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Abstract: Recently, self-supervised learning methods have been shown to be very powerful and
efficient for yielding robust representation learning by maximizing the similarity across different
augmented views in embedding vector space. However, the main challenge is generating different
views with random cropping; the semantic feature might exist differently across different views
leading to inappropriately maximizing similarity objective. We tackle this problem by introducing
Heuristic Attention Representation Learning (HARL). This self-supervised framework relies on
the joint embedding architecture in which the two neural networks are trained to produce similar
embedding for different augmented views of the same image. HARL framework adopts prior visual
object-level attention by generating a heuristic mask proposal for each training image and maximizes
the abstract object-level embedding on vector space instead of whole image representation from
previous works. As a result, HARL extracts the quality semantic representation from each training
sample and outperforms existing self-supervised baselines on several downstream tasks. In addition,
we provide efficient techniques based on conventional computer vision and deep learning methods
for generating heuristic mask proposals on natural image datasets. Our HARL achieves +1.3%
advancement in the ImageNet semi-supervised learning benchmark and +0.9% improvement in
AP50 of the COCO object detection task over the previous state-of-the-art method BYOL. Our code
implementation is available for both TensorFlow and PyTorch frameworks.

Keywords: heuristic attention; perceptual grouping; self-supervised learning; visual representation
learning; deep learning; computer vision

1. Introduction

Visual representation learning has been an extended research area on supervised and
unsupervised methods. Most supervised learning models learn visual representations by
training with many labeled datasets, then transferring the knowledge to other tasks [1–5].
Most supervised learning frameworks try to tune their parameters such that they maximally
compress mapping the particular input variables that preserve the information on the
output variables [6–8]. As a result, most deep neural networks fail to generalize and
maintain robustness if the test samples are different from the training samples on variant
distribution and domains.

The new approaches are self-supervised representation learning to overcome the
existing drawbacks of supervised learning [9–15]. These techniques have attracted signifi-
cant attention for efficient, generalization, and robustness representation learning when
transferring learned representation on multiple downstream tasks achieving on-par or
even outperforming supervised baselines. Furthermore, self-supervised learning methods
overcome the human supervision capability of leveraging the enormous availability of
unlabeled data. Despite various self-supervised frameworks, these methods involve certain

Sensors 2022, 22, 5169. https://doi.org/10.3390/s22145169 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145169
https://doi.org/10.3390/s22145169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6941-0348
https://orcid.org/0000-0002-0475-3689
https://doi.org/10.3390/s22145169
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145169?type=check_update&version=3


Sensors 2022, 22, 5169 2 of 22

forms of the joint embedding architectures of the two branches neural network such as the
Siamese network [16]. The neural networks of two branches are usually weights-sharing
or different. In the joint embedding self-supervised framework, the common objective is
to maximize the agreement between embedding vectors from different views of the same
image. However, the biggest challenge is avoiding collapsing to a trivial constant solution,
which is that all output embedding vectors are the same. Several strategies to prevent
the collapsing phenomenon can be categorized into two main approaches: contrastive
learning and non-contrastive learning. Self-supervised contrastive learning [9,17] prevents
collapse via negative sample pairs. However, contrastive learning requires a large number
of negative samples leading to the requirement of high computational resources. The
efficient alternative approach is non-contrastive learning [13,14,18]. These frameworks rely
only on positive pairs with a momentum encoder [13] or using an extra neural network on
one branch with the block gradient flow [14,18].

Most existing contrastive and non-contrastive objectives are optimized based on
the whole image semantic features across different augmented views. However, under
this assumption, several challenges exist. First, popular contrastive methods such as
SimCLR [9] and MoCo [17] require more computation and training samples than supervised
methods. Second, more importantly, there is no guarantee that semantic representation of
different objects will differentiate between different cropping views of the same image. For
instance, several meaningful objects (vehicles, humans, animals, etc.) may exist in the same
image. The semantic representation of vehicles and humans is different, so contrasting
the similarity between different views based on the whole-image semantic feature may
be misleading. Research in cognitive psychology and neural science [19–22] showed that
early visual attention helps humans focus on the main group of important objects. In
computer vision, the perceptual grouping principle is used to group visual features into
meaningful parts that allow a much more effective learning representation of the input
context information [21].

Motivated by perceptual grouping, we proposed the Heuristic Attention Representation
Learning (HARL) framework that comprises two main components. First, the early atten-
tion mechanism uses unsupervised techniques to generate the heuristic mask to extract
object-level semantic features. Second, we construct a framework to abstract and maximize
similarity object-level agreement (foreground and background) across different views be-
yond augmentations of the same image [13,18,23]. This approach helps enrich the quantity
and quality of semantic representation by leveraging foreground and background features
extracted from the training dataset.

We can summarize our main findings and contributions as follows:

1. We introduce a new self-supervised learning framework (HARL) that maximizes the
similarity agreement of object-level latent embedding on vector space across different
augmented views. The framework implementation is available in the Supplementary
Material section.

2. We utilized two heuristic mask proposal techniques from conventional computer
vision and unsupervised deep learning methods to generate a binary mask for the
natural image dataset.

3. We construct the two novel heuristic binary segmentation mask datasets for the
ImageNet ILSVRC-2012 [24] to facilitate the research in the perceptual grouping for
self-supervised visual representation learning. The datasets are available to download
in the Data Availability Statement section.

4. Finally, we demonstrate that adopting early visual attention provides a diverse set of
high-quality semantic features that increase more effective learning representation for
self-supervised pretraining. We report promising results when transferring HARL’s
learned representation on a wide range of downstream vision tasks.

The remainder of this paper is organized as follows. In Section 2, we discussed related
works. Section 3 introduces the HARL framework in detail. Section 4.1 briefly describes
the implementation of the HARL framework in self-supervised pretraining. Section 4.2
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evaluates and benchmarks HARL performance on the ImageNet evaluation, transfers
learning to other downstream tasks and compares it to previous state-of-the-art methods.
In Section 5, we provide the analysis of the components impacting the performance and
understanding of the behavior of our proposed method. Finally, this paper is concluded in
Section 6.

2. Related Works

Our method is mostly related to unsupervised visual representation learning methods,
aiming to exploit input signals’ internal distributions and semantic information without
human supervision. The early works focused on several design-solving pretext tasks, and
image generation approaches. Pretext tasks focus on the aspects of image restoration such
as denoising [25], predicting noise [26], colorization [27,28], inpainting [29], predicting
image rotation [30], solving jigsaw puzzles [31] and more [32,33]. However, these methods,
the learned representation of neural networks pre-trained on pretext tasks, still failed
in generalization and robustness when performed on different downstream tasks. The
generative adversarial learning [34–36] and variational auto-encoding [25,37,38] operate
directly on pixel space and high-level details for image generations, which require costly
computation that may not be essential and efficient for visual representation learning.

Self-supervised contrastive learning. The popular self-supervised contrastive learn-
ing frameworks [9,39,40] aim to pull semantic features from different cropping views of
the same image while pushing other features away from other images. However, the
downside of contrastive methods is that they require a considerable number of negative
pairs, leading to significant computation resources and memory footprint. The efficient al-
ternative approach is non-contrastive learning [13,18], which only maximizes the similarity
of two views from the same image without contrast to other views from different images.

Self-supervised non-contrastive learning. Distillation learning-based framework [13,18]
inspired by knowledge distillation [41] is applied to joint embedding architecture. One branch
is defined as a student network, and another is described as a teacher network. The student
network is trained to predict the representation of the teacher network; the teacher net-
work’s weights are optimized from the student network by a running average of the student
network’s weights [13] or by sharing with the student’s weights and blocking the gradient
flow through the teacher network [18]. Non-contrastive frameworks are effective and
computationally efficient compared to self-supervised contrastive frameworks [9,17,39].

However, most contrastive or non-contrastive self-supervised techniques maximize
similarity agreements of the whole-image context representation of different augmented
views. While developing localization attention to separate the semantically features [42,43]
by the perceptual grouping of semantic information proved that adopting prior mid-level
visible in pretraining gains efficiency for representation learning. The most recent study
related to our [39] leveraging visual attention with segmentation obtained impressive re-
sults when transferring the learned representation to downstream tasks on object detection
and segmentation in multiple datasets. In contrast to our work, previous work employs
pixel-level models for contrastive learning, which uses backbones specialized for semantic
segmentation and uses different loss functions. It is important to note that the primary
work objective is difficult to transfer to other self-supervised frameworks. It also did
not investigate the masking feature method or the impact of the dimension and size of
the output spatial feature maps on the latent embedding representation, which we will
examine next.

3. Methods

In contrastive or non-contrastive learning-based frameworks, HARL object-level ob-
jectives are applicable. For example, our study implements a non-contrastive learning
framework using an exponential moving average weight parameter of one encoder to
another and an extra predictor inspired by BYOL [13]. HARL’s objective maximizes the
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agreement of the object-level (foreground and background) latent embedding vector across
different cropping views beyond augmentations shown in Figure 1.
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Figure 1. The HARL’s architecture. The heuristic binary mask can be estimated by using either con-
ventional computer vision or deep learning approaches. After that, data augmentation transformation
is applied to both the image and its mask (bottom). Then, the image pairs flow to a convolutional
feature extraction module. The heuristic mask is used to mask the feature maps (which are the
outputs of the feature extraction module) in order to separate the foreground from the background
features (middle). These features are further processed by non-linear multi-layer perceptron modules
(MLP). Finally, the similarity objective maximizes foreground and background embedding vectors
across different augmented views from the same image (top).

3.1. HARL Framework

The HARL framework consists of three essential steps. In step 1, we estimate the
heuristic binary mask for the input image, which segments an image into foreground
and background (see described detail in Section 3.2). Next, these masks can be computed
using either conventional computer vision methods such as DRFI [44] or unsupervised
deep learning saliency prediction [42]. After the mask is estimated, we perform the same
image transformation (cropping, flipping, resizing, etc.) to both the image and its mask.
Finally, if it is the RGB image, transformations such as color distortion can be applied to the
image, such as the image augmentation pipeline of SimCLR [9]. The detailed augmentation
pipeline is described in Appendix A.1. After data augmentation, each image and mask pair
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generated two augmented images x, x′ aligned with two augmented masks m and m′ as
illustrated in Figure 1.

In step 2, we implement standard ResNet-50 [45] convolution residual neural network
for feature extractor denotation as ƒ. Each image through the feature extractor encodes the
output to obtain the spatial feature maps of size 7 × 7 × 2048, and this feature extraction
process can be formulated as h = ƒ(x), where h ∈ RH×W×D.. Then, the feature maps can be
separated into the foreground and background feature maps by performing element-wise
multiplication with the heuristic binary mask. In addition, we provide ablation studies to
analyze the impact of the spatial feature map in various sizes and dimensions, as described
in Section 5.1. The foreground and background features are denoted as, h f hb (Appendix A.2
provides detail of the masking feature method). The foreground and background spatial
features are down-sampled using global average pooling to project to a smaller dimension
with non-linear multi-layer perceptron (MLP) architecture g.

HARL framework structure adapts from BYOL [13], in which one augmented image
(x) is processed with the encoder fθ , and projection network gθ , where θ is the learned
parameters. Another augmented image (x′) is processed with fξ and gξ , where ξ is an
exponential moving average of θ. The first augmented image is further processed with
the predictor network qθ . The projection and predictor network architectures are the same
using the non-linear multi-layer perceptron (MLP), as detailed in Section 4. The definition
of encoder, projection, and prediction network is adapted from the BYOL. Finally, the latent
representation embedding vectors corresponding to the augmented image’s foreground
and background features are denoted as z f , zb, z f ′ and zb′ ∈ Rd.

where : z f , zb , gθ
◦qθ

(
h f , hb

)
,

z f ′ , zb′ , gξ

(
h f ′ , hb′

)
.

In step 3, we compute the HARL’s loss function of the given foreground and back-
ground latent representations (z f , zb, z f ′ and zb′ are extracted from two augmented images
x, x′) which is defined as mask loss, as illustrated in Equation (1). We apply `2-normalization
to these latent vectors, then minimize their negative cosine similarity agreement with the
weighting coefficient α . We study the impact of α value and the combination of the whole
image and object-level latent embedding vector in the loss objective provided in Section 5.2.

LMaskloss
θ = −

(
α·

z f

‖z f ‖2
·

z f ′

‖z f ′‖2
+ (1− α)· zb

‖zb‖2
· zb′

‖zb′‖2

)
, (1)

where ‖.‖2 is `2-norm, and it is equivalent to the mean squared error of `2-normalized
vectors. The weighting coefficient α is in the range [0–1].

We symmetrized loss L by separately feeding augmented image and mask of view
one to the online network and augmented image and mask of view two to the target
network and vice versa to compute the loss at each training step. We perform a stochastic
optimization step to minimize the symmetrized loss Lsymmetrized = L + L∼.

Lsymmetrized = LMaskloss
θ + L∼Maskloss

θ . (2)

After pretraining processing is complete, we only keep the encoder θ and discard
all other parts of the networks. The whole training procedure summary is in the python
pseudo-code Algorithm 1.
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Algorithm 1: HARL: Heuristic Attention Representation Learning

Input:
D, M, T, and T′: set of images, mask and distributions of transformations
θ, fθ , gθ , and Qθ : initial online parameters, encoder, projector, and predictor
ξ, fξ , gξ ; // initial target parameters, target encoder, and target projector
Optimizer; //optimizer, updates online parameters using the loss gradient
K and N; //total number of optimization steps and batch size
{TK}K

k=1 and {ηk}K
k=1; //target network update schedule and learning rate

schedule

1. For k = 1 to K do
2. B← {xi ∼ D}N

i=1; //sample a batch of N images
3. C ← {mi ∼ M}N

i=1; //sample a batch of N mask
4. For xi ∈ B, mi ∈ C
5. h← fθ(t(xi)); //compute the encoder feature map
6. h′ ← fθ(t′(xi)); //compute the target encoder feature map
7. h f , hb ← mi ∗ h; //separate the feature map
8. h f ′, hb′ ← mi ∗ h′; //separate the target feature map

9. z f , zb ← qθ

(
gθ

(
h f , hb

))
; //compute projections

10. z f ′, zb′ ← gξ

(
h f ′, hb′

)
; compute target projections

11. li ← −2 ·
(

α · z f

‖z f ‖2
· z f

‖z f ‖2
+ (1− α) · zb′

‖zb′ ‖2
· zb′
‖zb′ ‖2

)
; //compute loss

12. End for
13. δθ ← 1

N Σi=1
N ∂li //compute the total loss gradient w.r.t. θ

14. θ ← optimizer(θ, δθ, ηk); //update online parameters
15. ξ ← τkξ + (1− τk)θ; //update target parameters encoder fθ

3.2. Heuristic Binary Mask

Our heuristic binary mask estimation technique does not rely on external supervision,
nor is it trained with the limited annotated dataset. We proposed two approaches using
conventional computer vision and unsupervised deep learning to carry it out, and these
methods appear to be well generalized for various image datasets. First, we use the
traditional computer vision method DRFI [44] to generate a diverse set of binary masks
by varying the two hyperparameters (the Gaussian filter variance σ and the minimum
cluster size s). In our implementation, we defined σ = 0.8 and s = 1000 for generating
binary masks in the ImageNet [24] dataset. In the second approach, we leverage the self-
supervised encoder feature extractor of the pre-trained ResNet-50 backbone from [9,42],
then pass the output feature maps into a 1× 1 convolutional classification layer for saliency
prediction. The classification layer predicts the saliency or “foregroundness” of a pixel.
Therefore, we take the output values of the classification layer and set a threshold of 0.5
to decide which pixels belong to the foreground. Pixel saliency values greater than the
threshold are determined as foreground objects. Figure 2 shows the example heuristic mask
estimated by these two methods. The detailed implementation of the two methods, DRFI
and deep learning feature extractor combined with 1× 1 convolutional layer is described in
Appendix C. In most of our experiments, we used the mask generated by the deep learning
method because it is faster than DRFI by running with GPU instead of only with CPU.
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Figure 2. Example of heuristic binary masks used for mask contrastive learning framework. First
row: random images from the ImageNet [24] training set. Second row: mask generated based on
DRFI algorithm with a predefined sigma σ value of 0.8 and component size values of 1000. The third
row is the mask obtained from the self-supervised pre-trained feature extractor ResNet-50 backbone
directly followed by a 1 × 1 convolutional classification foreground and background prediction.

4. Experiments
4.1. Self-Supervised Pretraining Implementation

HARL is trained on RGB images and the corresponding heuristic mask of the ImageNet
ILSVRC-2012 [24] training set without labels. We implement standard encoder ResNet [45].
According to previous works by SimCLR and BYOL [9,13], the encoder representation
output is projected into a smaller dimension using a multi-layer perceptron (MLP). In our
implementation, the MLP comprised a linear layer with an output size of 4960 followed by
batch normalization [46], rectified linear units (ReLU) [47] and the final linear layer with
512 output units. We apply the LARS optimizer [48] with the cosine decay learning rate
schedule without restarts [49], over 1000 epochs on the base learning rate of 0.2, scaled
linearly [50] with the batch size (LearningRate = 0.2 × BatchSize/256) and the warmup
epochs of 10. Furthermore, we apply a global weight decay parameter of 5 × 10−7 while
excluding the biases and normalization parameters from the LARS adaptation and weight
decay. The optimization of the online network and target network follow the protocol of
BYOL [13]. We use a batch size of 4096 splits over 8 Nvidia A100GPUs. This setup takes
approximately 149 h to train a ResNet-50 (×1).

The computational self-supervised pretraining stage requirements are largely due to
forward and backward passes through the convolutional backbone. For the typical ResNet-
50 architecture applied to 224 × 224 resolution images, a single forward pass requires
approximately 4B FLOPS. The projection head MLP (2048 × 4096 + 4096 × 512) requires
roughly 10M FLOPS. In our implementation, the convolution network backbone and MLP
network are similar compared to baselines BYOL. Since we forward to the foreground and
background representation through the projection head two times instead of one, it results
in an additional 10M FLOPS in our framework, less than 0.25% of the total. Finally, the
cost of computing the heuristic mask images is negligible because they can be computed
once and reused throughout training. Therefore, the complexity of each iteration between
our method and the baseline BYOL is almost the same for “computational cost” and
“training time”.
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4.2. Evaluation Protocol

We evaluate the learned representation from the self-supervised pretraining stage on
various natural image datasets and tasks, including image classification, segmentation and
object detection. First, we assess the obtained representation on the linear classification and
semi-supervised learning on the ImageNet following the protocols of [9,51]. Second, we
evaluate the generalization and robustness of the learned representation by conducting
transfer learning to other natural image datasets and other vision tasks across image
classification, object detection and segmentation. Finally, in Appendix B, we provide a
detailed configuration and hyperparameters setting of the linear and fine-tuning protocol
in our transfer learning implementation.

4.2.1. Linear Evaluation and Semi-Supervised Learning on the ImageNet Dataset

The evaluation for linear and semi-supervised learning follows the procedure in [9,52,53].
For the linear evaluation, we train a linear classifier on top of the frozen encoder represen-
tation and report Top-1 and Top-5 accuracies in percentage for the test set, as shown in
Table 1. We then evaluate semi-supervised learning, which is fine-tuning the pre-trained
encoder on a small subset with 1% and 10% of the labeled ILSVRC-2012 ImageNet [24]
training set. We also report the Top-1 and Top-5 accuracies for the test set in Table 1. HARL
obtains 54.5% and 69.5% in Top-1 accuracy for semi-supervised learning using the standard
ResNet-50 (×1). It represents a +1.3% and +0.7% advancement over the baseline framework
BYOL [13] and significant improvement compared to the strong supervised baseline in the
accuracy metric.

Table 1. Evaluation on the ImageNet. The linear evaluation and semi-supervised learning with
a fraction (1% and 10%) on ImageNet labels report Top-1 and Top-5 accuracies (in%) using the
pre-trained ResNet-50 backbone. The best result is bolded.

Method
Linear Evaluation Semi-Supervised Learning

Top-1 Top-5 Top-1 Top-5

1% 10% 1% 10%
Supervised 76.5 - 25.4 56.4 48.4 80.4
PIRL [11] 63.6 - - - 57.2 83.8

SimCLR [9] 69.3 89.0 48.3 65.6 75.5 87.8
MoCo [17] 60.6 - - - - -

MoCo v2 [54] 71.1 - - - - -
SimSiam [18] 71.3 - - - - -

BYOL [13] 74.3 91.6 53.2 68.8 78.4 89.0
HARL (ours) 74.0 91.3 54.5 69.5 79.2 89.3

4.2.2. Transfer Learning to Other Downstream Tasks

We evaluated the HARL’s quality of representation learning on linear classification
and fine-tuned model following the evaluation setup protocol [9,13,39,55] as detailed in
Appendix B.2. HARL’s learned representation can perform well for all six different natural
distribution image datasets. It has competitive performance in various distribution datasets
compared to baseline BYOL [13] and improves significantly compared to the SimCLR [9]
approach over six datasets, as shown in Table 2.

We further evaluated HARL’s generalization ability and robustness with different
computer vision tasks, including object detection of VOC07 + 12 [56] using Faster R-
CNN [57] architecture with R50-C4 backbone and instance segmentation task of COCO [58]
using Mask R-CNN [59] with R50-FPN backbone. The fine-tuning setup procedure and
setting hyperparameter are detailed in Appendix B.3. We report the performance of
the standard AP, AP50 and AP75 metrics in Table 3. HARL outperforms the baselines
BYOL [13] and also has a significantly better performance than other self-supervised
frameworks such as SimCLR [9], MoCo_v2 [17] and supervised baseline on object detection
and segmentation.
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Table 2. Transfer via fine-tuning on the image classification task. The transfer learning perfor-
mance between HARL framework and other self-supervised baseline benchmarks across six natural
image classification datasets with the self-supervised pre-trained representation on the ImageNet
1000 classes using the standard ResNet-50 backbone. The best result is bolded.

Method Food101 CIFAR10 CIFAR100 SUN397 Cars DTD

Linear evaluation:
HARL (ours) 75.0 92.6 77.6 61.4 67.3 77.3

BYOL [13] 75.3 91.3 78.4 62.2 67.8 75.5
MoCo v2 (repo) 69.2 91.4 73.7 58.6 47.3 71.1

SimCLR [9] 68.4 90.6 71.6 58.8 50.3 74.5
Fine-tuned:

HARL (ours) 88.0 97.6 85.6 64.1 91.1 78.0
BYOL [13] 88.5 97.4 85.3 63.7 91.6 76.2

MoCo v2 (repo) 86.1 97.0 83.7 59.1 90.0 74.1
SimCLR [9] 88.2 97.7 85.9 63.5 91.3 73.2

Table 3. Transfer learning to other downstream vision tasks. Benchmark the transfer learning
performance between HARL framework and other self-supervised baselines on object detection and
instance segmentation task. We use Faster R-CNN with C4 backbone for object detection and Mask-
RCNN with FPN backbone for instance segmentation. Object detection and instance segmentation
backbone initialize with the pre-trained ResNet-50 backbone on ImageNet 1000 classes. The best
result is bolded.

Method
Object Detection Instance Segmentation

VOC07 + 12 Detection COCO Detection COCO Segmentation

AP50 AP AP75 AP50 AP AP75 APmask
50 APmask APmask

75
Supervised 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR-IN [18] 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCo [17] 82.2 57.2 63.7 58.9 38.5 42.0 55.9 35.1 37.7

MoCo v2 [54] 82.5 57.4 64.0 - 39.8 - - 36.1 -
SimSiam [18] 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7

BYOL [13] - - - 40.4 - - 37.0 -
BYOL (repo) 82.6 55.5 61.9 61.2 40.2 43.9 58.2 36.7 39.5
HARL (ours) 82.7 56.3 62.4 62.1 40.9 44.5 59.0 37.3 40.0

5. Ablation and Analysis

We study the HARL’s components to give the intuition of its behavior and impact on
performance. We reproduce the HARL framework with multiple running experiments.
For this reason, we hold the same set of hyperparameter configurations and change the
configuration of the corresponding component, which we try to investigate. We perform
our ablation experiments on the ResNet-50 and ResNet-18 architecture on the ImageNet
training set without labels. We evaluate the learned representation on the ImageNet linear
evaluation during the self-supervised pretraining stage. To do so, we attach the linear
classifier on top of the base encoder with the block gradient flow on the linear classifier’s
input, which stops influencing and updating the encoder with the label information (a
similar approach to SimCLR [9]). We run ablations over 100 epochs and evaluate the
performance of the public validation set of the original ILSVRC2012 ImageNet [24] in
the Top-1 accuracy metric at every 100 or 200 steps per epoch following the protocol as
described in Appendix B.1.

5.1. The Output of Spatial Feature Map (Size and Dimension)

In our HARL framework, separating foreground and background features from the
output spatial feature map is essential to maximize the similarity objective across different
augmented views. To verify this hypothesis, we analyze several spatial outputs in various
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sizes and dimensions by modifying the ResNet kernel’s stride to generate the different
feature map sizes with the same dimension. For illustration, the standard ResNet is the
sequence of four convolution building blocks (conv2_x, conv3_x, conv4_x, conv5_x). For
ResNet-50 architecture, the dimension of conv_5x block output feature map is 7 × 7 × 2048.
After changing the kernel stride of the conv_4x block from two to one, its new dimension
will be 14 × 14 × 2048. In this modified ResNet-50 architecture, the conv5_x block’s spatial
feature map size is the same as the conv4_x block output.

We conduct the experiment for three different sizes including a deep ResNet-50
(7 × 7 × 2048, 14 × 14 × 2048, 28 × 28 × 2048) and a shallow ResNet-18 (7 × 7 × 512,
14 × 14 × 512, 28 × 28 × 512). Figure 3 shows the experimental results of various output
sizes and dimensions in the pretraining stage that impact the learned representation when
evaluating transfer representation on the ImageNet with linear evaluation protocol. Both
shallow and deep ResNet architecture yields better learning ability on the larger output
spatial feature map size 14 × 14 than 7 × 7. In our experiments, the performance decreases
as we continue to go to a larger output size, 28 × 28 or 56 × 56.
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Figure 3. The ImageNet linear evaluation Top-1 accuracy (in %) of spatial output feature maps in
various sizes and dimensions during the self-supervised pretraining stage. (a) The self-supervised
pre-trained encoder uses the ResNet-18 backbone; (b) The self-supervised pre-trained encoder uses
the ResNet-50 backbone.

5.2. Objective Loss Functions

HARL framework structure reuses elements of BYOL [13]. We use two neural networks
denoted as online network and target network. Each network is defined by a set of parameters
θ and ξ. The optimization objective minimizes the loss Lθ, ξ with respect to learnable
parameters θ, while the set ξ is parameterized by using an exponential moving average of
the θ, as shown in Equation (3):

ξ ← τξ + (1− τ)θ. (3)

Unlike previous approaches that minimize loss function only based on the whole
image latent embedding vector between two augmented views, HARL minimized the
similarity of object-level latent representation, which associated the same spatial regions
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abstracting from segmentation mask and thus same semantic meanings. As shown in
Figure 1, we use the mask information to separate the spatial semantic object-level feature
(foreground and background) of the two augmented views. Then, we minimize their
negative cosine similarity, denoting mask loss in Equation (1). In addition to our mask loss
objective, we combine the distance loss of the whole image representation and object-level,
resulting in hybrid loss as described in Equation (4). We study these two loss objectives in
the self-supervised pretraining stage and then evaluate the obtained representation on the
ImageNet with a linear evaluation protocol.

5.2.1. Mask Loss

The mask loss objective converges to minimizing the distance loss objective be-
tween foreground and background latent embedding on vector space Lforeground(θ, ξ) and
Lbackground(θ, ξ) with the weighting coefficient α as described in Equation (1). We study
the impact of α when it is set to a few predefined values and when it varies according to
the cosine scheduling rule. In the first approach, we perform self-supervised pretraining
sweeping over three different values {0.3, 0.5, 0.7}. In the second approach, we schedule
the α based on a cosine schedule, α , (1− (1− αbase))·(cos πk/K) + 1)/2, to gradually
increase from the starting αbase value to 1 corresponding current training step k over total
training step K. We tried three αbase values, including 0.3, 0.5 and 0.7. We report the Top-1
accuracy on the ImageNet linear evaluation set during the self-supervised pretraining stage,
as shown in Figure 4. The weighting coefficient α value of 0.7 yields the consistent learned
representation of both approaches. Furthermore, the experimental results demonstrate that
the foreground is more important than the background latent representation. For example,
in the ImageNet training set, many images exist in which the background information is
more than 50% of the image.
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Figure 4. The impact of weighting coefficient α value to the obtained representation during the
self-supervised pretraining stage with the ResNet-50 backbone. The evaluation during pretraining
uses the ImageNet linear evaluation protocol in Top-1 accuracy (in%). (a) The α value is the fixed
value; (b) The α value follows the cosine function scheduler.

5.2.2. Hybrid Loss

The objective combines whole image representation embedding v1 and v2 together
with object-level representation embedding mask loss described in Equation (1). v1 and v2
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are extracted from the two augmented views x and x’ and are denoted as v1 ,θ
◦gθ
◦qθ(x) Rd

and v2 , ξ
◦gξ( x′) Rd. The hybrid loss minizines the negative cosine similarity with

weighting coefficient λ:

Lhybrid
θ = −

[
λ· v1

‖v1‖2
· v2

‖v2‖2
+ (1− λ)·LMaskloss

θ

]
, (4)

where v1 and v2 are the whole image latent representation; LMaskloss
θ is the distance loss com-

puted from the foreground and background latent representation described in Equation (1);
‖.‖2 is `2-norm; and λ is the weighting coefficient in the range [0–1].

To study the impact of weighting coefficient λ, we use a cosine scheduling value
similar to α in the mask loss section. In our experiment, the weighting coefficient λ cosine
scheduling sweeping over four λbase values {0.3, 0.6, 0.7, 0.9}. We report the Top-1 accuracy
of the ImageNet linear evaluation protocol on the validation set during the self-supervised
pretraining stage, shown in Figure 5. We found using the weighting coefficient λbase value
of 0.7 obtains the consistent learned representation when transferring to downstream tasks.
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5.2.3. Mask Loss versus Hybrid Loss

We compare the obtained representation using mask loss and hybrid loss on self-
supervised pretraining. To do so, we implement the HARL framework with both loss
objectives on self-supervised pretraining. We use the cosine schedule function to control
the weighting coefficient α and λ sweeping on three different initial values {0.3, 0.5, 0.7}
for both coefficients. We evaluate the obtained representation of the pre-trained encoder
using ResNet-50 backbone in Top-1 and Top-5 accuracy (in%) on ImageNet linear eval-
uation protocol, as shown in Table 4. According to the experimental result, using the
hybrid loss incorporated between global and object-level latent representation yields better
representation learning during self-supervised pretraining.
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Table 4. The comparison obtained representation of HARL framework using mask loss and hybrid
loss objective. We report Top-1 and Top-5 (in %) accuracy on ImageNet linear evaluation from
100 epochs pre-trained ResNet-50 backbone on ImageNet 1000 classes.

Method Top-1 Accuracy Top-5 Accuracy

Mask Loss

α_base = 0.3 51.3 77.4
α_base = 0.5 53.9 79.4
α_base = 0.7 54.6 79.8

Hybrid Loss

λ_base = 0.3 55.0 79.4
λ_base = 0.5 57.8 81.7
λ_base = 0.7 58.2 81.8

5.3. The Impact of Heuristic Mask Quality

In our work, the HARL objective uses two different image segmentation techniques.
Which ones lead to the best representation? We first consider the heuristics mask retriev-
ing from the computer vision DRFI [44] approach by varying the two hyperparameters
(the Gaussian filter variance σ and the minimum cluster size s) as described in detail
in Appendix C.1. In our implementation, we generate a diverse set of binary masks by
different combinations of σ ∈ {0.2, 0.4, 0.8} and c ∈ {1000, 1500}. The sets of the generated
masks are shown in Figure 6. We found that the setting of σ = 0.8 and s = 1000 generate
more stable mask quality than other combinations. Following the deep learning technique,
we use the pre-trained deep convolution neural network as the feature extractor and design
a saliency head prediction on top of the feature extractor output’s representation in the
following three steps described in Appendix C.2. The generated masks are dependent on
the pixel saliency threshold, which determines the foregroundness and backgrounness
of the pixel. In our implementation, we tested the saliency threshold value ranging in
{0.4, 0.6, 0.7} as shown in Figure 7. We choose the threshold value equal to 0.5 for generating
masks in the ImageNet dataset. After choosing the best configure of the two techniques, we
generate the mask for the whole training set of the ImageNet [24] dataset. We evaluate the
mask quality generated by computing the mean Intersection-Over-Union (mIoU) between
masks generated with the ImageNet ground-truth mask annotated by humans from Pixel-
ImageNet [60]. The mIoU of the deep learning masks achieves 0.485 over 0.398 of DRFI
masks on the subset of 0.485 million images (946/1000 classes of ImageNet). We found that
in a complex scene, where multiple objects exist in a single image, the mask generated from
the DRFI technique is noisier and less accurate than the deep learning masks, as illustrated
in Figure 8.

To fully evaluate the impact of representation learning on downstream performance,
we inspect the obtained representational quality with the transfer learning performance
on the object detection and segmentation shown in Table 5. The result indicates that for
most object detection and segmentation tasks, HARL learning based on masks with deep
learning outperforms the one with DRFI masks, although the difference is very small.
It shows that the quality of the mask used for HARL does have a small impact on the
performance of the downstream task.
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Figure 8. The inspection examples of the generated heuristic binary masks between DRFI and
deep learning.

Table 5. The impact of mask quality on HARL framework performance on the downstream object
detection and instance segmentation task. We use Faster R-CNN with C4 backbone for object
detection and Mask-RCNN with FPN backbone for instance segmentation. Object detection and
instance segmentation backbones are initialized with the 100-epoch pre-trained ResNet-50 backbone
on ImageNet dataset. The best result is bolded.

Method
Object Detection Instance Segmentation

VOC07 + 12 Detection COCO Detection COCO Segmentation

AP50 AP AP75 AP50 AP AP75 APmask
50 APmask APmask

75
HARL (DRFI Masks) 82.3 55.4 61.2 44.2 24.6 24.8 41.8 24.3 25.1

HARL (Deep Learning Masks) 82.1 55.5 61.7 44.7 24.7 25.3 42.3 24.6 25.2

6. Conclusions and Future Work

We introduce the HARL framework, a new self-supervised visual representation
learning framework, by leveraging visual attention with the heuristic binary mask. As a
result, HARL manages higher-quality semantical information that considerably improves
representation learning of self-supervised pretraining compared to previous state-of-the-art
methods [9,13,17,18] on semi-supervised and transfers learning on various benchmarks.
The two main advantages of the proposed method include: (i) the early attention mecha-
nism that can be applied across different natural image datasets because we use unsuper-
vised techniques to generate the heuristic mask and do not rely on external supervision;
(ii) the entire framework can transfer and adapt quickly either to self-supervised contrastive
or non-contrastive learning framework. Furthermore, our method will apply and accelerate
the currently self-supervised learning direction on pixel-level objectives. Our object-level
abstract will make this objective more efficient than the existing work based on computing
pixel distance [61].

In our HARL framework, the heuristic binary mask is critical. However, the remaining
challenge of estimating accurate masks is suitable for datasets with one primary object,
such as the ImageNet dataset. The alternative is mining the object proposal of the image
in the complex dataset which contains multiple things by producing heuristic semantic
segmentation masks. Designing the new self-supervised framework to solve the remaining
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challenge of datasets which contain multiple objects is an essential next step and exciting
research direction for our future work.

Supplementary Materials: The following documents support our experimental results reported in
this study. Our code implementation on PyTorch implementation (https://github.com/TranNhiem/
Heuristic_Attention_Represenation_Learning_SSL_Pytorch accessed on 19 September 2021) and
TensorFlow (https://github.com/TranNhiem/Heuristic_Attention_Representation_Learning_SSL_
Tensorflow accessed on 26 November 2021). Our experimental results and report included in dif-
ferent sections can be downloaded at: https://www.hh-ri.com/2022/05/30/heuristic-attention-
representation-learning-for-self-supervised-pretraining/ (accessed on 30 May 2021).
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Appendix A. Implementation Detail

Appendix A.1. Implementation Data Augmentation

HARL data augmentation pipeline starts with the standard inception-style random
cropping [62]. These cropping views continue to transform using the same set of im-
age augmentation as in SimCLR [9], consisting of the arbitrary sequence composition
transformation (color distortion, grayscale conversion, gaussian blur, solarization).

Each RGB image and the heuristic binary mask corresponding to each image are
transformed through the augmentation pipeline composed of the following operations
described below. First, we utilize the image with the random crop with resizing and random
flipping. For the binary mask, these masks apply, only cropping and flipping the underlying
RGB image which corresponds. Then, these crop images used give the probability of color
distortion (color jittering, color dropping), random Gaussian blur and solarization.

1. Random cropping with resizes: a random patch of the image is selected. In our
pipeline, we use the inception-style random cropping [62], whose area crop is uni-
formly sampled in [0.08 to 1.0] of the original image, and the random aspect ratio is
logarithmically sampled in [3/4, 4/3]. The patch is then resized to 224 × 224 pixels
using bicubic interpolation;

2. Optional horizontal flipping (left and right);
3. Color jittering: the brightness, contrast, saturation and hue are shifted by a uniformly

distributed offset;
4. Optional color dropping: the RGB image is replaced by its greyscale values;
5. Gaussian blurring with a 224 × 224 square kernel and a standard deviation uniformly

sampled from [0.1, 2.0];
6. Optional solarization: a point-wise color transformation x 7→ x ·
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line, we use the inception-style random cropping [62], whose area crop is uniformly 
sampled in [0.08 to 1.0] of the original image, and the random aspect ratio is logarith-
mically sampled in [3/4, 4/3]. The patch is then resized to 224 × 224 pixels using bicu-
bic interpolation; 
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6. Optional solarization: a point-wise color transformation 𝑥 ↦ 𝑥 ∙  𝕝 . + (1 − 𝑥) ∙ 𝕝 .  for pixel values in the range [0–1]. 

The two views augmented image’s x, x′ and mask pair m, m′ results from augmenta-
tions sample from distributions T, T′, M and M′, respectively. These distributions apply 
the primitives described above with different probabilities and magnitudes shown in Ta-
ble A1. The following table specifies these parameters’ inherence from the BYOL frame-
work [13] without modification. 

Table A1. Parameters used to generate image augmentations. 

Parameter T T′ M M′ 
Inception-style random crop probability 1.0 1.0 1.0 1.0 

Flip probability 0.5 0.5 0.5 0.5 
Color jittering probability 0.8 0.8 - - 

Brightness adjustment max intensity 0.4 0.4 - - 
Contrast adjustment max intensity 0.4 0.4 - - 

Saturation adjustment max intensity 0.2 0.2 - - 
Hue adjustment max intensity 0.1 0.1 - - 

Color dropping probability 0.2 0.2 - - 
Gaussian blurring probability 1.0 0.1 - - 

Solarization probability 0.0 0.2 - - 

Appendix A.2. Implementation Masking Feature 
The masking feature step of the HARL framework is essential to leverage the objec-

tive-level information from the heuristic binary mask. The masking features method is 
composed of three steps. The first step is taking the spatial feature map output 7 × 7 × 2048, 
which is the final layer before the global average output pooling of the ResNet architec-
ture. Second, in our training loop design, the mask image is directly resized to 7 × 7 × 3 to 

x<0.5 + (1− x)·
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cropping [62]. These cropping views continue to transform using the same set of image 
augmentation as in SimCLR [9], consisting of the arbitrary sequence composition trans-
formation (color distortion, grayscale conversion, gaussian blur, solarization). 

Each RGB image and the heuristic binary mask corresponding to each image are 
transformed through the augmentation pipeline composed of the following operations 
described below. First, we utilize the image with the random crop with resizing and ran-
dom flipping. For the binary mask, these masks apply, only cropping and flipping the 
underlying RGB image which corresponds. Then, these crop images used give the proba-
bility of color distortion (color jittering, color dropping), random Gaussian blur and solar-
ization. 
1. Random cropping with resizes: a random patch of the image is selected. In our pipe-

line, we use the inception-style random cropping [62], whose area crop is uniformly 
sampled in [0.08 to 1.0] of the original image, and the random aspect ratio is logarith-
mically sampled in [3/4, 4/3]. The patch is then resized to 224 × 224 pixels using bicu-
bic interpolation; 

2. Optional horizontal flipping (left and right); 
3. Color jittering: the brightness, contrast, saturation and hue are shifted by a uniformly 

distributed offset; 
4. Optional color dropping: the RGB image is replaced by its greyscale values; 
5. Gaussian blurring with a 224 × 224 square kernel and a standard deviation uniformly 

sampled from [0.1, 2.0]; 
6. Optional solarization: a point-wise color transformation 𝑥 ↦ 𝑥 ∙  𝕝 . + (1 − 𝑥) ∙ 𝕝 .  for pixel values in the range [0–1]. 

The two views augmented image’s x, x′ and mask pair m, m′ results from augmenta-
tions sample from distributions T, T′, M and M′, respectively. These distributions apply 
the primitives described above with different probabilities and magnitudes shown in Ta-
ble A1. The following table specifies these parameters’ inherence from the BYOL frame-
work [13] without modification. 

Table A1. Parameters used to generate image augmentations. 

Parameter T T′ M M′ 
Inception-style random crop probability 1.0 1.0 1.0 1.0 

Flip probability 0.5 0.5 0.5 0.5 
Color jittering probability 0.8 0.8 - - 

Brightness adjustment max intensity 0.4 0.4 - - 
Contrast adjustment max intensity 0.4 0.4 - - 

Saturation adjustment max intensity 0.2 0.2 - - 
Hue adjustment max intensity 0.1 0.1 - - 

Color dropping probability 0.2 0.2 - - 
Gaussian blurring probability 1.0 0.1 - - 

Solarization probability 0.0 0.2 - - 

Appendix A.2. Implementation Masking Feature 
The masking feature step of the HARL framework is essential to leverage the objec-

tive-level information from the heuristic binary mask. The masking features method is 
composed of three steps. The first step is taking the spatial feature map output 7 × 7 × 2048, 
which is the final layer before the global average output pooling of the ResNet architec-
ture. Second, in our training loop design, the mask image is directly resized to 7 × 7 × 3 to 

x<0.5
for pixel values in the range [0–1].
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The two views augmented image’s x, x′ and mask pair m, m′ results from augmenta-
tions sample from distributions T, T′, M and M′, respectively. These distributions apply the
primitives described above with different probabilities and magnitudes shown in Table A1.
The following table specifies these parameters’ inherence from the BYOL framework [13]
without modification.

Table A1. Parameters used to generate image augmentations.

Parameter T T′ M M′

Inception-style random crop probability 1.0 1.0 1.0 1.0
Flip probability 0.5 0.5 0.5 0.5

Color jittering probability 0.8 0.8 - -
Brightness adjustment max intensity 0.4 0.4 - -
Contrast adjustment max intensity 0.4 0.4 - -

Saturation adjustment max intensity 0.2 0.2 - -
Hue adjustment max intensity 0.1 0.1 - -

Color dropping probability 0.2 0.2 - -
Gaussian blurring probability 1.0 0.1 - -

Solarization probability 0.0 0.2 - -

Appendix A.2. Implementation Masking Feature

The masking feature step of the HARL framework is essential to leverage the objective-
level information from the heuristic binary mask. The masking features method is com-
posed of three steps. The first step is taking the spatial feature map output 7 × 7 × 2048,
which is the final layer before the global average output pooling of the ResNet architecture.
Second, in our training loop design, the mask image is directly resized to 7 × 7 × 3 to
match the size of the output spatial feature maps without passing through the encoder.
Then, the resized mask indexes the feature, one encodes for the foreground feature and zero
encodes for the background feature. In the end, we multiply the indexing mask with the
spatial features maps to separate the foreground and background features (the correspond-
ing output is two spatial features maps of 7 × 7 × 2048 for foreground and background
features). Then, these two spatial feature map outputs apply global average pooling and
further reduce dimension with non-linear multi-layer perceptron (MLP) architecture.

Appendix B. Evaluation on the ImageNet and Transfer Learning

Appendix B.1. Implementation Masking Feature Linear Evaluation Semi-Supervised Protocol
on ImageNet

Our data preprocessing procedure is described as follows: At training time, the images
apply the simple augmentations strategies, including random flip and crops with resizing
to 224 × 224 pixels. At testing time, all images applied are resized to 256 pixels along the
shorter side using bicubic resampling, which took a 224 × 224 center crop. Images are
normalized by color channel in training time and testing and divided by standard deviation
computed on ImageNet ([9,13] provide a similar pipeline for data processing).

Linear evaluation: We train a linear classifier on top of the frozen pre-trained encoder
representation in the linear evaluation without updating the network parameters and the
batch statistics. In design and configuration protocol, we follow the standard on ImageNet
as in [9,51,54,55]. To train and optimize the linear classifier, we use the SGD optimizer to
optimize the cross-entropy loss with the Nesterov momentum over 100 epochs using a
batch size of 1024 and a momentum of 0.9. without regularization methods such as weight
decay, gradient clipping [63], etc. We report the test set’s accuracy (the public validation set
of the original ILSVRC2012 ImageNet [24] dataset).

Semi-supervised evaluation: We fine-tuned the network parameters of the pre-
trained encoder representation following the semi-supervised learning protocol and proce-
dure as in [9]. Data preprocessing and augmentation strategies at training and testing time
for 1% and 10% follow a similar procedure of linear evaluation (described in Appendix C.1)
except that with a larger batch size of 2048 and trained over 60 epochs for 1% labeled data
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and 30 epochs for 10% labeled data. In Table 1 of Section 5.1, we report that the result
fine-tuned the representation over the 1% and 10% ImageNet splits from [9] with ResNet-50
(1×) architectures.

Datasets: We followed previous works [9,13] to transfer the representation on the
linear classification and fine-tuned it on six different natural image datasets. These datasets
are namely Food-101 [64], CIFAR-10 [65] and CIFAR-100 [65], the SUN397 scene dataset [66],
Stanford Cars [67] and the Describable Textures Dataset (DTD) [68]. The detail of each
dataset is described in Table A2. We use the training set and validation set, which are
specified by the dataset creators, to select hyperparameters. On datasets without a test set
or validation set, we use the validation examples as a test set or hold out a subset of the
training examples we use as the validation set, as described in Table A2.

Table A2. The different image datasets used in transfer learning. When an official test split with
labels is not publicly available, we use the official validation split as a test set and create a held-out
validation set from the training examples.

Dataset Classes Original Training
Examples

Training
Examples

Validation
Examples Test Examples Accuracy

Measure
Test

Provided

Food101 101 75,750 68,175 7575 25,250 Top-1 accuracy -
CIFAR-10 10 50,000 45,000 5000 10,000 Top-1 accuracy -

CIFAR-100 100 50,000 44,933 5067 10,000 Top-1 accuracy -
Sun397 (split 1) 397 19,850 15,880 3970 19,850 Top-1 accuracy -

Cars 196 8144 6494 1650 8041 Top-1 accuracy -
DTD (split 1) 47 1880 1880 1880 1880 Top-1 accuracy Yes

Standard evaluation metrics: To evaluate HARL transfer learning on different datasets
and other vision tasks, we use the standard evaluation metrics of each dataset to assess and
benchmark our results on these datasets as described in Top-1, AP, AP50 and AP75.

• Top-1: We compute the proportion of correctly classified examples.
• AP, AP50 and AP75: We compute the average precision as defined in [56].

Appendix B.2. Transfer via Linear Classification and Fine-Tuning

Transfer linear classification: We initialize the network parameters and freeze the
pre-trained encoder without updating the network parameters and batch statistics. The
standard linear evaluation protocol follows [9,51,55]. In training and testing, the images are
resized to 224 × 224 along the shorter side using bicubic resampling and then normalized
with ImageNet statistics without data augmentation. Both phase images normalized the
color channels by subtracting the average color and dividing by the standard deviation. We
train a regularized multinomial logistic regression classifier on top of the frozen representa-
tion. We optimize cross-entropy loss `2—regularization with the parameters from a range
of 45 logarithmically spaced values between 10−6 and 105 (similar to the optimization
procedure of [13]). The model is retrained on the training and validation set combined. The
model accuracy performance is reported for the test set.

Transfer fine-tuning: We follow fine-tuning protocol as in [9,51,69] to initialize the
network with the parameters of the pre-trained representation. At both phase training
and testing time, we follow the image preprocessing and data augmentation strategies to
the linear evaluation procedure in Appendix B.1. To fine-tune the network, we optimized
the cross-entropy loss using SGD optimizer with a Nesterov momentum value of 0.9 and
trained over 20,000 steps with a batch size of 256. We set a hyperparameter including the
momentum parameter for batch statistics, learning rate and weight decay selection method,
same as in [9,13]. After selecting the optimal hyperparameters configured for the validation
set, the model is retrained on the combined training and validation set together, using the
specified parameters. The absolute accuracy is reported for the test set.
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Appendix B.3. Transfer Learning to Other Vision Tasks

Object detection and instance segmentation: We followed previous works [13,17]
for the standard setup transferring procedure on Pascal object detection. We use a Faster
R-CNN [57] with the R50-C4 backbone. We fine-tune with the training and validation set
(16K images) and report the results for the test set of the PASCAL VOC07 + 12 [56] dataset.
The backbone is initialized with our pre-trained ResNet50. We use the SGD optimizer to
optimize network parameters for 24K iterations with a batch size of 16. We use the initial
learning rate of 0.08, then it is reduced to 10−2 at 18K and 10−3 at 22K with a linear warmup
of the slope 0.3333 for 1000 iterations and the region proposal loss weight of 0.2. Then, we
report the final results of AP, AP50 and AP75 metrics for the test set. For instance, regarding
the segmentation task on the COCO [58] dataset, we use Mask R-CNN with FPN backbone
to iterate over 90K iterations with a batch size of 16. We initialize the learning rate at 0.03
and reduce it by 10 at the 60K and 80K iterations with warmup iterations of 50.

Appendix C. Heuristic Mask Proposal Methods

In our HARL framework, to generate the heuristic binary mask we investigated
various supervised and unsupervised techniques from conventional machine learning to
deep-learning-based approaches. The benchmark qualitative and quantitatively state-of-
the-art approaches use computer vision methods [70]. The comprehensive literature survey
and benchmark [71] offer multiple supervised deep-learning-based methods for salient
object detection on multi-level supervision, network architectures and learning paradigms.
Several works of the unsupervised deep learning method [72,73] used predictions obtained
with the hand-crafted prior as the pseudo label to train the deep neural network.

Appendix C.1. Heuristic Binary Mask Generates Using DRFI

Our first approach uses the conventional machine learning method to generate binary
masks by adopting the DRFI [44] technique. This method detects a salient object inside
an image by carrying out three main steps: multi-level segmentation that segments an
image into regions and regional saliency computation that maps the features extracted
from each area to a saliency score, which is predicted by a random forest based on three
elements: regional contrast, regional property and regional backgrounds. Additionally, at
last, multi-level saliency fusion combines the saliency maps over all the layers of segmen-
tation to obtain the final saliency map. To obtain a binary mask, we generate the saliency
map of an image. Then, we define a threshold of 40% (top 40% saliency score) to determine
what regions are considered salient objects. Any area that is not a salient object will be
regarded as background. We generate a diverse set of binary masks by varying the two hy-
perparameters σ and the minimum cluster size c. Using σ ∈ {0.2, 0.4, 0.8} and c ∈ {1000,
1500} in our implementation, we defined σ = 0.8 and c = 1000 for generating masks in the
ImageNet dataset. Additionally, the different configuration hyperparameters experimented
with sweeping sigma values σ = {0.2, 0.4, 0.8} and component sizes of c = {1000, 1500} are
shown in Figure 6.

Appendix C.2. Heuristic Binary Mask Generates Using Unsupervised Deep Learning

The second approach in our mask-generated techniques is based on a self-supervised
pre-trained feature extractor from previous works [9,17,39,42]. We design a new saliency
head prediction with pre-trained encoder representation to generate the binary masks. The
design is to obtain a binary mask by carrying out three main steps. First, we take the output
feature maps from a pre-trained ResNet-50 encoder [9,42]. Second, we pass the output
feature map into a 1 × 1 convolutional classification layer for saliency prediction. The
classification layer predicts the saliency or “foregroundness” of a pixel. Finally, we take the
classification layer’s output values and set a threshold to decide which pixels belong to the
foreground. The pixel saliency value more significant than the threshold is determined as a
foreground object. In our implementation, we defined a threshold value equal to 0.5 for
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generating masks in the ImageNet dataset. We further experiment with several threshold
values in {0.4, 0.6, 0.7}; all these configure mask-generated examples in Figure 7.
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