
Heuristic-based Real-Time P2P Traffic Identification

Jagan Mohan Reddy, Chittaranjan Hota
BITS-Pilani Hyderabad Campus

Jawahar Nagar, Shameerpet, Hyderabad

Telangana, India 500 078

Email: p2011011,hota@hyderabad.bits-pilani.ac.in

Abstract—Peer-to-Peer (P2P) networks have seen a rapid
growth, spanning diverse applications like online anonymity
(Tor), online payment (Bitcoin), file sharing (BitTorrent), etc.
However, the success of these applications has raised concerns
among ISPs and Network administrators. These types of traffic
worsen the congestion of the network, and create security vulner-
abilities. Hence, P2P traffic identification has been researched ac-
tively in recent times. Early P2P traffic identification approaches
were based on port-based inspection. Presently, Deep Packet
Inspection (DPI) is a prominent technique used to identify P2P
traffic. But it relies on payload signatures which are not resilient
against port masquerading, traffic encryption and NATing. In this
paper, we propose a novel P2P traffic identification mechanism
based on the host behaviour from the transport layer headers. A
set of heuristics was identified by analysing the off-line datasets
collected in our testbed. This approach is privacy preserving as
it does not examine the payload content. The usefulness of these
heuristics is shown on real-time traffic traces received from our
campus backbone; where in the best case only 0.20% of flows
were unknown.

I. INTRODUCTION

With the rapid development of P2P technology, the P2P
traffic has accounted for 40-60% of Internet traffic [1] [2]
[3]. The composition of Internet traffic has been changing
rapidly in recent times. P2P traffic is a major contributor to
the size of Internet traffic in addition to WWW, FTP, Email
etc [4]. In recent years, the crack down on the use of P2P
has forced P2P applications to find out alternate ways (port
masquerading, relays, tunnelling, encryption etc) to hide their
traffic on the network. While there is an evidence that P2P
traffic is decreasing [5], it still represents a significant fraction
of the Internet traffic, and is perceived as wasteful of network
resources [6].

P2P traffic identification has attracted great attention re-
cently due to its’ massive adaptability within the network
users, and due to its’ ability to create severe security concerns.
Also P2P classification has emerged as a vibrant commercial
problem over the last few years. While many DPI products
have emerged in response to solve this problem [7], [8] a main
complexity of solving P2P classification remains the following:
new, non-standardized P2P protocols and clients keep gaining
popularity and consequently signatures have to be designed and
updated all the time. Moreover, most P2P clients and protocols
are now introducing intentional encryption and obfuscation to
avoid detection. Finally, and perhaps most importantly, DPI-
based products are not experiencing widespread deployments,
especially in India, and other developed countries, because of
their legal and ethical implications. Therefore, there is a dire
need to develop P2P classifiers that are payload oblivious, but

can still meet the accuracy and complexity constraints. The
objective of this paper is to improve the P2P traffic identifica-
tion accuracy based on the application profile or the connection
patterns of the host. We can successfully distinguish P2P traffic
from non-P2P traffic coming in or going out from a host using
the heuristics proposed in the work. The heuristics proposed in
this work achieve greater accuracy and minimal classification
time for identifying a host as a P2P host.

One of the early techniques to identification of traffic at
application level was based on port numbers. IANA [9] has
a list of registered port numbers like DC++ uses 411, 412,
and 1025-32000 port numbers for TCP connections; BitTorrent
uses 6881-6889 range of port numbers for both TCP and UDP
etc. This method is basic, straight forward and easy to detect
P2P traffic in a network. Most P2P applications have default
port numbers on which they function. With port based analysis,
it is easy to identify whether traffic is P2P or not. But it has
several limitations. Most of the P2P applications change their
default port numbers by allowing users manually to configure
whatever they like. Additionally, many newer P2P applications
begin to masquerade their port numbers with well-known port
numbers, such as port: 80. Hence, port-based analysis is less
effective in traffic identification.

Signature-based classification techniques to monitor traffic
passing through the network and examine the payload of each
packet which is already a known signature of P2P application.
This process is referred as Deep Packet Inspection (DPI).
There are several commercial and open-source tools available
to the research community to identify the P2P traffic, according
to signatures and these tools map few Bytes from every
packet payload written in some regular expression format. Few
of these include, L7-filter [10], Juniper’s Netscreen-IDP etc.
These tools monitor every packet payload and raise alerts when
the predefined signature is matched, e.g. the string “/announce”
exists in a packet on the Torrent P2P network. With this type of
classification technique we can overcome the demerits of port
based classification techniques. But, when P2P applications are
evolving continuously and their signatures can change, we also
need to keep monitoring and update new signatures observed.
However, this type of classification has limitations like, if the
P2P applications use tunnels or encrypted traffic, it is difficult
to detect it. This type of classification also violated privacy of
users.

A more recent classification technique uses statistical prop-
erties of network flows whose success lies heavily on the
training dataset and the Machine learning algorithms used
to classify the P2P traffic [11] [12] [13]. However, ensuring
accuracy and authenticity of the training sets is still an open

2015 International Conference on Emerging Information Technology and Engineering Solutions

978-1-4799-1838-6/15 $31.00 © 2015 IEEE

DOI 10.1109/EITES.2015.16

38

issue, particularly for flows that go undetected.

The objective of this work is to improve the P2P traffic
identification based on the application profile of the host. This
technique observes the communication patterns of an end-host
and it is important to understand how different applications
affect hosts. We have developed heuristics, based on the
application behaviour on an active host to differentiate P2P
and web traffic. In this work, we captured the traffic of P2P
and Web traffic in our test-bed. We extracted 5-tuples Source
IP, Destination IP, source port, destination port, protocol as
metrics from every network capture. Then, we analysed the
patterns of P2P and Web using MySql databases. The details
of our framework are explained in Section VI.

The rest of the paper is organised as follows: Section
II covers related work on host based identification schemes.
Section III describes differences between various P2P and
nonP2P applications. Section IV describes a framework for
P2P traffic identification and datasets used (generated on our
testbed and datasets collected from other sources). In section
V, we propose a minimal set of heuristics identified from the
datasets collected and describe their behaviour to help identify
a P2P host. Section VI describes our experimental results and
section VII concludes the paper.

II. RELATED WORK

Hurley et al. [4] proposed a set of heuristics for P2P traffic
and Web traffic identification by using host behaviour. They
could identify 90% of the flows accurately that go out and
come in to a host. The heuristics were developed by using
information like source host, destination host, connections
between the hosts, and the flow activity like how many packets
per flow etc.

Yan et al. [1] proposed P2P traffic identification scheme
based on both host behaviour and flow behaviour. First, they
identified whether a host is running a P2P application by
matching its’ behaviour with a set of predefined rules like
number of ports open, number of IPs connecting, number of
failed connections, etc. Next they refined this identification by
comparing the statistical features of each flow in the host with
several flow feature profiles like flow duration, flow volume
etc. The identification accuracy was above 90%.

John et al. [11] proposed heuristics to classify Internet
traffic based on network applications that include P2P appli-
cations along with other types of applications. The heuristics
used were based on connection patterns between two hosts.
Heuristics like usage of both TCP and UDP concurrently, a
particular port usage, ratio of IP/port pairs, etc. were used to
achieve identification accuracy of up to 99.8%.

Karagiannis et al. [14] proposed a traffic classification
approach based on host behaviour at the transport layer. They
looked at a multilevel approach to classify traffic, according to
the applications that generate them. Their traffic classification
approach uses host behaviour first and then social, functional,
and application behaviours. At the social level, their approach
identifies hosts with similar behaviour which is evident from
the interactions a host makes with other hosts. At a functional
level, it identifies what function a host plays in the network,
i.e. either a provider or a consumer of the service, or both. At

an application layer, they look for transport layer interactions
to identify the traffic.

Perenyi et al. [15] derived a set of heuristics from the robust
properties of P2P traffic collected or revealed from a traffic
aggregation. They also presented a traffic analysis based on
the behaviour of active users, the ratio between P2P users and
normal users etc. and observed that the daily profile of P2P
traffic intensity is less variable.

Naimul et al. [16] compared the web and P2P traffic
analysis using statistical measures and models like inter-
quartile (IQR), probability density function (PDF), cumulative
distribution function (CDF) and complementary CDF (CCDF).
They proposed three flow-level metrics: flow size, flow dura-
tion and flow inter-arrival time and three host-level metrics:
flow concurrency, transfer volume and geographic distribution.
They also identified that web flows are short-lived whereas P2P
flows are long-lived.

The heuristics developed in this work scores over other
related works in terms of the minimum number of packets
required to identify the host the behaviour, and minimum
number of heuristics achieve more than 99.8% accuracy for
identifying P2P host.

III. P2P AND NONP2P APPLICATIONS

In this section, we discuss the behaviour of two groups of
protocols, P2P and nonP2P. We have chosen popular P2P pro-
tocols like eMule, uTorrent, Skype and for nonP2P protocols
like HTTP(S), SMTP, FTP, Dropbox. To distinguish between
P2P and nonP2P, we developed a series of heuristics after
understanding the behaviour of these protocol.

A. NonP2P

These applications typically follow a client/server be-
haviour. The client always initiates a TCP connection and
the server responds to its’ request. A standard web browsing
connection (either HTTP or HTTPs) is accomplished by a
3-way handshake i.e. client initiates TCP SY N flag to a
web server over port 80 or 443 and then server replies with
TCP SY N − ACK flag. Then the client acknowledges back
with ACK flag. After the 3-way handshake is completed the
client requests the desired information from the server. Here,
the requesting host is always a client and responding host
is a server. This activity is common for most of the web
applications. There are few applications which are slightly
different in terms of using port numbers 80 and 443. File
transfer protocol (FTP) also is a client/server protocol. FTP
uses two control channels, one channel for control data that
the server accepts from the client over port 21 and the other
channel is utilized for data transfer from server to client
over port 20. Dropbox is a cloud based application that also
adopts client/server behaviour. A client host requests a Drobox
server to access the files over HTTPs and these files are
then downloaded into the local host machine. This protocol is
different from the FTP service in a way where it can sync
any shared file in the Local Area Network (LAN) without
connecting to the Dropbox server. It can also broadcast the
network over port number 17500 if the host enables the LAN
sync option.

39

Algorithm 1: hostAnalyser

Data: Heuristics as queries
Result: returns as flows
String query, flow ← null;
read the heuristics from text file;
read the database server path;
conn ← getConnection(db path);
while query �= null do

result ← excuteQuery(query);
while result �= null do

flow ← result.getString(db fields);

return flow;

B. P2P

P2P applications are different from the traditional client-
server architecture. The motivation behind the design of these
applications is to share files amongst the collaborating peers
over the IP layer. In this, a host can act as a client and also as
a server to maximize their file sharing benefits. In this section
we briefly discuss about the most common P2P networks like
Gnutella, eMule, Skype and μTorrent. These protocols never
generate any DNS queries once these are executed over a P2P
network, which is a major difference between P2P and nonP2P.

Gnutella was the first decentralized P2P network and it
came with the concept of Super peers. In this network every
host acts as a client as well as a server. To join the Gnutella
network, a host must send a request for a pre-defined server
namely Super-peer in the network which is already set-up
for the Gnutella client. Once the Super peer accepts the peer
request, then it can be the part of the Gnutella network. After
which it can find the information from the other hosts. To
search for a file in the network it initiates PING messages
to all of its neighbours. Who ever has the file will reply with
a PONG message over the UDP. Once the file is available
in the network, the host directly communicates to retrieve the
file over TCP.

eMule P2P application uses eDonkey network which is
based on the centralized sever concept. eDonkey network
forms a logical ring network where each peer is assigned
an ID based on a hash function. Once the client is part of
the network it will exchange information with all the servers.
Initially the client connects over TCP to log into the server.
The server uses another TCP connection to perform a client-to-
client handshake for accepting connections from other eMule
clients and then the sever closes the second connection. eMule
client and server both use UDP for keep-alive messages and
for enhancing the search [17].

μTorrent is a variant of BitTorrent client owned by
BitTorrent, Inc. The client needs a .torrent file to download a
file which contains a list of peer URLs called seeders. These
URLs are associated with a tracker server that is a centralized
component. The client connects to these tracker servers over
UDP or TCP. These servers only provide the information about
the seeders. Once the client finds the file from the seeders, the
data transfer begins from multiple peers over TCP connection.
Downloading peers are called as leechers.

Skype is a Voice over P2P (VoP2P) application. It uses P2P

host based
analyser heuristics

conversation
module

Storage

MySql

Fig. 1. Framework for P2P Traffic Identification

Academic Block Student Hostels
Distributed Systems

 Lab

Sniffer

Data storage

Internet

Firewall

Core switch
Cisco - 6500

Distribution switch

Info Sec
Lab

Fig. 2. Testbed for Data collection

networks to discover peers. It contains three main components,
i.e., Skye Client (SC), Skye Server (SS), and Super Nodes
(SNs) [18].

i. Skype Client (SC): SC or ordinary node is used for host
login with SS. Once it authenticates successfully with the
SS, this information is made available to the SNs.

ii. Skype Server (SS): Is a traditional central server that
maintains all the user’s account information.

iii. Super Node (SN): SNs are the end points of SCs which
are used to connect each other SCs. SNs can be designated
by Skype itself. SNs are very high-end systems with
a powerful CPU, enough memory and large network
bandwidth.

The SCs open randomly chosen TCP and UDP listening ports.
SCs bootstrap themselves by connecting to a SN over a UDP
connection with a fixed packet size. Then SN opens a TCP port
to exchange it’s information with SCs. Once SN recognizes an
SC, it allows it to login using a TCP connection. In this work
we have used SN data for the purpose of classification.

IV. FRAMEWORK FOR TRAFFIC IDENTIFICATION

The objective of our proposed technique is to improve the
P2P traffic identification accuracy based on the application
profile of the host. This technique observes the communication
patterns of an end-host and it is important to understand how
different applications affect hosts which we have discussed
in the previous section. We imported packet information into
the MySql database. Then, we analyse the connection patterns

40

TABLE I. APPLICATION WISE STATISTICS

Application Date
(captured/Obtained)

Pakets Flows Bytes

web 14 May, 2013 10534 K 137465 2810 M

Dropbox LAN 06 June, 2013 2389 K 133 182 M

FTP (control) 08 June, 2013 1096 K 7898 98 M

Smtp 24 September, 2012 49 K 658 40 M

eMule 02 August, 2013 20984 K 179235 2310 M

Frostwire 02 August, 2013 26766 K 771204 3150 M

Skype 23 October 2013 597 K 35145 2080 M

μTorrent 02 August, 2013 24176 K 526141 2710 M

Vuze 02 August, 2013 16270 K 580154 1830 M

of P2P and nonP2P. Figure 1 shows the framework of our
approach to develop the heuristics. We implemented a Java
interface to query the database and developed heuristics given
in Algorithm 1. In later sections, we discuss the usage of
our heuristics. Then flows are constructed using 5-tuple i.e.,
source IP, source port, destination IP, destination port and
protocol. TCP flows are separated by FIN,ACK or RST
flags, whereas UDP flows are terminated based on Timeout of
600 seconds. We have implemented a Java module to construct
flows which is given in Algorithm 2. The first for loop iterates
over the list of packets. If the packet is TCP with FIN or
RST flags set, then the TCP flow is added to the conversation.

In this section, we provide details of the datasets used in
this research and datasets obtained from other sources. We
independently collected network traces from our campus LAN
that is connected to the Internet by a 155 Mbps STM link.
We collected nonP2P (HTTP, HTTPs, and SMTP) applications
traffic and P2P applications traffic (Torrents, Gnuetlla) using
Wireshark [19] tools. Our dataset generation was performed
on the testbed which is shown in Figure 2. Due the privacy
concerns, we captured only first 130 Bytes of each packet. We
captured around 250 GB of data on our tetsbed. FTP dataset
was obtained from Lawrence Berkeley National Laboratory
(LBNLab) [20] which has no payload information and the IP
addresses were anonymized. Part of the P2P traces used in
our work was obtained from the University of Georgia (UGA)
[21]. Statistics of nonP2P and P2P application traffic in our
datasets is shown in Table I.

V. PROPOSED HEURISTICS

In this section we explain the P2P traffic heuristics based
on the host behaviour that were observed from the dataset
collected. Heuristics devised to contain some well-known port
number information as well. We have also derived tunable
thresholds to trigger application of our heuristics. We classify
the P2P traffic from the proposed heuristics and we also
identify the False Positives (FP). Our work in this paper differs
from other related works in terms of using lesser number of
packets in the flows. These heuristics are tested in real-time
with one minute interval by running both P2P and nonP2P
applications in the campus backbone. We have filtered few
other types of traffic seen on the campus LAN, i.e., services
like NETBIOS, NTP, DHCP, SSDP, and Link local from both
TCP and UDP protocols. The heuristics used are described as
below:

Algorithm 2: Conversation

Conv c;
HashSet< Conv > cset;
Map< String, Conv > ConvMap;
Conv: Conversation
getTstamp: gets the time stamp of the packet.
getSig: gets the flow signature.
getSIP, getDIP: gets the Source and Destination IP
addresses.
getSPort, getDPort: gets the Source and Destination
Port numbers.
Data: getConv(ArrayList < Packet > list) input is

a list of packets.
Result: Set< Conv > convSet; conversations in

convSet.
begin

cset ← new HashSet< Conv >()
ConvMap ← new HashMap< String, Conv >()
for Packetp ∈ list do

if ConvMap.containsKey(p.getSig()) then
if p.isTcp() and
(p.T cpflag.RST ||p.T cpflag.FIN) then

ConvMap.get(p.getSig()).addPacket(p)

else if p.isTcp() �= ∅ then
if p.getTstamp()-
ConvMap.get(p.getSig()).last ≥
udptimeOut then

c = Conv(p.getSIP(), p.getDtIp(),
p.getSPort(), p.getDPort(), p.isTcp())
c.addPacket(p)
cset.add(c)
ConvMap.put(p.getSig(), c);

else
ConvMap.get(p.getSig()).addPacket(p);

else
ConvMap.get(p.getSig()).addPacket(p);

else
c ← Conv(p.getSIP(), p.getDIP(),
p.getSPort(), p.getDPort(), p.isTcp())
c.addPacket(p); cset.add(c);
ConvMap.put(p.getSig(), c);

for Conv co ∈ cset do
co.updateValues(); co.freeSpace();

return cset;

A: P2P TCP/UDP protocols: This heuristic is based on the
fact that the P2P applications like Gnutella, Skype, etc.
use both TCP and UDP protocols. In most of the scenarios
the TCP is used for data transfers whereas UDP is used
for signalling messages. There may be an FP with this
heuristic with UDP like default LAN services. However
nonP2P applications make communication parallel over
TCP.

B: P2P Source Port and Destination Port: In general
all most all the P2P applications allow change in port
numbers or the application itself will use a random port

41

Fig. 3. Behaviour of Heuristic B

Fig. 4. Behaviour of Heuristic C

to signal the peer in the overlay. However, the P2P
application has the following property. Both source IP and
destination IP communicate with the same port over UDP
protocol. This property is unique for UDP, but not for
TCP. All flows to and from these hosts are classified as P2P.

C: P2P UDP/TCP port pairs: This heuristic is derived
from the above one (B). The fact that, P2P applications
use UDP for signalling or control messaging, any host
can communicate using a default port or an ephemeral
port over UDP on the destination side, the same port can
be assigned to TCP for data transfer. This property is
unique in nonP2P applications. All the TCP and UDP
flows directed to and from a host are classified as P2P
hosts. This heuristic can be applicable for both source IP
and destination IP pairs, if both of them are involved in
sharing of files in the overlay network. For example, a
host (source/destination) communicates on port XXXX
over UDP and for data transfer the other end opens same
port XXXX to TCP. This heuristic when used classified
Dropbox traffic wrongly as P2P traffic. This is because of
the Sync behaviour of Dropbox.

D: P2P UDP ports: This heuristic exploits port based
classification where the peers in the P2P network use
well-know ports like port 80 and 443 over UDP to
communicate outside the servers which can bypass the
firewall. In general, these ports are being used with TCP
connections for retrieving web contents. If any host uses
these port numbers to and fro, that host is marked as P2P
and all these flows are classified as P2P. Our experimental

Fig. 5. Behaviour of Heuristic D

results reveal that the P2P hosts use these ports quite
often in their lifetime.

E: P2P Unique IPs and Unique Ports: When the P2P client
initiates a connection in the network it signals multiple
peers. At this point, it opens multiple port numbers to
get the information about other peers over UDP and this
will continue till the desired information is obtained. In
our analysis, if a host is a P2P host, it must use TCP
and UDP and the number of unique destination IPs are
less than the number of unique ports and all flows are
classified as P2P. On the other-hand nonP2P applications
typically use multiple connections with a web server over
TCP. Typically, FTP and SMTP servers accept multiple
connections over the same port, but geographically, the
servers communicate distinct IPs and distinct port numbers
over TCP, which are marked as nonP2P hosts, i.e. the host
must use TCP and the number of unique IPs is less than
or equal the number of unique ports and the ratio of the
TCP packet count is one.

F: P2P TCP-UDP percentage: The ratio of TCP and UDP
define the number of packets that a host communicates
on both TCP and UDP divided by the total number of
packets transmitted. The fact that P2P uses both transport
protocols TCP and UDP, which is not the case with nonP2P
applications. We observed that the value of TCP percentage
and UDP percentage is less than one and every flow should
contain at least two packets.

VI. VALIDATION AND EXPERIMENT RESULTS

In this section we validate the performance of our heuristics
to identify P2P hosts in real-time. To validate our approach,
we implemented the algorithms in Java using jNetPcap library
[22]. The experimental results obtained on the dataset are given
in this section. We created flows from network traces for both
TCP and UDP. Our validation dataset contains 2091879 flows
of P2P and 146154 flows of nonP2P. The heuristics that we
derived are applied to these data to identify P2P and nonP2P
traffic.

To verify the correctness of our heuristics, we constructed
graphs using JUNG library [23] from the dataset. Figure 3
describes our second heuristics which says that P2P hosts
use the same port numbers over UDP and some of the P2P
hosts use bidirectional communication (e.g. 124.147.102.101,

42

Fig. 6. Detection Rate of P2P traffic in Flows

221.29.226.1 and so on). Similarly, our third heuristics where
same port numbers being used over TCP and UDP is as
shown in Figure 4. Figure 5, describes the P2P hosts that
use default port numbers 80 and 443. By running through
heuristics from A-F, the result is promising for identifying P2P
hosts while eliminating misclassification of the nonP2P hosts.
The average detection rate is found to be more than 99%. The
amount of unknown traffic is around 0.2%. The total number
of unclassified flows, for Vuze is about 0.01%, μTorrent is
about 0.01%, Skype is about 0.84%, Frostwire is about 0.02%
and eMule is about 0.04% as shown in Figure 6. Total 594
flows remain unclassified as P2P traffic out of 2091879.

VII. REAL-TIME ANALYSIS

Our objective is to identify P2P and nonP2P flows even if a
host uses both applications simultaneously. In this section we
discuss the effectiveness of our heuristics to identify a host as a
P2P or nonP2P in the form of traffic flows based on a specific
time period. For this purpose we consider, a flow to have
at least two packets in UDP. For TCP only packets carrying
payload are used. We assumed, if any host uses the default
port number 80 over TCP then it is treated as nonP2P traffic.
We experimented measuring the heuristics for different values
for a time window of duration W from 1 to 2 minutes. For
the time window W = 1, we captured both P2P (torrents) and
nonP2P (youtube) originating from a host. From the captured
file we had 238 flows of 210 are UDP flows and 28 are TCP
flows. Out of 238 flows our heuristics classified 218 flows as
P2P. Similarly, for the time duration of 2 minutes we had 379
flows out of 289 flows are UDP and 90 of them are TCP. The
heuristics A-F classified 341 as P2P.

VIII. CONCLUSION

In this work we proposed a new set of heuristics to identify
a host as a P2P host based on its connection patterns. The
proposed heuristics do not require any payload signatures. Our
experimental result shows that the proposed rules are able
to classify the P2P hosts effectively and suggested heuristics
are promising. The dataset used as realistic in nature and we
verified our approach in a real-time scenario too. We also
presented the comprehensive behaviour analysis of our P2P
hosts. Further, our approach has minimal heuristics which
can be deployed easily in real-time. The unclassified traffic
is about 0.2% of the P2P traffic. However, our approach can
only identify broad P2P applications rather than different P2P

applications. Our future work will focus on further investiga-
tion of fine-grained P2P traffic classification.

ACKNOWLEDGMENT

This work was supported by a grant from Tata Consultancy
Services (TCS) under research scholar program, India.

REFERENCES

[1] J. Yan, Z. Wu, H. Luo, and S. Zhang, “P2p traffic identification based on
host and flow behaviour characteristics,” Cybernetics and Information
Technologies, vol. 13, no. 3, pp. 64–76, 2013.

[2] “ipoque inc.” 2008. [Online]. Available: http://www.ipoque.com/
sites/default/files/mediafiles/documents/internet-study-2008-2009.pdf

[3] “Sandvine report on p2p,” 2008. [Online]. Available: https://www.
sandvine.com

[4] J. Hurley, E. Garcia-Palacios, and S. Sezer, “Host-based p2p flow
identification and use in real-time,” ACM Transactions on the Web
(TWEB), vol. 5, no. 2, p. 7, 2011.

[5] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Ja-
hanian, “Internet inter-domain traffic,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, pp. 75–86, 2011.

[6] J. Seibert, R. Torres, M. Mellia, M. M. Munafo, C. Nita-Rotaru, and
S. Rao, “The internet-wide impact of p2p traffic localization on isp
profitability,” Networking, IEEE/ACM Transactions on, vol. 20, no. 6,
pp. 1910–1923, 2012.

[7] “Procera pl10000 dpi solution.” [Online]. Available: http:
//www.proceranetworks.com/products/packetlogic-hardware-platforms/
pl10000.html

[8] “Cisco sce 8000 series service control engine.”
[Online]. Available: http://www.cisco.com/en/US/products/ps9591/
tsd-products-support-series-home.html

[9] “Iana.” [Online]. Available: http://www.iana.org

[10] “l7-filter.” [Online]. Available: http://l7-filter.sourceforge.net

[11] W. John and S. Tafvelin, “Heuristics to classify internet backbone traffic
based on connection patterns,” in Information Networking, 2008. ICOIN
2008. International Conference on. IEEE, 2008, pp. 1–5.

[12] J. M. Reddy and C. Hota, “P2p traffic classification using ensemble
learning,” in Proceedings of the 5th IBM Collaborative Academia
Research Exchange Workshop. ACM, 2013, p. 14.

[13] P. Narang, J. M. Reddy, and C. Hota, “Feature selection for detection
of peer-to-peer botnet traffic,” in Proceedings of the 6th ACM India
Computing Convention. ACM, 2013, p. 16.

[14] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel
traffic classification in the dark,” in ACM SIGCOMM Computer Com-
munication Review, vol. 35, no. 4. ACM, 2005, pp. 229–240.

[15] M. Perényi, T. D. Dang, A. Gefferth, and S. Molnár, “Identification
and analysis of peer-to-peer traffic,” Journal of Communications, vol. 1,
no. 7, pp. 36–46, 2006.

[16] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt, “A
comparative analysis of web and peer-to-peer traffic,” in Proceedings
of the 17th international conference on World Wide Web. ACM, 2008,
pp. 287–296.

[17] Y. Kulbak, D. Bickson et al., “The emule protocol specification,” eMule
project, http://sourceforge. net, 2005.

[18] S. A. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer
internet telephony protocol,” arXiv preprint cs/0412017, 2004.

[19] “Wireshark,” 2012. [Online]. Available: http://wiki.wireshark.org/Tools

[20] “Lbnl/icsi enterprise tracing project,” 2005. [Online]. Available:
http://www.icir.org/enterprise-tracing/download.html

[21] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining for
unwanted p2p traffic,” Journal of Information Security and Applications,
2014.

[22] “jnetpcap,” 2013. [Online]. Available: http://jnetpcap.com

[23] J. OMadadhain, D. Fisher, S. White, and Y. Boey, “The jung (java
universal network/graph) framework,” University of California, Irvine,
California, 2003.

43

