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ABSTRACT An operative and versatile household energy management system is proposed to develop and
implement demand response (DR) projects. These are under the hybrid generation of the energy storage
system (ESS), photovoltaic (PV), and electric vehicles (EVs) in the smart grid (SG). Existing household
energy management systems cannot offer its users a choice to ensure user comfort (UC) and not provide
a sustainable solution in terms of reduced carbon emission. To tackle these problems, this research work
proposes a heuristic-based programmable energy management controller (HPEMC) to manage the energy
consumption in residential buildings to minimize electricity bills, reduce carbon emissions, maximize
UC and reduce the peak-to-average ratio (PAR). We used our proposed hybrid genetic particle swarm
optimization (HGPO) algorithm and existing algorithms like a genetic algorithm (GA), binary particle
swarm optimization algorithm (BPSO), ant colony optimization (ACO), wind-driven optimization algorithm
(WDO), bacterial foraging algorithm (BFA) to schedule smart appliances optimally to attain our desired
objectives. In the proposed model, consumers use solar panels to produce their energy from microgrids.
We also perform MATLAB simulations to validate our proposed HGPO-HPEMC (HHPEMC), and results
confirm the efficiency and productivity of our proposed HPEMC based strategy. The proposed algorithm
reduced the electricity cost by 25.55%, PAR by 36.98%, and carbon emission by 24.02% as compared to the
case of without scheduling.

INDEX TERMS Smart grid, energy management, efficient energy utilization, energy storage system,
heuristic algorithms, energy management controller, renewable energy sources, carbon emissions.

NOMENCLATURE
µ Inertia factor
Fc Coriolis force
� Rotation of earth
α Friction coefficient
ρ Air density
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1 Pressure gradient
δv Finite volume of the air
g Acceleration of gravity
z Ant
x Set
v Smart home
T Time interval
M Shiftable appliances
N Non-shiftable appliances
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t Time slot
γ Electricity emissions factor
η price per kwh
m Months in a year
Ppv Hourly produced energy by solar panel
ηpv Efficiency of solar panel
Apv Area of solar panel
Irr(t) solar irradiance
Temp(t) Outside temperature
ESmin Minimum level of battery
ESmax Maximum level of battery
ηESS Efficiency of battery
vtj current Velocity

vt+1
i Velocity of particle
k Random number
z1 Local pull
z2 Global pull
Xlbest,i Local position
Xgbest,i Global position
FG Gravitational force
Txy Pheromone level
EcP Electricity bill of shiftable appliances
EdP Electricity bill of non-shiftable appliances
X cm∈M (t) On/off state of shiftable appliances
Xdn∈N (t) On/off state of non-shiftable appliances
Ppv Hourly produced energy by solar panel
DR Demand response
MIQP Mixed integer quadratic programming
EUCs Electric utility companies
BILP Binary integral linear programming
EVs Electric vehicles
CEAC Certainty equivalent and adaptive control
RTP Real time pricing
MOPSO Multiple objective particle swarm optimization
PAR Peak to average ratio
GA Genetic algorithm
BPSO Binary particle swarm optimization algorithm
ACO Ant colony optimization
WDO Wind driven optimization
HGPO Hybrid genetic particle swarm optimization
ESS Energy storage system
EMC Energy management controller
HAN Home area network
EDE Enhanced differential evolution
SRDSM Scalable robust demand side load management
HEM Home energy management
DEM Dynamic energy management
MILP Mixed integration linear programming
GA Genetic algorithm
ACO Ant colony optimization
HGPO Hybrid genetic particle swarm optimization
PAR Peak to average ration
UC User comfort
BFA Bacterial foraging algorithm
RES Renewable energy sources

SM Smart meter
DG Distributed generation
DSM demand-side managemen
PV Photovoltaic
IBR incentive based regulation
TOU Time of use
HPEMC Heuristic-based programmable energy

management controller
GWDO Genetic wind driven optimization
DOD Depth of discharge
SE Stored energy
FA-HELF Fast and accurate hybrid electrical energy

forecasting

I. INTRODUCTION

Energy demand is increasing rapidly around the globe with
population growth and economic development. Most of the
traditional power generating plants run on fossil fuels and
generate 64.5% of electricity worldwide [1]. These power
plants have a larger share in carbon emissions, where approx-
imately 40% carbon is emitted by the generation sector, and
the transport sector [2] produces 24%. Furthermore, to reach
the drastically increasing energy demand with lower car-
bon emissions, researchers have proposed new methods of
energy generation using renewable energy sources (RESs).
To effectively utilize these sources, we have to transform
existing power grids into smart grids (SG). In [2], a SG is
defined as ‘‘it is an electricity supply network that can smartly
incorporate the actions of all users linked to it like generators,
consumers and prosumers (all those do both generation and
consumption).’’ SGs works with different kinds of devices
such as smart meters (SMs), smart appliances, RESs, and
batteries. The main purpose is to control power generation,
power transmission, and power distribution through mod-
ernistic techniques. In SGs, we have two-way communica-
tion between electric utility companies (EUCs) and the end-
user. Moreover, two-way communication in SG keeps the
consumers well informed regarding their electricity bills and
allows the users to observe and examine the real-time data
of energy usage. The SG builds the integration of distributed
generation (DG) and RESs, viable. It involves the commercial
and residential users participating in demand response (DR)
and demand-side management (DSM) activities. The main
goal of DSM is to motivate the users to shift the time
of energy consumption to off-peak hours or use minimum
energy during peak hours [4]. It is completely daring to ask
the users to schedule their use of appliances by limiting their
comfort level. Consequently, the home energy management
system (HEMS) is needed, which handles household load
scheduling. The highlights of our work are as follows:

1) Hybrid generation system of the energy storage system
(ESS), photovoltaic (PV), electric vehicles (EVs), and
electric utility companies (EUCs) have been proposed
to solve energy management problems.
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2) The PV, ESS, EVs, and household load is made con-
trollable so that energy management is possible.

3) In addition to cost, PAR, UC objectives, carbon emis-
sion is formulated and investigated to solve energy
management problem by power usage scheduling of
smart appliances under hybrid generation to improve
sustainability.

4) Four performance metrics, electricity cost, PAR, UC,
and carbon emission are mathematically modeled
simultaneously.

5) An HGPO algorithm is introduced, which is a com-
bination of BPSO and GA to perform optimal energy
management.

6) A heuristic optimization algorithm HGPO-based
energy management controller (HPEMC) is proposed
for optimal energy management under hybrid genera-
tion and price-based DR programs.

7) A practical optimization model for energy manage-
ment is formulated for power usage scheduling under
hybrid generation utilizing AMI and price-based DR
programs. This is real-time pricing (RTP) of the SG.

8) Objective function and constraints are constructed to
manage power usage of smart home appliances under
hybrid generation to minimize the cost of electricity,
alleviate PAR, minimize carbon emission, and maxi-
mize UC.

9) Simulation results prove that proposed HPEMC-based
technique has outclassed existing strategies in terms of
electricity bill, PAR, UC, and carbon emission.

We organized the remainder of the paper as follows:
section II explains the related work, section III briefly
explains the proposed algorithms, section IV describes the
proposed system model and in section V, we have discussed
the simulation results. We have finally concluded the work in
section VI.

II. RELATED WORK

In the last decade, numerous DSM techniques have been
presented. All of them have common objectives of minimiz-
ing the cost, PAR, and carbon emissions. Previously, many
techniques have been used to solve the appliances scheduling
problem which is tabulated in Table 1.
In [5], the authors proposed GA and compared its results

with WDO. The results showed a 29% reduction in the EC
and a 36.2% reduction in the PAR. The authors used HEDS
in which they discussed the operating power of different
appliances, however, they did not use any of the RESs in
their work. They only scheduled the operating time of the
appliances. The authors in [6] presented multiple integra-
tion linear programming (MILP) techniques for scheduling
the appliances. Their objectives were minimization of cost
and linearization of the load curve. They used RESs and
EVs in their work, however, UC has not been considered.
In [7], the authors proposed GA, WDO, BPSO, and BFA
techniques to minimize cost and PAR. They compared their

results and concluded that the HGPO algorithm outperforms
the other algorithms in reducing cost and PAR. HGPO algo-
rithm reduces cost by 25.12% and PAR by 24.88%. Although,
the results are slightly better, the appliance scheduling time is
slow. The authors in [8], have proposed certainty equivalent
and adaptive control (CEAC) technique for charging the EVs.
Their objectives were voltage regulation and adoption of RE.
They used wind energy and the electric grid for the charging
of the EVs. However, they didn’t discuss the discharging of
EVs back to the electric grid. In [9], authors presented a
binary integer linear programming (BILP) technique. They
achieved their objectives by reducing cost by 35% and also
compared their results with the MILP algorithm. However,
there was a lack of application of RESs in their work, which
might improve results further. The authors in [10], have
proposed a dynamic energy management algorithm (DEM).
Their objectives were demand-side load management and
voltage fluctuation of RESs. They used PV, ESS, UC, and
grid in their system. Although their results were impressive,
the system is costly, and they didn’t consider UC either. The
authors in [11] have proposed the WDO approach with the
objective of minimizing cost. They used boiler and solar
thermal storage in their system to reduce cost by 18.48%.
However, their work is only limited to a small scale res-
idential side. In [12], the authors proposed optimal power
management for a nano-grid containing a small number of
houses. They have used multiple objective optimization to
schedule the shiftable appliances for minimizing the load
curve, but, didn’t consider UC. MILP is used in [13], and
the objective has cost reduction while RESs with EVs was
in use. They concluded that the total electricity cost in a
vehicle to home (V2H) mode is 2.6% less than that of home
to a vehicle (H2V). However, they didn’t consider PAR and
carbon emissions in their work. In [14], the authors pro-
posed a two-stage home energy management (HEM) strategy
equipped with RESs. The operational cost of homes was
minimized in the one stage, while in the second stage, PF was
improved. Also, an effective model was produced, and appro-
priate linearization techniques were applied to compensate
for the non-linear nature of the produced model. The authors
in [15] presented the game theory technique. Their objec-
tives include cost-minimizing and load scheduling. They also
proposed a smart pricing tariff, to encourage the users to
minimize the energy cost. However, they did not consider UC
in their work. In [16], authors proposed a close to real-time
EMS for multiple houses of residential buildings. They also
used a mixed-integer linear programming model to control
the washing machine, dishwasher and the ESS in a smart
building. The results prove that the proposed model can help
minimize the building’s energy by 9% and PAR by 18.78%.
Although their results are encouraging, their work is only for
small residential areas. In [17], the authors proposed a fuzzy
logic controller to operate fuel cells efficiently and safely.
The objective was to utilize RESs efficiently. As a result,
the efficiency of wind increased by 2.5%, solar increased
by 2%, while fuel cell (FC) decreased by 4% annually. The
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TABLE 1. Related work.

authors in [18] proposed a price-based HEM framework. The
value of each appliance is determined in terms of the value
of lost load (VOLL). VOLL is determined for residential
users according to common time-varying tariffs like time of
use (TOU) and incentive-based regulation (IBR). IBR leads
to load balancing and PAR reduction. However, they didn’t
consider UC.
In [13], authors proposed BILP. They considered H2V

mode and V2H mode. They inferred that the home with
ESS does not buy electricity from the grid during peak
hours. In the bidirectional case, V2H is 2.7% less than H2V
mode. However, no uncertainty of load is discussed. Authors
in [19] proposed a backtracking algorithm with Zigbee and
smart sockets and proposed it for the BPSO algorithm. The
objectives were the reduction in cost and PAR. As a result,
they saved 20.55% energy on weekdays and 25% energy
on weekends. While using the BPSO algorithm, they saved
21.7% on weekdays and 26.01% on weekends, however,
they didn’t consider UC. In [20], an energy management
controller (EMC) to control the appliances and operate in low
peak hours is proposed. They also made a combination of
real-time pricing (RTP) and IBR to minimize both the cost

and PAR. They used GA to schedule the shiftable appliances.
However, the work is only valid for small residential areas.
Authors in [21], presented MILP technique. They proposed
the concept of prosumers. Prosumers mean the consumers
who can produce and share an extra amount of energy. This
will not only help the prosumers to earn money, but it can
play an important role in PAR reduction. Authors in [22]
proposed a fundamental and improved interaction strategy
in which a grid and various buildings are produced using
the Stackelberg game theory based on their recognized Nash
equilibria, however, UC was ignored. The authors in [23]
proposed mixed-integer quadratic programming (MIQP) to
predict a control system established on the thermal building
model and the building energy management system. The
objective was to minimize cost, however, RESs were not
utilized. Authors in [36] proposed a framework based on
HEMC. They have also proposed a technique day-ahead
grey wolf modified enhanced differential evolution algorithm
(DA-GmEDE) to reduce the PAR and electricity bill. They
have reduced cost and PAR by 23.9% and 43%, respectively.
Authors in [37], proposed a fast and accurate hybrid electri-
cal energy forecasting (FA-HELF) to forecast the electrical
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TABLE 2. Parameters and values.

energy consumption. In [38], authors have proposed GA,
WDO, and BPSO algorithm to reduce electricity cost and
PAR. As a result, they have minimized electricity bill and
PAR by 22% and 29%, respectively. Authors in [39] proposed
GA, WDO, and genetic WDO (GWDO) algorithm to avoid
the load rise problem, electricity bill reduction, and PAR
minimization. In [40], authors have proposed theMonti Carlo
simulation to control carbon emission.

III. PROPOSED MODEL AND EXISTING MODELS

In this section, we will describe the methods that we have
proposed in our work. We will also discuss the previous

methods that have been done. We used GA, BPSO, WDO,
BFA, HGPO, and ACO in our work because these algo-
rithms adopts heuristic initialization, which leads to good
solutions initially and then fills up the rest of the pop-
ulation with random solutions. Previously, many methods
have been used for scheduling problems, which include LP,
DP, MILP, etc. Nevertheless, these techniques face many
difficulties in convergence, and they also cannot handle
a huge number of appliances. BPSO, WDO, BFA, GA,
HGPO, and ACO algorithms outperform the classical opti-
mization techniques and give different methods to solve com-
plex problems. The parameters and their values are given
in Table 2.

A. GA

GA is influenced by the natural genetics procedure of the
living organism [34]. GA offers alternative solutions in every
single iteration. In GA, firstly a binary coded chromosome
pattern is made, the chromosome pattern shows the On/Off
condition of the appliances and the number of appliances are
shown by the length of the chromosome.

After the initialization, a population (collection of pos-
sible solutions that displays the state of every appliance
in a specified time slot) is produced. According to the
objective function of the problem, the fitness function of
every possible solution is checked. A new population is
produced in each iteration by applying the genetic opera-
tions of crossover and mutation. Two binary chromosome
strings are crossed over to form a new offspring, which
would be different from its parents. In a crossover, we give
the probability of crossover, that is how many times the
crossover will take place. If the probability of crossover is
100%, then all offspring will be totally different from their
parents. If the probability is 0%, then the whole offspring
will be similar to their parents. 90-95% is the best crossover
rate.

To produce some randomness in the offspring and to pre-
vent the repetition of the population, we mutate the results.
In the mutation process, several genes are changed in a
chromosome from the primary state. The probability of
mutation is very low. Once all the processes of crossover
and mutation are performed, a new population is produced.
Its fitness value is examined, and it is compared with the
previous population. Figure 1 shows the flowchart of this
algorithm.

B. BPSO ALGORITHM

PSO algorithm is another natural inspired technique for
searching optimum solutions inside the search space. Mainly,
it is present in a continuous domain. But, it can be improved
to a discrete domain. BPSO is the discrete domain version of
PSO. BPSO is mainly dependent on four factors: particle’s
own best position, initial velocity, global best position, and
initial position amongst all the particles. In BPSO, a search
space is produced, and a population randomly initialized and
dispersed in the search space. Equation (1) in [33] is used to
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FIGURE 1. Flow chart of GA.

update the velocities of the particles in each iteration. Figure 2
shows the flowchart of this algorithm.
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µvtj (j) + z1k1(Xlbest,i(j))

+ z2k2(Xgbest,i(j) − x ti (j)) (1)

where µ is the factor of inertia, vtj is current velocity. v
t+1
i is

the velocity of particle. Random numbers are k1 and k2, while
z1 is local pull and z2 is global pull. x

t
i is the particle’s current

position,Xlbest,i is the local andXgbest,i is global best position.
Equation (2) is used to map the velocities of particles between
0 and 1.

sim(vt+1
i (j)) =

1

1 + exp(−vt+1
i (j))

(2)

C. WDO ALGORITHM

WDO is a heuristic optimization algorithm.WDO is based on
the phenomenon of motion of air particles in the atmosphere.
In this technique, an N-dimensional search space is produced
in which infinite air particles move. WDO mainly comprises
of four different forces to control air particles. These forces
are gravitational, frictional, Coriolis, and pressure gradient.
These forces have their functions as pressure gradient force
shifts the particles in the forward direction, and the friction
force resists this forward direction. Also, the gravitational
force pulls the air particles towards the origin, while the
Coriolis force’s function is to deflect the air particles in the
atmosphere. Equations (3), (4), (5), and (6) are used to calcu-
late the pressure gradient force, Coriolis force, gravitational

force, and friction force, respectively. All these forces can be
mathematically written as [35]:

Fpg = −1ρδv (3)

Fc = −2� × µ (4)

FG = ρδv× g (5)

FF = −ραµ (6)

where Fc represents the Coriolis force, and µ is the velocity
factor of wind. The rotation of the earth is represented by �.
FF denotes the friction force while α is friction coefficient,
Fpg is the pressure gradient force, δv is the finite volume
of the air, the pressure gradient is denoted by 1, FG is the
gravitational force, ρ is air density and g is the acceleration
due to gravity.
WDO has n number of air particles, and random solutions

are created from these particles. A new population is pro-
duced, after checking fitness function and updating velocities.
After this, an optimal appliance scheduling pattern is obtained
by comparing the fitness function of the old and new air
particles. Figure 3 shows the flowchart of this algorithm.

D. ACO ALGORITHM

ACO is a meta-heuristic algorithm. Just like in real life, ants
follow the shortest path for finding food and returning back to
their nest. Ants use pheromone trail to detect their path again.
In ACO, artificial ants and pheromone are produced to search
for the shortest path in a graph. Pheromone is an evaporative
element, so the ants will follow that path that has more
pheromone. Just like other algorithms, ACO firstly builds
an initial solution from a finite set of solution components.
After this, the ant walks on the graph, where each vertex in
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FIGURE 2. Flowchart of BPSO algorithm.

FIGURE 3. Flowchart of WDO algorithm.

the graph represents a solution component. The probability is
defined as:

pzxy =
T α
xyη

β
xy

∑

k ∈ Az(x)T α
xkη

β
xk

(7)

where z is an ant, state x computes a setAz(x). The probability
of the ant frommoving from x to y is pzxy. Txy is the pheromone
level. Figure 4 shows the flowchart of this algorithm.

E. BFA

BFA is another nature-inspired algorithm. Since it has been
useful in solving real-world problems, BFA has attracted the
focus of many researchers. BFA algorithm has n number
of nutrients (solution), the bacteria swim in search of best
nutrients and to maximize their energy.

Similar to WDO, BFA also has four steps: reproduc-
tion, swimming, elimination-dispersal, and chemotaxis. BFA
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FIGURE 4. Flowchart of ACO algorithm.

starts its searching with parameters initialization under the
chemotaxis step, after initialization of parameters, primary
positions of appliances are examined, and then the new posi-
tions of bacteria (solution matrix) are calculated by the sys-
tem. In the second step, for finding the current best condition
of the appliances, the swimming loop is initialized. After this
step is completed, iterations of the reproduction loop starts,
in which only fittest solutions are taken to generate the new
population. Lastly, the least fit solutions are eliminated, and
new arbitrary samples are installed with a lower probability.
This is an essential step because, in this step, the least fit
solutions are removed, and the probability of repetition is
minimized. Figure 5 shows the flowchart of this algorithm.

F. HGPO ALGORITHM

HGPO is our proposed algorithm. In this algorithm, we com-
bine the product characteristics of GA and BPSO algorithms
to efficiently minimize PAR, electricity cost, UC, and carbon
emissions. We have chosen these two algorithms because GA
reduces PAR efficiently, while BPSO can effectively reduce
electricity cost. HGPO mainly has two stages where, in the
first stage, the steps of BPSO are adopted. After that, the step
of mutation and crossover of GA is employed to the current
global best position X t−1

gbest , found by BPSO. The application
of mutation and crossover operated at the best positions
provides good results than their application to the random
population. Figure 6 shows the flowchart of this algorithm.
To evaluate the proposed and benchmark algorithms using

test functions like Non-continuous Rastrigin’s, Schaffer, and

Algorithm 1 HGPO Algorithm Based Energy Man-

agement Strategy in Smart Grid

Input: RTP DR program, length of operation time, power usage
pattern, temperature, solar irradiance, efficiency, appliances
pre-scheduling pattern, initialized ESS, and EVs.
Parameters initialization: maximum velocity, minimum velocity,
swarm size, local pull, global pull, initial momentum weight, final
momentum weight, PC, PM, cost, PAR, UC, and carbon emission.
for hours=1:24 do

For initial position
for h=1:swarm do

for i=1:n do
if rand>0.7 then

X=1
end
else

X=0
end

end
end
For initial velocity
for v1=1:10 do

for v2=1:6 do
if timeslot=0 then

H=0
end

end
end
Vbest1
Pbest1
begin

Fitness evaluation
Evaluate the Fitness function on first Position
and Velocity
Update the Velocity using Equation 1
Update the Position using Equation 2
Vbest2
Pbest2
Evaluate Fitness function on second best position and
velocity
Crossover [Pbest1 and Pbest2], Crossover result = cg
Mutate[cg], Mutate result = Gbest

end
Returned Gbest
begin

Objectives determination
for Utilized global best-returned results for UC calculation
do

UC 1.Power pattern=Gbest
2.Calculate UC using Equation 23

end
for Utilized global best-returned results for cost
calculation do

Electricity cost calculation 1.Without PV and ESS,
Load = power*Gbest
2.With PV, LoadwithRESs=Load-Power enerated by
PV
3.With PV and ESS,
LoadwithRESSESS=Load-Power
generated by PV-Battery discharge
4.Calculate Cost using Equation 20

end
for Utilized global best-returned results for carbon
emission calculation do

carbon emission 1.Without PV and ESS, take the
average cost without PV and ESS
2. With PV, take the average cost with PV
3. With PV and ESS, take the average cost with PV
and ESS
4.Calculate carbon emission using Equation 22

end
for Utilized global best-returned results for PAR
calculation do

PAR 1.Withot PV and ESS, Load=Power*Gbest
2.With PV, LdwithRESs=Load-Power generated by
PV
3.With PV and ESS, LdwithREES=Load-Power
generated by PV-Battery discharge
4.Calculate PAR using Equation 21

end
end

end
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FIGURE 5. Flowchart of BFA.

Weierstrass are employed in simulations. These test func-
tions are mathematically modelled as follows. The proposed
algorithm outperforms the existing algorithm’s fitness func-
tions like Non-continuous Rastrigin’s, Schaffer, and Weier-
strass. The obtained results presented for test functions Schaf-
fer, Weierstrasare, and Non-continuous Rastrigin’s, shown
in Figures 7, 8, and 9, respectively. Besides, the proposed and
existing algorithms are compiled for 20 iterations mean, and
standard deviation values are recorded using Schaffer, Weier-
strass, and Non-continuous Rastrigin’s benchmark functions.
The results are listed in Table 3.

f (x) = 0.5 +

Sin2
(

√

x21 + x22

)

− 0.5

(

1 + 0.001(x21 + x22 )
)2

(8)

∑D

i=1

(

y2i − 10cos(2πyi) + 10
)

yi =

{

xi |xi| < 1
2

round(2xi)
2 |xi| ≥ 1

2

(9)

∑D

i=1

(

kmax
∑

k=0

[

a2 cos
(

2πbk (xi + 0.5)
)]

)

−D

kmax
∑

k=0

[

ak cos
(

2πbk0.5
)]

a = 0.5, b = 3, kmax= 20 (10)

IV. SYSTEM MODEL

In this section, we presented the system model of our work.
We considered smart homes, in which a smart home is
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FIGURE 6. Flow Chart of our proposed HGPO algorithm.

TABLE 3. Results of the Proposed and Existing Algorithms for Benchmark Functions including Schaffer, Weierstrass, and Non-continuous Rastrigin’s for
20 Iterations.

denoted by v, which has different smart appliances. In the
electric utility companies (EUCs) section, we consider a
smart grid and a solar panel. In addition, for intelligent
appliances, we installed an EMC which will schedule the
appliances according to the pricing signal and electricity

generation. We assume the duration of one day in this work,
and the entire time interval is denoted by T . We have further
divided one day into sub-intervals denoted by t(1h). Figure 10
shows the system model of our work and figure 11 illustrates
the working flow diagram of our model.

139596 VOLUME 8, 2020



A. Imran et al.: Heuristic-Based Programable Controller for Efficient Energy Management Under RESs and ESS in SG

FIGURE 7. Performance evaluation of the proposed and existing
algorithms using benchmark Schaffer test function.

FIGURE 8. Performance evaluation of the proposed and existing
algorithms using benchmark Weierstrass test function.

A. MATHEMATICAL FORMULATION

In this section, we have formulated our objective function,
which is based on the reduction of electricity cost and PAR.
The constraints are also presented in (12) to (16). We propose
a MILP model for the scheduling of intelligent appliances.
In this section, we will also formulate the RESs(PV) and also
the ESS.

1) OBJECTIVE FUNCTION

Objective function is expressed as:

O = min
T
∑

t=1

(T tsh + T tns − (E t + ESS t )) × EPt (11)

constraints are:

Tns(t) + Tsh(t) = (E(t) + ESS(t) + φ(t)) (12)

FIGURE 9. Performance evaluation of the proposed and existing
algorithms using benchmark Non-continuous Rastrigin’s test function.

n
∑

a=1

η = LOT (a) (13)

n
∑

a=1

α ≤ η ≤ β (14)

φt ≤ KI (15)

0 < ESSmin < ESSmax, ∀tεT , (16)

The notations used in the objective function and all these
constraints are detailed in the upcoming sections.

2) Electricity COST

To define the electricity pricing of a day, many electricity
tariffs are available, like DAP, TOUP, PP, and RTP. In our
model, we used RTP. In RTP, the electricity price changes
every hour and remains constant for an hour. T EcP and EdP
shows the daily electricity bill of shiftable and non-shiftable
appliances, these are calculated in (17) and (18) respectively.

EcP =

24
∑

t=1

(

m
∑

M=1

(Ecm∈M (t) × X cm∈M (t) × PRTP(t))

)

(17)

EdP =

24
∑

t=1

(

n
∑

N=1

(Edn∈N (t) × Xdn∈N (t) × PRTP(t))

)

(18)

E totP = EcP + EdP , (19)

where X cm∈M (t) and Xdn∈N (t) represents the on/off states of
shiftable and non-shiftable appliances. M represent shiftable
appliances, while N represent non-shiftable appliances in
a particular time slot t . (19) is used to calculate the total
electricity cost. Where E totP denotes the total electricity cost.
EP(t) at any time slot t represents the electricity bill after
taking RESSs and ESS into consideration. It is calculated as;

EP(t) =

(

Ec(t)+Eb(t)−EPV (t)−SE(τ )
)

×PRTP(t). (20)
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FIGURE 10. System model.

FIGURE 11. Working flow diagram.
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where, τ represents the time slot between t20 to t24 having the
highest electricity bill. The ESS is discharged because the PV
is not available in those slots.

3) PAR

PAR is the ratio of peak load used in a time slot t and
the average of total load used over the scheduling horizon,
i.e., from t = 1 to t = 24. PAR tells us about the electricity
consumption behavior of a user, and the consumers’ PAR has
a direct relation to the operation of EUCs peak plants. So, it is
useful for both, EUCs and the consumers to minimize PAR
so that demand balance and power supply can be maintained.
For multiple users N, it can be calculated as:

PAR =
max(Etot (t,m))

1
T

N
∑

m=1

(

T
∑

t=1
Etot (t,m)

)
(21)

4) CARBON EMISSION

(22) represents the carbon emission in pounds. Where avgEP
represents the average amount of electricity bill per month,
while η shows the price per kwh. γ represents electricity
emissions factor, while m represents months in a year. Elec-
tricity emissions factor is equal to 1.37 and price per kwh
average is equal to 0.20 dollars.

CO2 =
avgEP

η × γ × m
(22)

5) USER COMFORT

The delay time of the appliance is calculated by (23). Where
undschd(t) represents the unscheduled time while Schd(t)
represents the scheduled time. Waiting time and electricity
are both related to UC. We calculate UC in terms of waiting
time.

Delay =

∑

|Unschd(t) − Schd(t)|
∑

(Schd(t))
(23)

6) SOLAR PANEL

As we know, the solar panel produces its power from the sun,
which is calculated as follows:

Ppv(t) = ηpv × Apv × Irr(t) × (1 − 0.005(Temp(t) − 25)),

(24)

where Ppv indicates the hourly produced energy by solar
panel. The efficiency and area of the solar panel are rep-
resented as ηpv and Apv, respectively. The terms Irr(t) and
Temp(t) denotes the solar irradiance and outside temperature
respectively, for time interval t .

B. STORAGE SYSTEM

This section will cover the energy storage system and their
formulas, which are proposed in this work. In our work,
we have two energy storage systems ESS.

FIGURE 12. Real Time Pricing (RTP).

1) ESS

As we know that ESS has certain constraints, like charg-
ing, the minimum level is denoted by ESmin and the
maximum level is denoted by ESmax, respectively. Also,
there are some limits for the discharging of ESS. The
depth of discharge (DOD) is considered to be 90%
in our work. The stored energy of ESS is expressed
as:

SE(t) = SE(t − 1) + k.ηESS .ESch(t) − k.ESdis(t)/ηESS ,

(25)

constraints are:

ES(t)ch ≤ ESmax, (26)

ES(t)ch < ESSupl, (27)

ESS(t)dis ≥ ESmin, (28)

where SE denotes the energy stored (Ah) at time t,
ESch shows the charging state and ESdis shows the dis-
charge state and ηESS shows the efficiency of ESS,
at time interval t and (26), (27) and (28) shows the
constraints.

V. RESULTS AND DISCUSSION

In this section, we have presented the simulation results of the
proposed HPEMC. In this system, the integration of RESs,
ESS, and the performance of the HGPO algorithm, is eval-
uated in three scenarios. The first scenario is without PV
and ESS, whereas, the second scenario is with PV only, and
the third scenario is with PV and ESS. For our simulations,
we used MATLAB.

To implement the proposed HPEMC, a user with 6 passive
appliances and an ESS is considered as a source. To sup-
port the prosumers’ load, we have taken the electric utility
companies (EUCs) power supply available for 24 hours per
day. The exogenic grid signals (RTP, forecasted temperature,
solar irradiance) used in the proposed HPEMC are illustrated
in figures 12, 13 and 14.

The power generation by PV system mainly depends
on solar irradiance and ambient temperature. We have
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FIGURE 13. Temperature.

FIGURE 14. Solar irradiance.

FIGURE 15. Estimated RE.

considered 90% of the total RE in any time slot of scheduling
time. Also, for charging the ESS, 30% in each time slot is
used of the 90% of RE. Figure 15 and 16 shows the estimated
RE and charging level of ESS.

A. SCENARIO 1

In this scenario, we will not use PV and ESS; instead, we will
just schedule the appliances by the scheduling algorithms.
As a result, we will discuss electricity cost, carbon emission,
and PAR.

FIGURE 16. Battery charging.

TABLE 4. Comparison of Scenario 1 Cost.

1) ELECTRICITY COST

Figure 17 illustrates the electricity cost of scheduled and
unscheduled load without ESS and PV. In BPSO, the max-
imum cost of electricity is 48 cents in the time slot 16.
In WDO, the maximum cost of electricity is 46 cents in the
time slot 23. While in the case of ACO, it is 38 cents in the
time slot 22. In HGPO, it is 52 cents in the time slot 18, while
in BFA, it is 44 cents in time slot 19. In GA based scheduled
load, it is 57 cents in the time slot 7. The performance of the
WDO algorithm in terms of electricity bill minimization is
better than other heuristic algorithms.

The overall electricity cost in unscheduled load is 715 cents
while using ACO, BPSO, WDO, GA, HGPO, and BFA are
665, 680, 582, 681, 691 and 590 cents, respectively. Over-
all, electricity cost shows that ACO, BPSO, GA, WDO,
HGPO, and BFA reduce the electricity cost by 6.99%, 4.89%,
4.75%, 17.60%, 3.35%, and 16.34%, respectively. Never-
theless, where complete cost minimization is concerned,
the WDO algorithm gives the best results when compared
with other algorithms in this scenario. The comparison of cost
in scenario one is shown in Table 4.

2) PAR

Figure 18 illustrates the PAR of the unscheduled and sched-
uled load. Results show that the proposed ACO algorithm
reduces PAR by 30.11%. BPSO, BFA,WDO,GA, andHGPO
also minimize the PAR by 12.5%, 14.55%, 8.33%, 20.83%,
and 16.66% respectively. Although these algorithms reduce
the PAR and avoid peak production, the GA and BFA algo-
rithm mostly shifts the users load to off-peak hours and build
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FIGURE 17. Cost reduction in scenario 1.

TABLE 5. Comparison of Scenario 1 PAR.

FIGURE 18. PAR reduction in scenario 1.

new peaks. The new peaks that are generated disturbs the
whole operational schedule of the electric utility companies
(EUCs) and the electric utility companies (EUCs) impose a
penalty on that user. However, the ACO and HGPO algo-
rithms uniformly distributes the load and achieves the desired
objective. The comparison of PAR in scenario 1 is shown
in Table 5.

3) CARBON EMISSION

The corresponding carbon emission of scheduled and
unscheduled load without ESS and PV, is illustrated
in Figure 19. Results show that carbon emission of heuristic

FIGURE 19. carbon emission reduction in scenario 1.

algorithms has efficiently been reduced when compared with
that of the unscheduled load. In GA, the value of maximum
carbon emission is 161 pounds in time slot 21. In the case of
HGPO, it is 155 pounds in time slot 22 and 19, while in the
case of WDO, it is 159 pounds in time slot 20. In BFA based
scheduling, it is 156 pounds in time slot 18, while in the case
of BPSO, it is 143 pounds in time slot 21 and 23. In the case
of ACO, it is 136 pounds in time slot 22 respectively.

The total carbon emission in unscheduled load using PV
and ESS is 3211 pounds. In the case of GA, HGPO, WDO,
BFA, BPSO and ACO, it is 2906, 2791, 2892, 2875, 2588 and
2445 pounds respectively. As a result, the total carbon emis-
sion is reduced by 9.49% in GA, 13.08% in HGPO, 9.93%
in WDO, 10.46% in BFA, 19.40% in the case of BPSO and
23.85% in the case of ACO. However, the ACO algorithm
gives the best result in reducing carbon emission in this
scenario. The comparison of carbon emission in scenario 1 is
shown in Table 6.

B. SCENARIO 2

In this scenario, the integration of only PV into the residential
area is calculated in terms of electricity bill, PAR and carbon
emission.

1) ELECTRICITY COST

Figure 20 illustrates the electricity cost of scheduled and
unscheduled load with PV only. In BPSO, the maximum cost
of electricity is 45 cents in the time slot 20 and 22. In WDO,
the maximum cost of electricity is 46 cents in the time slot
19. While in ACO, it is 42 cents in the time slot 20. In the
case of HGPO, it is 43 cents in the time slot 20. While in the
case of BFA, it is 44 cents in time slot 19. For the GA based
scheduled load, it is 39 cents in the time slot 8. The result of
BPSO algorithm in terms of electricity bill minimization is
better than other heuristic algorithms.
The overall electricity cost in unscheduled load is

687 cents, while using ACO, BPSO, WDO, GA, HGPO and
BFA are 588.45, 535, 610, 611, 584 and 608 cents, respec-
tively. Overall electricity cost illustrates that ACO, BPSO,
GA, WDO, HGPO and BFA minimizes the electricity cost
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TABLE 6. Comparison of Scenario 1 carbon emission.

TABLE 7. Comparison of Scenario 2 Cost.

FIGURE 20. Cost reduction in scenario 2.

by 13.44%, 22.12%, 11.06%, 10.93%, 14.99% and 11.49%,
respectively. Nevertheless, when complete cost minimization
is considered, the BPSO algorithm gives best results when
compared with other algorithms. The comparison of cost in
scenario 2 is shown in Table 7.

2) PAR

Figure 21 illustrates the PAR of unscheduled and sched-
uled load. Results show that the proposed ACO algorithm
reduces PAR by 34.38%. BPSO, BFA,WDO, GA and HGPO
also minimize the PAR by 9.90%, 27.27%, 22.72%, 21.77%
and 18.18%, respectively. Although, these algorithms reduce
PAR and avert peak creation, the WDO and BFA algorithms
mostly shifts the users load to off-peak hours and build new
peaks. These newly formed peaks disturb the whole opera-
tional schedule of the electric utility companies (EUCs) and
the electric utility companies (EUCs) impose a penalty on
the user. However, the BPSO and HGPO algorithms uni-

TABLE 8. Comparison of Scenario 2 PAR.

FIGURE 21. PAR reduction in scenario 2.

formly distribute the load and achieve the desired objec-
tive. The comparison of PAR in scenario 2 is shown
in Table 8.

3) CARBON EMISSION

The corresponding carbon emission of scheduled and
unscheduled load with PV only is illustrated in Figure 22.
The result shows that carbon emission of heuristic algorithm
is efficiently reduced when compared with unscheduled load.
In GA, the value of maximum carbon emission is 132 pounds
in time slot 20. In the case of HGPO, it is 127 pounds in time
slot 21, while in the case of WDO, it is 139 pounds in time
slot 20. In BFA based scheduling, it is 140 pounds in time slot
18, while in the case of BPSO, it is 117 pounds in time slot
21 and 23. In the case of ACO, it is 112 pounds in time slot 22
respectively.
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TABLE 9. Comparison of Scenario 2 Carbon emissions.

FIGURE 22. Carbon emissions reduction in scenario 2.

The total carbon emission in unscheduled load using PV
and ESS is 2722 pounds. In the case of GA, HGPO, WDO,
BFA, BPSO and ACO, it is 2411, 2293, 2498, 2510, 2103 and
2068 pounds respectively. As a result, the total carbon emis-
sion is reduced by 11.42% in the case of GA, 15.76% in
HGPO, 8.22% in WDO, 7.78% in BFA, 22.74% in the case
of BPSO and 24.02% in the case of ACO. However, the ACO
algorithm gives the best result in reducing carbon emission.
The comparison of carbon emission in scenario 2 is shown
in Table 9.

C. SCENARIO 3

In this scenario, the integration of ESS and PV into the local
area is evaluated in terms of electricity bill, PAR, carbon
emissions and UC.

1) ELECTRICITY COST

Figure 23 shows the electricity cost of schedule and unsched-
uled load with ESS and PV. Results shows that our pro-
posed algorithms (GA, BFA,BPSO, ACO, HGPO, WDO)
have scheduled load efficiently. The maximum electricity bill
in GA based scheduling is 39.2 cents in the time slot 8.
In BPSO, the maximum cost of electricity is 43 cents in the
time slot 3. In BFA, the value of maximum cost of electricity
is 62.6 cents in time the slot 8. While, in the case of WDO,
the maximum cost of electricity is 44 cents in the time slot 23.
In ACO based scheduling, it is 37 cents in time slot 7, while
in the case of HGPO, it is 37 cents in time slot 21.

TABLE 10. Comparison of Scenario 3 Cost.

TABLE 11. Comparison of Scenario 3 PAR.

The total bills observed while implementing heuristic algo-
rithm in unscheduled and scheduled loads are: 716 cents in
unscheduled, 533 cents in BPSO, 626 cents in GA, 605 cents
in WDO, 615 cents in BFA, 564 cents in ACO and 595 cents
in HGPO respectively. In contrast of overall electricity cost,
the BPSO, GA, BFA, WDO, HGPO and ACO algorithms
based HPEMCminimize electricity cost by 25.55%, 12.56%,
15.50%, 14.10%, 21.22% and 16.89% respectively. Here,
BPSO gives the best results when compared with other
algorithms. The comparison of cost in scenario 3 is shown
in Table 10.

2) PAR

Figure 24 illustrates the PAR of unscheduled and sched-
uled load. Results illustrate that the proposed GA, BPSO,
BFA, WDO, ACO and HGPO algorithms minimize the PAR
by 22.68%, 36.98%, 19.50%, 26.87%, 7.94% and 30.05%,
respectively. However, the BPSO algorithm reduces the PAR
substantially more than the other heuristic algorithms. The
WDO and GA mostly shifts the users load to off-peak hours
and builds new peaks. However, the BPSO and HGPO algo-
rithms distribute the load uniformly and achieve the desired
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TABLE 12. Comparison of Scenario 3 Carbon emissions.

FIGURE 23. Cost reduction in scenario 3.

FIGURE 24. PAR reduction in scenario 3.

objective. The comparison of PAR in scenario 3 is shown
in Table 11.

3) CARBON EMISSIONS

The corresponding carbon emissions of scheduled and
unscheduled load with ESS and PV is illustrated in Figure 25.
Results show that carbon emissions of heuristic algorithms
is being reduced more than that of unscheduled load. In GA
based scheduling, the value of maximum carbon emissions
is 129 pounds in time slot 19 and 21. In the case
of BPSO it is 112 pounds in time slot 23. The BFA
based scheduled load has maximum carbon emissions value

FIGURE 25. Carbon emissions reduction in scenario 3.

FIGURE 26. UC by ACO.

of 131 pounds in time slot 20, while in the case of
HGPO it is 123 pounds in time slot 18 and 21. In WDO
based scheduling, it is 132 pounds in time slot 22, while
in the case of ACO, it is 124 pounds in time slot 21
respectively.

The total carbon emissions in unscheduled load using PV
and ESS is 2626 pounds. In GA, BPSO, BFA, HGPO, WDO
andACO it is 2293, 2029, 2299, 2228, 2304 and 2234 pounds,
respectively. As a result, the total carbon emissions is reduced
by 12.68% in the case of GA, 22.73% in BPSO, 11.34%
in BFA, 15.15% in HGPO, 11.18% in the case of WDO
and 14.88% in the case of ACO. However, the BPSO algo-
rithm gives the best result in reducing the carbon emissions
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FIGURE 27. UC by HGPO.

FIGURE 28. UC by WDO.

FIGURE 29. UC by PSO.

when compared with all other heuristic algorithms. The
comparison of carbon emissions in scenario 3 is shown
in Table 12.

4) USER COMFORT

Electricity bill and waiting time, both are related to UC.
UC is calculated in terms of waiting time in this paper.
Waiting time is the time that user waits to turn on an appli-
ance. Users must operate their appliances according to the
desired scheduling, for lower electricity bill. If a user is more

TABLE 13. UC waiting time.

interested in reducing the cost, he will have to compromise
his comfort. Figure 26, 27, 28, 29, 30 and 31 illustrates the
average waiting time of ACO, HGPO, WDO, PSO, BFA
and GA algorithms. Results show that ACO have less wait-
ing time in comparison to other algorithms. GA and WDO
shows no waiting time in case of lights and water heater.
HGPO algorithm shows less than 1 hour waiting time in all
cases. PSO and BFA algorithms show some waiting time
in all cases. Table 13 shows the waiting time of all the
appliances.
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FIGURE 30. UC by BFA.

FIGURE 31. UC by GA.

VI. CONCLUSION

We proposed an energy management system to reduce the
electricity bill for the residential area.Minimization of carbon
emissions, reduction in PAR, and increasing UC are also the
peripheral outcomes of our work. We considered a smart
home that had different smart appliances. The smart home
was also integrated with RESs. Also, the energy storage
systemwas considered to utilize energy efficiently.Moreover,
we have solved the appliance scheduling problem by using
GA, WDO, BPSO, BFA, ACO, and HGPO algorithms. Sim-
ulation results verified that the proposed algorithm efficiently
schedule smart appliances. As a result, by implementing
our proposed algorithm, the electricity bill was minimized
by 25.55%, PAR reduced by 36.98%, and carbon emissions
reduced by 24.02%. In our future work, we will use different
algorithms and compare them with our proposed algorithm.
We will also use an electric vehicle for storage and wind
turbine as RESs.
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