulated as 
below: 

f1 = 
1 1 1

C M P

c i j  
 Dj.ij. (2 – βij) .yjc .(1 – xic);    (1) 

f2 = 
  

C

c

M

i

P

j1 1 1

 Dj.(xic.yjc – ij. xic.yjc);     (2) 

Minimize  f = f1 + f2 
Subject to: 

yjc ≤ 


M

i 1

xic ;           j,c         (3) 




C

c
icx

1

= 1;            i          (4) 




C

c
jcy

1

= 1;            j          (5) 




M

i
icx

1

≥ Lc;    c                 (6) 

xic, yjc  {0,1};                     (7) 

Constraint (3) implies that assignment of a part to a 
cell is subject to the presence of at least one machine in 
that cell. Constraints (4) and (5) ensure that any part or 
machine is assigned to only one cell. Constraint (6) 
maintains the size of the cells and guarantees that at least 
a predefined minimum number of parts will be assigned 
to each cell. 

3. The ACO Algorithm 

Ant colony optimization was first developed by Dorigo 

et al. [21] based on the behavior of real ants. Real ants 
which live in colonies leave the nest to find food and 
come back again at every time. Based on observations, 
these ants always choose the shortest path to reach the 
food. As soon as this shortest path is found by some ants, 
the subsequent ants follow the same path. In fact there is 
a complicated communication system controlling the 
movement of ants. The secret of this communication is 
based on a substance, called pheromone. Real ants lay a 
substance known as pheromone on the ground when they 
pass through a path. This substance is smelled by other 
ants which leads them to follow the path traveled by 
prior ants. The more ants pass on a path, the more phe-
romone is put on that path. Since the shorter path is trav-
eled fast, the density of pheromone on this path increases 
faster than other paths. Therefore, a majority of ants in-
tend to travel on the shorter path after a given time. This 
is the underlying mechanism of ACO which is imple-
mented to solve CFP in the following subsections. 

3.1 Solution Representation and Evaluation 

Suppose there are M machines and P parts to be clus-
tered into C cells. The relation of machines and parts, 
which shows machine requirement of parts is normally 
represented by a matrix named. In this paper, the ma-
chine-part incidence matrix indicates the production 
process data as well. Specifically, an entry aij = k in the 
matrix, means that operation k of part j needs machine 
i for completion. Table 2 shows an example including 
fifteen machines and twenty-five parts. 

In the proposed algorithm, a solution is represented 
with a string of length M + P. The first M characters of 
the string show the cell number of the machines, and the 
rest are used for the parts. For example, for M = 5, P = 4, 
and C = 2, a solution can be represented as “212112211” 
which means assign of machine 1 to 5 to cells 2,1,2,1 and 
1 respectively and assignment of parts 1 to 4 to cells 
2,2,1 and 1 respectively. 

The generated solution may be infeasible, that is, the 
selected machine and part, are assigned to a wrong cell. 
In this case, the solution will be deleted, otherwise the 
goodness (or efficiency) of the solution will be com-
puted.  

3.2 Goodness Measurement 

One of the most important steps in heuristic techniques is 
the evaluation of the obtained solutions. In this step, the 
goodness (or fitness) of the solution is calculated, and 
based on the result, the solution may be deleted, kept, or 
marked as good. The GA technique always keeps a popu-
lation of feasible best fitted chromosomes (obtained solu-
tions) and tries to achieve better solutions by mating the 
parents. Similarly, the ACO model keeps a list of best 
solutions ever found called elite list. When a new solution  
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Table 2. 15 × 25 machine-part matrix and demand for parts (Dj) of example 1 

Parts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25

Dj 59 95 30 46 13 34 12 63 57 74 98 5 93 75 22 24 61 100 26 56 19 67 97 24 47

M1  1    1  1     1 3 3 1  1        

M2 2   2 2 4 2   5    2   2  8   2    

M3         6   6       6  1   6 5

M4   2     5 3 2 2 2       2 1 2  2 2 2

M5 3   3 3  3          3     3  7  

M6  3 4   3  2     3  2 3  4        

M7 1   1   1       1   1     1    

M8       7  2 4 5 4       4 4 4  4 4  

M9 4   4 4  4       4        4 5   

M10  4   1 5  4       4 4  3        

M11         5 6 4 5       5 5 5  6 5 4

M12   1      1 1 1 1       1 2   1 1 1

M13 5   5   5       5   4         

M14 6  3      4 3 3 3       3 3 3  3 3 3

M15  2    2 6 3     2  1 2  2 7       

 
is obtained, the goodness (fitness) function is applied, 
and based on the result, we decide to add the solution 
to the elite list, or omit the solution and generate an-
other one. 

In this model, considering the objective function de-
fined in Sub-section 2.3, the number of intercell move-
ments and the number of voids in cells is to be mini-
mized. So, the goodness function is defined as below: 

goodness = f = 
1 2

1

 1f f 
             (8) 

During the ACO, SA and GA iterations, the goodness 
of each solution is calculated using Equation (8). The 
constant value “1” is added to prevent division by zero. 

3.3 The Ant Algorithm 

Descriptive procedure of the proposed algorithm for 
solving the attempted mathematical model is as follows: 

 
Begin 

1. Initialize 
2. Generate a feasible random solution, and add 

it to the elite list. 
3. Evaluate the efficiency (goodness) of the so-

lution 
4. Repeat 

a. Generate another random solution, 
based on pheromone trails. 

b. Evaluate goodness, if better than the 
worst solution in the elite list, add it 
to elite list and delete the worst solu-
tion from list, update pheromone 
trails. 

c. Evaporate pheromone 
d. Alter solutions periodically 

5. Until stopping condition is met 
End 

 
This model uses a P = [Pck](C) × (M + P) pheromone ma-

trix in which, C, M, and P, are the number of cells, ma-
chines and parts, respectively. The initial value of Pck is 1. 
So, to generate a random feasible solution in step 3, there 
is no need to use the pheromone matrix.  
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4. Genetic Algorithm 

In this method, an initial population of solutions (chro-
mosomes) is generated randomly while subsequent pop-
ulations are generated by choosing good parents and 
mating them. The mating may cause to worse, better, or 
even infeasible solutions. By keeping better solutions in 
population and omitting bad ones, the algorithm con-
verges stage by stage and after a number of iterations, the 
local or global optimum will be found. 

4.1 The GA Algorithm 

Begin 
1. Generate initial population containing N chromo-

somes. 
2. Compute the fitness of chromosomes in current 

population. 
3. Generate the next population  

a. Choose two best parents randomly from the 
current population. 

b. Mate the parents and generate two children   
(Crossover operator). 

c. Apply the mutation operator. 
d. Compute the fitness of children. 

4. Repeat step 3 until termination condition is met. 
End 

 
In the proposed algorithm, the size of initial population is 

1000 and the mating candidate parents are chosen by rou-
lette wheel method. Chromosomes are represented as de-
scribed in Subsection 3.1. The probability of crossing over 
and mutation is considered as 0.8 and 0.2 respectively.  

5. Simulated Annealing 

The Simulated Annealing (SA) algorithm is derived from 
metallurgy and thermodynamics which incorporated a 
temperature parameter into the minimization parameter. A 
high temperature expands the search space, and a lower 
temperature restricts the exploration. The procedure starts 
from a high temperature and ends at a low temperature. 
At each temperature, a number of iterations are done. 

Some heuristic algorithms like Hill Climbing tech-
nique, may found the Local Optimum instead of the 
Global optimum because the movements leading to a 
new point worse than the current point are not allowed. 
SA algorithm allows non-improving movements to be 
taken in the hope of escaping the local optimum with a 
probability depending on the procedure temperature and 
the amount of the badness of the solution. 

5.1 The SA Algorithm 

Using the same representation described for solutions in 
Subsection 3.1, the SA algorithm can be written as fol-
lows: 

Begin 
1. Initialize Temp. 
2. Find a feasible solution, called x. 
3. Compute its goodness f(x). 
4. Repeat until  frozen 

a. Do 1000 times 
i. y: = FindNeighbour(x). 

ii. Delta: = f(x) - f(y). 
iii. if Delta > 0 then x: = y ; Ac-

cept y). 
iv. else if  U(0,1) < e-(Delta)/Temp 

then  x: = y  (Accept  y). 
v. else reject  y. 

b. End Do. 
5. Temp: = Temp * 0.95. 
6. The Solution will be best so far. 

End 
 

The Algorithm starts at the temperature of 5000 with a 
feasible solution. The neighbor of a solution is obtained 
by making some changes in the solution (some parts or 
machines are randomly moved from one cell to other 
one). 

6. Examples 

The proposed algorithms are applied to solve two 
benchmark problems (15 × 25 and 20 × 35 sizes) avail-
able in the literature. The algorithms are implemented in 
C Language and are executed on a Pentium IV PC. 

Example 1 
The first example consists of fifteen machines and 

twenty-five parts which are grouped in three cells. The 
machine-part incidence matrix of the problem with is 
given in Table 2. The table also indicates demand of 
each part generated by a discrete uniform distribution in 
[1..100]. The solution obtained by the proposed ACO, 
SA and GA algorithms for this problem is shown in Ta-
ble 3. The obtained values for f1, f2 and f are 863, 803 and 
1666 respectively in all three methods. 

Example 2 
The second example is adopted from Boe and Cheng 

[22] with 35 parts, 20 machines and four cells. Table 4 
and Table 5 show the machine-cell incidence matrix and 
the solution obtained by ACO, GA and SA algorithms. 
Since the demand for parts are not included in [22], these 
values are randomly generated using a discrete uniform 
distribution in [1..100]. The final obtained value of the 
objective function is 4562 in all three methods. 

Figures 1 and 2 show the number of iterations and 
convergence speed of different algorithms. In these fig-
ures, the horizontal axis shows the number of iterations 
(number of generations in GA, number of ants in ACO, 
and iterations of SA) and the vertical axis shows the val-
ue of the objective function. 
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Table 3. The solution obtained by the proposed ACO, SA, and GA algorithms for example 1 

 1 4 5 7 14 17 22 2 6 8 13 15 16 18 3 9 10 11 12 19 20 21 23 24 25

M7 1 1  1 1 1 1                 

M2 2 2 2 2 2 2 2  4      5   8      

M5 3 3 3 3  3 3               7  

M13 4 4 4 4 4  4              5   

M9 5 5  5 5 4                  

M1     3   1 1 1 1 3 1 1          

M15    6    2 2 3 2 1 2 2    7      

M6        3 3 2 3 2 3 4 4          

M10   1     4 5 4  4 4 3          

M12               1 1 1 1 1 1 2  1 1 1 

M4          5     2 3 2 2 2 2 1 2 2 2 2 

M14 6              3 4 3 3 3 3 3 3 3 3 3 

M8    7           2 4 5 4 4 4 4 4 4  

M11               5 6 4 5 5 5 5 6 5 4 

M3               6   6 6  1  6 5 

 
Table 4. The machine-cell incidence matrix of example 2 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 5     4     5   6 5 1 4 6 2 3    5  4 1 4

2  1        1  3 1  3 6 3     3  

3 1  1  2          1 1   1    

4  2     2     4 2  4 1      

5     1         1 1 1 1       

6        1      2 1 1    3   

7 2  2  3  1     1   2 2 5 1 3 4 1 4   2 4 2 3

8 3    4    5      3 3 2 5       2

9        2      3 2 2      2 1

10        3      4 1 3 2 2       

11    1  1   1  1    1       1

12    2  2   2  2    2       2

13  3          5 3  5       

14  4     3   2  6 4  4 6 2    4  

15    3  3   3  3    3  1  1   

16    5  5   6   2   2 5    6  5

17 4  3  5          4 4 3 2       3

18  5     4     7 5  5 7     5  

19    4     4  4    4  2  2  1

20        4      5 4 3 3       
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Table 5. The solution obtained by the proposed ACO, SA, and GA algorithms for example 2 

 1 3 5 15 17 18 20 23 25 29 32 34 35 2 7 10 12 13 24 27 31 8 14 16 19 22 26 4 6 9 11 21 28 30 33

1 5   5  1 4 6 3  4 1 4 2 6   4  5  5

3 1 1 2 1 1    1          

7 2 2 3 2 2  1 4 2 3   1 1 1 2 5 3 4      4

8 3   4 3 3  2 5    2     5   

17 4 3 5 4 4  3  2    3       

2      3       1 1 3 1 3 3 6       

4             2 2 4 2 4 1       

13             3 5 3 5       

14      4       4 3 2 6 4 6 2 4       

18       5      5 4 7 5 7 5       

5   1  1   1     1 1      

6             1 2 1 1       3

9        2  2  1 2 3 2       

10             3 4 1 3 2 2      

20        3     4 5 4 3      

11              1 1 1 1 1 1

12              2 2 2 2 2 2

15              3 3 3 3 3 1 1

16      2    5   2 5 5 5 6   6

19          1    4  4 4 4 2 2
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Figure 1. Convergence speed of GA, ACO and SA for example 
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Figure 2. Convergence speed of GA, ACO and SA for example 2 
 

Table 6. Computational time of GA, ACO and SA 

Meta-Heuristic Method Example 1 Example 2 

GA 10 14 

SA 37 48 

ACO 251 263 

 
The computational time (in seconds) of different algo-

rithms for examples 1 and 2 are shown in Table 6. 

7. Conclusions  

This paper discusses that the sequence of operations and 
the production volume are two major factors to be con-
sidered in the design of CMS. Despite this fact, it has not 
been taken into account in a majority of researches 
available in the literature. To capture this fact, a new 
model for solving cell formation problem in CMS is 
proposed. Due to the NP-hardness of the formulated 
problem, three solution approaches based on ACO, GA 
and SA are used to solve the model. The objective func-
tion of the model is to minimize the total number of in-
tercellular movements and the number of voids. The total 
number of cells is defined as a constant parameter in the 
algorithm.  

The computational results show that the proposed al-
gorithms are effective in minimizing the total number of 

voids and intercellular movements.  
As shown in Figures 1 and 2, the GA algorithm has 

obtained the optimum value faster than other techniques.  
The attempted mathematical model can be further ex-

tended by considering alternate process plans for each 
part, machine redundancy, processing time of each op-
eration, etc. 
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