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Heuristic Edge Server Placement in Industrial
Internet of Things and Cellular Networks

Shahrukh Khan Kasi, Mumraiz K. Kasi, Kamran Ali, Mohsin Raza,

Hifza Afzal, Aboubaker Lasebae, Bushra Naeem, Saif ul Islam, Joel J. P. C. Rodrigues

Abstract—Rapid developments in industry 4.0, machine learn-
ing, and digital twins have introduced new latency, reliability, and
processing restrictions in Industrial Internet of Things (IIoT)
and mobile devices. However, using current Information and
Communications Technology (ICT), it is difficult to optimally
provide services that require high computing power and low
latency. To meet these requirements, mobile edge computing
is emerging as a ubiquitous computing paradigm that enables
the use of network infrastructure components such as cluster-
heads/sink nodes in IIoT and cellular network base stations
to provide local data storage and computation servers at the
edge of the network. However, optimal location selection for
edge servers within a network out of a very large number of
possibilities, such as to balance workload and minimize access
delay, is a challenging problem. In this paper, the edge server
placement problem is addressed within an existing network
infrastructure obtained from Shanghai Telecom’s base station
dataset that includes a significant amount of call data records
and locations of actual base stations. The problem of edge
server placement is formulated as a multi-objective constraint
optimization problem that places edge servers strategically to
balance between the workloads of edge servers and reduce access
delay between the industrial control center/cellular base-stations
and edge servers. To search randomly through a large number of
possible solutions and selecting those that are most descriptive of
optimal solution can be a very time-consuming process, therefore,
we apply the genetic algorithm and local search algorithms (hill-
climbing and simulated annealing) to find the best solution in
the least number of solution space explorations. Experimental
results are obtained to compare the performance of the genetic
algorithm against the above-mentioned local search algorithms.
The results show that the genetic algorithm can quickly search
through the large solution space as compared to local search
optimization algorithms to find an edge placement strategy that
minimizes the cost function.

Index Terms—Industrial Internet of Things (IIoT), Mobile edge
computing, Edge server placement, Genetic Search, Data Mining.

I. INTRODUCTION

THE previous decade has witnessed substantial growth in

the Internet of Things (IoT) and mobile devices. A steep

rise in the number of IoT and cellular devices is expected

to continue in the future [1]. With mobile and IoT devices

permeating in every field of life, services such as robotics,

automation, assembly and production, machine intelligence,
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and virtual reality are becoming more and more widespread.

These services, whether targeting IIoT in industry 4.0 [2]-[3]

or infotainment and emergency services in cellular networks

[4], [5]-[7] require high computing power and are sensitive to

delays in communication networks [8].
IIoT promises to provide an agile and intelligent manu-

facturing process by proactively monitoring the state of the

network using an enormous amount of data collected from

information technologies and advanced sensors. The big data

generated in a manufacturing process can be utilized using

data mining techniques to predict and self-heal the outages,

optimize the production process, and increase the lifetime of

devices. However, due to the limited processing power and

battery lifetimes of IoT and mobile devices, services such

as intelligent processes (feed-back control system, predictive

analysis via data mining or machine/deep learning models)

and delay-sensitive applications (emergency systems) demand

a change in current IoT and mobile technology architecture.

To meet these requirements, cloud computing, a widely used

computing paradigm, is used to deliver such services to mobile

and IoT devices [9], [10], [11].
Cloud-centric architecture has surfaced as the predominant

model of cloud computing in IoT. In the cloud-centric ar-

chitecture, cloud platforms installed at the top layer provide

virtually unlimited data storage and computational capacity. In

the context of IoT, a large number of devices connected to a

remote centralized cloud may introduce delay in the network

due to the remote location of the cloud and processing of a

large number of requests from IoT devices [12], [13].
To overcome the problem of large delays in cloud-centric

computing, various network architecture variations and meth-

ods are proposed [14]. The key idea is to bring processing

closer to the IoT devices, thus introducing distributed control

systems. Edge computing provides a scalable solution to ad-

dress the issues introduced by cloud-centric architecture by al-

lowing data mining and processing at the edge of the network.

Edge computing is implemented at the network infrastructure

between the cloud and IoT devices as a computational layer

where the virtualized application resources are leveraged.
Several edge architecture variations are proposed in litera-

ture including Cloudlet, Fog computing and Multi-access Edge

Computing (MEC). In all of the above-discussed solutions,

edge servers are placed near the edge of the network, pro-

viding a mid-tier between network devices and cloud. Edge

servers, with high computation and data storage capabilities,

are placed near the end devices to offer low latency and high

throughput. However, there are several practical complexities

in implementing edge solutions. Due to budget limitation and

hardware requirements for edge servers, only a limited number

of edge servers can be placed in a network. To optimally place
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edge servers in a network, out of a very large number of

possible placement strategies, is a challenging problem.
A pragmatic solution is to reuse the existing network

infrastructure as edge servers (collocating edge servers with

mobile network base stations or IoT cluster-heads or access

points) [15]. Collocating edge servers with already existing

network infrastructure reduces the number of possible edge

server placement strategies. Moreover, to maintain low latency

and high throughput, it is imperative to take user traffic

patterns, the resulting edge server’s workload, and access

delay into consideration. Therefore, requiring for an edge

placement solution to search through a large number of

possible solutions and selecting those that are most descriptive

of optimal solution which can be a very time-consuming

process. Therefore, we apply the genetic algorithm and local

search algorithms (hill-climbing and simulated annealing) to

find the best solution in the least number of solution space

explorations.
In edge computing, proximity to the edge server is desired

for edge devices. It leads to reduced delay in the network. The

resulting deployment of edge servers should also be performed

in a way that the workload in the system is balanced. To the

best of our knowledge, this is the first study that has used

genetic algorithm and local search optimization techniques to

provide a solution for the problem of edge server placement.

The main contributions of the research are:

• The problem of edge server placement is addressed

using existing network infrastructure. The low latency

and workload balancing requirements in edge server

placement strategies are formulated as a multi-objective

constraint optimization problem.

• Genetic programming and local optimization algorithms

(hill-climbing and simulated annealing) are applied to

find the best solution. Experimental results are obtained

using Shanghai Telecom’s base station dataset to compare

the performance of these optimization techniques.

The rest of the paper is organized as follows. We review the

related work in Section II. The edge server placement problem

is presented in Section III followed by the proposed genetic

algorithm and local search optimization algorithms discussion

in Section IV. The performance comparison of algorithms are

discussed in Section V. Finally, the concluding remarks are

provided in Section VI.
II. RELATED WORK

Previous studies on the placement of edge servers have

mostly focused on finding the candidate location for edge

servers as cluster heads using clustering algorithms. In some of

these works, k-means clustering was used along with mixed-

integer quadratic programming [16], multi-objective constraint

optimization problem [17], and mixed-integer linear program-

ming [18].
In [19], the authors presented an edge provisioning algo-

rithm that finds the ideal edge locations in physical networks.

However, the authors have not discussed the problem of

workload balancing between the edge servers that may lead to

a higher workload for some edge servers while others remain

unused. In [16], the authors use k-means algorithm in conjunc-

tion with mixed-integer quadratic programming to provide a

solution to the edge placement problem. The authors proposed

an approximate solution to the mixed-integer quadratic pro-

gramming problem due to its complexity. However, the authors

have stated that the proposed algorithm is not very efficient in

terms of computational complexity.

The authors in [20] proposed a cloud assignment problem

to optimally place the cloudlets in a wireless network. A

multi-user and multi-cloudlet system were formulated using

a queuing network followed by the assignment of cloudlets.

Although their implementation is effective, the authors only

consider workload balancing in their objective function.

Recently, in [21] the authors utilizing data mining tech-

niques have proposed a non-dominated sorting genetic al-

gorithm III (NSGA-III) to provide vehicular social media

services with low latency and high reliability using cloud

computing. The authors have focused on the placement of edge

servers without considering the problem of finding optimal

association between the connected base stations and edge

servers.

In [17], authors have investigated the edge server place-

ment problem in mobile edge computing environments for

smart cities. They have formulated the edge server placement

problem as a multi-objective constraint optimization problem

that aims to balance the workload among edge servers and

minimize the access delay between the mobile user and edge

server. They have used mixed integer programming to find

the optimal solution. Our proposed work extends the problem

presented in [17] to investigate the working of genetic algo-

rithm and local search optimization techniques in the context

of edge server placement.

Search optimization techniques can be categorized into

two main classes: 1) general-purpose heuristic optimization

algorithms which are independent of the optimization problem,

2) heuristic approaches that are specifically designed for a

mapping problem. Due to the limited applicability of the

specifically designed algorithms and lack of interoperability

of available solutions in diverse fields (healthcare, IIoT, cel-

lular networks, vehicular networks, etc.), the proposed work

focuses on the first class of heuristic algorithms due to their

generalized applicability. Genetic algorithm, hill-climbing, and

simulated annealing are three such widely used optimization

techniques [22].

Genetic algorithms are stochastic search techniques that are

inspired by the adaption in evolving natural systems. Genetic

search algorithms’ performance is as good as global search

techniques, however, their convergence to the global optimum

may take a longer time [22]. Hill climbing algorithm finds the

global optimal solution only in convex space. However, most

real-life problems are not convex. Simulated annealing offers a

mechanism by which the major drawback in the hill-climbing

algorithm is fixed by allowing the search space to include

some bad solutions initially to make sure that the algorithm

doesn’t stick at a bad local optimum. Therefore, we propose

a genetic algorithm for the edge server placement problem

and compare its performance with hill-climbing and simulated

annealing optimization techniques.

III. COMPUTATIONAL PROBLEM

The edge server placement problem can be described in the

form of an undirected graph network � = (+, �), where +

represents the locations of � base stations (or cluster-heads in

IIoT) and � is the weight of edge connection between base

stations. Given the network �, a set of ( edge servers are

to be placed in � potential locations, that is, an edge server

is restricted to be deployed with an already installed base
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station/cluster-head to limit the search space for edge server

placement. Since there is a one to one communication link

between edge servers and base stations (as shown in Fig. 1),

the access delay is defined in terms of euclidean distance (db).

Each base station/cluster-head processes a number of call/flow

requests from a set of mobile users which is defined as the

workload of a base station (C1).

Fig. 1: Mobile edge computing system model.

The proposed work aims to provide optimized solutions

for a given set of ( edge servers to be placed in � possible

locations. Edge servers are connected to a set of base stations

such that: (i) the communication latency between base stations

and edge servers is reduced, and (ii) workload is balanced

between deployed edge servers. The constraints imposed on

this optimization problem are:

• A base station can have only one connection with any of

the edge servers.

• An edge server is collocated with a base station process-

ing all mobile call/flow requests from the base station.

For a particular edge server placement strategy (ℓ), the work-

load of an edge server is defined as the sum of user requests

offloaded from a set of base stations that are connected to BCℎ

edge server, that is, )B (ℓ) =
∑

1 C1 , where C1 is the workload of

1Cℎ base station. Similarly, delay of an edge server is defined

as the sum of distances from a set of base stations that are

connected to BCℎ edge server, that is, � (ℓ) =
∑

1 db, where

db is the euclidean distance matrix of 1Cℎ base station with

the connected edge server. The workload balancing of edge

servers ensures that no such situation arises where some of

the edge servers are overloaded while others are underloaded.

The workload balancing (, (ℓ)) for a particular edge server

placement strategy is defined as the standard deviation of the

workload of each edge server in the mobile edge computing

network, that is,

, (ℓ) = BC3 ()9 , ): ) ∀ 9 , : ∈ (

Therefore, the multi-objective cost of an edge server placement

strategy is defined as:

2>BC (ℓ) = V × )=>A<0;8I43 (ℓ) + (1 − V) × �=>A<0;8I43 (ℓ)

where V ∈ {0, 1} is used to give weight to )=>A<0;8I43 (ℓ) in

the cost function over �=>A<0;8I43 (ℓ)

The optimization problem can be defined as,

1) find an edge server placement strategy (ℓ) such that � (ℓ)
is minimized and,

2) for a given edge server placement scheme (ℓ), find the

edge connections (G1B , ∀1 ∈ �, B ∈ () for 1Cℎ base

station to BCℎ edge server, such that the workload between

edge servers is balanced.

Mathematically,

<8= 2>BC (ℓ), ∀ ℓ ∈ �

such that,
(∑

B=1

G1B = 1 (1)

G1,B ∈ {0, 1} (2)

where constraint (1) and (2) ensures that there exists only one

connection between a base station to an edge server.

The edge server placement problem in a mobile edge

computing network is NP-hard [17], therefore we propose to

find edge servers optimal locations using genetic algorithm

and local search optimization techniques such as hill-climbing

and simulated annealing. In [23], the authors have shown

that network traffic follows periodic temporal and spatial

statistical distribution law. This entails that the load statistical

distribution at a certain duration of time window would remain

the same. Therefore, the load statistical distribution can be

utilized to choose the appropriate intervals at which the edge

server placement is reconfigured based on the traffic patterns

which is an interesting problem but beyond the scope of this

work.

IV. ALGORITHMIC IMPLEMENTATION

Genetic search algorithms are based on the principle of

natural selection and genetics in which the decision variable

of a search problem is encoded into a string of alphabets of a

finite-length. These strings are referred to as chromosomes. A

population can be attributed as the collection of chromosomes

formed from different combinations of chromosomes. The

population size, a predefined parameter, is an important factor

that affects the scalability and performance of genetic search

algorithms. A small population size may lead to suboptimal

solution whereas a large population size will affect the con-

vergence rate of the algorithm.

To evolve good solutions, a measure to distinguish between

good and bad solutions is required. In the context of a genetic

search algorithm, a fitness function is used to measure the

relative fitness of the candidate solution. The standard genetic

algorithm includes the generation of a population of random

chromosomes followed by the assignment of fitness value to

each of these chromosomes. The chromosomes that have a

high fitness score are allowed to mate with each other and

reproduce the children’s population for the next generation.

The process of mating is called reproduction and the genetic

operations involved during reproduction are breeding and

mutation.

Breeding is the process of cutting two chromosomes at a

random point and then combining the two portions of different

chromosomes whereas mutation is the process of flipping

one or more variables in the chromosome randomly. In the

proposed work, a chromosome is a combination of (i) the edge

server locations (l) and (ii) edge server connections (x) to base
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Algorithm 1 Genetic Search Algorithm

Input: 5Cℎ , �

Output: return the best chromosome

1: x← random initial connections of base stations with edge

servers

2: l ← random initial locations of edge servers

3: population = [x, l]
4: 6 ← set the generation counter

5: while true do

6: evaluate the fitness of all chromosomes in population

7: if fitness of any chromosome is greater than 5Cℎ then

8: append chromosome to matingPool and elitePool

9: apply breeding/crossover to chromosomes in

matingPool and append to children

10: randomly mutate chromosomes in children

11: append children and elitePool to population

12: 6 = 6 + 1

13: if 6 = � then 1A40:

stations/cluster-heads. The fitness function is made dependent

on the cost function.

In the genetic algorithm (algorithm 1), an initial population

with a size of ? is generated by concatenating the randomly

initialized edge server locations (l) and edge server connec-

tions (x). A fitness function is defined to assess the fitness of

an individual chromosome in the population. Fitness function

is made inversely proportional to the cost function. If the

fitness function of a chromosome is greater than 5Cℎ , then these

chromosomes are selected in the elitePool and matingPool

population.

For the rest of the children population, we breed the

chromosomes appearing in matingPool and append it to

children population. The process of breeding is followed by

mutation in which the chromosomes in children population

are mutated with a small probability to enable search space

exploration. The algorithm chooses the fittest chromosome in

the population as the final state that signifies the individual

with the highest fitness score. The algorithm stops execution

when a predefined variable � number of iterations are reached.

The complexity of genetic search algorithm is on the order of

O(� × ?).

The hill-climbing algorithm takes the current state as the

input, where a state is defined as the concatenation of edge

server locations l and edge server connections x. Through local

transformations, the hill-climbing algorithm moves between

neighboring states and evaluates the cost of each of the

neighboring states. If the gain in the current state’s cost and

any of the neighboring state’s cost is positive only then the

algorithm moves to that neighboring state. This process is

repeated until there are no better neighboring states.

In the hill-climbing algorithm (algorithm 2), both l and x

are randomly initialized such that each base station has only

one connection with an edge server. Random initialization step

is followed by the computation of cost for the current state.

From lines 6 − 8, the algorithm finds the neighbor states of

the current state by flipping few of the elements in x and l.

If the cost of any of the neighbor states is less than the cost

of current state, then choose that state as the current state.

This process is repeated until no further better current state

can be obtained when compared with the neighbor states.

Algorithm 2 Hill Climbing Search

Input: 5 ;8?BG , 5 ;8?B; , #

Output: returns a local minima state

1: x← random initial connections of base stations with edge

servers

2: l ← random initial locations of edge servers

3: current = [x, l]
4: evaluate the cost of current state

5: while true do

6: append # neighbor states of x to neighborx by swap-

ping 5 ;8?BG number of edge server connections

7: append # neighbor states of l to neighborl by swap-

ping 5 ;8?B; number of edge server locations

8: neighbor = [neighborx, neighborl]
9: evaluate the cost of neighbor states

10: if cost of any neighbor state is less than the cost of

current state then

11: set the current state to that neighboring state

12: else 1A40:

Algorithm 3 Simulated Annealing

Input: 5 ;8?BG , 5 ;8?B; , #, <0G(C4?B

Output: returns a solution state

1: x← random initial connections of base stations with edge

servers

2: l ← random initial locations of edge servers

3: current = [x, l]
4: evaluate the cost of current state

5: B← set the steps counter

6: while true do

7: append # neighbor states of x to neighborx by swap-

ping 5 ;8?BG number of edge server connections

8: append # neighbor states of l to neighborl by swap-

ping 5 ;8?B; number of edge server locations

9: neighbor = [neighborx, neighborl]
10: evaluate the cost of neighbor states

11: if cost of any neighbor state is less than the cost of

current state then

12: set the current state to that neighboring state

13: else

14: Δcost ← difference of the cost of current and

neighboring state

15: set the current state to the neighboring state with

a probability 4
−Δcost

)

16: B = B + 1

17: if B = <0G(C4?B then

18: 1A40:

Simulated annealing in principle is similar to hill-climbing

with a minor modification. The simulated annealing methodol-

ogy can be best described by the analogy of a heating system

that is heated initially with a high temperature and then is

left to cool down over time. Similar to this heating system,

a simulated annealing algorithm initially allows more random

movements in the neighboring search space and with reduction

in temperature over time, the algorithm chooses neighboring

states that have a lower or same cost than the current state.

In the simulated annealing algorithm (algorithm 3), the

initial process remains similar to the hill-climbing algorithm

with the exception that neighbor states are chosen based on
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the acceptance probability of the state. If the cost of any of

the neighbor states is less than the cost of current state, then

the acceptance probability is 1, otherwise, it is determined

by an exponential function with a sensitive parameter ) .

The algorithm stops execution when a predefined variable

<0G(C4?B number of iterations is reached.

V. RESULTS

In this section, the experimental evaluation of performance

of genetic algorithm and local optimization algorithms such

as hill-climbing and simulated annealing for minimizing cost

function (see Eq .1) are discussed. The dataset used for the ex-

perimentation is provided by Shanghai Telecom [16][24][25].

The Shanghai Telecom dataset contains more than 7.2 million

records of accessing the Internet through 2766 base stations

(that have been placed in a geographically diverse manner)

from 9481 mobile phones. The data set contains 4.6 million

call records and 7.5 million flow records of about 10 thousand

mobile users during six successive months. Each call/flow

record contains the detailed start time and end time of ac-

cessing the base station for each mobile user.

Fig. 2: Distributions of base stations in Shanghai

[16][24][25].

These records have been used to quantify the workload

of a base station. Shanghai is one of the densely populated

cities of the world, making it a perfect dataset to analyze the

placement of edge servers in a dense network. Fig. 2 shows

the distribution of base stations where each node denotes a

base station in Shanghai, China.

This work has been implemented in MATLAB. Before

the implementation of proposed algorithms, we pre-process

the data in order to obtain delay and workload metrics for

each base station. The list of parameters used during the

experiments are given in Table 1. Our results answer the

following questions:

A. How does the performance (in terms of convergence)

of hill-climbing, simulated annealing, and genetic search

algorithm compare against each other?

B. How generalizable are the results?

C. Do these local search algorithms with a small size of

neighbor search space perform as good as if the size of

neighbor search space is increased?

D. What is the impact of using the different number of

edge servers on the performance of these local search

algorithms?

E. How sensitive is the cost function to different values of

V?

TABLE I: Simulation parameters.

Symbol Parameter Name Parameter
Value

� Number of base station 2766

( Number of edge servers 10

=486ℎ1>AB Size of neighbor search space 4

V Beta 0.5

(443 Seed for random generator 99

5 ;8 ?BG Number of flips in neighboring
edge server connections

10

5 ;8 ?B; Number of flips in neighboring
edge server locations

2

A. How does the performance (in terms of convergence)

of hill-climbing, simulated annealing, and genetic search

algorithm compare against each other?

In this experiment, we simulate the performance of local

search optimization techniques by setting the simulation pa-

rameters as shown in Table 1. The simulations are repeated

for a fixed number of iterations for both simulated annealing

and genetic search algorithms. However, for the hill-climbing

algorithm, if the cost of any of the neighboring states is

not smaller than the current state’s cost then the algorithm

execution is halted, and the algorithm returns the current state

as the final state.

Fig. 3: Performance comparison of hill-climbing, simulated

annealing and genetic search algorithms.

In Fig. 3, the cost values of the current state’s returned

by local search optimization algorithms across the number of

iterations can be seen. Ideally, we would want the cost to

be minimized optimally in the first iteration. However, doing

so would mean having the global knowledge of the optimal

state which is not practical and is extremely computationally

expensive. Therefore, we anticipate that for local search opti-

mization techniques, the cost and cost variations will reduce

with the increasing number of iterations.

In Fig. 3, we show the results when the normalized cost

for the initial state is around 0.5. As expected, the cost for

all three local optimization techniques is following a negative

trend as the algorithm matures in its execution. However, as

anticipated and observed from the results shown in Fig. 3-6,

the performance of simulated annealing and genetic search

algorithms is far superior to hill climbing in terms of the

search for a final state that gives the lowest cost. The mediocre

performance of the hill-climbing algorithm can be ascribed to
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Fig. 4: Performance comparison of hill-climbing, simulated annealing and genetic algorithms with varied seed numbers used

for random value generation and initial state selection.

(a) =486ℎ1>AB = 4 (b) =486ℎ1>AB = 8 (c) =486ℎ1>AB = 12

Fig. 5: Performance comparison of hill-climbing, simulated annealing and genetic algorithms for the varying size of neighbor

search space.

its stringent requirements of moving to a new state only if

its cost is lower than the current state thus not allowing the

search to look for better local optima’s than the current one.

Both simulated annealing and genetic search algorithm

perform fairly well, that is, it reduces the cost to almost zero

starting from higher initial state cost. Cost can not be reduced

to zero since the cost function is dependent on delay and

workload balancing, there will always be non-negative cost

value for any state. However, the nearest the obtained cost

for the final state is to zero, the better the placement strategy

for edge servers. In Fig 3, we can observe that genetic search

convergence to its final state is much faster than simulated

annealing. Also, the attained cost value using genetic search

is lower than the cost value attained using simulated annealing

as shown in Fig. 3-6.

The superior performance of genetic search algorithm can

be attributed to the fact that it maintains a proper balance

between the state exploration and exploitation. Unlike hill-

climbing and simulated-annealing optimization techniques,

genetic search algorithm maintains a population of best so-

lutions (chromosomes) that through evolutionary techniques

are modified to evolve to a better solution.

B. How generalizable are the results?

In this experiment, we set the simulation parameters as

shown in Table 1. However, we use different seeds for each of

the subfigure shown in this section to show the convergence

behavior with hill-climbing, simulated annealing, and genetic

search algorithms. Ideally, we would expect that for all these

experiments the final state returned by these local search

optimization algorithms be the same. However, due to the

use of different seeds, the initial state is different as well

as the values for random parameters are different which

gives an entirely different search space to these algorithms.

Nonetheless, the work is applicable in different application

areas (such as IIoT) and can offer suitable cost minimization.

In Fig. 4, we can observe that for different seed numbers

used for random value generation and initial state selection,

all these algorithms can reduce the cost. However, similar to

what had been observed in Fig 3, the performance of simulated

annealing and genetic search transcends the performance of

hill-climbing in terms of cost reduction and converging to

better suboptimal cost value. Another significant observation

from Fig. 4 is the faster convergence of the genetic search algo-

rithm than other algorithms. Not only genetic search algorithm

converges faster to a lower-cost state but the attained cost value

is also less than the other two algorithms. Therefore, we claim

that the performance of hill-climbing, simulated annealing, and

genetic search algorithms is generalizable for different initial

states and randomness involved in the simulations.

C. Do these local search algorithms with a small size of

neighbor search space perform as good as if the size of

neighbor search space is increased?

In this experiment we vary the size of the neighbor search
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Fig. 6: Performance comparison of hill-climbing, simulated annealing and genetic algorithms for different number of edge

servers.

(a) V = 0.30 (b) V = 0.50 (c) V = 0.70

Fig. 7: Performance comparison of hill-climbing, simulated annealing and genetic algorithms for varying V values.

space to show the convergence behavior with hill-climbing,

simulated annealing, and genetic search algorithms. Ideally,

we would expect that for a large neighbor search space all

the algorithms will converge faster since it has now a larger

search space to look for the edge placement strategy that

reduces the cost. However, using a large neighbor search

space is computationally expensive. Therefore, to assess the

performance of an algorithm, if the cost reduction with the

small neighbors search space is almost similar to the cost

reduction with the large neighbors search space then we can

claim that the algorithm can reduce the cost to the best

suboptimal value irrespective of neighbor search size.

In Fig. 5, we compare the performance of hill-climbing,

simulated annealing and genetic algorithms for the different

sizes of neighbor search space. It can be observed from

the results shown in Fig. 5 that variation in the size of

neighbor search space does not majorly affect the performance

of simulated annealing and genetic search algorithms, as all

variations converge to low-cost final states for a specific

algorithm. However, major improvements can be observed in

the performance of the hill-climbing search algorithm when

the size of the neighbor search space is increased. The final

state cost attained with hill-climbing algorithms approaches to

the cost attained with simulated annealing and genetic search

algorithm as the size of neighbor search space is increased

to 8 and beyond. Therefore, we can claim that the edge

server placement with simulated annealing and genetic search

algorithm provide best results even with the small size of

neighbor search space. Whereas, hill-climbing improves the

performance in terms of cost reduction albeit with added

complexity of a larger size of neighbors search space.

D. What is the impact of using the different number of

edge servers on the performance of these local search

algorithms?

In Fig. 6, we compare the performance of hill-climbing,

simulated annealing and genetic algorithms for the different

number of edge servers (() to be placed in the network. We

know that the total delay in the network will increase if the

number of edge servers in the network is increased. Therefore,

we anticipate that the final state cost attained in the network

with a large number of edge servers will be greater than the

cost attained in a network with a small number of edge servers.

It can be observed, as anticipated, from the results shown in

Fig. 6 that the increase in the number of edge servers affects

the final state cost values attained for the network. For a few

numbers of edge servers, that is ( less than 50, simulated

annealing performs almost as good as the genetic algorithm.

However, when ( is increased beyond 50, the difference in the

performance of simulated annealing and genetic algorithms is

significant. Another significant observation is the exceptional

performance of the genetic search algorithm in comparison to

hill-climbing and simulated annealing algorithms. From our

observations in Fig 3–6, we can claim that the genetic search

algorithm for all the simulation variations we have observed

exceeds the performances of hill-climbing and simulated an-

nealing for the edge server placement problem.
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E. How sensitive is the cost function to different values of

V?

In this experiment, we vary the values of V to show the

behavior of optimization algorithms when the weights of delay

and workload balance are altered in the cost function. Note

that setting V < 0.5 means that the edge placement strategy is

prioritizing the reduction in workload balancing cost whereas

V > 0.5 means that the edge placement strategy is prioritizing

the reduction in network access delay.

Ideally, we would expect similar convergence behavior

throughout the different values of V which is evident from

the results shown in Fig. 7. All algorithms reduce the cost

in the edge placement problem and the best performance in

terms of cost reduction is achieved by the genetic algorithm

followed by the simulated annealing algorithm.

VI. CONCLUSIONS

Edge computing is an emerging computing paradigm that

facilitates in providing computational and storage resources to

mobile and IoT devices. To offload the processing workload

from the edge devices such that the workload is balanced and

access delay is minimized, the edge server placement problem

is formulated as a multi-objective constraint optimization

problem. Genetic algorithms and local search algorithms were

then used to find an edge server allocation strategy. The ex-

perimental evaluation of the proposed work using Shanghai’s

Telecom dataset proves that the genetic algorithm quickly

reaches to a solution state such that it reduces access delay

in the network and maintains the workload balance between

edge servers with local information. While the evaluation is

carried out using Shanghai’s Telecom dataset, the suitability

of the proposed work is well suited for IIoT, especially in

cluster-based sensory networks within industry 4.0.

In the future works, edge server placement problem can be

designed such that the computing capacities of edge servers

are not the same and there is an upper bound defined on

the computing capacities of edge servers. Another aspect of

future works includes the extension of current work to a

reinforcement learning approach enabling an edge server to

optimally choose its location given the traffic demands and

user’s mobility pattern. The proposed work can be further

extended by addressing adaptive optimization selection for

the case-based scheme. Also, the suitability of proposed work

can further be increased by including reliability as a primary-

objective, thus enabling ultra-reliable low latency communica-

tion (URLLC) for critical IIoT and industry 4.0 applications.
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