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Abstract A truck scheduling problem for container transportation in a local area
with multiple depots and multiple terminals including containers as a resource for
transportation is addressed. Four types of movements of containers as inbound full,
outbound full, inbound empty and outbound empty movements as well as the time
windows at both the origin and the destination are considered. The total operating
time of all trucks in operation is taken as the optimization criterion that has to be
minimized. The problem is mathematically modeled based on a preparative graph
formulation and falls into an extension of the multiple traveling salesman problem
with time windows (m-TSPTW). The window partition based solution method for the
m-TSPTW in Wang and Regan (Transp Res Part B: Methodol 36:97–112, 2002) is
modified so that its computation time is reduced greatly. The experiments based on
a number of randomly generated instances indicate that the modified method is quite
fast and the quality of solutions is relatively high for the m-TSPTW. These experi-
ments also demonstrate that our approach is able to generate high-quality results for
the equivalent truck scheduling and inland container movement problem in container
drayage operations.
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1 Introduction

Container transportation plays an increasingly important role in international logistics
(see, e.g., Günther and Kim 2006; Stahlbock and Voß 2008). Freight transportation by
containers can be briefly described as follows. First, cargo is packed within a container
at a customer’s place. Then, the container is transported to a terminal by truck and
delivered to another terminal by train or by vessel. Finally, the container is delivered
to its receiver by truck and unpacked.

The container movement by truck between a customer’s location and a container
terminal is also called drayage operation (Macharis and Bontekoning 2004). Usually,
the container transportation by truck is necessary in containerized logistics since ves-
sels and trains cannot provide a door-to-door service. Additionally, container drayage
operation involves further activities such as packing/unpacking of containers. Dray-
age operations and especially container truck transportation account for a significant
portion of the total transportation cost (Cheung et al. 2008). As a consequence, it is
very important to improve the efficiency of container transportation between ports
and customers’ places. The optimization of such transportation processes leads to the
truck scheduling problem in container drayage operation.

There are a number of papers about transportation optimization for container dray-
age operation. For example, Namboothiri and Erera (2008) studied a management
problem of a fleet of trucks that provided transportation service of containers to a
port with an appointment-access system. Cheung et al. (2008) built an attribute-deci-
sion model to investigate a cross-border drayage problem, using Hong Kong port as
an example. Tjokroamidjojo et al. (2006) presented an optimization-based method to
study the benefits and costs of sharing load information in advance of the pick up and
delivery of containers. Wen and Zhou (2007) developed a genetic algorithm (GA) to
solve a container vehicle routing problem (VRP) in a local area from the perspective
of terminals. Coslovich et al. (2006) investigated a container drayage operation with
the present and future operating costs minimized. See also Namboothiri (2006) and
Ileri (2006) for further studies of container drayage operation problems.

In particular, truck routing and scheduling problems in container drayage operation
have also been studied. Imai et al. (2007) formulated a container drayage problem as
a pickup- and delivery problem (PDP) and solved the problem by using Lagrangian
relaxation. Chung et al. (2007) built several mathematical models of container truck
transportation problems with different cases, such as the case of single commodity and
the case of multiple commodities. Jula et al. (2005) combined the pickup and delivery
nodes to formulate the truck transportation problem as a multiple traveling salesman
problem with time windows (m-TSPTW).

Most of the existing models did not consider empty containers as a transporta-
tion resource required to move freight. Recently, Caris and Janssens (2009) investi-
gated the pre- and end-haulage of intermodal container terminals. Zhang et al. (2009)
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considered a truck scheduling problem in which empty containers are considered as a
transportation resource. However, Caris and Janssens (2009) and Zhang et al. (2009)
assume that there is a single depot or a single terminal, respectively.

In this paper, a truck scheduling problem in container drayage operation with mul-
tiple depots and multiple terminals is studied. Empty containers are considered as a
transportation resource. We deal with an optimization problem to determine efficient
truck schedules satisfying all container transportation demands. The total operating
time of all the trucks carrying containers is used as an optimization criterion to be
minimized. The problem is graphically formulated and then falls into a multi-depot
asymmetric m-TSPTW. We modify the solution method in Wang and Regan (2002)
that introduces window partitions and that was inspired by the previous literature
(Levin 1971; Appelgren 1971, 1969) to solve the truck scheduling problem. The mini-
mum partitioning width is estimated based on the maximum number of sub loads. The
over-constrained and under-constrained sub problems are solved only once, which
can reduce the needed computation time greatly. The performance of the proposed
method is investigated and compared with a reactive tabu search (RTS) algorithm by
computational experiments.

The remaining part of this paper is organized as follows. The truck scheduling
problem is described in Sect. 2, formulated as a directed graph in Sect. 3 and then
mathematically modeled in Sect. 4. A heuristic based on the window partition method
to obtain near optimal schedules is developed in Sect. 5, tested and compared with
existing methods by numerical examples in Sect. 6. The paper is concluded in Sect. 7.

2 Truck scheduling problem

2.1 Problem definition

In this paper, a trucking company with trucks and empty containers is considered. The
company handles a number of transportation tasks of containers between terminals
and customers’ places. We deal with the truck scheduling problem of the trucking
company in a local area for a fixed time horizon, typically one day.

It is assumed that there are several depots in which empty containers can be stacked
and where the trucks can be parked. Additionally, there are several terminals in the
area and the terminals in this paper can be maritime ports or railway hub stations
to which trucks transport full and empty containers from customer’s places and vice
versa.

There are two types of containers, inbound and outbound containers. The contain-
ers located at the terminals that need to be moved (to the depots or their receivers) are
called inbound containers. Reversely, the containers located at the depots or custom-
ers’ places that need to be delivered to the terminals are called outbound containers.
Moreover, each type of containers can be divided into full and empty containers.

Thus, there are four types of containers demanding for transportation tasks that
the company should carry out: inbound full (IF), outbound full (OF), inbound empty
(IE) and outbound empty (OE) containers. First, an inbound full container is initially
located at a terminal. It must be picked up by a truck at the terminal, delivered to its
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receiver, dropped off, and unpacked. After an inbound full container is completely
handled at its destination, we obtain an empty container and have to move it to a
depot or another alternative location by a truck. Secondly, an outbound full container
is actually some freight that will be transported in a container and is located at a cus-
tomer’s place. Thus, we should deliver an empty container to the customer’s location,
pack the freight with the container and deliver it to the specified terminal. Thirdly, an
inbound empty container is also initially located at a terminal. It should be picked up
at the terminal and transported to a depot or another alternative location. Finally, an
outbound empty container means that an empty container should be delivered to the
specified terminal.

In general, the inbound/outbound full containers cause two regular transportation
tasks in container transportation but the transportation tasks of inbound/outbound
empty containers happen because of trade imbalance between hub areas. In an export-
dominant area, additional empty containers are needed. That is why empty containers
are imported from import-dominant areas thus having a lot of inbound empty contain-
ers at such terminals. In the reverse case, we have a lot of outbound empty containers.
All transportation tasks considered in this paper are based on the number of containers
(loads) and we do not consider less than container load (LCL) freight.

Some transportation tasks may involve several containers. However, these trans-
portation tasks are decomposed into loads so that each load corresponds to a single
container.

We use origin and destination of transportation instead of terminals and customers’
places in order to easily describe the problem. The destination of an inbound full load is
its receiver and the origin of an outbound full load is its shipper. The origin of inbound
full and empty loads is the corresponding terminal. The destination of outbound full
and empty loads is also the corresponding terminal. The origins and destinations of
the four types of container transportation tasks are summarized in Table 1. The origin
of outbound empty loads and the destination of inbound empty loads are not defined
by the problem data and their determination is part of the optimization process. Com-
pared to a PDPTW, this means that some transportation requests might change their
attributes as a result of the optimization process. For the truck scheduling problem in
container drayage operation, not only optimal routes for the vehicles have to be found
but also the origin and/or the destination of some transportation requests have to be
chosen in a consistent and optimal way. This is one of the reasons why the problem at
hand cannot be considered and solved as a usual PDPTW. Additional reasons will be
given in Sect. 3.

All the terminals and customers’ places (receivers/shippers) have a time window
for each load but the depots have no time window. As a result, all inbound/outbound

Table 1 Origins and destinations of transportation types

IF OF IE OE

Origin Terminal Shipper Terminal ?

Destination Receiver Terminal ? Terminal
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full loads have two time windows but inbound/outbound empty loads have only one
time window.

A series of activities corresponding to the origin of a load should be started during
its origin time window. For an inbound full load, these activities are the picking up of
the container at the terminal and the transportation to the receiver. For an outbound full
load, these activities are the dropping off of an empty container, packing the freight
in it, picking up the packed container at the shipper’s location and delivering it to
the terminal. For an inbound/outbound empty load, this activity is picking up and
dropping off the empty container, respectively. Similarly, another series of activities
corresponding to the destination of a load should be started during its destination time
window. For an inbound full load, these activities are dropping off the full container,
unpacking it, and picking up of the emptied container. For an outbound full load, this
activity is dropping off the container at the terminal.

We focus on the truck scheduling problem for a given period and want to deter-
mine: (a) where to deliver the empty containers released after inbound full/empty loads,
(b) where to pick up the empty containers for outbound full/empty loads, and (c) in
which order and by which truck the loads should be carried out. The objective is to
minimize the total operating and waiting time at the shippers/receivers’ locations of
all trucks in operation.

Further assumptions and the parameters are stated in Sects. 2.2 and 2.3, respectively.

2.2 Assumptions

i. The trucking company personnel know all the transportation tasks in advance of
the beginning of the time horizon.

ii. The traveling time between any two locations is given as a constant.
iii. All depots have enough empty containers and enough space for empty containers

and trucks.
iv. All trucks are identical and all containers are homogeneous, i.e., we only consider

40-foot dry containers. One truck can be used to carry one container at one time.
v. All trucks are initially located at the depots. Each truck should be sent to a depot

after all its loads are finished. However, it is unnecessary for a truck to be sent to
its original depot.

vi. All containers should be delivered directly to their destinations. In other words,
a truck cannot be interrupted while it has begun but not finished a load.

2.3 Parameters

m: number of depots
n: number of loads
Ki : initial number of trucks located at depot i(i = 1, . . . , m) at the start of the horizon
Hi : location of depot i(i = 1, . . . , m)

Pi ∈ {‘IF’, ‘OF’, ‘IE’, ‘OE’}: type of load i(i = m + 1, . . . , m + n). Types ‘IF’,
‘OF’, ‘IE’ and ‘OE’ represent inbound full, outbound full, inbound empty and out-
bound empty loads, respectively
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Oi : origin location of load i(i = m + 1, . . . , m + n)

Di : destination location of load i(i = m + 1, . . . , m + n)

[aOi , bOi ]: origin time window of load i(i = m + 1, . . . , m + n) where aOi and bOi

are the earliest and latest limits of the window, respectively. aOi ≤ bOi

[aDi , bDi ]: destination time window of inbound/outbound full load i(Pi ∈ {‘IF’,
‘OF’}).aDi ≤ bDi

tOi : operation time of the series of activities corresponding to the origin of load
i(Pi ∈ {‘IF’, ‘OF’}).tOi ≥ 0
tDi : operation time of the series of activities corresponding to the destination of load
i(Pi ∈ {‘IF’, ‘OF’}).tDi ≥ 0. Furthermore, aOi + tOi ≤ bDi so that the load i is
feasible if Pi ∈ {‘IF’, ‘OF’}
t (i, j): travel time between locations i and j. The locations can be the origin and
destination of loads, or the depots
t : time to pick up or drop off a container

3 Directed graph formulation

3.1 Introduction of the graph

The truck scheduling problem in this paper is different from the classical VRPs and
traveling salesman problems (TSPs) (see Toth and Vigo 2002). First, empty contain-
ers are a transportation resource in this paper and should be prepared to transport
outbound freight in advance. Regarding inbound, we have new empty containers after
the inbound full containers are delivered to their receivers. Secondly, the delivery
location of the inbound empty containers and the pick-up location of the outbound
empty containers are to be determined optimally. On the contrary, all starting and
arrival locations in the classical VRPs or TSPs are assumed to be given.

Therefore, a directed graph G = {V, A} is introduced to formulate the truck sched-
uling problem mathematically. The set of nodes is V = VD

⋃
VC . Here, VD and VC are

the sets of start/return nodes and load nodes, respectively. A = {(i, j)|i ∈ VD, j ∈ VC ;
or i ∈ VC , j ∈ VD

⋃
VC } is the arc set.

For a uniform formulation, we define the destination of inbound empty loads and
the origin of outbound empty loads as the corresponding terminal. That means, for a
given inbound or outbound empty load, the origin and the destination are the same.

The graph G is based on activities. All the determinate activities independent of the
truck schedule are denoted by the nodes. All the indeterminate activities dependent
on the truck schedule are denoted by the arcs. In the graph formulation, the process
of solving the considered problem, which means finding the optimal arcs, simulta-
neously means to solve the transportation problem and to determine the indeterminate
activities. Arcs connect one load node to another node, or one start/return node to one
load node. However, there is no arc between two start/return nodes.

The detailed definition and attributes of the nodes and arcs are stated in Sects. 3.2
and 3.3, respectively. The graph formulation is modified in Sect. 3.4 and demonstrated
by a simple example in Sect. 3.5 finally.
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3.2 Nodes

Each start/return node i ∈ VD is related to a depot i(i = 1, . . . , m), corresponding to
the initial start from and the final return to the corresponding depot. The only attribute
of a start/return node is the initial number of trucks that are located at the depot.

A load node i ∈ VC means a series of activities of the corresponding transportation
type. If Pi = ‘IF’ it means picking up the container i at its origin, delivering it to its
destination, dropping it off, unpacking, and again picking up the emptied container; if
Pi = ‘IE’ it means picking up the inbound empty container i; if Pi = ‘OF’ it means
dropping off the empty container, packing the freight with the container, picking up
the packed container, delivering it to its destination, and dropping it off; if Pi = ‘OE’
it means dropping off the outbound empty container i.

The reason why we use the same index i for depots (i = 1, . . . , m) and loads
(i = m + 1, . . . , m + n) is that both a depot and a load are related to a node.

According to the definition of load nodes, two time windows, i.e., the origin and des-
tination time windows, have been imposed on the activities on each inbound/outbound
full load node. Therefore, the two time windows of a load node i(Pi ∈ {‘IF’, ‘OF’})
should be combined. First, the activities on the node i(Pi ∈ {‘IF’, ‘OF’}) should be
started during its own time window [aOi , bOi ] according to their definition. Secondly,
these activities must be started before the time bDi − tOi so that there is enough time
for the activities at the origin. Thirdly, these activities should be started after the time
aDi − tOi if possible such that waiting at the destination before the time aDi is avoided.
As a result, the time window [ai , bi ], and service time τi , of the node i ∈ VC , can be
obtained as follows.

ai =
{

min (max (aOi , aDi − tOi ) , bOi ) , if Pi ∈ {‘IF’, ‘OF’}
aOi , if Pi ∈ {‘IE’, ‘OE’} (1)

bi =
{

min (bOi , bDi − tOi ) , if Pi ∈ {‘IF’, ‘OF’}
bOi , if Pi ∈ {‘IE’, ‘OE’} (2)

τi =
{

max (aDi − bOi , tOi ) + tDi , if Pi ∈ {‘IF’, ‘OF’}
t, if Pi ∈ {‘IE’, ‘OE’} (3)

3.3 Arcs

An arc (i, j) ∈ A is defined as the transfer from node i to node j and also consists
of a variety of activities. These activities mainly include the movement from the des-
tination of the previous load to the origin of the next load, corresponding to the time
formulated in the form of t (•, •). In some cases, these activities also include picking up
or dropping off a container, corresponding to the time t. Furthermore, the truck should
be sent to a depot to pick up (or drop off) an empty container if both the nodes i and j
are outbound loads (or inbound loads), that is, Pi ∈ {‘IF’, ‘IE’}, Pj ∈ {‘IF’, ‘IE’} or
Pi ∈ {‘OF’, ‘OE’}, Pj ∈ {‘OF’, ‘OE’}. Because there are several depots, the depot
with the minimum total traveling time is chosen. The amount of time consumed by
these activities is called the transfer time of the arc. The transfer time of an arc (i, j),
denoted by τi j , is shown in Table 2.
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Table 2 Transfer time of arcs

From node Transfer time τi j

To node To node To node
j ∈ VD j

(
Pj ∈ {‘IF’, ‘IE’}) j

(
Pj ∈ {‘OF’, ‘OE’})

i ∈ VD – t (Hi , O j ) t + t (Hi , O j )

i(Pi ∈{‘IF’, ‘IE’}) t (Di , H j ) + t min
k=1,...,m

t (Di , O j )

(t (Di , Hk ) + t (Hk , O j )) + t

i(Pi ∈{‘OF’, ‘OE’}) t (Di , H j ) t (Di , O j ) min
k=1,...,m

(t (Di , Hk ) + t (Hk , O j )) + t

Notice that the four types of loads are merged into two types during the calculation
of the transfer time of arcs, as shown in Table 2. It can be found from Sect. 3.2 that both
the first and the last activities of an inbound full load node is picking up, which is also
the same as the only activity of an inbound empty load node. The previous state of these
two types of load nodes is the same and the posterior state of these two types of load
nodes is also the same. As a result, the types ‘IF’ and ‘IE’ can be merged when the trans-
fer time of arcs is considered. Similarly, the types ‘OF’ and ‘OE’ can also be merged.

According to the definition, we pickup and immediately drop off an empty con-
tainer at the same location if Pi = ‘IF’, Pj = ‘OF’, and if Di is the same location
as O j . These activities as pickup and drop off are redundant. However, this is a very
trivial problem since the probability of such case is quite tiny and the time to pick up
(or drop off) a container is much shorter than the other operating time and travel time.
Moreover, if the definition is changed to avoid this trivial problem, the four types of
load nodes could not be merged. Therefore, the formulation of the transfer time of
arcs would become much more complex; see Zhang and Yun (2008) for an example.

3.4 A modification of the graph

No time window is imposed on the arcs. Therefore, the activities on an arc (i, j) can
be started immediately after all activities on the node i are finished. As a result, the
service time of a node i(i ∈ VC ) is transferred to and combined with the transfer time
of the arc (i, j) ∈ A. The new transfer time of an arc (i, j) is denoted by Ti j . Hereafter,
the service time of nodes is discarded.

Ti j =
{

τi j , if i ∈ VD, j ∈ VC

τi + τi j , if i ∈ VC , j ∈ VD
⋃

VC
(4)

3.5 A simple example

In this subsection, a simple example is introduced to illustrate the graph formulation.
The truck scheduling problem proposed in this paper is formulated as a directed

graph. There are m start/return nodes and n load nodes in the graph G. Each start/return
node i ∈ VD has Ki trucks initially. The activities on each load node i ∈ VC should
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Fig. 1 An example for the graph formulation

be started during the window [ai , bi ]. The transfer time of an arc (i, j) ∈ A is Ti j .

Each route starts from a start/return node, visits several load nodes and returns to
any start/return node. The objective of the problem is to find a number of routes with
minimum total length, so that each load node is visited once on a route of a truck (i.e.,
each load is performed by a truck) while the maximum number of trucks able to start
in a start/return node i(i = 1, . . . , n) is limited by Ki . In the original transportation
problem, an inbound full container generates an empty container at the receiver’s loca-
tion. If the next node is another inbound (full or empty) container, then the generated
empty container will be delivered to a suitable depot. If the next node is an outbound
container, then the generated empty container will be delivered to a terminal (out-
bound empty) or a shipper’s location (outbound full). A simple example of the graph
formulation is shown in Fig. 1. The example has two depots, corresponding to the two
start/return nodes represented by ellipses in Fig. 1. Initially there are 2 trucks at depot
1 and 3 trucks at depot 2. Three containers need to be transported, corresponding to
the three load nodes represented by rectangles in Fig. 1. The activities on the first load
node (node 3) should be started between the time 8:00 and 9:00. The transfer time
of the arc (3, 5) is 40. There is no arc from node 5 to node 3, which means that the
transfer time is too long and hence the arc is infeasible.

4 Mathematical model

The following decision variables are introduced.

xi j =
{

1, if arc (i, j) ∈ A is included in the solution
0, otherwise

yi : time when the first activity on the node i ∈ VC is started
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The problem can be formulated as the following mathematical model based on the
graph G formulated in Sect. 3.

Model O:

min
∑

i∈VC

∑

j∈VD

(
yi + Ti j

)
xi j −

∑

i∈VD

∑

j∈VC

(
y j − Ti j

)
xi j (5)

Subject to

∑

j∈VC

xi j ≤ Ki , ∀i ∈ VD (6)

∑

j∈VD
⋃

VC

xi j =
∑

j∈VD
⋃

VC

x ji = 1, ∀i ∈ VC (7)

ai ≤ yi ≤ bi , ∀i ∈ VC (8)

yi + Ti j − y j ≤ (
1 − xi j

)
M, ∀i ∈ VC , j ∈ VC (9)

xi j ∈ {0, 1} , ∀ (i, j) ∈ A (10)

yi : real variables, ∀i ∈ VC (11)

In the objective function (5), (yi + Ti j )xi j means the time when a truck finally
returns to a depot if xi j = 1(i ∈ VC , j ∈ VD).

∑
i∈VC

∑
j∈VD

(yi + Ti j )xi j means
the summation of the times when the trucks have returned to the depots. Similarly,∑

i∈VD

∑
j∈VC

(y j − Ti j )xi j means the summation of the times when the trucks are
initially starting from the depots. Therefore, the objective function (5) is equal to the
total operating time of all the trucks in operation.

Constraint (6) means that the number of trucks that are starting from each depot
should not exceed the number of the available trucks. Constraint (7) means that each
load node should be entered and left exactly once. Constraint (8) is the time window
constraint. In constraint (9), yi + Ti j − y j ≤ 0 if xi j = 1. There is no direct relation-
ship between yi and y j if xi j = 0. Therefore, constraint (9) updates the start time of
load nodes along trips. Notice that the decision variable yi increases along the route.
Therefore, constraint (9) can also eliminate sub tours among load nodes. Additionally,
constraints (7) and (9) guarantee that all trucks are initially located at a depot and
finally return to a depot. Here, M is a sufficiently big constant. Constraints (10)–(11)
state the types of the decision variables.

Using the formulation in this section the truck scheduling problem falls into an
extension of the classical m-TSPTW (refer to Bektas 2006). This extension of
m-TSPTW has the following features: (a) there are multiple start/return nodes in
the m-TSPTW; (b) the trucks do not need to return to their initial start/return nodes;
(c) the problem is asymmetric since Ti j �= Tji for any two nodes i and j ; and (d) the
objective function differs from the objective functions of the classical m-TSPTW.
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5 Solution method based on window partition

The truck scheduling problem in the previous section is NP-hard since it is an extension
of the NP-hard problem m-TSPTW. A series of solution methods have been devel-
oped to solve some variants of VRPs (e.g., Pisinger and Ropke 2007). Even though
the TSPTW is a special case of VRP with time windows (VRPTW), the best approach
to the VRPTW is not always suitable to the TSPTW (refer to Jula et al. 2005).

Meta-heuristics such as GA and tabu search are widely used to solve similar prob-
lems. However, the computation time to obtain near-optimum solutions is usually a
little long. For example, Jula et al. (2005) developed a hybrid GA method to solve a
variant of m-TSPTW. The CPU times to solve the instances with 50 nodes and 100
nodes are 191.9 and 1,876 s, respectively.

In this paper, a window-partition based method (WPB method) inspired by Wang
and Regan (2002) is developed to solve the truck scheduling problem. The equivalent
model after window partition is formulated in Sect. 5.1. A feasible solution and a
lower bound are described in Sects. 5.2 and 5.3, respectively. The implementation of
the method is described in detail in Sect. 5.4.

5.1 Window partition

If the time windows of load nodes are partitioned into several parts, an equivalent
model can be obtained (Wang and Regan 2002), which is suitable for the application
of the WPB method. Model O in Sect. 4 can be reformulated as follows.

Let ω be the set of all the sub loads (partitioned loads). The load number of a sub
load i is denoted by δ(i). The load set VC in Model O is replaced by the sub load set
ω. The time window [ai , bi ] and decision variables xi j and yi , which are defined in
the set VC in Model O, are redefined in the set ω. Furthermore, when referring to the
transfer time of an arc (i, j), we use δ(i) or δ( j) if i or j belongs to the set ω.

The following model after window partition is equivalent to Model O.
Model WP:

min
∑

i∈ω

∑

j∈VD

(
yi + Tδ(i), j

)
xi j −

∑

i∈VD

∑

j∈ω

(
y j − Ti,δ( j)

)
xi j (12)

Subject to

∑

j∈ω

xi j ≤ Ki , ∀i ∈ VD (13)

∑

j∈VD
⋃

ω

xi j =
∑

j∈VD
⋃

ω

x ji , ∀i ∈ ω (14)

∑

i∈VD
⋃

ω

∑

j∈ω
δ( j)=k

xi j = 1, ∀k ∈ VC (15)

ai ≤ yi ≤ bi , ∀i ∈ ω (16)
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yi + Tδ(i),δ( j) − y j ≤ (
1 − xi j

)
M, ∀i ∈ ω, j ∈ ω (17)

xi j ∈ {0, 1} , ∀ (i, j) ∈ A (18)

yi : real variables, ∀i ∈ ω (19)

The objective function (12) in Model WP is equal to the objective function (5) in
Model O. Constraint (13) is related to (6). Constraints (14) and (15) correspond to
constraint (7). Constraint (14) means that an arc should leave a sub load node i ∈ ω if
and only if an arc enters the sub load node. In other words, a sub load node i ∈ ω can
neither be the first nor the last node of a route. Constraint (15) means that exact one
sub load should be visited for each load. Constraints (16)–(19) are related to (8)–(11).
In (18), A = {(i, j)|i ∈ VD, j ∈ ω; or i ∈ ω, j ∈ VD

⋃
ω}.

5.2 Feasible solution

If we only consider the latest limit of each time window of sub load nodes in Model
WP, several feasible arcs are excluded and the problem becomes an over-constrained
problem of Model WP (Wang and Regan 2002). A feasible solution of Model WP can
be found by solving the following over-constrained model.

Because we only consider the latest limit of each time window, the decision var-
iable yi (i ∈ ω) is discarded and replaced by bi . Therefore, Model WP becomes the
following over-constrained model.

Model OC:

min
∑

i∈ω

∑

j∈VD

(
bi + Tδ(i), j

)
xi j −

∑

i∈VD

∑

j∈ω

(
b j − Ti,δ( j)

)
xi j (20)

Subject to

xi j
(
bi + Tδ(i),δ( j) − b j

) ≤ 0, ∀i ∈ ω, j ∈ ω (21)

Constraints (13)–(15), (18) (22)

The objective function (20) and constraint (21) are similar to the objective function
(12) and constraint (17), respectively. Notice that they are automatically linearized.
The constant M is useless hereafter.

5.3 Lower bound

If the earliest limit of the time window of the node i(i ∈ ω) and the latest limit of the
time window of node j ( j ∈ ω) are considered for each arc (i, j), several infeasible
arcs of Model WP are included. Therefore, the problem becomes under-constrained
(Wang and Regan 2002). It is possible to find a lower bound of Model WP by solving
the following under-constrained model.

The decision variable yi (i ∈ ω) and hence constraints (16) and (19) of Model
WP are discarded. The decision variable yi (y j ) in the objective function (12) and
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constraint (17) are replaced by ai and b j for the “from” node and “to” node of the
arc (i, j), respectively. The following model, which is similar to Model OC, can be
obtained.

Model UC:

min
∑

i ∈ ω

∑

j∈VD

(
ai + Tδ(i), j

)
xi j −

∑

i∈VD

∑

j∈ω

(
b j − Ti,δ( j)

)
xi j (23)

Subject to

xi j
(
ai + Tδ(i),δ( j) − b j

) ≤ 0, ∀i ∈ ω, j ∈ ω (24)

Constraints (13)–(15), (18) (25)

5.4 Implementation

The general idea of the WPB method is as follows. We can find a feasible solution of
Model WP by solving Model OC and a lower bound of Model WP by solving Model
UC, respectively. The ratio of the lower bound to the objective value of the feasible
solution, so called UC/OC ratio, can indicate the level of the quality of the obtained
solution. Additionally, Model WP is equivalent to Model O. Therefore, we can solve
the truck scheduling problem in this paper by solving Model OC and test the solution
quality by solving Model UC.

Model O, as well as Model WP, is a mixed integer programming model. However,
Model OC and Model UC are pure integer linear programming models. As a result,
it is much easier to solve Model OC and Model UC than to directly solve Model O.
Additionally, if the width of windows is smaller, the quality of the obtained solution
is better. Therefore, the windows of nodes are partitioned into smaller parts before
Model OC is solved.

Wang and Regan (2002) implemented the solution method based on iteration. The
partitioning width at each time of iteration is shown in Table 3. The windows are
partitioned and then Model OC (and Model UC) is solved for several times. However,
the result of the previous iteration does not affect the next iteration in the numerical
experiment. In other words, iterations may be performed independently of each other
and each iteration can be considered separately.

In general, the smaller the partitioning width, the higher the UC/OC ratio, and the
better solution we can obtain. On the other hand, if the partitioning width is too small,
the number of sub loads is too large and then, the computation time is too long and
too much memory is required.

Table 3 Partitioning width in Wang and Regan (2002)

Iteration 1 2 3 4 5 6 7 8 9 10 11 12

Width (h) 2 1.75 1.5 1.25 1.00 0.75 0.6 0.5 0.4 0.3 0.2 0.1
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d

Time window of a load

Time windows of  sub  loads
1 2 3 4 5 6

Fig. 2 An illustration of windows partition

Therefore, we modified the solution method in Wang and Regan (2002) as follows.
We should estimate firstly the maximum number of sub loads in Model OC and Model
UC within a reasonable time. Then, the minimum partitioning width can be roughly
calculated from the total window width, i.e., the windows are partitioned only once and
Model OC and Model UC are also solved once. As a result, we need much less com-
putation time than the iteration method in Wang and Regan (2002). Let the maximum
number of sub loads be n, then the minimum partitioning width is as follows.

d = 1

n

∑

i∈VC

(bi − ai ) (26)

Figure 2 illustrates how the windows are partitioned. The time window of the given
load in the figure is partitioned into six parts based on the minimum partitioning width
d. Correspondingly, the load is replaced by the six sub loads. The time windows of all
the loads are partitioned based on d one by one.

6 Numerical experiments and results

In this section, the performance of the proposed method is tested and its performance
is compared with existing methods by numerical experiments. Even though it is very
important for truck transportation problems in an inland area, relatively little research
has been carried out on the m-TSPTW (Jula et al. 2005). Especially, it is not easy
to find suitable benchmark instances about the m-TSPTW in the existing literature.
Furthermore, the mathematical model built in this paper differs from the classical
m-TSPTW models. Therefore, we generate a number of instances in order to test and
compare the performance of the developed solution method with existing methods.

The generation of instances is briefly introduced in Sect. 6.1. The fundamental
features of the solution method, including the relationship between the partitioning
width and the performance are analyzed in Sect. 6.2. Further experiments and analyses
about the problem are presented in Sect. 6.3. Finally the comparison with a tabu search
approach is presented in Sect. 6.4.

6.1 Generation of instances

A Matlab function is developed in order to generate truck scheduling instances using
Excel and Matlab R2006b by the Mathworks Inc. First, we set the values of the model
parameters shown in Table 4. Then, a truck scheduling instance represented by the
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Table 4 Parameters in the
generation of instances

Parameter Meaning of the parameter

num_D Number of depots

num_T Number of terminals

num_C Number of customers (shippers and receivers)

num_IF Number of inbound full loads

num_OF Number of outbound full loads

num_IE Number of inbound empty loads

num_OE Number of outbound empty loads

width Width of the pick up and delivery time windows

graph model is randomly generated and saved in an Excel file. The time windows are
partitioned based on a developed macro in Excel file.

The generation of instances is briefly introduced. First of all, the locations of the
depots, terminals and customers are generated uniformly in the Euclidean plane with
a length and width equal to 180 minutes’ distance by truck.

The loading/unloading time of a container is assumed to be 5 min (Chung et al.
2007). The pack/unpack time of an inbound/outbound container is generated uni-
formly in the range from 5 to 60 min. The traveling time between any two locations
can be calculated by the distances in the time plane. We generate the lower bound of
the pick up time window of each load uniformly in the range from 0 (8:00 a.m.) to
240 min and the upper bound according to the width. The delivery time window of
each load is similarly generated but the lower bound should be reasonable according
to the corresponding pick up window and the origin time.

6.2 Analysis of model parameters

6.2.1 Analysis of UC/OC ratio

In this subsection, the meaning of the UC/OC ratio is illustrated by a simple example.
A small-sized instance (Instance 1) with 2 depots, 3 terminals, and 10 loads (contain-
ers) is generated using Matlab. The partitioning width is set to 5 min. We solve the
Model OC and Model UC using Lingo 11.0 by LINGO Systems Inc on a personal
computer with Pentium® double CPU (3.40 and 3.39 GHz) and 0.99 GB memory. The
generator memory limit is set as 256 MB. Also, we directly solve the instance (Model
O) using a RTS algorithm. The RTS algorithm (refer Sect. 6.3.2) is coded in Matlab
R2006b.

The following result is obtained:

– For Model OC, the objective value = 2,438 min, the computation time = 1.87 s
– For Model UC, the lower bound = 2,388 min and the computation time = 1.97 s
– The UC/OC ratio is 0.979 (2,388/2,438).
– For the RTS algorithm, the best objective value is 2,431 min.
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Fig. 3 The best solution of Instance 1

– In this case, the feasible solution obtained from the WPB method is the same as
the best solution obtained from the RTS algorithm. The solution is shown in Fig. 3.

The numerical result can be analyzed as follows. On one hand, the lower bound in
Model UC is less than (or equal to) the optimum value of the original problem (Model
O) according to its definition. On the other hand, the objective value in Model OC
is larger than (or equal to) the one in Model O. For example, the objective value of
Model OC (2,438) is larger than that obtained from the RTS algorithm (2,431) in
Instance 1. An efficient ratio of heuristics in performance is normally defined as the
exact optimum value divided by the obtained objective value. Therefore, the following
relations can be obtained

efficient ratio = optimum value of Model O

obtained objective value of Model O

≥ optimum value of Model O

optimum value of Model OC

≥ optimum value of Model UC

optimum value of Model OC
= UC/OC ratio (27)

Inequality (27) indicates that the efficient ratio is larger than (or equal to) the
UC/OC ratio that is used to evaluate the solution quality of the WPB method. Thus,
because we use the UC/OC ratio, the performance of the proposed method is under-
estimated.

6.2.2 Effect of the partitioning width

In this subsection, we investigate the effect of the partitioning width to the solution
quality of the proposed algorithm. Two instances, Instances 2 and 3 with 30 loads and
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50 loads, respectively, are developed. We obtain the solutions of these instances using
the WPB method with different partitioning widths. The partitioning widths and the
corresponding number of sub loads are shown in Table 5.

The computation times of Model OC for Instances 2 and 3 are shown in Fig. 4. The
computation times of Model UC for Instances 2 and 3 are shown in Fig. 5. The figures
show that as the partitioning width becomes smaller, the number of sub loads in both
instances becomes larger and as the number of sub loads increases, the computation
time of Model OC and Model UC also increases. If the number of sub loads is even
more increasing, the generator memory limit in Lingo must be set to an even larger
number.

The UC/OC ratio is shown in Fig. 6. Figure 6 shows the reasonable result that
a smaller partitioning width leads to a better solution. Therefore, we only need to
solve the instances once with the minimum partitioning width estimated well in a real
world application. The result indicates that it is possible to find solutions of the truck

Table 5 Partitioning width and the number of sub loads used in Instances 2 and 3

Partitioning width ( min) 10 9 8 7 6 5 4 3

Number of sub loads in Instance 2 279 311 346 392 457 544 674 894

Number of sub loads in Instance 3 499 557 623 703 822
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Fig. 4 Computation time of Model OC in Instances 2 and 3
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Fig. 5 Computation time of Model UC in Instances 2 and 3
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Fig. 6 The UC/OC ratio of Instances 2 and 3

scheduling problems solving the instances with about 800 sub loads within a reason-
able time.

6.3 Further experiments and analyses

6.3.1 Analyses about the width of windows

According to Wang and Regan (2002), a sub-fleet of trucks typically consists of less
than 20 trucks and is able to handle at most 75 containers in a day. Therefore, 20
instances (Instances from 4 to 23) with such realistic size are generated. All the 20
instances have 5 depots, 3 terminals and 75 loads. The window width used to generate
the time windows is ranged from 1 to 4 h. The minimum partitioning width of each
instance is estimated assuming that the maximum number of sub loads is about 800.
All 20 instances are solved by means of the developed WPB method. The data of these
instances and the numerical results are shown in Table 6.

Because the partitioning width is estimated, the actual number of sub loads is about
800.

Table 6 indicates that the WPB method generates the solutions in reasonable time.
For all of the instances a feasible solution is found in 3 min. The computation times
are less than 2 min in most of the cases. Model UC is also solved in about 2 min. The
Model UC is only used to test the quality of the feasible solution and hence does not
need to be solved in all cases. Thus, we can find reasonable solutions by the proposed
WPB method within 2 min in most cases.

From the values of UC/OC ratio in Table 6, we can evaluate the solution quality
of the proposed WPB method. In most cases the UC/OC ratio is greater than 0.95
(from 0.943 to 0.99) and the difference between the optimal objective values and the
objective values from the proposed WPB method is almost less than 5%.

Thus, it can be concluded that the proposed method can be used to solve the truck
scheduling problems in this paper with reasonable solution quality and computa-
tion speed. Additionally, Table 6 indicates that the performance of the WPB method
depends on the window width of the loads. We can obtain better solutions if the win-
dow widths of loads are smaller. The UC/OC ratio of the five instances with 1 h of
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Table 6 Results of 20 realistic-sized instances with WPB method

Window Instance Number of sub Solving time of model Solving time of model The UC/OC
width (h) loads OC ( min:s) UC ( min:s) ratio

1 4 719 01:24.4 01:09.9 0.989

5 844 02:01.4 01:44.9 0.990

6 756 02:12.6 02:21.5 0.991

7 771 02:44.3 01:36.9 0.988

8 810 01:24.8 01:45.4 0.983

2 9 738 01:48.5 01:47.6 0.973

10 765 01:58.4 01:56.8 0.979

11 803 02:06.7 01:20.8 0.980

12 752 01:23.2 01:12.4 0.962

13 740 01:08.5 01:10.1 0.975

3 14 895 02:30.6 03:15.3 0.960

15 845 01:52.1 02:04.9 0.953

16 840 02:20.1 02:30.6 0.943

17 903 02:44.1 03:19.7 0.980

18 881 01:57.4 02:03.4 0.974

4 19 824 01:26.9 01:35.3 0.952

20 852 01:46.9 01:45.9 0.948

21 804 02:07.0 02:10.8 0.954

22 831 02:00.6 01:38.0 0.968

23 895 02:29.3 03:32.2 0.948

window width is more than 0.98. It is greater than the UC/OC ratio (around 0.95) of
the five instances with 4 h of window width.

6.3.2 Supersession of containers

It can be seen from the results of the experiments that the inbound and outbound con-
tainers usually supersede each other in the route of trucks. This can be found in both,
small-sized and large-sized instances.

There are six inbound full containers, three outbound full containers and one out-
bound empty container in Instance 1 in Sect. 6.2.1.The start/return nodes are numbered
from 1 to 2 in Fig. 3. Therefore, the load nodes numbered from 3 to 8 correspond to
inbound containers, while the load nodes numbered from 9 to 12 correspond to out-
bound containers. Inbound containers and outbound containers supersede each other
in all the routes in Fig. 3 which consist of two load nodes. For example, a truck initially
located at depot 2 visits load node 3 (inbound full) and then load node 11 (outbound
full), and returns to depot 1. The empty container generated at the receiver of load 3
is directly delivered to the shipper of load 11.

The detailed routes of the large-sized instances cannot be listed one by one as in
Fig. 3 because of limited space. Five typical routes in the result of Instance 23 are
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Table 7 Typical routes in the
result of Instance 23

Number Route

1 ©1 -7(I)-©3

2 ©1 -56(O)-77(I)-©4

3 ©1 -17(I)-67(O)-19(I)-©4

4 ©2 -79(I)-52(O)-24(I)-75(O)-©2

5 ©4 -33(I)-61(O)-76(I)-64(O)-22(I)-©1

shown in Table 7. There are five depots in Instance 23, denoted by the circled number
from 1 to 5. There are 40 inbound full containers numbered from 6 to 45, there are
30 outbound full containers numbered from 46 to 75, and there are 5 inbound empty
containers numbered from 76 to 80. The letters I and O in the brackets represent
inbound containers and outbound containers, respectively.

The above result is quite natural because the inbound container followed by an
outbound container, and vice versa, could result in much save in transportation time.

6.4 Comparison with other meta-heuristics

So far, we have analyzed the performance of the proposed WPB method by numerical
examples. Now we compare the performance of the proposed method with that of
existing methods. Many meta-heuristics such as tabu search and GA have also been
widely used to solve such NP-hard problems as the TSPTW. Since it is not possible
to compare the proposed method with all existing methods, we should select the best
known method for a comparison. But there are only few research results studying
optimization problems which are closely similar to the proposed problem of Sect. 4.
Zhang et al. (2009) developed a RTS algorithm to solve the m-TSPTW. RTS, pro-
posed by Battiti and Tecchiolli (1994), is an improved version of tabu search and has a
mechanism to automatically take balance between intensification and diversification.
Therefore, the performance of the WPB method is compared with the RTS algorithm
of Zhang et al. (2009).

We select eight typical instances (Instances 7, 8, 12, 13, 17, 18, 22 and 23) from the
20 instances in Sect. 6.3.2. These eight instances have different window widths. We
solve the eight instances using the RTS algorithm in Zhang et al. (2009) setting the
maximum size of neighborhood to 100. The maximum iteration number is set to 1,500.
All other parameters in the RTS algorithm are the same as in Zhang et al. (2009). The
computation time and objective values of the two methods are shown in Figs. 7 and
8, together. The computation times of the WPB method in Fig. 8 are the computation
times of Model OC.

Figure 8 indicates that the objective values found by the WPB method and the RTS
algorithm are almost equal. For the instances 8, 12, 13, 17, 18 and 23, the WPB method
obtains slightly better results. Additionally, Fig. 7 shows that the computation times
of the WPB method are much shorter than those of the RTS algorithm. The direct
comparison of the run-times of the two different approaches is admittedly difficult to
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Fig. 8 Objective values of the RTS algorithm and WPB method

draw since the RTS approach is coded in Matlab and Matlab is much slower than an
identical RTS algorithm written in C would be. But, as a total result, the proposed
WPB method has proved its worth and can successfully be used to solve the complex
and important truck scheduling problem in container drayage operation.

7 Conclusions

In this paper, we investigated a container transportation problem with truck deploy-
ment in a local area with shippers, receivers, multiple depots, and multiple terminals.
Double-side time windows of loads at both the origin and the destination are consid-
ered. Empty containers are resources required for transportation and they are to be
delivered to customer’s locations or to one of the terminals. The optimization criterion
minimized by the truck scheduling problem is the total operating time of all the trucks
in operation. First, we built a mathematical model based on a preparative graph for-
mulation. The optimization problem is an extension of the classical m-TSPTW. The
method in Wang and Regan (2002) is modified, and a WPB method is proposed for
solving the truck scheduling problem in this paper. The proposed method has been
tested with randomly generated instances and has been compared with a RTS algo-
rithm. The numerical results show that the presented method renders good quality
solutions within reasonable computation times and that its total performance is better
than that of the existing RTS algorithm.
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For further studies, the proposed WPB methods can be applied to other optimization
problems in container transportation area, for example to truck scheduling problems
with non-homogeneous containers and trucks or to multimodal transportation prob-
lems for trains and ships including time windows.
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