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Abstract. Here we propose new heuristics that assist the semi-automated 

generation of Entity-Relationship (ER) diagrams for database modelling from a 

natural language description and describe the implementation of such a system 

called ER-Converter. Though this is a semi-automatic transformation process, 

ER-Converter aims to require minimal human intervention during the process. 

ER-Converter has been evaluated in blind trials against a set of database 

problems. ER-Converter has an average of 95% recall and 82% precision. The 

evaluation results are discussed and demonstrate that ER-Converter could be 

used, for example, within the domain model of a multimedia intelligent tutoring 

system, designed to assist in the learning and teaching of databases. 

1 Introduction 

Database modelling can be a daunting task to both students and designers alike due to 

its abstract nature and technicality. Much research has attempted to apply natural 

language processing in extracting knowledge from requirements specifications with 

the aim to design databases. However, research on the formation and use of heuristics 

to aid the construction of logical databases from natural language has been scarce. 
This paper describes  the development of a tool, ER-Converter, which transforms a 

natural language text input into an ER model. This is a heuristics-based tool which 
employs syntactic heuristics during the transformation. In order to achieve the desired 
result, new and existing heuristics are applied during the process. Though this is a 
semi-automatic transformation process, the tool aims to provide minimal human 
intervention during the process.  

2 Background and Previous Work 

This section provides a brief summary on data modelling which introduces the 
concept of ER Model and reviews the previous work that applies natural language 
processing to Databases. The existing tools, techniques and limitations are discussed. 



Some of the work like DMG[10] provides a basis for the development of new 
heuristics applied in ER-Converter. 

2.1 Overview of Data Modelling 

The first step in designing a database application is to understand what information 
the database must store. This step is known as requirements analysis. The information 
gathered in this step is used to develop a high-level description of the data to be stored 
in the database. This step is referred to as conceptual design, and it is often carried out 
using the ER model.  ER models are built around the basic concepts of entities, 
attributes, relationships and cardinality. An entity is an object that exists in the real 
world and is distinguishable from other objects. These are typically derived from 
nouns. Examples of entities include the following: a “student”, an “employee” and a 
“book”. A collection of similar entities is called an entity set. An entity is described 
using a set of attributes. The attributes of an entity reflect the level of detail at which 
we wish to represent information about entities. Attributes may be derived from 
adjectives and adverbs. For example, the “Student” entity set may have “ID_number”, 
“Name”, “Address”, “Course” and “Year” as its attributes. A relationship is an 
association among two or more entities. Relationships can be typically derived from 
verbs. For example, we may have a relationship from this sentence: A student may 
“take” many courses. “take” implies a relationship between the entity “student” and 
“course”. Cardinality represents the key constraint in a relationship. In the previous 
example, the cardinality is said to be many-to-many, to indicate that a student can 
take many courses and a course can be taken by many students. In an ER diagram, an 
entity is normally represented by a rectangle. An ellipse usually represents an attribute 
meanwhile a diamond shape shows a relationship. Cardinality is represented by 1 for 
the one-sided and M for the many-sided. 

2.2 Applying Natural Language Processing (NLP) to Databases 

Much work [2,5,6,10] has attempted to apply natural language in extracting 

knowledge from requirements specifications or dialogue sessions with designers with 

the aim to design databases. Dialogue tool [2] is a knowledge-based tool applied to 

the German language for producing a skeleton diagram of an Enhanced Entity-

Relationship (EER) model. This tool is part of a larger database design system known 

as RADD (Rapid Application and Database Development) which consists of other 

components that form a complex tool. In order to obtain knowledge from the 

designer, a moderated dialogue is established during the design process. The 

transformation of the structure of natural language sentences into EER model 

structures is a process which is based on heuristic assumptions and pragmatic 

interpretation. The aim of the pragmatic interpretation is the mapping of the natural 

language input onto EER model structures using the results of the syntactic and 

semantic analyses. One major limitation in this system is that the accuracy of the EER 

model produced depends on the size and complexity of the grammar used and the 

scope of lexicon.  



ANNAPURNA [5] is project aimed to provide a computerized environment for 

semi-automatic database design from knowledge acquisition up to generating an 

optimal database schema for a given database management system. ANNAPURNA 

concentrated on the phases concerned with acquiring the terminological rules. The 

first step in acquisition of the terminological knowledge involves extracting the 

knowledge from queries and rules that have the form of natural language expressions. 

The knowledge obtained would then be put into the form of S-diagrams. An S-

diagram is a graphical data model which can be used to specify classes (for example 

room and door), subclass connections between classes (for example rooms and doors 

are physical objects) and attributes. The limitation of the above work is that the use of 

S-diagrams performs best when the complexity is small.  

DMG [10] is a rule based design tool which maintains rules and heuristics in 

several knowledge bases. A parsing algorithm which accesses information of a 

grammar and a lexicon is designed to meet the requirements of the tool. During the 

parsing phase, the sentence is parsed by retrieving necessary information from the 

grammar, represented by syntactic rules and the lexicon. The parsing results are 

processed further on by rules and heuristics which set up a relationship between 

linguistic and design knowledge. The DMG has to interact with the user if a word 

does not exist in the lexicon or the input of the mapping rules is ambiguous. The 

linguistic structures are then transformed by heuristics into EER concepts. Though 

DMG proposed a large number of heuristics to be used in the transformation from 

natural language to EER models, the tool has not yet  been developed into a practical 

system. 

E-R generator [6] is another rule-based system that generates E-R models from 

natural language specifications. The E-R generator consists of two kinds of rules: 

specific rules linked to semantics of some words in sentences, and generic rules that 

identify entities and relationships on the basis of the logical form of the sentence and 

on the basis of the entities and relationships under construction. The knowledge 

representation structures are constructed by a natural language understander (NLU) 

system which uses a semantic interpretation approach. There are situations in which 

the system needs assistance from the user in order to resolve ambiguities such as the 

attachment of attributes and resolving anaphoric references.  

CM-Builder [8] is a natural language based CASE tool which aims at supporting 

the analysis stage of software development in an object-oriented framework. The tool 

uses natural language processing techniques to analyse software requirements 

documents and produces initial conceptual models represented in Unified Modelling 

Language. The system uses discourse interpretation and frequency analysis in 

producing the conceptual models. CM-Builder still has some limitation in the 

linguistic analysis. For example, attachment of postmodifiers such as prepositional 

phrases and relative clauses is limited. Other shortcomings include the state of the 

knowledge bases which are static and not easily updateable nor adaptive. 

All the systems discussed here have user involvement during processing. Because 

of the incomplete presentation of knowledge, ambiguities and redundancies, full 

automation of the design process is fundamentally impossible [5]. As a consequence, 

the tools must be able to interact with the designer, including ER-Converter. A semi-

automatic design process is far more economical than an entirely manual process [5]. 

 



 

 

 

3   Heuristics to identify ER elements 

 

Heuristics represent an indefinite assumption [10], often guided by common sense, to 
provide good but not necessarily optimal solutions to difficult problems, easily and 
quickly [11]. Research on the formation and use of heuristics to aid the construction 
of logical database structures from natural language has been scarce. The only 
existing work that proposes a large number of heuristics to be used in the 
transformation from natural language to ER models is DMG [10]. However the work 
has not been implemented. The authors of DMG proposed both syntactic and 
semantic heuristics to be applied in extracting knowledge from requirements 
specifications. Although E-R Generator [6] and RADD [2] utilized heuristics in their 
work, they do not detail a precise set of heuristics in their approach. Chen [3] 
suggested that the basic constructs of English sentences could be mapped into ER 
schemas in a natural way and presented a set of rules to put forward the ideas. Though 
the set are referred to as “rules”, Chen mentioned that they are better viewed as 
“guidelines” as it is possible to find counter examples to them. Here we regard Chen’s 
“rules” as heuristics as they are largely “rules-of-thumb” based on observations rather 
than theoretically derived. Only heuristics for language syntax are considered and 
proposed at this stage. 

Here, a selection of the heuristics applied in the transformation from database 
specifications to the data modeling constructs is presented. These heuristics are 
gathered from past work [3,9,10] and some are newly formed. Some examples in 
terms of sentences are provided to illustrate the application of heuristics which are 
context dependent.  

 

Heuristics to determine entities: 
 

1. Heuristic HE2: A common noun may indicate an entity type [3,10]. 
2. Heuristic HE3: A proper noun may indicate an entity [3,10]. 
3. Heuristic HE7: If consecutive nouns are present, check the last noun. If it is not 

one of the words in set S where S={number, no, code, date, type, volume, birth, 
id, address, name}, most likely it is an entity type. Else it may indicate an 
attribute type. 

 

Heuristics to exclude non-potential entity types candidates: 

 
1. Heuristic HEX: A noun such as “record”, “database”, “company”, “system”, 

“information” and “organization” may not be a suitable candidate for an entity 
type. For example, “company” may indicate the business environment and should 
not be included as part of the entity types. Examples: 



a) “An insurance company wishes to create a database to keep track of its 
operations.” 

b) “An organization purchases items from a number of suppliers.” 
 

Heuristics to determine attributes: 
 

1. Heuristic HA6: Genitive case in the noun phrase may indicate an attributive 
function [10]. 

2. Heuristic HA8: If a noun is followed directly by another noun and the latter 
belongs to set S where S={number, no, code, date, type, volume, birth, id, 
address, name}, this may indicate that both words are an attribute. Else it is most 
likely to be an entity.  
 

Heuristics to determine relationships: 

 
1. Heuristic HR1:  An adverb can indicate an attribute for relationship [3]. 
2. Heuristic HR4:  A verb followed by a preposition such as “on”, “in”, “by” and 

“to” may indicate a relationship type. For example: “Persons work on projects.” 
Other examples include “assigned to” and “managed by”.  

 

Heuristics to determine cardinalities: 
 

1. Heuristic HC2: The adjective “many” or “any” may suggest a maximum 
cardinality. For example:  
a) “A surgeon can perform many operations.” 
b) “Each diet may be made of any number of servings.” 

2. Heuristic HC3: A comparative adjective “more” followed by the preposition 
“than” and a cardinal number may indicate the degree of the cardinality between 
two entities. For example: “Each patient could have more than one operation.” 

 

3.1    Heuristics’ Weights 
 

The heuristics’ weights are assigned according to the confidence level that the event is 

true. For example, HE2 (one of the heuristics to determine entity type) states that a 

common noun may indicate an entity type. It has been given a weight of 0.5. This 

basically means that 50% of the time this heuristic may produce the correct result, as 

not all nouns are entity types. Though the assignment of the weights is mainly based 

on intuition, these weights are also compared and reflected against the results 

obtained from training set. Most of the values assigned lie between –1 and 1 with the 

exception of HEX which is assigned a value of 100. This value acts as a safe border 

that differentiates between an entity type and a non-entity type. For example, there 

may be much evidence occurring for a word indicating it is an entity type. This is 

reflected in the total sum of the weights of evidence found. As both entity types and 

non-entity types have positive values, a value of 100 and over may indicate strongly 

that a word may suggest a non-entity type. For attributes, all of the weights are 

assigned with negative values. The main reason for this is that if a situation occurs 

where a noun may represent an entity type but if at the same time it may also 

represent an attribute, the weight on its identification as entity will be reduced.  If this 



value falls within a threshold of –0.2 and 0.4, user intervention may be required to 

help identify its identity. The user will be prompted to decide whether the noun is an 
entity or an attribute. This is the only point where user intervention is needed in the 

process of generating the ER modelling concepts. 

3.2 Training set 

In order to test the newly developed heuristics, a manual test was carried out prior to 
the implementation of ER-Converter. This stage is seen as an important phase as the 
heuristics’ contributions need to be ascertained before proceeding to the 
implementation phase. Ten examples were selected for the training dataset. These 
examples, which are natural language requirements specifications, were gathered 
mainly from database text books.    

4 The ER-Converter Tool 

Figure 1 depicts the architecture of ER-Converter. ER-Converter has been 
implemented using Practical Extraction and Report Language (Perl). The natural 
language processing involved in the process of translating the database specifications 
into ER elements is purely based on syntactic analysis. 

The process begins by reading a plain input text file containing a requirements 
specification of a database problem in English. For this purpose, a parser is required 
to parse the English sentences to obtain their part-of-speech (POS) tags before further 
processing. Part of speech tagging assigns each word in an input sentence its proper 
part of speech such as noun, verb and determiner to reflect the word’s syntactic 
category [1]. The parser used here is Memory-Based Shallow Parser (MBSP) [4,12]. 
The parsed text is then be fed into ER-Converter to identify suitable data modeling 
elements from the specification. The task requires several steps to be carried out in 
order to achieve the desired ER model from the natural language input, each of which 
is listed as follows:  

 

• Step 1: Part of speech tagging using Memory-based Shallow Parser 

• Step 2: Read natural language input text into system 

• Step 3: Apply heuristics and assign weights 

• Step 4: Human intervention 

• Step 5: Attachment of attributes to their corresponding entity 

• Step 6: Attachment of entities to their corresponding relationship 

• Step 7: Attachment of entities to their corresponding cardinality 

• Step 8: Produce final result 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Architecture of the ER-Converter tool 

5    Evaluation  

The approach in this evaluation uses methods for evaluating Information Extraction 
systems, primarily Message Understanding Conferences (MUC) [8] evaluations i.e. 
recall and precision. Recall is percentage of all the possible correct answers produced 
by the system. Precision is the percentage of answers that are correctly identified by 
the system. In any system, both precision and recall should be as close to 100% as 
possible. However, in general, an increase in precision tends to decrease recall and 
vice versa. In the context of this research, the definition of recall and precision below 
are adopted as used by CM-Builder [8] and new measures are defined. Contrary to 
both precision and recall, all the new measures introduced should be as close to 0% as 
possible. The measures employed are as follows:  

 

Recall 
Recall is the measure of the percentage of information available that is actually found. 
In this research context, it refers to the amount of the correct information returned by 
the system. The correct information is then compared with those produced by human 
analysts or answer keys. The following formula is used to calculate recall: 

 

Natural Language 

Requirements 

Specification 

Memory-based 

shallow Parser 

 

Heuristics-based ER 

analysis 

 

User 

assistance 

Entity types Attribute 
types 

Relationship 
types 

Cardinalities 

ER-CONVERTER 



 

(1) 

The answer keys or N 
key   

is actually the amount of correct information plus the 
number of missing ones. Thus, the formula is refined as follows: 

 

(2) 

Overgenerated 
Overgenerated measures how much extra correct information in the system response 
that is not found in the answer key [8]. This may arise from the use of synonyms in 
the requirements specification. The following formula is used to measure 
overgenerated: 

 

(3) 

Undergenerated 
Undergenerated represents the number of missing correct information that is found in 
the answer keys but not in the system’s response. Thus, N

missing
 below represents the 

missing items. The following formula (4) is used to calculate undergenerated items: 

 

(4) 

Ask_user 
Ask_ user represents the number of user assistance requests generated by the system. 
This user intervention is requested when an item has a low value in its weight and 
falls between two thresholds. N

ask
 represents ask user and the formulas are as follows: 

 

(5) 

Unattached 
Unattached represents the number of correctly identified ER elements resulting from 
the system that are not attached to their corresponding items. This inaccuracy need to 
taken into account as the error will be reflected in the output of the system. N

unattach
 

represents this measure. The following formula (6) is used to calculate unattached:  

correct

key

N
Recall =

N
⋅

correct

correct missing

N
Recall =

N + N
⋅

missing

correct missing

N
Undergenerated =

N + N
⋅

overgenerated

correct missing

N
Overgenerated =

N + N
⋅

ask

correct missing

N
Ask _ user =

N + N
⋅



 

(6) 

Wrongly attached 
Wrongly attached measures the numbers of correctly identified ER elements but 
wrongly attached to other items. This is represented by N

wrongattach
. The following 

formula (7) is used to calculate this measure: 

 

(7) 

Precision 
Precision is a measure of percentage of correctness of the information produced. It 
reflects the accuracy of the system in obtaining the correct result. The standard 
precision formula is as follows:  

 

(8) 

In this research, a more detailed formula is used to evaluate the accuracy of the results 
produced. Apart from incorrect, other additional measures such as ask user, 
undergenerated and overgenerated need to be taken into account for greater accuracy. 
The following formula (9) is thus defined to calculate precision:  

 

(9) 

 

5.1 Results and Discussion 

 
ER-Converter has been tested using a test dataset which consists of 30 database 
problems or natural language requirements specification in English. Most of the 
problems were gathered mainly from database books and past exam papers. Each 
problem ranges between 50 and 100 words in size. On average, ER-Converter takes 
1s to process a database problem which includes processing the tagged input file and 
generating the ER elements.  

ER-Converter achieved a high average recall of 95%. The system has successfully 
produced relevant Entity-Relationship (ER) elements in all of the problems. With a 
high recall, the heuristics-based system is in better position of applying the 
corresponding heuristics to the relevant items as compared to the missing ones. 57% 
of the individual problems or datasets achieved a 100% score in recall. A detailed 
investigation revealed that all of the missing or undergenerated items are either 
relationships or cardinalities. The undergenerated relationships may due to the fact 
that verbs are not translated directly as relationships. With respect to the cardinalities, 

unattach

correct missing

N
Unattached =

N + N
⋅

wrongattach

correct missing

N
Wrongly attached =

N + N
⋅

correct

correct incorrect

N
Precision =

N + N
⋅

correct

correct incorrect ask missing overgenerated

N
Precision =

N + N + N + N + N
⋅



these are mainly due to synonyms and implicit phrases that imply cardinalities. For 
example, from the phrase “each bus is allocated a particular route”, the adjective 
‘particular’ may imply a one-sided cardinality.   

In terms of precision or correctness of the result produced, ER-Converter scored an 
average of 82% in the test datasets. The results support that a heuristics-based 
approach to transform a natural language requirements specification to an ER model 
can be utilized to aid conceptual modeling in the early stages of database systems 
development.    

ER-Converter has an average of 3% for overgenerated items and 5% for 
undergenerated items. The overgeneration are mainly due to synonyms. A detailed 
investigation revealed that all of the missing or undergenerated items are either 
relationships or cardinalities. The undergenerated relationships may due to the fact 
that verbs are not translated directly as relationships. For the cardinalities, these are 
mainly due to synonyms and implicit phrases that imply cardinalities. An interesting 
result to note is on the user’s responses to ER-Converter or referred to as Ask User in 
the evaluation. A user’s response is sought when ER-Converter is unsure on whether 
an ER element is an attribute or an entity. From the evaluation results, it is evident 
that human intervention in ER-Converter is very minimal with only 2% on average. 
Although full automation is seen as impossible due to incomplete presentation of 
knowledge, ambiguities and redundancies [6], this research has shown that it is still 
possible to provide an almost complete automation with very limited user assistance 
on the solutions produced. The strength lies in the use of present and newly formed 
heuristics and the application of their corresponding weights.      

6 Relation to other work 

A comparison in terms of recall and precision is made between ER-Converter and 
other systems where possible as presented in Table 1. E-R Generator [7] reported that 
the system was able to identify all the relevant ER relationships and entities in 75% 
out of 30 database problems that form the test dataset. However, the result was based 
on only 25% of the total test dataset which were entered interactively by users. The 
program overgenerated or undergenerated ER entities and relationships in 50% of the 
cases. No overall results were revealed on the whole test dataset. With ER-Converter, 
the precision or the accuracy of the system in obtaining the correct result is 82%. 
However, a direct comparison cannot be made since both systems used different test 
datasets. 

CM-Builder [8] concentrates on building object-oriented conceptual models to be 
represented in Unified Modelling Language (UML). Though it not comparable in 
terms of the end results as the system produces object-oriented models and not ER 
model, the techniques used in the natural language processing and evaluation are 
similar. Comparing the results with ER-Converter, ER-Converter’s performance is 
well above these figures though a direct comparison is not possible due to the 
different types of modelling. 

 
 
 
 



Table 1. Comparison of results with related work 

7   Conclusion and Future work 

 

We have described an approach of generating ER elements from natural language 

specifications using a heuristics-based system, ER-Converter. The heuristics used are 

application-domain independent and suitable for small application domains. This 

study has shown that the formation of new heuristics in transforming natural language 

requirements specifications to ER models is supported by the evaluation results. ER-

Converter has an average recall of 95% and 82% precision. The contribution made 

can be applied in areas such as part of the domain model of an intelligent tutoring 

system, designed to assist in the learning and teaching of databases and other 

applications of NLP for database design.    
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