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Heuristic estimates in shortest path algorithms
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Shortest path problems occupy an important position in operations
research as well as in artificial intelligence. In this paper we study
shortest path algorithms that exploit heuristic estimates. The well-
known algorithms are put into one framework. Besides, we present an
interesting application of binary numbers in the shortest path theory.
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1 Introduction

Finding a shortest path in a network is a major topic in operations research (OR)
and combinatorial optimization. However, shortest path algorithms exploiting heu-
ristic estimates are hardly studied in the literature on those areas. On the other hand,
the artificial intelligence literature (Al) addresses search problems involving heuristic
estimates. The related algorithms can be viewed as shortest path algorithms. Only in
the past few years, a connection between the two disciplines has been established in
the study of real road networks. In this paper, algorithms from both fields are com-
bined into one framework. As a bonus, a surprising relationship between binary
numbers and shortest path algorithms is presented. Furthermore, a general termi-
nation proof for shortest path algorithms is given. A notable role is played by the
so-called invariants, a common concept in computer science. An invariant is a prop-
erty holding after each iteration during the execution of an algorithm. Invariants are
proved by induction on the number of iterations. We only discuss the induction step,
while proving invariants.

1.1 Preliminaries

A graph or network G is defined by a pair (V, E) with V' the set of nodes and E
the set of edges. A path is a sequence of nodes without duplicate elements. In the
graph one node s is designated as the start or the source. The shortest path and its
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62 W. Pijls

length from s to any other node v is looked for. The weight or length of an edge
(u,v) is denoted by d(u,v), whereas d(u,v) denotes the length of the shortest path
from u to v.

1.2 Overview

Section 2 recalls some basics of the shortest path theory. This section contains a
new termination proof. Section 3 puts Dijkstra and related algorithms, well known
in OR, on the one hand, and A* and the search algorithms, mostly treated in the
Al literature, on the other hand into one framework. Although the algorithms are
not new, the idea of an underlying framework is. Furthermore, a new property of
so-called proper estimates is given. Section 4 presents a relationship between binary
numbers and a shortest path instance. The study of paths in real road networks is
briefly discussed in section 5. Section 6 discusses the search space visited by shortest
path algorithms.

2 The shortest path problem

The problem of finding the shortest path length between a source s and a target ¢
can be described as an linear programming (LP) problem (see PapaDIMITRIOU and
SteIGLITZ, 1982). The dual of this LP problem is:

max g(7),
s.t. g(v)—g(w) <d(u,v), Yu,veV
9(s)=0.

We assume that the graph does not contain a cycle of negative length, because
finding a shortest path in a graph with negative cycles is NP-hard. This is proved
in GAREY and JoHNsoN (1979).

2.1 The generic algorithm

The foregoing LP description leads us in a natural way to the generic algorithm (see
Algorithm 1).

Algorithm 1 The Generic algorithm

1 g(s) =0 and g(u) = co for u#s;

: while any edge (u,v) € E satisfies g(v) — g(u)>d(u, v) do
2 g(v) = g(u) + d(u, v);

: pred(v) = u;

: end while

[V NS S

The values g(v) and pred (v) are called the label and the predecessor of v respec-
tively. The operation in line 3 is called edge relaxation in some studies (see, e.g.
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GoopricH and Tamassia, 2002). The edge was stretched out by the difference of
g(v) and g(u) and by the new value g(v) it is relaxed and comes back to its rest-
ing state. Given the generic algorithm, the following question arises: does this algo-
rithm terminate for every instance? In most of the literature, an affirmative answer is
assumed. However, we did not find clear evidence for this answer. Here, we give a
termination proof. The key to this proof is provided by the following invariant.

INVARIANT 1. For any we V, g(w) is associated with a path P=(S=po,P1s---sPn—1,
Pn=w) such that

n—1

gw)=> " d(pi,pi+1)
i=0

(so g(w) equals the length of P) and

k—1

Q(Pk)SZd(pi,piH) for 1<k<n.

i=0

PrOOF. Suppose an edge (u,v) is selected. If v#p;, 1 <k <n, the invariant is
maintained trivially for w. If v=p;, 1 <k<n, g(w) and its associated path are
unaffected, but g(py) takes a smaller value. The relation

k-1
9P <Y dpipiv)

i=0
and hence the invariant are maintained. If v=p, =w, a new path will be associated
with w: the path associated with u is enhanced with edge (u,v). Moreover, in this
case, the invariant is preserved for w and trivially for the other nodes. Suppose an
edge (w,v) is selected. We show that v+ p; for any pi, 0 <k <n, in the path associ-
ated with w. If v=p; was the case, we would have before the update of v=p;:

k-1 n—1
9(pi)=9(0) > g(w)+d(w,0) =Y d(pipis )+ Y d(pi,pis1)+d(w,v)
i=0 i=k

n—1

>g9(p0)+ Y dpirpi1)+d(w,v)

i=k

The latest inequality is due to the invariant itself. The above relation implies that
Pk Pk 41, - »w=py,v=py;) would be a negative cycle. However, we excluded nega-
tive cycles from our graphs under investigation. We conclude that a path associated
with a node w cannot convert into a cycle. O

As the number of paths is finite, the number of updates is finite for any node w. Con-
sequently, the algorithm has a finite number of iterations. The proof of Invariant 1
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also shows that ¢(s) is never updated, which implies that g(s)=0 is an invariant.
Now, we show that g(w) provides us with the shortest path length on termination.
As g(w) equals the length of a path by Invariant 1, g(w)> d(s, w). Every edge (u,v)
on any path satisfies d(u, v) > g(v) — g(u) and hence, every path P from s to w has the
property: length (P)> g(w)— g(s)=g(w). In conclusion, g(w) =a7(s, w). Apart from
the path in Invariant 1 we can identify a second path, whose definition is based on
the following invariant.

INVARIANT 2. For any edge (u,v) € E with u=pred(v), g(v) > g(u)+ d(u, v).

The proof of this invariant is almost trivial. Using this invariant we can prove,
analogously to Invariant 1, that any node w with finite label is associated with a
path (s=po,p1,...,pxr =w) such that p;_; =pred(p;). This path is called the prede-
cessor path of w. The predecessor path P of a node w satisfies: g(w) > length(P),
an immediate result of Invariant 2 and the invariant g(s)=0. If strict inequality
length (P)>g(w) holds, the predecessor path P differs from the path mentioned
in Invariant 1. The discussion in the rest of this paper prefers the use of the prede-
cessor path. On termination of the algorithm, both types of paths provide us with
the shortest path.

2.2 Refining the generic algorithm

Algorithm 2, a refined version of the generic algorithm, is called the S-set algorithm
because of the crucial role of the set S. The edges adjacent to one node are selected
jointly for relaxation. The variable ¢ is an iteration counter, to be used in section 4.

Algorithm 2 The S-set algorithm
1: g(s) =0 and g(u) = co for u#s;
. S =

2: ;

3. c=0;

4: while any node uy ¢ S has finite g-label do
5 c=c+1;

6 S=S + {uo};

7 for all edges (up,v) with v¢ S do

8 if g(v)>g(ug) + d(ugy, v) then

9: 9(v) = g(ug) + d(ug, v);

10: pred (v) = ug;

11: if veS then S =S —{v} endif
12: end if

13:  end for

14: end while

There is an important invariant, the proof of which is left to the reader.

INVARIANT 3. For any (u,v) € E with ue S, g(v) < g(u)+d(u,v).
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This invariant makes sure that the stop criterion of the S-set algorithm implies the
stop criterion of the generic algorithm. The S-set algorithm is non-deterministic,
because the choice of uy is not prescribed. It can be viewed as a family of algo-
rithms, comprising almost all shortest path algorithms. However, one well-known
algorithm viz. Bellman-Ford does not belong to this family, but in the case that the
data structure for the S-set is a queue, Algorithm 2 is a Bellman-Ford instance.

A great deal of papers, e.g. those of CHERKASSKY, GOLDBERG and RADzIK (1996)
and GALLo and PaLLoTTINO (1986), have been devoted to the question as to which
data structure of the S-set is suitable for which type of input graph. In the current
paper this issue is not considered.

2.3 Using a heuristic estimate

In some situations one may assume the availability of a so-called heuristic estimate.
A heuristic estimate / is defined as a function from 7 into R. Many search problems,
e.g. the traveling salesman problem (TSP) or the 13-14-15 puzzle, can be modelled
as a shortest path problem with a heuristic estimate. The value /(v) for any ve V'
is chosen such that this value estimates the distance from v to a target node. If no
estimation method is available, #=0 is applied.

The h-value is a second label for each node next to the g-label. The value g(v) + A(v)
is referred to as f(v). Using the heuristic estimate, we can define a more specific
selection rule for the S-set algorithm. To that end, in front of line 5 or 6 we insert:

choose uy such that f(up) is minimal outside S.

The S-set algorithm with this enhancement is called the heuristic estimate (HE)
algorithm. The goal of the heuristic is to narrow the search space, which is defined
as the set of nodes with finite g-label. Notice that adding a constant C to the func-
tion i does not affect the way a run of the HE algorithm proceeds.

3 Heuristic estimates

In this section, we address several types of estimates. In section 3.1 a framework is
discussed comprising amongst others Dijkstra, A* and the modified label correcting
version as mentioned in AHUJA, MAGNANTI and ORLIN (1989). Section 3.3 treats the
so-called non-misleading estimates.

3.1 Admissible and consistent estimates

The heuristic estimate / is called admissible with respect to a set A C V, if h(v) —
ha)<d(v,a) for any ve V" and a € A. We call a heuristic estimate / consistent, if / is
admissible with respect to the full node set V', or put another way A(u) — h(v) <d(u, v)
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for any two nodes u,v€ V. In some literature a different but equivalent definition
of consistent 1s found: h(u) — h(v) <d(u,v) for any edge u,v€ V. For admissible esti-
mates, we have the following important invariant.

INVARIANT 4.  If the heuristic estimate is admissible with respect to a set A, then

(a) YueS, YveSNA, f(u)ﬁc?(s,v)%—h(v)gf(v);
(b) YueSNA, gu)=d(s,u).

Proor. (a) The right-hand inequality is obvious, because every g-label is associ-
ated with a path by Invariant 1. Therefore, we focus on the left-hand inequality.
Suppose a node uy is selected for insertion into S. Let v be any node in SN A
and let P be the shortest path from s to v. The first node outside S on this path
is denoted by p. The two parts of P between s and p and between p and v are
called P; and P, respectively. As a result of Invariant 3 we have length (P) > g(p) —
g(8)=g(p). As ve€ A4, length (P)= d (p,v) > h(p) — h(v). Combining these inequalities
gives d(s, v)= length (P)> g(p)+ h(p) — h(v) or equivalently d(s, v) + h(v) > g(p) + h(p).
The latest value is > f(ug) by the selection criterion. Any vertex v € SN A is not
removed from S, because g(u)zcz(s, v) by invariant (b) and hence, g(v) has a per-
manent label. So SN A is not enhanced. We conclude that the invariant is preserved
in every iteration. (b) When a node ve SN A is selected, then node p as defined in
part (a) coincides with v, so v=p. In part () we have seen g(p)=d(s, p). O

If the heuristic estimate is consistent, every node is inserted into S exactly once. In
that case the algorithm is called a label-setting instance, as every node has a perma-
nent label, when inserted into S. The run-time is O(n?) in that case. If the estimate
is not consistent, a node in S may take a new label and leave the S-set. Then the
algorithm is called label-correcting.

Invariant 4 implies that, when the heuristic estimate algorithm runs on a graph
with an admissible estimate, each f-value in SN A is greater than or equal to any
f-value in SN A4. Consequently, the f-values of the nodes of 4 consecutively selected
make up a non-decreasing series. Notice that the heuristic estimate #=0 is con-
sistent, provided that the weights are non-negative. The HE algorithm running on
graph with non-negative weights and 2=0 is exactly Dijkstra’s algorithm.

3.1.1 The A* algorithm

Most of the textbooks on Al discuss A*, which is defined in our terminology as the
HE algorithm using an estimate admissible with respect to a set 4 consisting of a
single node. Curiously, this algorithm is not well-known among researchers of the
OR community, which is focused on Dijkstra and Bellman-Ford. Conversely, the
Al literature pays a lot of attention to A*, but ignores widespread algorithms such
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as Dijkstra and Bellman-Ford. Only recently, some OR researchers working on real
road networks included A* in their investigations (e.g. GOLDBERG and HARRELSON,
2005).

The A* algorithm is presented in most of the Al textbooks (e.g. PEARL, 1984;
RusseLL, 2003), as a suitable method to solve search problems, such as the 13-14-15
puzzle. The best-first branch-and-bound solution for TSP using a heuristic lower
bound is actually an A* instance.

3.2 Running with or without heuristic function

Given a graph with weight function d and a heuristic estimate /2, we introduce new
weights:

d'(u,v)=d(u,v)+ h(v) — h(u) (1)

When running the HE algorithm, we define an alternate label ¢'(u)=f(u) — h(s) for
any u. The initial labels g(s) and ¢'(s) are =0. Whenever g(v) is given a new value
g(v) = g(u) + d(u, v), this update can also be viewed as setting the alternate label ¢'(v)
to ¢'(u) +d'(u,v). It follows that the HE algorithm using an i-function is equivalent
to HE on a graph with transformed weights and a heuristic=0. If the heuristic is
consistent, then ¢’ >0 and the algorithm running on the transformed graph is an
instance of Dijkstra’s algorithm. A graph with an admissible heuristic corresponds
to one with possibly negative weights, but where every distance d(v,a) with ve V
and a € A is non-negative.

3.3 Non-misleading and proper estimates

Suppose we focus on one target node z. A heuristic estimate / is called non-mis-
leading if any two nodes m and n have the property:

length(P) + h(m) < length(Q) + h(n) = length(P) + d(m, t) < length(Q) + d(n, 1) (2)
for any two paths P and Q from s to m and to n respectively. An example of a non-

misleading estimate is shown in Figure 1. A weaker notion is proper. A heuristic

B(8)

c(5)

Fig. 1. A non-misleading estimate the /-values are in brackets.
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estimate /1 is called proper if (2) only holds for any two paths P and Q, that are
not included in each other.

INVARIANT 5. Suppose the HE algorithm runs on a graph with non-negative weights
and with a proper estimate, where ties in the selection criterion are solved in favour of
the smallest g-value.

(a) Yue S, Yo S, gu)+d(u, 1)< g(v)+d(v, )V g(u) < g(v);
(b) VuesS, gu)y=d(s,u).

ProoF. (a) When a node uy is selected, the selection criterion implies that:
VoS, g(uo)+h(ug) <g(v)+h(v) V g(uo) < g(v).

Because of invariant (b), no node has been deleted from S and hence, all predeces-
sors are in S. Consequently, the predecessor paths of #y and v cannot be subpaths
of each other. As a result of the Invariants 2 and 3, the lengths of both predecessor
paths are equal to the corresponding g-labels. As the estimate function / is proper,
we state for all v S:

g(uo) + h(up) < g(v) + h(v) = g(uo) + d(uo, 1) < g(v) +d(v, 7).

If g(v) is not changed, invariant (a) holds for v and any u€ S. If v is given a new
label g(v) = g(up)+ d(up,v), then for any u € S either g(u) < g(up) < g(v) or:

g(u) +d(u, t) < g(uo) +d(ug, 1) = g(v) — d(uo, v) + d(uo, 1) < g(v) +d(v, 1),

where the rightmost inequality is a consequence of a general inequality for the
d-function.

(b) Let P be the shortest path from s to uy. Similar to the proof of Invariant

4 we derive: length(P)) > g(p). If g(uo)+d(uo,t) < g(p)+d(p, ) in (a) holds, then

using length(P>)=d(p,uo) > d(p, 1) — d(uy, 1) we obtain: length(P)> g(p)+d(p,t) —

d(uo, 1)> g(uo). If g(ug) < g(p) in (a) holds, then length(P) > length(P1) > g(p) > g(uo).

O

This invariant shows that the HE algorithm running with a proper estimate is a
label-setting instance. In contrast with a consistent estimate, the f-values successively
selected do not generate an increasing series.

The notion of non-misleading has been introduced in IBARAKI (1977) in the con-
text of the branch-and-bound method. The definition in that paper differs from the
current one, which is taken from BaccHr and MAHANTI (1983). They are equivalent
in case of an acyclic graph. The notion proper has been introduced in BAGcHr and
MAHANTI (1983). In that paper, a weaker version of Invariant 5 was also presented.
The result that the label-setting version is applicable to a proper heuristic estimate,
is new.
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4 An application of binary numbers

In this section, we present a pathological graph, where the HE algorithm has an
exponential run time of 2/”1-1. Consider the following graph K where the nodes are
denoted by integers.

V={12,...,n,n+1}

E={(u,v)|u,veV and u>v}
d(u,v)=2""1-2"

s=n+1

Suppose we insert the following statement into the S-set algorithm before line 5 or 6:
choose uy such that ug is the smallest integer outside S. 3)

Later on in this section, we show that the S-set algorithm with this selection rule
is an instance of HE. Running the S-set algorithm on graph K with this selection
rule provides an interesting application of the binary number system, expressed by
Invariant 7. This invariant deals with the variable ¢, the iteration counter (see line
S in the S-set algorithm). The following definition 7(u) is useful for Invariant 6:
I(v)={p|v<p<n and p integer}.

INVARIANT 6. Let I(v)N S for any v be given by {p1,...,px} with py>py>--->py.
Then the predecessor path of v is (n+1=pg,p1,p2,...,pr,v) and g(v) equals the length
of this path.

ProOOF. Suppose uy is selected to be inserted into S. Let the set I(up) NS be given
by {pi1,...,ps}. By the invariant itself the predecessor path of uy is (s=po,p1,p2. .-,
P, up) and this path has length = g(up). As uy is the smallest integer outside S accord-
ing to the selection rule, the set {uy—1,up—2,...,2,1} is also included in S.

When u, is inserted into S, any node v with v>u, is not affected, because
every edge goes from a higher to a lower number. So we consider only nodes v with
up>v>1. For such a node v, the predecessor path has the form (n+1=pq, p1,p>. ..,
prouo— Lug—2,...,v). Notice that every edge in the sequence (up—1,up—2,...,0v)
has weight equal to 0. As the length of this path equals g(v) by the invariant, we
have:

i=h-1

9@)= Y d(pi.pis1)+d(piup—1)
i=0

i=h-1
=S dpipis )+t -2,
i=0
The edge (uy,v) is relaxed, because
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i=h—1
9(uo) + d(uo, v) = Z d(pi, pi+1)+d(py, uo) + d(ug, v)
i=0
i=h-1
= Z d(pi,pip1) 201 =m0 4 pw=l_gv
i=0
i=h-1
= Z d(pi,piy1)+20— 1 2wl _ov
i=0

= g(v) - 2"

Hence, when u is inserted into S, every v with uy>v > 1 takes a new g-label
and leaves the S-set. For each v in this range the new set /(v)N S is equal to (py,...,
DPn» Up). Because (ug, v) is relaxed, the new predecessor path of v consists of the pre-
decessor path of #y enhanced with (g, v). So this path conforms to the new value of
I(v)NS. As a result of Invariants 2 and 3 the length of the predecessor path equals

g(v). O

INVARIANT 7. Let the binary notation of ¢ — 1 be given by aya,_1...ara;. This notation
and the set S are related by the equality: S\{s}={p|a,=1}

Proor. Notice that the invariant holds when ¢=1 (only source n+1 has been
inserted). Assume that the invariant holds at the time u is selected, so ¢ — 1 has
the form: a,a,_1...a,,+101...1. In the next iteration, uy enters S causing the nodes
v with 1 <v<uy to leave the S-set, as we have seen in the proof of Invariant 6. Add-
ing 1 to the old (¢ — 1)-value gives a,a,_i...a,,+110...0, which is in accordance with
the new S-set. O

Now it is obvious that the number of iterations equals exactly 2", because ¢ — 1 =2" —
1, when S=V is achieved (¢ — 1 consists of n digits 1). Invariant 6 implies that g(v)
is a multiple of 2¥ at any time, because the length of the predecessor path is com-
posed of numbers 27 with p >v. Every subset of I(v) is equal to I(v)N.S at some
time. Consequently, g(v) takes 21/ =2"-" different values, ranging from 02’ up
to (2"v—1)x2v=2"—2" The proof of Invariant 6 also shows that, whenever v is
given a new label, the label is decreased by 2°.

The following nodes are inserted successively after node s: 1,2, 1,3, 1,2, 1,4, 1,
2,1,3,1,2,1,... This series is also known from ‘Towers of Hanoi’, a famous topic
in recreational mathematics, which is often treated in textbooks on programming to
illustrate recursion.

The definition of graph K has been presented in PuLs (1991) and in a slightly
different form in AHUJA et al (1989). It is based upon an earlier instance, intro-
duced in MARTELLI (1977).
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By adding target node 0 and adding an edge (1,0) with d(1,0)=2" to the graph
K, we obtain an instance K’ of the A*-algorithm. It follows that also A* may have
exponential run time. The following lemma implies that the above instance K with
2IVI=1 jterations achieves a maximal number of iterations.

LemMma 1. Consider two arbitrary iterations of the S-set algorithm. Then there is a
node u with u& S after the earlier iteration and u€ S after the later iteration.

Proor. Let g; and g, denote the g-labels after the two iterations under consid-
eration. Let p be a node such that g(p) <gi(p). Let the predecessor path after the
second iteration be given by (s=pg,p1,...,pn=p). Let p;_; and p; be two consecu-
tive nodes in this path, such that g;(px_1)=g2(pr_1) and g1(pr) > g2(px). Such nodes
must exist, because of the fact that g;(po) =g2(po) and g1(p,) > g2(p,). We conclude
that the latest update of g(pr) has been executed more recently than the latest
update of g(pr_1). Hence, p;_; has not been updated after it became p;’s predeces-
sor, so u=py_1 is in S after the second iteration. The invariants 2 and 3 imply that
92(Pi) = g2(pr—1) +d(Pi—1, k). As g1(pi) > 92(pr) = G2 (Pr—1) +d(Pic—1, k) = 91(Px—1) +
d(px—1,pr), we conclude from Invariant 3 that u=p;_| was not in S after the first
iteration. O

By Lemma 1 the S-set after each iteration is unique. In the very first iteration of
the algorithm s is inserted into S and this node remains in S throughout the algo-
rithm. Hence, the number of iterations is at most the number of subsets (the empty
set included) of ¥\{s}, which number equals 2/VI~!. We see that graph K having
2"=2IVI-1 jterations attains the maximal number of iterations.

I conclude this section with a personal note. When I communicated my discov-
ery on the role of binary numbers to Antoon, he responded: “Wat is wiskunde toch
mooi!” (How beautiful mathematics is!) No doubt, we agree with this statement.

5 Real road networks and bidirectional search

The past few years have witnessed a revival of shortest path algorithms, in parti-
cular, algorithms focused on real road networks. The instance that is solved by the
present-day car navigators, is the single-source single-target version of the shortest
path problem. Bidirectional search is a powerful method for finding the shortest path
in a road network from one point to another and is applied therefore in almost any
navigator. The method originates from PoHL (1971). Substantial improvements were
proposed by, amongst others, IKEDA et al. (1994), GOLDBERG and HARRELSON (2005)
or YAMAGUCHI and MasuDA (2006). Given a source and a target, bidirectional search
works as follows. The HE algorithm runs simultaneously on two sides, starting from
the source and the target, respectively, so we have forward and backward search. The
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backward search uses different edges: just edges (v, u) such that (u,v) in the original
set E, are used. The cost of an edge (v, u) equals the value of the original edge (u, v).
Each search process has its own heuristic. The algorithm stops when the S-sets of
the two searches have some overlap. The exact termination criterion depends on the
properties of the heuristics. (An detailed treatment of bidirectional search can be
found in PuLs and Post, 2006.)

5.1 Suitable estimates

An obvious consistent heuristic in road networks is: s(v) equal to the astronom-
ical distance from v to ¢. HE running with this heuristic estimate visits consider-
ably less nodes than Dijkstra’s algorithm (2=0) as is illustrated by some pictures in
Roos (2004) or in KLUNDER and Post (2006). In GoLDBERG and HARRELSON (2005) a
new estimate was introduced, incorporated into the so-called ALT algorithm, which
stands for A*, Landmarks and Triangle inequality. The algorithm needs some pre-
processing of the road network. A number of nodes are designated as landmarks. In
advance, d(v,m) is computed for any node v and every landmark m. Using the tri-
angle inequality we can show that the choice A(v) =c?(v, m)— c?(t,m), m being a fixed
landmark, gives a consistent heuristic. If we choose m close to ¢, a tight lower bound
to d (v, t) is obtained. (An extensive discussion is given in GOLDBERG and HARRELSON,
2005.)

5.2 New methods

Apart from the landmarks, several other new heuristics have been invented in the
past few years. All of them need an elaborate preprocessing phase to compute the
heuristic. (Examples of new heuristics can be found in MOHRING et al., 2005; WAG-
NER, WILLHALM and ZAROLIAGIS, 2005; or SANDERS and SCHULTES, 2005.)

6 The search space

In this section we want to find which set of nodes is visited during the HE algo-
rithm. For an admissible / the set R,(H) with H a real number is defined as the set
of nodes v for which a path P=(s=py,p1,...,p,="0) exists such that for 0 <k <n,

k—1

S " d@ypr) +hp) < H, 4)

Jj=0

If the heuristic /1 is consistent, the definition can be simplified. The inequality (4)
holds automatically for 1 <k <n if it holds for k=n.

The following proposition follows immediately from the definition: /1y <h, A H; >
H> = Ry,(H>) C Ry, (Hy).
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During execution of the S-set algorithm the variable F is defined at any time as:
F=min{f(v)|ve S}

Invariant 4 shows that, in case of a consistent estimate, F < f(v) for any v& S. If
the estimate is not consistent, for some v ¢ S the inequality f(v) <F may happen.
We introduce the following selection criterion into the S-set algorithm:

(1) select, if any, an arbitrary node uy €S with f(uy) <F
(2) if f(u)>F for any u¢ S, select uy such that f(ug) is minimal outside S (and
after inserting ug into S, f(up) is the new F-value)

We call the S-set algorithm with this additional selection rule the F-algorithm.
Notice that the selection criterion in section 2.3 is a special case of this one. If the
estimate is consistent, the two criteria are equivalent. As soon as ¢ is inserted into
S, the algorithm can stop, since g(t)ch(s, t) because of Invariant 4.

The following property holds during execution: S C R,(F) and on termination:
SC R/,(ci(s, t)). At the moment that every node v ¢ S satisfies f(v)>F, then even
S=R(h,F).

Although H may be any real number, there is finite number of distinct sets R,(H)
for a given estimate /2 on a graph G. To be more precise, there is a finite series of
values Hy, Hy, H3,..., H, with the property that any set R,(H), H a real number,
is equal to R;(Hy,) with ky in the range 0,...,n. Consequently, the series of values
assigned to the variable F' during execution of the F-algorithm is equal to the series
Hy, =0,H,, H,,...,H,. So the F-algorithm may be viewed as a method to trace the
sets Ry(Hy), 0<k <n. The IDA algorithm (see PEARL, 1984; RussgeLL, 2003) is based
upon this principle. In the IDA* algorithm, the sets R,(Hj), 0 <k <n are traced
successively using backtracking. This makes the algorithm appropriate to be used
in restricted memory.

7 Concluding remarks

According to Antoon there is no need to sum up and repeat the results in a con-
clusion at the end of a paper. my conclusion is different. I remember Antoon as my
supervisor and master with a strong commitment to his students. In memory of him
and in great gratitude I have written this article.
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