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Heuristic, meta-heuristic and hyper-heuristic
approaches for fresh produce inventory
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The allocation of fresh produce to shelf space represents a new decision support research area which is motivated
by the desire of many retailers to improve their service due to the increasing demand for fresh food. However,
automated decision making for fresh produce allocation is challenging because of the very short lifetime of
fresh products. This paper considers a recently proposed practical model for the problem which is motivated
by our collaboration with Tesco. Moreover, the paper investigates heuristic and meta-heuristic approaches as
alternatives for the generalized reduced gradient algorithm, which becomes inefficient when the problem size
becomes larger. A simpler single-item inventory problem is firstly studied and solved by a polynomial time
bounded procedure. Several dynamic greedy heuristics are then developed for the multi-item problem based
on the procedure for the single-item inventory problem. Experimental results show that these greedy heuristics
are much more efficient and provide competitive results when compared to those of a multi-start generalized
reduced gradient algorithm. In order to further improve the solution, we investigated simulated annealing, a
greedy randomized adaptive search procedure and three types of hyper-heuristics. Their performance is tested
and compared on a set of problem instances which are made publicly available for the research community.
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Introduction

Increasing health concerns have made people more aware of
the importance of healthier foods in their diets (such as fresh
vegetables, fruits and organic food) rather than processed
produce. This has led retailers to provide a much wider choice
in this category of goods. In this paper, we are concerned
with inventory control and shelf management for fresh pro-
duce such as vegetables, fruits and fresh meats. Fresh pro-
duce is different from other produce in that it usually has a
very short shelf-life and its utility or condition of freshness
continuously decays throughout its lifetime. The fresh pro-
duce inventory problem belongs to a wider domain of de-
teriorating inventory problems which have been intensively
studied, with a large number of models being proposed in
the literature. Comprehensive reviews on deteriorating in-
ventory can be found in Nahmias (1982), Raafat (1991),
Goyal and Giri (2001). However, most of these models
treated fresh produce as a special case of perishable items
with a fixed deterioration rate and non-decaying utilities be-
fore their expiration dates. Based on this principle, different

∗Correspondence: R Bai, Automated Scheduling, Optimisation and
Planning (ASAP) Research Group, School of Computer Science & IT,
University of Nottingham, Nottingham NG8 1BB, UK.
E-mail: rzb@cs.nott.ac.uk

ages of items capture the same demand, however fresh they
are, as long as they are not completely spoilt. This is unrea-
sonable as freshness is one of the main criteria for measuring
a product’s quality and could dramatically impact its demand
if its condition is poor. In fact, many retailers have adopted
strict temperature control and intelligent inventory and shelf
management systems in order to improve their financial per-
formance. In developing countries, it has been observed that
retailers usually separate fresh items and items which are less
fresh and sell them in different shops at different prices (Kar
et al, 2001). In addition, some inventory models (Mandal and
Phaujdar, 1989; Giri et al, 1996) assume that all stock could
be displayed on the shelves. This situation, however, seldom
happens in most supermarkets because the shelf space for
fresh food is normally limited, and expensive, due to the low
temperature requirements. Therefore, only a part of the inven-
tory can be displayed on the shelves. Furthermore, when we
consider a range of goods rather than single items, the shelf
space allocation among different items is especially important.
The importance of shelf space allocation for non-perishable
merchandise is underlined in several previous studies (Kotzan
and Evanson, 1969; Curhan, 1972; Borin et al, 1994; Urban,
1998; Yang and Chen, 1999, Bai and Kendall, 2005).

This research is supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) and a leading
UK retailer (Tesco). Colleagues at Tesco presented us with
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the problem addressed in this paper which is concerned with
the shelf space allocation for fresh food. This is an area in
which they have a particular interest due to increasing market
competition. The problem is difficult because of the situation
discussed above concerning the deterioration of fresh food
and the difficulty in managing inventory and shelf space allo-
cation for such short-life products. What they are seeking is
a new approach that can be quickly and easily implemented
to improve their current methodologies. Such an approach is
presented here.

In this paper, we consider a practical fresh produce inven-
tory control and shelf space allocation model that was built
upon the situation as described by Tesco and which was pro-
posed in an earlier paper (Bai and Kendall, 2007). The model
can simultaneously decide the ordering policy as well as al-
locating shelf space among different items, together with the
ability to consider utility deterioration. The goal of this re-
search is to help retailers to move towards a high-quality au-
tomated ordering and shelf allocation decision system for the
retail of fresh produce where the aim is to maximize the over-
all profit achieved during a given time period. In a similar
manner to the way in which other inventory problems were
tackled (Urban, 1998; Kar et al, 2001), a generalized reduced
gradient algorithm (GRG) is used to solve the problem in (Bai
and Kendall, 2007). Although good results were reported,
GRG may not be the most efficient approach for this prob-
lem. Firstly, GRG algorithms cannot handle integer variables
which are necessary in inventory control and shelf space allo-
cation problems. As some rounding heuristics have to be used
to convert the results obtained by GRG to integer values, the
resulting solution can only be a local optimum in most cases
and the quality of the solution may be poor. Secondly, as men-
tioned in Bai and Kendall (2007), a general GRG algorithm
can only find the local optimum in the vicinity of the initial
solution from where the GRG algorithm started. Although a
multi-start version of GRG can eliminate this problem, it can
be computationally expensive for large problem instances be-
cause each call to GRG is generally slow. As an extension of
non-linear knapsack problems, this paper investigates heuris-
tic and meta-heuristic approaches for the problem.

Problem model

The problem we address in this paper can be described as fol-
lows. Suppose a retailer is selling n types of fresh items (or
stock-keeping-units). Each item has three decision variables
qi , si and ri , representing the procurement quantity, the num-
ber of allocated shelf facings and the surplus of item i, re-
spectively. The inventory level of item i changes periodically
over time according to the curve shown in Figure 1. At the
beginning of the period (corresponding to time 0), the retailer
places an order of quantity qi for item i (assuming a zero lead
time). Initially si facings of these items are displayed on the
shelf and (qi − si ) quantities of item i are kept in the stor-
age room. As sales are made, the items in the storage room

Ii(t)

qi

si

ri

tTit1i t2i0

Figure 1 Graphical representation of inventory level changes
over time. Source: (Bai and Kendall, 2007).

are moved to the shelf to fill the vacated space. From time
t1i , stock in the backroom reaches zero and the shelf is only
partially stocked. Once the time reaches point Ti , the surplus
of item i, represented by ri , is removed from the shelf and is
assumed to be sold at a discount price, pdi , immediately. A
new order of quantity qi is placed for item i (time t2i corre-
sponds to the point when the inventory becomes zero if no
discounts are made). The next period starts and the inventory
changes in the same way as it did in the last period. Note
that every new order arrives at point Ti although it might be
possible that Ti = t2i (when ri = 0).

Bai and Kendall (2007) proposed a practical non-linear
model for the problem which considered both the effect of
allocated shelf space and an item’s freshness on the demand.
The objective is to maximize the overall profit per unit time
for all items. In this paper, we use the same model which is
also briefly described here for completeness:

maximize
n∑

i=1

Mi (si , qi , ri ) (1)

subject to

n∑
i=1

si Ai �W (2)

Li �si �Ui , i = 1, 2, . . . , n (3)

ri �si �qi , i = 1, 2, . . . , n (4)

ri < qi , i = 1, 2, . . . , n (5)

0< Ti �Ei , i = 1, 2, . . . , n (6)

si , qi ∈ {1, 2, 3, . . .}, i = 1, 2, . . . , n (7)

ri ∈ {0, 1, 2, . . .}, i = 1, 2, . . . , n (8)

where Mi (si , qi , ri ) (denoted by Mi in short) is the average
profit of item i per unit time, given by (total income deducing
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total cost):

Mi = 1

Ti
[pi (qi − ri ) + pdiri − caiqi − Coi − HC1i

− HC2i ] − cssi Ai (9)

The following is a list of the notations used in the paper:

• qi is the procurement quantity of item i
• si is the number of the facings (displayed item quantity)
assigned to item i

• ri is the surplus of item i at the end of the cycle
• pi is the unit selling price of item i
• pdi is the unit discount price of item i
• cai is the unit acquisition cost of item i
• Coi is the constant order cost of item i (independent of the
order quantity qi )

• chi is the unit holding cost of item i, including the costs
caused by inventory loses, damage, maintenance, interest,
insurance, etc

• Ii (t) is the inventory level of item i at time t. It was
defined in Bai and Kendall (2007) and is reproduced here
for completeness.

Ii (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qi + �i s
�i
i

�i
(e−�i t − 1) 0� t� t1i

[
�i (1 − �i )

�i
e−�i t + Ki

] 1
(1−�i )

t1i < t� t2i

where

Ki = [qi − �i (qi − si )]s−�i
i − �i (1 − �i )

�i
.

• HC1i is the total holding cost during period [0, t1i ].

Note that HC1i =chi
∫ t1i
0 Ii (t) dt =chi [(qi − (�i s

�i
i /�i )t1i +

(1 − e−�i t1i )�i s
�i
i /�2

i ].
• cs is the shelf cost per unit space.
• �i is scale coefficient in the demand function of item i and

�i > 0
• �i is the space elasticity of item i and 0<�i < 1
• �i is the constant decaying rate of item i and �i > 0
• HC2i is the total holding cost during [t1i , Ti ] and HC2i =
chi

∫ Ti
t1i

Ii (t) dt ≈ chi [si + ri ](Ti − t1i )/2
• Ai is the space required for one facing of item i
• Ei is the lifetime of item i after which the item is rotten
(ie cannot be sold)

• W is the total shelf space available
• Li is the lower bound of the number of facings of item i
• Ui is the upper bound of the number of facings of item i
• Ti is the length of the cycle period of item i

Constraint (2) makes sure that the total allocated shelf space
to each item is no more than the total available shelf space.
Constraint (3) ensures that the space allocated to each item
is within an upper bound and a lower bound. Constraints (4)

and (5) make sure that the order quantity of each item must
be greater than the number of facings which itself should be
greater than the surplus. Constraint (6) ensures that the span of
one cycle period must be less than the product validity period.
Constraints (7) and (8) ensure that the number of facings,
order quantity and the value of the surplus must be integers.

For a problem with n stock-keeping-units, the total number
of variables (qi , si and ri ) is 3 × n. According to Bai and
Kendall (2007), all variables have upper and lower bounds,
which are 0< ri �si , Li < si �Ui and si �qi �qub

i , where

qub
i =

⌊
1

(1 − �i )
r

(1−�i )

i s
�i
i + �i

�i
s
�i
i − �i

(1 − �i )
si

−�i
�i
e−�i Ei s

�i
i

⌋
(10)

Following the standard notation, �x� denotes the function
which rounds down a real value x to its closest integer. See
Bai and Kendall (2007) for the derivation of equation (10).

Addressing the single-item inventory problem

Let us first consider a single-item problem: for a given shelf
space decision s(L < s�U ), the problem is to search for a
pair of order quantity and the amount of surplus (q and r) such
that the unit space profit function (9) is maximized, subject
to the constraints (4–8).

Figures 2 and 3 illustrate a typical relationship between
the profit function (9) and the decision variables q, s and r.
It can be seen that, for this item, the profit function is more
sensitive to the changes of facings s than the order quantity q
and the surplus quantity r. This suggests that retailers should
take special care when deciding on displayed facings. A bad
decision could result in a large profit loss.

As stated above, all decision variables have lower and up-
per bounds. A simple way to solve the single-item inventory
problem is to consider all combinations that satisfy the con-
straints (4–8). Suppose the shelf space allocated to an item
is s ′, the time complexity of the algorithm is O(s ′qub). How-
ever, from Figures 2 and 3, it seems that the profit function
(9) displays unimodality over integer variables q, s and r and
there is only one maximal value. Although, of course, this ev-
idence does not provide a proof, all of our experiments have
demonstrated this property. Note that the search space defined
over continuous variables is not unimodal since GRG does
not converge to the same continuous solution when starting
from different initial solution (Bai and Kendall, 2007). Alter-
natively, a more efficient binary search is used in this paper
to obtain a good order quantity q value. Note that this bi-
nary search procedure cannot guarantee an optimal q value if
the above assumption does not hold, in which case, one may
use complete enumeration. Meanwhile because r is relatively
small (in most UK supermarkets, the number of facings of an
item s is generally less than 12 and r < s), an enumeration
method can be used in the search for the optimal value of r.
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Figure 2 Graphical representation of an item’s profit function
with respect to facings s and order quantity q (surplus r = 0).
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Figure 3 Graphical representation of an item’s profit function
with respect to facings s and surplus r (order quantity q = 90).

Figure 4 presents the pseudocode for the binary search
algorithm which, for simplicity, is denoted by proc qr(s ′).
Suppose the shelf space allocated to an item is s ′, for each
possible value of r, a lower bound and an upper bound of
q were calculated (denoted by ql and qr respectively). The
algorithm then divides the range [ql , qr ] into two equal parts
(ie q = (ql + qr )/2) and checks in which half the optimal
order quantity q ′

opt lies. If q ′
opt lies in the left half, it sets

qr =q , otherwise it sets ql =q . This process is repeated until
the length of the range [ql , qr ] decreases to 1 and the optimal
order quantity q ′

opt is one of the range boundaries (ie q
l or qr ).

The total number of iterations of this procedure is no more
than s ′ log2 qub where qub is the upper bound of order quantity.
Because it is difficult to calculate the derivative of function
(9), we used the method below to determine on which side
the optimal order quantity q ′

opt lies. Let M (respectively Ml ,
Mr ) be the profit when order quantity is q (respectively ql ,
qr ) and M−ε be the profit when we decrease q by a very small
value ε (see Figures 5 and 6). If M−ε > Ml , q ′

optis on the left
hand side of q, otherwise, q ′

opt is on the right-hand side of q.
In order to clearly demonstrate the solution procedure

proc qr(s ′), we present an illustrative example. The prob-
lem parameters are taken from the numerical instance
BORIN94/6 (item 1) in Bai and Kendall (2007) where

Input s’;
Set s = s’, qopt = 0, ropt = 0, Mopt = -∞, � = 0.001;
For each r=0 to s
 Set ql = s ;
 Set qr = qub ;
 Calculate Ml = M (ql,s,r) and Mr = M(qr,s,r) ;
 while (qr - ql > 1)
  q = [(ql + qr )/2] ;
  Calculate M(q,s,r), M -� = M(q-�,s,r) ;
  If (M -� < M )
   ql = q;  Mr = M ;
  Else
   qr = q;  Mr = M ;
  Endif
 Loop
 If (Ml < Mr )
  q'opt = qr, M'opt = Mr ;
 Else
  q'opt = ql, M'opt = Ml ;
 Endif
 If( Mopt < M'

opt)
  qopt = q'opt, ropt = r, Mopt = M'opt ;
 Endif
Endfor
Output Mopt , qopt , ropt ;

Figure 4 The pseudocode of the procedure proc qr(s′).
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Figure 5 The relationship between order quantity and its unit
time profit function (q > qopt).
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Figure 6 The relationship between order quantity and its unit
time profit function (q < qopt).

ai = 0.028, pi = 5.03, cai = 2.46, chi = 0.19, pdi = 1.23,
Co=34.3, �i =28.53, �i =0.1532, �i =0.06, cs =5.0, Li =1,
Ui = 12, Tei = 7. For an input s = 2, according to Figure 6,
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Table 1 A detailed illustrations of the iterations used by proc qr(s′) for the illustrative example

Iteration ql qr Ml Mr q = �(ql + qr )/2� M M−ε

1 2 180 −391.298 45.440 91 54.509 54.513
2 2 91 −391.298 54.509 46 50.322 50.287
3 46 91 50.322 54.509 68 54.319 54.312
4 68 91 54.319 54.509 79 54.706 54.705
5 79 91 54.706 54.509 85 54.672 54.674
6 79 85 54.706 54.672 82 54.707 54.708
7 79 82 54.706 54.707 80 54.7109 54.7106
8 80 82 54.7109 54.707 81 54.7111

we have:

r = 0, ql = 2, qr = qub =
⌊
0(1−0.1532) × 20.1532

(1 − 0.1532)
+ 28.53

0.06

× 20.1532 − 0.1532

(1 − 0.1532)

×2 − 28.53

0.06
× e−0.06×720.1532

⌋

= 180, ε = 0.1

After 8 iterations (see Table 1) we have q ′
opt = qr = 81,

M ′
opt = 54.711. The same procedures were carried out for

r = 1 and r = 2 and the final solution for s = 2 is: qopt = 81,
ropt =0 M ′

opt =54.711. The optimal results are shown in bold
in Table 1.

Addressing multi-item problems

In the previous section, we developed a sub-procedure
proc qr(s ′) to obtain a high quality solution for a single-
item inventory problem, with constant shelf space s ′ being
allocated to the item. For the multi-item problem model (1)
subject to constraints (2)–(9), we can determine the following
property.

Property For a given shelf space allocation decision s∗
i

(1� i�n) that satisfies constraints (2) and (3), the maxi-
mum of the overall average profit of all the items is equal to
the sum of the maximal average profit of each item, that is
max

∑n
i=1 Mi (s∗

i , qi , ri ) = ∑n
i=1 [maxMi (s∗

i , qi , ri )].
Proof From function (9) it can be seen that, for a given
shelf space allocation decision s∗

i , the average profit (Mi ) of
item i is only dependent on the corresponding values of qi
and ri and is not affected by the changes of other decision
variables. Therefore, the maximal overall average profit can
be obtained by maximizing the average profit of each item.

Although this property appears straightforward, it is very
helpful to reduce the search space of the problem model. The
property implies that once the shelf space allocation decisions
for each item are made, the problem can be solved by indepen-
dently searching for a pair consisting of order quantity (qi ) and
surplus (ri ) for every item i (1� i�n). Therefore, the prob-

lem can be decomposed into two sub-problems: (a) optimize
n shelf space allocation variables (si ), (b) search for the opti-
mal values of ordering quantity (qi ) and surplus (ri ), for the
given space allocation decisions made in the first sub-problem.
Because the second sub-problem can be efficiently solved
by the sub-procedure proc qr(s ′) with polynomial computa-
tional time, the search space is cut down to searching for
n shelf space allocation decisions, compared with a search
space of n × 3 dimensional vectors without decomposition.
Once the optimal shelf space allocation variables are found,
the corresponding optimal order quality and surplus can be
decided efficiently. In this sense, the problem can be reduced
to a nonlinear bounded knapsack problem, which is still NP-
Hard (Bretthauer and Shetty, 2002). In the following sections,
some heuristic and meta-heuristic approaches will be adapted
to the problem and their computational performance will be
reported and compared against each other.

Greedy heuristics for the problem

In this section, and the next, we shall consider the original
problem (model (1) subject to constraints (2–9)) where there
are multiple items in the inventory with limited shelf space
on which to display them. The items have to compete against
each other for the shelf space so that the total profit is maxi-
mized. Once the amount of shelf space allocated to each item
is determined, the procedure proc qr(s ′) can be applied to ev-
ery item to find the corresponding order quantity and the num-
ber of surplus items. There are many ways to allocate shelf
space among items. A common sense rule to accomplish this
would be to allocate the space in favour of more profitable
items. The problem, in fact, degenerates into a problem simi-
lar to a non-linear bounded knapsack problem. Note that this
particular knapsack problem is different from the linear ones
discussed in Martello and Toth (1990). In linear knapsack
problems, the profits of the items are constants and, there-
fore, each item’s unit-space profit (ie profit/space) is constant
as well. However, the space allocation problem in this paper
is more difficult because the unit-space profit of every item
is changing with the change of allocated shelf space. This
section introduces four greedy heuristics for this problem.

The basic idea behind the algorithms is that, for a given
amount of shelf space, each item represents an intelligent
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entity optimizing its own inventory variables (q and r) using
the procedure proc qr(s ′). However, with the limited shelf
space resources, these items have to compete and cooperate
with each other so that their total profit is maximized. Items
that make less profit per unit of shelf space must release part
of their space to those which could make more profit if given
the same amount of shelf space.

Two functions were used to rank the profitability of dif-
ferent items with respect to the shelf space (denoted by F1
and F2 respectively). The first function is an item’s unit
space profitability, defined by F1=Mi (si )/(ai si ). The second
function is a differential coefficient profitability, defined by
F2 = (Mi (si ) − Mi (si − ε))/(εai ) where ε is a small positive
value (the derivative value is an ideal criterion but is difficult
to calculate in this case). Note that Mi (si ) is the optimal unit
profit value of item i returned by the procedure proc qr(s ′)
for the given input si . Because the profit function (9) is non-
linear with respect to the facings si , both F1 and F2 are not
constant and will change with the changes of si . Therefore,
both profitability values F1 and F2 need to be recalculated at
each solution construction step. This is the dynamic part of
the algorithm.

There are two possible points fromwhich the greedy heuris-
tics can start. They can start from a solution that has met the
minimal space requirements and can then repeatedly add a
facing to the shelf according to the ranking functions F1 or
F2 without violating the constraint (2). They can also start
from a point where the number of facings of each item is
equal to its upper bound and then repeatedly delete a facing
according to the functions F1 or F2 until the space constraint
(2) is satisfied. Therefore, there are a total of four combina-
tions, denoted by GH1, GH2, GH3 and GH4 respectively and
described as follows.

GH1 (Greedy Fwd): This heuristic starts from a shelf space
allocation decision that satisfies the minimal space require-
ments of each item and repeatedly adds to the shelf a facing
of the item with the largest profitability value according to
the criterion F1. The heuristic stops as soon as no more fac-
ings can be added to the shelf. During this process, if adding
a facing causes a constraint violation, the profitability value
of this item is set to a very small value so that the item is of
no further consideration. A full description of the algorithm
is given in Figure 7.

GH2 (Greedy Bwd): This heuristic starts from an initial
shelf space allocation that is equal to the corresponding upper
bounds. Then the heuristic repeatedly deletes a facing of the
item with the smallest profitability value of F1 until the shelf
space constraint is satisfied. Afterwards, a sub-procedure is
executed which tries to add (if possible) as many facings as
possible to the shelf according to the criterion of F1 (see
Figure 8 for a detailed description).

GH3 (Greedy Derivative Fwd): This heuristic is the same
as GH1 except that the greedy criterion is F2 instead of F1.

GH4 (Greedy Derivative Bwd): This heuristic is the same
as GH2 except it uses F2 as the greedy criterion.

Step 1:
 For each item i (1 ≤ i ≤ n)
  si = Li ;
  Call proc_qr(si) to optimize qi and ri;
  Calculate F1 value for item i ;
 Endfor
Step 2:
 If (FreeSpace > MinProdSpace)
  Select an item j with largest possible
  profitability value of F1 and whose size is
  smaller than free space and the number of
  facing sj is less than its upper bound;
  If no such item is available, stop the procedure
  Else
   sj = sj +1;
   Call proc_qr(sj) to optimize qj and rj ;
   Update F1 for item j ;
   Go to step 2;
  Endif
 Else
 Stop and output the solution.
Endif

Figure 7 Pseudocode of GH1.

Step 1:
 For each item i (1 ≤ i  ≤ n)
  si = Ui ;
  Call proc_qr(si) to optimize qi and ri;
  Calculate F1 value for item i;
 Endfor

Step 2:
 While (SpaceUsed > SpaceAvailable)
  Select an item j with the smallest possible
  profitability value of F1 and whose facing (sj)
  has not reached its lower bound;
  sj = sj -1;
  Call proc_qr(sj) to optimize qj and rj ;
  Update F1 for item j ;
 Loop

Step 3:
 If (FreeSpace > MinProdSpace)
  Select an item k with the largest possible
  profitability value of F1 and whose area is
  smaller than free space and where the number of
  facing sk is less than its upper bound;
  If no such item is available, stop the procedure
  Else
   sk = sk +1;
   Call proc_qr(sk) to optimize qk and rk
   Update F1 for item k;
   Go to step 3;
  Endif
 Else
  Stop and output solution.
 Endif

Figure 8 Pseudocode of GH2.

Table 2 gives a comparison of the four greedy heuristics
and the multi-start GRG algorithm, on the five test problem
instances reported in Bai and Kendall (2007) (with the best



R Bai et al—Heuristic, meta-heuristic and hyper-heuristic approaches 1393

Table 2 The performance of the greedy heuristics in comparison with multi-start GRG

BORIN94/6 FRESH2 FRESH3 FRESH4 FRESH5

n 6 18 32 49 64

obj. cpu (s) obj. cpu (s) obj. cpu (s) obj. cpu (s) obj. cpu (s)

Multi-start GRG 347.45 3.2 1129.6 73.6 2056.46 74.3 3163.98 179.2 4387.16 209.7
GH1 344.55 0.03 1126.8 0.03 2042.07 0.05 3144.02 0.05 4360.44 0.09
GH2 344.55 0.05 1129.09 0.13 2041.59 0.28 3147.28 0.55 4358.96 0.91
GH3 347.45 0.02 1131.64 0.02 2053.71 0.03 3159.17 0.06 4384.62 0.09
GH4 346.90 0.06 1131.33 0.25 2054.14 0.50 3160.91 1.06 4382.66 1.45
GRG relaxed + GH∗

3 349.05 0.5 1137.73 5.7 2063.09 18.3 3172.96 60.0 4394.96 47.5

The bold values represent the best results.
Note that n is the number of items; obj. is the objective value of the solution obtained by different algorithms (for multi-start GRG, this is the average
value of 10 runs); cpu(s) is average CPU time consumed by different algorithms (in seconds).∗ The objective values of the relaxed problem instances (excluding integrality constraints) by GRG with an initial solution generated by GH3.

results shown in bold). The relaxed problem instances, in
which the integrality constraints of the decision variables were
excluded, were also solved by the GRG with initial solutions
generated by GH3. The results for these relaxed problem
instances are also presented in Table 2. However, once the
rounding heuristic is applied to recover the feasibility, we
obtained the same quality solutions as those by the multi-start
GRG. It can be seen that all greedy heuristics are very fast,
compared with the multi-start GRG algorithm. GH1 and GH3

are also faster than GH2 and GH4. This is probably because
the facings in the final solution are closer to their lower bound
facings than to the upper bound facings for these instances.
In terms of the solution quality, GH3 and GH4 perform better
than GH1 and GH2 and are even competitive when compared
with the multi-start GRG algorithm, which took much longer.
Neither GH3 nor GH4 performed better than the other in terms
of solution quality. GH3 is better on the instance BORIN94/6,
FRESH2 and FRESH5 while GH4 is better than GH3 on the
other two instances. However, GH3was computationally less
expensive than GH4. For real-world applications that not only
stress solution quality but also emphasize algorithm simplicity
and speed, heuristic GH3 has obvious advantages over the
multi-start GRG.

Further improvement

Although the greedy heuristics in the above section are very
efficient in generating high-quality solutions, they are prone
to getting stuck at local optima. Three different meta-heuristic
approaches have been investigated for the problem in an
attempt to further improve the solutions obtained by these
greedy heuristics.

A GRASP algorithm for the problem

A GRASP (greedy randomized adaptive search procedure)
algorithm (Feo and Resende, 1995) has been applied to the
problem. GRASP is a multi-start meta-heuristic approach that
explores the search space from different starting points. The

For nrep = 1 to max_rep
 /* solution construction phase */
 Start from an empty solution;
 For each item i ( 1 ≤ i ≤ n )
  si = Li ;
  Call proc_qr(si) to optimize qi and ri;
  Calculate F2 value for item i ;
 Endfor
 Initialise candidate list (CL);
 While (FreeSpace > MinProdSpace and CL≠∅ )
  F2

min ← min{F2(i ) ⏐i  � CL} ;
  F2

max ← min{F2(i ) ⏐i � CL} ;
  Construct Restricted Candidate List (RCL) by
  RCL ← { item i⏐i � CL &
   F2 (i ) ≥ F2

min +�(F2
max - F2

min )}
;

  Select an item j from RCL at random;
  sj = sj +1;
  Call proc_qr(sj) to optimize qj and rj ;
  Update the candidate list CL ;
  Update F2 value for item j ;
 Loop

 /* local search phase */
 LocalSearch (ls_max_rep, solution);
 Update best solution found so far ;
 nrep = nrep + 1;

Endfor

Figure 9 A GRASP algorithm for the problem.

idea of applying GRASP to this problem is that we have two
profitability functions, F1 and F2, available for this problem.
The greedy heuristics based on the function F2 produce high-
quality solutions. This function can be utilized in the solution
construction stage of a GRASP algorithm.

Figure 9 presents the pseudocode of the GRASP algorithm
used in this paper. A total of max rep runs were executed
and each run consists of a solution construction phase and a
local search phase. The solution construction phase is very
similar to the greedy algorithm GH3 except that a parame-
ter � is introduced to control the degree of randomness and
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greediness. To do this, a candidate list (CL) is maintained,
consisting of all the non-initialized variables si . A restricted
candidate list (RCL) is constructed based on the parameter �
(see Figure 9). The case � = 0 corresponds to a random con-
struction process, while �=1 is equivalent to the greedy algo-
rithm GH3. The local search phase is a simple hill-climbing
algorithm which repeatedly generates a candidate solution by
swapping one facing of two random items (ie select two ran-
dom items i and j, set si = si −1, s j = s j +1) and then calling
the procedure proc qr(s ′) to obtain corresponding qi , ri , q j

and r j after swapping. The candidate solution is accepted if
it is better and discarded otherwise. The local search phase
stops when the number of total repetitions exceeds a given
value ls max rep. After the preliminary experiments, we set
� = 0.85, max rep = 100 and ls max rep = n2.

A simulated annealing algorithm for the problem

We also used a simulated annealing approach. The neigh-
bourhood structure is defined by randomly swapping a facing
of two items, with the procedure proc qr(s ′) being called im-
mediately after swapping. The cooling schedule is defined
as follows. The initial temperature ts is set to a value such
that around 85% of inferior moves are accepted and the algo-
rithm stops when the acceptance rate of inferior moves falls
to 1%. The temperature is gradually reduced according to
Lundy and Mees’s cooling function �(t) → �(t)/(1+��(t))
(Lundy and Mees, 1986) and at each temperature only one
iteration is executed. For the purpose of a fair comparison
with GRASP, the total number of iterations allowed by SA is
set to N = 100 × n2 (ie same as the total iterations allowed
by GRASP) and the temperature deduction parameter can be
calculated by � = (ts − t f )/N × ts × t f . The algorithm starts
from the solution produced by GH3. Note that, although the
total number of iterations by GRASP and SA are the same,
GRASP may take longer because of the extra time spent dur-
ing the solution construction phase. This is especially true
when the number of iterations of GRASP, max rep, is very
large.

Hyper-heuristic approaches for the problem

Hyper-heuristics (Burke et al, 2003a,b; Ross, 2005) repre-
sent a search methodology that is receiving some attention in
the literature. The term hyper-heuristic has been defined as
the procedure of ‘using (meta-) heuristics to choose (meta-
)heuristics to solve the problem in hand’ (Burke et al, 2003b).
One of the ideas behind hyper-heuristics is that each problem-
specific heuristic may have some weaknesses in certain sce-
narios in which other heuristics may perform better. Better
algorithmic performance could be achieved by combining a
set of heuristics, instead of using just a single heuristic alone.
Hyper-heuristics combine a set of easily implemented, heuris-
tics in a strategic way so that the algorithm is able to tackle
not only a specific problem or problem instance but a batch
of problems. Unlike most search methodologies (and, indeed,

Initialise
 Assign appropriate initial weight w(i ) to each
 heuristic i ;
 Set lower and upper bounds , respectively wl and
 wu, of w(i );
 Set max_tabu_len, the maximal length of the tabu
 list, to an appropriate value;
 Generate an initial solution s0;
Repeat
 Select the low-level heuristic H* with the highest
 weight;
 Apply H* to the current solution s, resulting in a
 neighbour solution s’;
 If f(s’) - f(s) > 0
  w(H*) = w(H*)+1;
  If (w(H*) > wu) w(H*) = wu;
 Else
  w(H*) = w(H*)-1;
  If (w(H*) < wl) w(H*) = wl;
  Push heuristic H* into the tabu list;
  If the maximal length of the tabu list is reached,
  release the first heuristic in the tabu list;
  If f(s’) - f(s) < 0, release all heuristics in the tabu
  list except heuristic H*;
 Endif
 s ← s';
Until stopping criteria are met.

Figure 10 The pseudocode of a tabu search based hyper-heuristic
for a maximization problem Source: (Burke et al, 2003b).

most implementations of meta-heuristics) which search the
solution space directly, hyper-heuristics work on the prob-
lem indirectly by strategically selecting appropriate heuristics
at different times in the search. With hyper-heuristics, the
primary domain of exploration is a search space of heuris-
tics rather than a search space of solutions. In recent years,
hyper-heuristics have been successfully explored across many
scheduling and combinatorial problems (Hart et al, 1998;
Terashima-Marin et al, 1999; Ross et al, 2002; Burke et al,
2003b; Nareyek, 2003; Ross et al, 2003; Bai and Kendall,
2005, Kendall and Mohd Hussin (2005); Rattadilok et al,
2005; Bilgin et al, 2006; Burke et al, 2006; Ozcan et al,
2006; Burke et al, 2007; Dowsland et al, 2007). One can re-
fer to (Burke et al, 2003a; Ross, 2005) for more discussion
and applications of hyper-heuristics.

Tabu search hyper-heuristics

We firstly applied a recently developed tabu search-based
hyper-heuristic approach (TSHH) (Burke et al, 2003b) to the
problem. The main idea behind this algorithm is the incorpo-
ration of a tabu list in the heuristic selection mechanism that
forbids the selection of some low-level heuristics at certain
stages of the search. For a maximization problem with an ob-
jective function f (x), TSHH can be described by Figure 10.

In this application, the parameters were set as follows (these
are the same as Burke et al, 2003b). Suppose a total of k low-
level heuristics were used, the maximal length of the tabu list
was set to max tabu len = k/2. The upper and lower bound
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Initialisation: initial solution s0, temperature ts, cooling
function �(t) and a set of low-level heuristics
{Hi ⏐i = 1,...n}, for given evaluation function f :
Repeat
 Repeat
  Randomly select a low-level 
  Apply H* to the current solution s, resulting in a
  neighbour solution s’;
  	 = f(s' ) − f (s);
  If f(s' ) − f (s) > 0  s ← s';
  Else if ( exp((f(s' ) − f (s))/t ) > random (0,1) )
   s ← s';
  Endif
  If f(s) > f (sbest)  sbest ← s ;
 Until iteration_count = nrep
 Set t = �(t);
Until the stopping conditions are met.
Output sbest as the best solution found.

heuristic H* � {Hi ⏐i = 1,...n};

Figure 11 A simulated annealing hyper-heuristic algorithm for
a maximization problem Source: (Bai and Kendall, 2005).

of weights for each low-level heuristic were set to wu =k and
wl=0 respectively. The initial weights of each heuristic were
set to their lower bounds and updated after each heuristic call.
Once a heuristic’s weight exceeded one of its boundaries, it
was set to the corresponding boundary.

Simulated annealing hyper-heuristics

A simulated annealing hyper-heuristic (SAHH) proposed in
(Bai and Kendall, 2005) is also adapted for the problem. The
pseudocode of the algorithm is presented in Figure 11.

Tabu search simulated annealing hyper-heuristics

A hybrid hyper-heuristic was also implemented, denoted by
TSSAHH, which hybridizes the tabu search hyper-heuristic
and the simulated annealing hyper-heuristic described above.
In this hybrid algorithm, the low-level heuristics are selected
using the same rule as in TSHH but candidate solutions are ac-
cepted according to the simulated annealing probability. The
parameters are the same as the general simulated annealing
algorithm described in the previous section. The pseudocode
of TSSAHH is given in Figure 12.

All three types of hyper-heuristics used the same four low-
level heuristics, which can be outlined as follows:

• 2-opt: This heuristic removes one facing from a random
item and adds one facing to another item, that is, it selects
two random items i and j, and sets si =si +1, s j =s j −1. We
call the procedure proc qr(s ′) to improve the corresponding
order quantity and surplus.

• 3-opt1: This heuristic randomly selects three different
items, i, j, k, and sets si = si − 1, s j = s j − 1, sk = sk + 1.
We call the procedure proc qr(s ′) to improve the corre-
sponding order quantity and surplus.

• 3-opt2: This heuristic randomly selects three different

Initialise
 Assign appropriate initial weight w (i ) to each
 heuristic i;
 Set max_tabu_len, the maximal length of the tabu
 list, to an appropriate value;
 Set initial temperature ts, stopping temperature tf
 and total iterations N.
 Generate an initial solution s0, t=ts;
Repeat
 Select the non-tabu low-level heuristic H* with the
 highest weight;
 Apply H* to the current solution s, resulting in a
 neighbour solution s ';
 If f (s') -f (s) > 0 
  s ← s ';
  w(H*) = w(H*)+1;
  If (w(H*) > wu) w(H*) = wu;
 Else
  w(H*) = w(H*)-1;
  If (w(H*) < wl) w(H*) = wl;
  Push heuristic H* into the tabu list;
  If the maximal length of the tabu list is reached,
  release the first heuristic in the tabu list;
  If f (s') - f (s) < 0
   Release all heuristics in the tabu list except
   heuristic H*;
   If exp((f (s') - f (s ) )/t ) > random(0,1)
     s ← s';
  Else
   s ←s ';
  Endif
 Endif
 If f (s) > f (sbest )  sbest ← s ;
 t = t /(1+�t ) ;
Until stopping criteria are met.

Figure 12 The pseudocode of a TSSAHH for a maximization
problem.

items, i, j, k and sets si = si + 1, s j = s j + 1, sk = sk − 1.
We call the procedure proc qr(s ′) to improve the corre-
sponding order quantity and surplus.

• 4-opt: This heuristic selects four different random items,
deletes one facing of two random items and adds one facing
to the other two items. We call the procedure proc qr(s ′)
to optimize the corresponding order quantity and surplus.

Note that each of the low-level heuristics described above
is guaranteed to return a feasible solution. If a low-level
heuristic cannot produce a new feasible solution, the original
solution is returned. All three hyper-heuristics above started
from the same solution generated by GH3. The stopping
criterion is a computational time limit which was set to be
approximately the same value as the amount of time spent by
the multi-start GRG algorithm (see Table 2).

Experimental results

The above algorithms were applied to the same five prob-
lem instances from (Bai and Kendall, 2007), each of which
were run 30 times. Their computational results are averaged
and presented in Table 3 (with the best results highlighted
in bold).
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Table 3 A comparison of different algorithms on five fresh produce instances

BORIN94/6 FRESH2 FRESH3 FRESH4 FRESH5

6 18 32 49 64

av. obj. stdev av. cpu av. obj. stdev av.cup av. obj. stdev av.cup av. obj. stdev av.cup av. obj. stdev av.cup

Initial (GH3) 347.45 – 0.02 1131.64 – 0.02 2053.71 – 0.03 3159.17 – 0.06 4384.62 – 0.09
Multi-Start 347.45 0 3.2 1129.6 0 73.6 2056.46 0.97 74.3 3163.98 0.51 179.2 4387.16 0.43 209.7
GRG
GRASP 347.58 0.00 2.79 1133.51 0.00 23.64 2056.43 0.17 78.90 3164.14 0.34 245.30 4387.23 0.31 438.99
SA 347.58 0.00 2.23 1133.22 0.36 19.11 2055.04 0.61 72.24 3163.81 0.41 226.70 4387.16 0.51 401.20
SAHH 347.58 0.00 3.70 1133.51 0.00 61.26 2056.93 0.27 60.62 3164.18 0.27 148.91 4387.42 0.37 185.09
TSHH 347.56 0.05 3.20 1131.64 0.00 73.61 2053.71 0.00 74.31 3159.23 0.33 179.21 4384.62 0.00 209.71
TSSAHH 347.58 0.00 3.72 1133.51 0.00 62.50 2057.09 0.71 56.31 3164.21 0.25 135.55 4387.41 0.32 185.29

The bold values represent the best results.
Note that av. obj. is the average objective value of 30 runs; stdev is the standard deviation of 30 runs; av. cpu is the average CPU time spent.

It can be seen that the results obtained by GH3 are very
close to the results of the four meta-heuristic algorithms.
The largest improvement for the instance BORIN94/6 is only
0.04% ((347.58 − 347.45/347.45) × 100%). The four algo-
rithms have consistently solved this small instance to optimal-
ity over 30 runs (the optimal solution of BORIN94/6 was ob-
tained by a complete search). For the instance FRESH2, three
algorithms (GRASP, SAHH, TSSAHH) consistently produced
the same solution over 30 runs). For the other four instances,
the biggest improvements over the initial solutions are 0.17,
0.16, 0.16 and 0.06% respectively. Similar results were ob-
tained even when the algorithms were given much more com-
putational time or more repetitions. This evidence suggests
that these results are of a high level of quality. A theoret-
ical study of how close (or not) they may be to optimality
by establishing upper bounds represents a direction for fu-
ture research. Among the algorithms we have investigated,
the GRASP algorithm performed well when compared with
the multi-start GRG algorithm and the general simulated an-
nealing. It was only marginally outperformed by multi-GRG
on instance FRESH3. However, on larger problem instances,
both GRASP and simulated annealing consumed more com-
putational time than the multi-start GRG. Comparing the dif-
ferent hyper-heuristics, TSHH was unable to improve the
initial solution or only achieved a very small improvement.
However, the performance of TSHH was improved when hy-
bridized with a simulated annealing acceptance criterion (cor-
responding to the algorithm TSSAHH).

In general, meta-heuristics (especially when employed as
hyper-heuristics) are not only more efficient than the multi-
start GRG when dealing with larger size problem instances,
but more importantly, are much easier to implement than the
GRG which involves complex mathematical manipulations.
Two types of hyper-heuristic performed best among all the al-
gorithms. TSSAHH outperformed all of the other algorithms
for four instances and was only marginally beaten by SAHH
on the remaining one instance. SAHH performed well and ob-

tained best results on three instances (BORIN94/6, FRESH2
AND FRESH5). Even for the other two instances, it ranked
as the second best algorithm and found solutions that are very
close to the best known solutions.

Conclusions

The motivation of this paper is to investigate fast, easy-
to-implement approaches as alternatives to the multi-start
GRG algorithm used to address a fresh produce inventory
control and shelf space allocation problem in Bai and Kendall
(2007). We firstly analysed a single item problem and pro-
posed a binary search algorithm to obtain a high quality so-
lution. For the multi-item problem, the problem can be de-
composed into two sub-problems and the search space can
be substantially reduced. Four greedy heuristic methods are
developed which dynamically rank the objective contribution
of each item and allocate more space to those items which
could make more profit. They also reclaim shelf space from
those items if they cannot make as much profit as another
item. The experimental results over five test problem instances
showed that these greedy algorithms, especially GH3 could
produce similar quality solutions to the multi-start GRG but
with much less computational time. In practice, where sim-
plicity and computational time are also priorities, this simple
heuristic method has advantages over the widely used GRG
algorithm from the literature. The paper also investigated
several meta-heuristic approaches in order to further improve
the solution generated by the greedy algorithms. Two of the
hyper-heuristic methods have been able to obtain better qual-
ity solutions than the multi-start GRG does while using sim-
ilar or less computational time.
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