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Abstract

This article presents new heuristic methods for solving a class of hard centroid clustering problems including the
p-median, the sum-of-squares clustering and the multi-source Weber problems. Centroid clustering is to partition
a set of entities into a given number of subsets and to find the location of a centre for each subset in such a way that
a dissimilarity measure between the entities and the centres is minimized. The first method proposed is a candidate
list search that produces good solutions in a short amount of time if the number of centres in the problem is not
too large. The second method is a general local optimization approach that finds very good solutions. The third
method is designed for problems with a large number of centres; it decomposes the problem into subproblems
that are solved independently. Numerical results show that these methods are efficient—dozens of best solutions
known to problem instances of the literature have been improved—and fast, handling problem instances with more
than 85,000 entities and 15,000 centres—much larger than those solved in the literature. The expected complexity
of these new procedures is discussed and shown to be comparable to that of an existing method which is known
to be very fast.
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1. Introduction

Cluster analysis is to partition a set of entities into subsets, or clusters, such that the sub-
sets are homogeneous and separated one another, considering measurements describing the
entities. In this paper, we propose new efficient methods for centroid clustering problems.
More precisely, we are going to apply our methods to problems of the following type: given
n entities ei with weights wi (i = 1, . . . , n) it is searched p centres c j ( j = 1, . . . , p) mini-
mizing f (c1, . . . , cp) = ∑n

i=1 min j wi d(ei , c j ), where d(ei , c j ) measures the dissimilarity
between ei and c j . However, the methods are very general and may be applied to other
problems or objective functions.

If the entities are described by their co-ordinates in Rm, d(ei , c j ) is typically the distance
or the square of the distance between ei and c j . In the last case, the problem is the well
known sum-of-squares clustering (SSC) (see e.g. Ward (1963), Edwards and Cavalli-Sforza
(1965), Jancey (1966), and MacQueen (1967)). There are many commercial softwares
that implement approximation procedures for this hard problem. For instance, the popular

∗A former version of the article was entitled “Heuristic methods for large multi-source Weber problems.”
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S-Plus statistical analysis software incorporates the k-means iterative relocation algorithm
of Hartigan (1975) to try to improve the quality of given clusters. For exact algorithms for
SSC, see e.g. Koontz, Narendra, and Fukunaga (1975) and Diehr (1985).

In case: (1) the space is R2, i.e. the Euclidean plane, (2) the centres can be placed ev-
erywhere in R2 and (3) the dissimilarity measure is the Euclidean distance, the problem
is called the multi-source Weber problem (MWP). This problem occurs in many practical
applications, such as the placement of warehouses, emitter antennas, public facilities, air-
ports, emergency services, etc. See e.g. Saaty (1972), Dokmeci (1977), Fleischmann and
Paraschis (1988), Bhaskaran (1992), and Lentrek, MacPerson, and Phillips (1993) that de-
scribe practical applications that need to solve MWPs with up to more than 1700 entities
and 160 centres. For exact methods solving the MWP, see e.g. Rosing (1992) and Krau
(1997). For a unified comparison of numerous approximation algorithms, see Brimberg
et al. (2000).

In case dissimilarities between entities are given by an arbitrary n × n matrix and the
centres can be placed on the entities only, the problem is called the p-median problem
(PMP). The last is a well-known NP-hard problem, see e.g. Hakimi (1965), ReVelle and
Swain (1970), Mirchandani and Francis (1990), and Daskin (1995). For exact methods
solving the PMP, see e.g. Erlenkotter (1978), Rosing, ReVelle, and Rosing-Vogelaar (1979),
Beasley (1985), and Hanjoul and Peeters (1985). For an introduction to location theory and
clustering, see also Gordon (1981), Späth (1985), and Wesolowsky (1993).

The new methods presented in this paper, candidate list search (CLS), local optimization
(LOPT) and decomposition/recombination (DEC), have been successfully applied to SSC,
MWP and PMP, but they can be extended to solve other problems. For example, the CLS
and LOPT methods can be applied to any location-allocation problems as soon as two
appropriate procedures are available: the first one for allocating entities to centres and the
second one for optimally locating a centre, given the entities allocated to it. For SSC, MWP
or PMP, the allocation procedure simply consists in finding the nearest centre to each entity.
For other problems, this procedure must be more elaborated (e.g. if there is a constraint
limiting the sum of the weights of the entities allocated to a centre).

The LOPT method proceeds by local optimization of subproblems. This is a general
optimization method that can be applied to problems not directly related to clustering (see
e.g. Taillard and Voß (2002), where LOPT is presented under the name of POPMUSIC).

In order to remain relatively concise, we are going to present applications of our methods
for PMP, SSC and MWP only, but with a special attention to the under studied MWP. Indeed,
while the MWP by itself does not embrace all of the problem features found in some practical
applications, this model can be very useful, especially for real applications dealing with
many thousands of entities. In figure 1, we show the decomposition into 23 clusters of a very
irregular problem built on real data, involving 2863 cities of Switzerland. The large black
disks are the centres while the small disks are the cities (or entities). Cities allocated to the
same centres have the same colour. In this figure, we have also added the federal frontiers
and the lakes. Politically, Switzerland is composed of 23 states (Cantons); physically, it
is composed of extremely thickly populated regions (Plateau) and regions without cities
(Alps, lakes). We see in figure 1 that the positions of the centres are sensible (no centres
are located outside Switzerland or on a mountain or in a lake) and that the decomposition
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Figure 1. Decomposition of Switzerland into 23 clusters by solving a multi-source Weber problem.

generally respects the natural barriers (spaces without cities); there are very few entities
that are separated from their centre by a chain of mountains.1 Moreover, if the solution of
figure 1 is compared to the solution obtained by solving a PMP with dissimilarity measure
being the true shortest paths (the road network having more than 30000 connections), it
can be shown that the PMP solution is very similar to the MWP one (21 centres are placed
almost at the same position; the main difference is that there are less entities allocated to a
centre located on the other border of a lake). However, solving this PMP is time consuming:
the computation of the shortest paths matrix took 100 times longer than finding a very good
MWP solution. Therefore, solving an MWP in a first phase before attacking the true problem
(as exemplified by a PMP or a multi-depot vehicle routing problem) can be pertinent, even
with an irregular, real problem.

Since the clustering problems treated in this paper are difficult, they can be solved exactly
for instances of moderate size only. For solving larger instances, as often arise in practice
(see the 6800 entities, 380000 network nodes instance of Hikada and Okano (1997)), it is
appropriate to use heuristic methods. However, most of the methods of the literature present
the same disadvantage of a large increase of the computing time as the number of centres
increases and, simultaneously, a decrease in the quality of the solutions produced. The aim
of this paper is to show that it is possible to partition a problem with a large number of
centres into subproblems that are much smaller, in order to benefit from the advantages of
the existing methods for small problems while rapidly producing solutions of good quality
to the original problem.
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The article is structured as follows: in Section 2, we present in detail the alternate location-
allocation (ALT) procedure used as a subprocedure of our candidate list search (CLS),
showing how it can be implemented efficiently. ALT was first proposed by Cooper (1963)
for the MWP. However, it can be generalised for any location-allocation problem as soon as a
location procedure and an allocation procedure are available. In this section, we also present
CLS, our basic procedure for solving the subproblems generated by partition methods. In
Section 3, we present two partition methods for large problems. The first one, LOPT, can
be viewed either as a generalization of the ALT procedure or as a restricted CLS for the
post-optimization of a given solution. The second decomposition method, DEC, splits a
large problem into independent subproblems and the solutions of these subproblems are
optimally mixed together to create a solution to the original problem. Section 4 analyses
the computational performances of the methods proposed.

2. Basic procedures ALT and CLS

The procedures ALT and CLS are used as subprocedures in the decomposition methods
we propose. Referring to the paper of Cooper (1963) is not sufficient to understand the
procedure ALT well, since certain details of this algorithm are not discussed in the original
paper and the choices made for implementing the procedure can have a profound impact
on its effectiveness. Moreover, we have adapted this procedure to accelerate its execution.

2.1. Generalized ALT procedure

The iterative location-allocation procedure of Cooper (1963) may be sketched as shown in
Algorithm 1. Cooper has designed this algorithm for the MWP. In this case, the location
procedure can be implemented using a procedure like those of Weiszfeld (1937). For the
SSC, the centre of gravity of the entities is the optimum location of the centre. For the PMP,
the optimum location of a centre can be obtained by enumerating all possible location for
the centre. The allocation procedure is very simple for SSC, PMP and MWP: each entity is
allocated to its nearest centre. For other problems, this procedure can be more difficult to
implement.

Two steps of this algorithm have to be discussed: the choice of the initial solution at
step 1, and the repositioning of centres that are not used at step 2a. For the choice of an
initial solution, many variants have been tested:

0) Input: Set of entities with weight and dissimilarity measure,
problem specific allocation and location procedures.

1) Choose an initial position for each centre.
2) Repeat the following steps while the location of the centres varies:

2a) Allocate the entities given the centre locations.
2b) Given the allocation made at step 2a, locate each centre optimally.

Algorithm 1. Locate-allocate procedure of Cooper (1963) (ALT).
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(1) Position the centres on p randomly elected entities; the probability of choosing an entity
being proportional to its weight.

(2) Choose the position of the centres one by one, by trying to position them on an entity
and by electing the position that minimizes the objective function.

The first variant takes into account the structure of the problem, i.e. the geographical and
weighting spread of the entities. It produces relatively good initial solutions, especially for
problems with non uniform weights.

The second variant induces the ALT procedure to produce the best solutions on the
average but its computing time is high: for each of the p centres, O(n) positions have to be
tried, and for each of these positions, one has to verify whether each entity is serviced by
the new position. This implies a procedure that operates in O(n2 · p) time, while the other
variant can be done much faster. To reduce the complexity of this variant and to make it
non deterministic,2 we adopt the following O(n · p) greedy procedure (Algorithm 2) in the
spirit of those of Dyer and Frieze (1985):

After having repositioned the centres at step 2b of the ALT procedure, it may happen that
the allocation of the next iteration, at step 2a, does not use all the centres. The unused centres
can be relocated to improve the current solution. We have adopted the following policy:

Determine the centre that contributes most to the objective function and place an unused
centre on its most distant entity; re-allocate the entities and repeat this as long as unused
centres exist.

Starting with a very bad initial solution (O(p) centres that are not used), this re-location
policy could lead to a O(p2 · n) procedure. However, our initial solution generator (as well
as our CLS procedure presented below) furnish solutions to the ALT procedure that contain
an unused centre only exceptionally (for the MWP, we have observed somewhat less than
one occurrence in 1000, even for a large number of centres). So, the re-location policy has
almost no influence on the solution quality, if one starts with a “good” initial solution as
we do. Mladenovic and Brimberg (1996) have shown that the re-location policy can have a
substantial effect on MWP solution quality if one starts with “bad” initial solutions.

0) Input: Set of entities with weight and dissimilarity measure.
1) Choose an entity at random and place a centre on this entity.
2) Allocate all entities to this centre and compute their weighted

dissimilarities.
3) For k = 2 to p do:

3a) Find the entity that is the farthest from a centre (weighted
dissimilarities) and place the kth centre at that entity’s
location.

3b) For i = 1 to n do, if entity i is allocated to a centre farther
than centre k:
Allocate entity i to centre k and update its weighted
dissimilarity.

Algorithm 2. Initial solution generator.
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2.1.1. Complexity of ALT for PMP, SSC and MWP. First, let us introduce a new com-
plexity notation: In the remaining of the paper, let Ô(.) denote an empirically estimated
complexity, while O(.) denotes the standard worst case complexity. For example, both quick
sort and bubble sort algorithms operate in O(n2) time. In practice however, it is observed
that quick sort has an Ô(n · log(n)) behaviour while bubble sort has an Ô(n2) behaviour
(Rapin, 1983).3 There are also algorithms for which the theoretical worst case complexity is
not established. However, observing the average computing times by executing an algorithm
on many instances can provide a good idea of its complexity in practice. The advantage of
this notation is to make a distinction between practice and theory. Indeed, it is common to
read that the complexity of quick sort is O(n · log(n)), which is not true, formally. Moreover,
the “ ˆ ” notation is often used by statisticians for estimated values.

The complexity of the ALT procedure can be estimated as follows. The complexity of
Step 2a (allocation of the entities to a centre) is O(p · n). Indeed, for the problems under
consideration one has to allocate each entity to its nearest centre. For large values of p, this
step can be substantially accelerated by observing that only the centres that have moved
from one iteration to the next can modify the allocation previously made. (Compares the
computing times of old and new ALT implementations in Table 3.)

Step 2b can be performed in O(n) for the SSC. Indeed, each entity contributes only once in
the computation of the position of each centre (independently from the number of centres).
For the MWP, the optimum location can be found with a Weiszfeld-like procedure (1937)
that repeats an unknown number of gradient steps. We have arbitrarily limited this number
to 30. So, in our implementation, Step 2b has a complexity of O(n). For small values of p,
the computing time of this step dominates. For the PMP, let us suppose that O(n/p) entities
are allocated to each centre (this is reasonable if the problem is relatively regular).4 For each
centre, one has to scan O(n/p) possible locations and the evaluation of one position can be
performed in O(n/p). So, the total complexity of Step 2b is O(p · n/p · n/p) = O(n2/p)
for locating the p centres.

Since p is bounded by n, the global complexity of steps 2a and 2b is bounded by O(n2)
for SSC, MWP and PMP. Now, we have to estimate the number of repetitions of Loop 2
which is unknown. However, in practice, we have observed that the number of iterations
seems to be polynomial in n and p. Therefore, we will use an Ô(pα · nβ) estimation of
the overall complexity of our implementation of the ALT procedure. In this study, we are
mostly interested in instances with large values of p, so, we have considered instances
with n/5 ≤ p ≤ n/3 for evaluating the α and β values for the various clustering prob-
lems. For the SSC and MWP, we have considered about 7000 instances uniformly gen-
erated with up to 9400 entities. For the PMP, we have considered about 38000 runs of
the ALT procedure. The PMP instances were based on the 40 different distance matrices
proposed by Beasley (1985). The number of entities for these instances ranges from 100 to
900.

For the SSC, we have estimated α ∼= 0.83 and β ∼= 1.19; for the PMP the estimation is
α ∼= 0.70 and β ∼= 1.23 and for the MWP α ∼= 0.85 and β ∼= 1.34. So, if p grows linearly
with n, the estimated complexity of the ALT procedure is not far from Ô(n2) for all these
problem types. The memory requirement is O(n) for the SSC and MWP and O(n2) for the
PMP i.e. equivalent to the data size.
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Table 1. Quality of the greedy procedure for Beasley’s PMP instances (% above optimum).

n 100 200 300 400 500 600 700 800 900

p

5 0 0 0 0.03 0 0 0.00 0.06 0.12

10 0.04 0.08 0 0.14 0.25 0 0.02 0.13 0

n/10 0.04 0.00 0.01 0.10 0.10 0.05 0.01 0.07 0.06

n/5 0.04 0.15 0.04 0.05 0.05 0.04 0.06 – –

n/3 0.04 0.05 0.06 0.09 0.14 0.14 – – –

2.2. Candidate list search (CLS)

CLS is based on a greedy procedure that randomly perturbs a solution that is locally
optimal according to the ALT procedure. Then, ALT is applied to the perturbed solu-
tion and the resulting solution is accepted only if it is better than the initial one, other-
wise one returns to the initial solution. The perturbation of a solution consists in elim-
inating a centre and in adding another one, located on an entity. The process can be
repeated until all pairs entities/centres have been scanned. This greedy procedure finds
very good solutions: In Table 1, we report the quality of the solutions found when ap-
plied to the 40 PMP instances of Beasley (1985). These instances have been solved ex-
actly and the quality of a solution is given in percent above the optimum value. The
greedy procedure was executed 20 times for each instance. For 8 instances each run
found the global optimum and all instances but one were optimally solved at least
once.

For MWP instances with 50 (respectively 287) entities we observed that the greedy
procedure finds a global optimum in more than 60% (respectively 40%) of the cases. For
the SSC, we succeeded in improving all the best solutions known to 16 instances with 1060
entities and 10 to 160 centres (See Table 4).

For the p-median problem, this type of perturbation has been used for a long time
(c.f. Goodchild and Noronha, 1983; Whitaker, 1983; Glover, 1990; Voß, 1996; Rolland,
Schilling, and Current, 1997); in this case Glover proposes an efficient way to evaluate
the cost of eliminating a centre: during the allocation phase, the second closest centre is
memorized—this can be done without increasing the complexity. However, evaluating the
decrease of the cost due to the opening of a centre on an entity takes a time proportional to
n. Therefore, finding the best possible perturbation has a complexity of O(n2 · p), without
considering the application of the ALT procedure.

This complexity is too high for large instances thus we make use of a candidate list
strategy scheme (Glover, 1990) for implementing a probabilistic perturbation mechanism.
The idea is to identity the centre to close by a non deterministic but systematic approach.
The entity associated with an open centre is also randomly chosen, but its weighted distance
from its previously allocated centre must be higher than the average. The process is repeated
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1) Input: initial solution s1 (location of the p centres), parameter q.
2) Generate π, a random permutation of the elements {1,...,p} and µ,

a random permutation of the elements {1,...,n}. Set i = 0, j = 0.
3) For k = 1 to q repeat:

3a) i = (i modulo n) + 1; j = (j modulo p) + 1.
3b) Compute dmax’ the distance of the most (weighted) distant entity.
3c) While the weighted distance from entity µi to the nearest centre

is lower than (dmax − f(sk)/n)/k + f(sk)/n do:
i = (i = modulo n)+ 1.

3d) Close centre πj and open a new one located at entity µi to obtain
a perturbed solution sk’

3e) Improve sk’ with ALT to obtain sk"
3f) If f(sk")< f(sk) then sk+1 = sk", else sk+1 = sk.
3g) If j = p, generate a new random permutation π.

Algorithm 3. Candidate list search (CLS).

for a number q of iterations, specified by the user. Algorithm 3 presents CLS into details. CLS
starts from an initial solution s1 that is tentatively improved. To examine the neighbourhood
in a non-deterministic way, two permutations π and µ are first generated (step 2). These
permutations determine the order in which the perturbations are tried at step 3d. Then,
q iterations are repeated, where q is the only parameter of CLS. An iteration consists of
moving a centre on an entity whose weighted distance from its previously allocated centre
is higher than the average. To belong to the candidate list of entities where a centre can be
moved, the distance criterion decreases as the number of iterations grows (step 3c). Finally,
the perturbed solution is improved by means of ALT (step 3e) and it is retained only if it
improves the solution (step 3f).

The most time consuming part of this algorithm is step 3e, i.e. the application of the ALT
procedure to the perturbed solution. As seen above, we can estimate the complexity of this
step as Ô(pα · nβ). Therefore, the complexity of CLS is Ô(q · pα · nβ). From now on, we
write CLS(q) the improvement of a given solution with q iteration of the CLS procedure.

3. Decomposition methods

In this section, we propose two decomposition methods for solving problems with a large
number p of centres. The complexity of these methods is not higher than the ALT procedure
while producing solutions of much higher quality. The first decomposition technique, LOPT,
starts with any solution with p centres and improves it by considering a series of subproblems
involving r < p centres and the entities allocated to them. The subproblems are solved by
our CLS algorithm. This method can be viewed as a local search defined on a very large
neighbourhood involving up to r centres re-locations at a time. Another point of view is to
consider this procedure as a generalization of ALT. Indeed, a solution produced by ALT is
locally optimal if we consider any subset of entities allocated to a single centre: every entity
is serviced by the nearest centre, and the centres are optimally positioned for the subset
of entities they are servicing. Our procedure produces a solution that is sub-optimal (since
the subproblems are solved in a heuristic way and since we do not consider all subsets of



HEURISTIC METHODS FOR LARGE CENTROID CLUSTERING PROBLEMS 59

r centres) for subsets of entities allocated to r centres. A third point of view is to consider
LOPT as a CLS procedure with a much smaller list of candidate moves regarding to the
CLS presented above.

The second decomposition method, DEC, partitions the problem into t smaller subprob-
lems. These subproblems are then solved with our CLS for various numbers of centres. A
solution to the initial problem is then found by combining solutions of the subproblems.
To decompose the initial problem, we solve an intermediate problem with t centres with
our CLS procedure. Each set of entities allocated to a centre of the intermediate problem is
considered as an independent subproblem.

3.1. Local optimization (LOPT)

The basic idea of LOPT is to select a centre, a few of its closest centres and the set of
entities allocated to them to create a subproblem. We try to improve the solution of this
subproblem with CLS. If an improved solution is found, then all the selected centres are
inserted in a candidate list C , otherwise the first centre used for creating the subproblem is
removed from C . Initially, all the centres are in C and the process stops when C is empty.
LOPT has two parameters: r , the number of centres of the subproblems and s, the number
of iterations of each call to CLS. Algorithm 4 presents more formally the LOPT method.

3.1.1. Complexity of LOPT. To estimate the complexity of LOPT we make two assump-
tions. First we assume that O(n/p) entities are allocated to each centre (this hypothesis is
reasonable if the problem instance is relatively uniform) and second that loop 3 is repeated
Ô(pγ · nλ) times. Empirically, we have observed that γ is less than 1 and λ is close to
0 (see Table 8); we estimate that the value of γ is about 0.9 and λ is about 0.2 for the
LOPT parameters we have chosen and for the MWP). Then, the complexity of LOPT can
be established as follows:

Steps 3a and 3d have a complexity of O(p); step 3b has a complexity of O(r · p);
step 3c solves a problem with r centres and O(r ·n/p) entities, this leads to a complexity of
Ô(s · rα · (r · n/p)β). This leads to a total complexity of Ô(r · pγ+1 · nλ + s · rα+β · pγ−β ·
nλ+β). If r and s are fixed and if p grows linearly with n, the complexity of the LOPT
procedure is therefore Ô(nλ+γ+1). This complexity seems to be similar to that of the ALT

1) Input: initial position of the p centres, parameters r and s.
2) Set C = {1,...,p}
3) While C =/ ❡�, repeat the following steps:

3a) Randomly select a centre i ∈ C.
3b) Let R be the subset of the r closest centres to i (i ∈ R).
3c) Consider the subproblem constructed with the entities allocated to

the centres of R and optimize this subproblem with r centres with
CLS (s).

3d) If no improved solution has been found at step 3c, set C = C\{i},
else set C = C∪ R.

Algorithm 4. Local optimization procedure (LOPT).
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procedure. In practice, step 3c of the LOPT procedure takes most of the computing time,
even if steps 3b has a higher expected complexity for extremely large p. Indeed, for fixed
n, we have always observed that the computing time diminishes as p increases, even for p
larger than 10000 (see Tables 4 to 8). From now on, we denote by LOPT(r, s) the version
of the LOPT procedure using parameters r and s. The memory requirement of the LOPT
procedure is O(n).

3.2. Decomposition algorithm (DEC)

LOPT optimizes the position of a given number of centres dynamically, but it is also possible
to proceed to a static decomposition of the entities, and solve these subproblems with a
variable number of centres. A solution to the complete problem may be found by choosing
the right number of centres for each subproblem. Naturally, the total number of centres
must be limited to p. This re-composition may be performed efficiently and optimally with
dynamic programming.

The crucial phase of the algorithm is the first decomposition: if the subproblems created
do not have the right structure, it is impossible to obtain a good solution at the end. The more
irregular the problem is (i.e. where the entities are not uniformly distributed, or their weights
differ widely), the more delicate its decomposition is. For partitioning the problem, we use
our CLS procedure applied to the same set of entities but with a number t < p of centres.

The subproblems created may have very different sizes: a subproblem may consist of just
a few entities with very high weights or it may comprise a large number of close entities.
Thus it could be difficult to evaluate the number of centres to be assigned to a subproblem.
Let ni (i = 1, . . . , t) be the number of entities of subproblem i . Suppose that subproblem i
is solved with j ∈ Ji = {1, . . . , ni } centres and let fi j be the value of the objective function
when solving subproblem i with j centres. To build a solution to the initial problem, we
have to find j∗

1 , . . . , j∗
t minimizing:

minimize
ji ∈Ji ,i=1,...,t

∑
i=1

fi ji

such that
t∑

i=1

ji ≤ p

This problem is a kind of knapsack and may be reformulated as:

minimize
j1∈J1




f1 j1
+




minimize
ji ∈Ji ,i=2,...,t

t∑
i=2

fi ji

such that
t∑

i=2

ji ≤ p − j1







Thus, the problem can be decomposed and solved recursively by dynamic programming
in O(t · p) time. This procedure can also produce all the solutions with t, t +1, . . . , n centres
in O(t · n) time. Such a feature can be very useful when we want to solve a problem for
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which the number of centres is unknown and must be determined, as for example when there
is an opening cost for each centre (the opening cost has just to be added in the fi j values).

However, solving each subproblem with 1, . . . , ni centres is time consuming. If the
problem is relatively uniform, one can expect that the optimum number of centres found by
dynamic programming is not far from p/t for all subproblems. So, we propose to first solve
the subproblems for only three different numbers of centres: �p/t−1�, �p/t� and �p/t+1�.
These are solved with one less (respectively one more) centre when the optimum number
of centres determined by dynamic programming is exactly the lower (respectively higher)
number for which a solution was computed. Algorithm 5 presents our DEC procedure in
details.

3.2.1. Complexity of DEC. For analysing the complexity of DEC, we make the following
assumptions: First, each subproblem has O(n/t) entities, second, each subproblem is as-
signed O(p/t) centres and third, the number of repetitions of loop 5 is a constant (i.e. the
total number of subproblems solved with CLS in steps 3 and 5a is in O(t)). These assump-
tions are empirically verified if the problem instances are relatively uniform (see Table 8).
With these assumptions, the complexity of DEC can be established as follows: Step 1 is
in Ô(u · tα · nβ); steps 3 and 5a can be performed in Ô(v · t1−α−β · pα · nβ); finally, the
complexity of dynamic programming in steps 4 and 5b is O(t · p). The overall complexity
of DEC strongly depends on the parameter t. As shown in the next section, the quality
of solutions produced by CLS slightly diminishes as the number of centres increases. We
therefore seek to reduce the number of centres in the auxiliary problem and in subproblems
as much as possible. For this purpose, we have chosen t = �√p�. The overall complexity
of our implementation of DEC is Ô(u · pα/2 · nβ + v · p(1+α−β)/2 · nβ + p3/2). If u and v

are constant and p grows linearly with n, the complexity is Ô(nβ+α/2), assuming β ≥ 1 and
β + α/2 ≥ 3/2, i.e. lower than the ALT procedure. The memory requirement is O(n3/2).
DEC requires more memory than CLS and LOPT, but the increase is not too high and we

0) Input: Set of entities with dissimilarity measure.
1) Solve an auxiliary problem with t centres with CLS(u).
2) The subsets of entities allocated to the same centre form t

independent subproblems. Set fij = ∞, 1 <_ i <_ t, 1 <_ j <_ ni.
3) For each subproblem do: Solve subproblem i with CLS(v) with

max (1, �p/t� - 1) <_ j <_ min (ni, �p/t� + 1) centres and update the
fij values associated.

4) Find a collection j*1 ,...,j
*
t of optimum number of centres to

attribute to each sub-problem with dynamic programming.
5) While K = {(i,ji) | fiji =∞, ji = min(ni, j

*
i + 1) or

ji = max(1,j*i - 1), 1 <_ i <_ t} =/ ❡�, repeat:
5a) For all (i, ji) ∈ K, solve subproblem i with ji centres, using

CLS(v) and update the fiji associated.
5b) Find a new collection j*1 ,...,j

*
t of optimum number of centres to

attribute to each subproblem with dynamic programming.

Algorithm 5. The decomposition procedure (DEC).
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have succeeded in implementing all the algorithms on a personal workstation. From now on,
we note DEC(u, v) the use of the DEC procedure with t = �√p�, and parameters u and v.

4. Numerical results

4.1. Test problems

For the numerical results presented in this section, we consider six sets composed of 654,
1060, 2863, 3038, 14051 and 85900 entities respectively. The 2863 entities set is built on
real data: the entities are the cities of Switzerland and the weight of each city is the number
of inhabitants. This set is denoted CH2863.

The other sets correspond to the travelling salesman problems that can be found under
the names of P654, U1060, Pcb3038 Brd14051 and P1a85900 in the TSPLIB compiled by
Reinelt (1995). For these sets, all entities are weighted to one and the dissimilarity between
two entities is the Euclidean distance (for PMP and MWP) or the square of the Euclidean
distance (for the SSC). From these six sets of entities, we have constructed a large collection
of instances by varying p. In Table 2, we give the values of p we have considered for each
set, and the best MWP solution known associated with each p.

All the best solutions known have been found during the elaboration of methods presented
in this paper; some have been reported earlier in Hansen, Mladenovic, and Taillard (1998) or
in Brimberg et al. (2000) for P654 and U1060. For P654, we were able to find the same best
solution values reported by Brimberg et al. for p ≤ 60, and to find better values for p > 60;
for U1060, we succeeded in improving all the best solution values with the exception of
p = 10 where we got the same value. The best solutions published in Brimberg et al. were
obtained by considering more than 20 different methods, and running each of them 10 times.
This last reference also reports the optimum solution values of smaller problem instances
with 50 and 287 entities. We were able to find all these optimum solution values with our
CLS method. So, we conjecture that many of the solution values given in Table 2 for the
smallest set of entities are optimal. For the larger sets, we think that small improvements
can be obtained.

The aim of Table 2 is to provide new MWP instances and to assert the absolute quality
of our methods: Indeed we think that providing the relative quality (measured in per cent
over the best solution value of Table 2) allows comparisons to be made more easily than
providing absolute solution values. Sometimes, the best solutions known have been found
by using sets of parameters for which results are not reported in this paper and it would be
difficult to estimate the effort needed to obtain each best solution known. Consequently, we
do not provide computing times in this table.

Our algorithms are implemented in C++ and run on a Silicon Graphics (SG) 195 MHz
workstation with R10000 processor. In order to make fair comparisons with algorithms
implemented by other authors and executed on a different machine, we have sometimes
used another computer, clearly indicated in the tables that follow. It was not possible to
report exhaustive numerical results due to the large number of problem instances (160),
problem types (PMP, MWP or SSC) and methods (CLS, DEC and LOPT). We try to report
representative results in a condensed form. However, let us mention that the conclusions
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Table 2. Number of centres and best solution values of the MWP instances.

P654 CH2863 Pcb3038 Brd14051 Pla85900

p Best known p Best known p Best known p Best known p Best known

2 815313.30 23 662591164.9 100 351171.14 100 2504969.0 500 980624500

3 551062.88 100 249683701.9 110 333361.33 110 2379966.4 1000 641279543

4 288190.99 110 233112123.2 120 317493.30 120 2273050.9 1500 504307979

5 209068.79 120 219389699.5 130 303337.42 130 2181810.9 2000 430487424

6 180488.21 130 207402173.2 140 291019.41 140 2098583.0 2500 379898116

7 163704.17 140 196628487.0 150 279724.73 150 2021251.0 3000 342898337

8 147050.79 150 187152713.6 160 269670.44 160 1952950.7 4000 290679280

9 130936.12 160 178764596.3 170 260281.77 170 1890823.0 5000 254125361

10 115339.03 170 171147676.8 180 251595.67 180 1835182.6 6000 228045203

11 100133.20 180 164263718.8 190 243642.56 190 1784816.3 7000 207638816

12 94152.055 190 157733395.3 200 236294.30 200 1736960.1 8000 191874305

13 89454.761 200 151650126.1 250 206527.62 250 1547174.7 9000 177990886

14 84807.669 250 126652250.1 300 184832.94 300 1404028.4 10000 166535699

15 80177.042 300 107783856.7 350 168324.66 350 1293453.6 15000 130395710

20 63389.024 350 92871653.41 400 154657.34 400 1203580.1

25 52209.511 400 81459860.80 450 143330.07 450 1129413.2

30 44705.192 450 72088804.48 500 133590.94 500 1066429.9

35 39257.268 500 64277122.05 600 117716.57 600 966474.12

40 35704.408 600 51713134.53 700 104627.14 700 887518.23

50 29338.011 700 41923352.49 800 94301.618 800 824127.49

60 24504.395 800 34171537.06 900 85704.652 900 771207.89

70 21465.436 900 28112316.53 1000 78458.720 1000 725300.72

80 19193.861 1000 23063201.81 1500 570402.36

90 17514.423 2000 475580.22

100 16083.535 U1060 2500 409677.92

110 14826.578 p Best known p Best known 3000 359978.52

120 13887.739 5 1851877.266 80 325971.2435 5000 237511.94

130 13127.544 10 1249564.785 85 313446.5796 10000 67991.511

140 12396.740 15 980131.6889 90 302479.0412

150 11668.528 20 828685.6547 95 292282.6205

160 11011.508 25 721988.1555 100 282536.4434

170 10379.992 30 638212.3349 105 273463.3113

180 9781.5080 35 577496.6286 110 264959.9572

190 9314.0959 40 529660.1236 115 256763.0089

200 8842.2075 45 489483.7564 120 249050.4758

250 6909.0608 50 453109.5682 125 241880.3791

300 5341.6934 55 422638.6801 130 235203.3867

350 4322.2073 60 397674.5281 135 228999.8046

400 3594.3474 65 376630.2949 140 223062.6283

450 2887.0762 70 357335.1348 145 217462.7950

500 2181.8495 75 340123.4976 150 212236.2574
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we draw for a given method for a problem type are generally valid for another problem
type.

4.2. ALT and CLS

First, we want to show the efficiency of our CLS algorithm by comparing it to the results
produced by one of the best methods at the present time for the MWP: MWPM, an algorithm
that first solves exactly a p-median before re-locating optimally the centres in the continuous
plane. This method is due to Cooper (1963) but has been forgotten for a long time before
Hansen, Mladenovic, and Taillard (1998) show that in fact, it is one of the most robust
for small and medium size MWPs (see also Brimberg et al., 2000). We do not consider
methods such as those of Bongartz, Calamai, and Conn (1994) which are too slow and
produce too poor solutions or those of Chen (1983) or Murtagh and Niwattisyawong (1982)
which are not competitive according to Bongartz et al. Also, we do not compare our results
with the HACA algorithm of Moreno, Rodrı́gez, and Jiménez (1990) for two reasons: First
the complexity of HACA is O(p2n) and requires an O(p2) memory, i.e. O(n3) in time and
O(n2) in memory if p = O(n), which are clearly higher than those of our methods. Second,
HACA produces solutions that are not as good as MWPM. Indeed, HACA first builds a
heuristic solution to the p-median instance associated to the MWP and then applies the
ALT procedure to the p-median solution. The reader is referred to Brimberg et al. (2000)
for a unified comparison of a large range of heuristic methods for the MWP.

To show the effects of the improvements of the ALT procedure proposed in this paper,
we provide the best solutions obtained over 100 repetitions of an old version of ALT
that starts with different initial solutions; this method is denoted MALT(100). The results
for MALT(100) and MWPM originate from Hansen, Mladenovic, and Taillard (1998). In
Table 3, we give the solution quality (measured in per cent above the solution value given in
Table 2) of MWPM, MALT(100), CLS(100) and CLS(1000) and their respective computing
times (seconds on Sun Sparc 10 workstation) for P654. The computing time of CLS(1000)
is roughly 10 times that of CLS(100). We have averaged all these results for 10 independent
runs of the algorithm. Where the 10 runs of CLS(100) find solutions values identical to those
given in Table 2, we provide in brackets the number of iterations required by the worst run
of CLS out of 10 to find the best solution known. From this table, we can conclude that:

– The new ALT procedure runs 6 to 9 times faster than the old one (both MALT(100) and
CLS(100) call 100 times an ALT procedure, the old one for MALT, the new one for CLS).

– CLS(100) provides much better solutions than MALT(100).
– CLS(1000) provides better solutions than MWPM, in a much shorter computing time.
– As p grows, the solution quality of all the algorithm diminishes.

4.3. Decomposition methods DEC and LOPT

As LOPT requires an initial solution in input, we indicate the performances of LOPT
when applied to the solution produced by the DEC procedure. In the following tables, the
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Table 3. Comparisons of CLS(100) and CLS(1000) with MWPM and MALT(100) for MWP instances P654.

Quality (% above best known) Computing time (s. Sun Sparc 10)

p MWPM MALT(100) CLS(100) CLS(1000) MWPM MALT(100) CLS(100)

2 0 0 0 [1] 66 69 9.7

3 0.20 0 0 [30] 75 59 8.7

4 0 0 0 [20] 50 66 9.6

5 0 0 0 [1] 67 66 10.4

6 0 0 0 [20] 72 64 7.6

7 0 0 0 [40] 62 75 6.7

8 0 0 0 [50] 79 57 6.1

9 0 0.15 0 [70] 71 55 6.3

10 0.040 1.1 0 [100] 75 54 6.2

11 0.069 6.1 0 [40] 66 52 5.8

12 0 3.6 0 [70] 97 52 5.8

13 0.013 1.4 0.017 0.0028 259 51 6.0

14 0.014 1.9 0.034 0.017 277 50 6.2

15 0.014 2.2 0.11 0.0099 196 49 6.2

20 0.55 5.3 0.16 0.011 1358 49 6.2

25 0.13 9.5 0.75 0.0014 1420 53 6.1

30 0.22 13.6 0.66 0.017 4222 56 6.3

35 0.38 15.3 0.82 0.04 1608 58 6.6

40 0.56 18.0 1.1 0.042 1762 61 7.0

45 0.50 19.9 1.4 0.17 1296 64 7.3

50 0.43 25.6 1.7 0.30 2487 64 7.6

computing times for LOPT, do not take into consideration the computing time of DEC to
obtain the initial solution.

Table 4 compares CLS(1000), DEC(20, 50), LOPT(10, 50) and 3 VNS variants (due to
Hansen and Mladenovic (1999) for SSC instances built on entities set U1060. This table
gives: The best solution value known (found with our methods), the solution quality of the
methods (per cent over best known; VNS results originate from Hansen and Mladenovic),
and their respective computing times (seconds on Sun Sparc 10 workstation). The computing
time of VNS1 and VNS2 is 150 seconds for all instances. VNS3 corresponds to the best
over ten executions of VNS2; therefore, its computing time is 1500 seconds. It is shown
in Hansen and Mladenovic that all VNS variants are more efficient than other methods of
the literature, such as the k-means algorithm of Hartigan (1975). From this table, we can
conclude:

– For small values of p, CLS provides better solutions than DEC, DEC + LOPT and
VNSs.
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Table 4. Comparison of CLS(1000), DEC(20, 50). LOPT(10, 50) and various VNSs for SSC instances U1060.

Quality (% above best known) Computing time (s. Sparc 10)

p
Best solution
value known CLS DEC LOPT VNS1 VNS2 VNS3 CLS DEC LOPT

10 1754840214 0.00 16.32 0.00 0.14 0.14 0.04 156.5 9.0 114.2

20 791794596.2 0.00 6.54 0.01 3.52 0.76 0.03 128.1 11.6 67.2

30 481251642.9 0.02 10.28 0.37 10.88 1.08 0.22 120.5 11.1 79.1

40 341342885.9 0.13 4.60 0.36 16.46 1.25 0.44 115.8 12.3 53.5

50 255509536.2 0.33 7.54 0.45 30.65 1.97 0.54 114.8 10.8 44.1

60 197273037.6 0.53 7.99 0.67 36.48 1.55 0.95 117.2 11.9 35.8

70 158450591.9 0.33 6.98 0.17 45.06 1.63 0.84 120.2 12.5 27.6

80 128890171.4 0.74 7.40 0.38 52.43 1.65 0.89 118.6 12.1 25.8

90 110456793.7 1.04 7.45 0.49 46.08 1.52 0.78 122.4 12.0 25.2

100 96330296.40 1.14 7.29 0.44 44.51 2.23 1.06 125.2 12.3 24.7

110 84849661.98 1.26 6.78 0.49 46.41 3.06 1.69 127.4 12.0 22.6

120 75545061.47 1.55 7.10 0.58 40.11 2.14 1.11 131.1 12.1 21.5

130 67561764.35 2.15 7.96 0.69 40.21 1.95 1.27 135.0 12.5 19.5

140 61128895.04 2.28 7.81 0.57 32.13 2.42 0.98 138.0 12.4 20.0

150 55918930.43 2.10 7.01 0.52 27.12 2.72 1.36 142.2 11.9 19.6

160 51310503.02 1.84 7.18 0.48 28.04 2.47 1.75 145.1 11.6 19.8

– For the largest values of p, DEC produces fairly good solutions and their quality seems
not to decrease as p increases.

– The solution quality of LOPT is always very good and seems to be somewhat correlated
with the initial solution quality (obtained here with DEC).

– Unexpectedly, the computing time of LOPT and DEC diminishes as p increases; this is
undoubtedly due to the small number of entities of U1060.

– CLS (for p ≤ 80) and DEC + LOPT produces better solutions than VNSs in a much
lower computation time (DEC + LOPT is up to 50 times faster).

Table 5 show the effect of the parameters of DEC and LOPT by confronting DEC(20,
50), DEC(20, 200), LOPT(10, 50) (starting with the solution obtained by DEC(20, 50)) and
LOPT(10, 200) (starting with the solution obtained by DEC(20, 200)). This table provides
the solution quality and the computing times (seconds on SG) for the MWP instances
CH2863; all the results are averaged over 10 runs. From this table, we can conclude:

– For small values of p, the quality of DEC(20, 200) is slightly better than DEC(20, 50)
but the computing times are much higher.

– Starting with solutions of similar quality, LOPT(10, 50) and LOPT(10, 200) produces
solutions of similar quality but the computing time of LOPT(10, 200) is much higher.

– For larger values of p, the quality of DEC(20, 50) slightly decreases but the quality of
DEC(20, 200) remains almost constant.
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Table 5. Quality and computing time of DEC and LOPT for different parameter settings for MWP instance
CH2863.

Quality (%) Computation time (s. on SG)

DEC LOPT DEC LOPT

p 20, 50 20, 200 10, 50 10, 200 20, 50 20, 200 10, 50 10, 200

100 3.4 3.2 0.28 0.20 30 162 53 197

110 3.3 3.0 0.17 0.09 29 154 49 174

120 3.5 3.0 0.27 0.17 28 160 56 183

130 3.4 3.0 0.15 0.12 30 157 46 160

140 3.4 3.0 0.15 0.17 31 163 46 163

150 3.8 3.5 0.23 0.14 27 145 45 161

160 3.9 3.4 0.17 0.12 26 146 47 166

170 4.4 4.1 0.24 0.14 22 126 43 163

180 4.5 4.1 0.18 0.18 24 134 47 160

190 4.8 4.3 0.34 0.20 24 132 45 157

200 4.9 4.4 0.21 0.25 21 121 46 152

250 5.0 4.4 0.26 0.14 20 117 43 149

300 5.3 4.3 0.47 0.20 18 111 41 136

350 4.9 4.2 0.50 0.30 17 100 38 123

400 5.1 4.0 0.63 0.38 17 103 36 108

450 5.2 3.7 0.94 0.44 17 106 35 110

500 4.8 3.4 1.02 0.39 18 108 35 105

600 5.7 3.4 1.42 0.39 16 104 35 89

700 5.8 3.7 1.48 0.52 19 106 32 82

800 5.7 3.8 1.48 0.44 19 107 33 79

900 6.6 4.0 1.59 0.71 18 108 32 70

1000 7.1 4.7 2.18 1.10 20 108 33 69

– The computing times of DEC and LOPT diminishes as p increases.
– LOPT greatly improves the solution quality obtained by DEC.
– The methods seems to be very robust since they provide good results for instances with

a very irregular distribution of dissimilarities.

In Tables 6 and 7, we compare DEC + LOPT to a fast variant of VNS, called RVNS, for
SSC and PMP instances built on entities set Pcb3038. RVNS results originate from Hansen
and Mladenovic (1999). We have adapted the LOPT parameters in order to get comparable
computation times. For all SSC, PMP and MWP instances, we succeeded in improving the
best solutions published in this last reference. In Table 6, we can see that DEC + LOPT is
able to find better solutions than RVNS in shorter computation times. For the PMP, RVNS
seems to be faster than DEC and LOPT for the smallest number of centres. However, let us
mention that our implementation derives directly from the MWP one and is not optimized
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Table 6. Comparison of DEC(20, 50), LOPT(6, 40) and RVNS for SSC instance Pcb3038.

Quality (%) Time (s. Sparc 10)

p Best known RVNS DEC LOPT RVNS DEC LOPT

100 47721950.8 2.27 5.24 1.04 152.8 50 82

150 30524769.8 3.13 4.63 1.09 153.0 48 55

200 21885997.1 2.44 5.55 0.90 159.9 48 44

250 16621446.5 2.56 6.98 1.59 182.1 46 39

300 13290304.8 2.50 7.22 1.44 229.3 49 33

350 11027516.8 2.53 7.24 1.42 230.9 44 30

400 9362179.2 3.35 7.56 1.70 165.0 43 27

450 8101618.7 3.47 7.18 1.66 242.6 42 26

500 7102678.4 2.85 7.47 1.73 204.4 43 25

Table 7. Comparison of DEC(20, 50), LOPT(7, 50) and RVNS for PMP instance Pcb3038.

Quality (%) Time (s. Sparc 10)

p Best known RVNS DEC LOPT RVNS DEC LOPT

100 352704.86 1.12 4.04 0.65 132.4 197 485

150 281193.96 0.65 4.41 0.74 128.5 141 277

200 238432.02 1.23 4.12 0.74 107.6 106 187

250 209241.25 0.71 4.17 0.59 150.3 85 150

300 187723.46 0.52 4.08 0.64 130.6 84 125

350 170973.34 0.83 3.99 0.67 153.1 72 110

400 157030.46 1.13 4.04 0.83 158.7 64 97

450 145422.94 1.13 4.14 0.76 179.5 65 87

500 135467.85 0.89 4.01 0.71 209.7 59 81

for the PMP. For example we do not compute the distances only once at the beginning of
the execution and store them in a (very large) matrix. For large number of centres, DEC +
LOPT is again faster and better than RVNS.

In Table 8, we provide computational results for our methods DEC(20, 50), DEC(20,
200) and LOPT(7, 50) (applied to the solution obtained with DEC(20, 200)) for MWP
instances Brd14051 and Pla85900. We give the following data in this table: The number
n of entities, the number p of centres, the solution quality obtained by DEC and LOPT
(percent over best known), the respective computing times (seconds on SG), the proportion
of sub-problems solved by DEC and LOPT. For DEC, this proportion corresponds to the
number of subproblems solved divided by t = √

p. For LOPT, this proportion corresponds
to the number of subproblems solved divided by p. The results are averaged for 5 runs for
Brd14051 and the methods were executed only once for Pla85900. From Table 8, we can
conclude that:
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Table 8. Computational results for DEC and LOPT for MWP instances Brd14051 and Pla85900.

Quality (%) Time (s. SG) Proportion

DEC DEC LOPT DEC DEC LOPT DEC DEC LOPT
n p (20, 50) (20, 200) (7, 50) (20, 50) (20, 200) (7, 50) (20, 50) (20, 200) (7, 50)

14051 100 2.4 2.38 0.39 458 1931 3109 4.4 4.4 4.4

200 1.9 2.03 0.30 336 1379 1632 4.3 4.6 3.3

300 2.2 2.08 0.30 252 1073 1055 5.0 5.0 2.6

400 2.2 2.04 0.26 214 915 885 4.9 5.2 2.4

500 2.5 2.12 0.27 195 909 838 4.9 5.8 2.5

600 2.4 1.99 0.26 184 799 707 5.1 5.8 2.3

700 2.5 1.93 0.23 177 829 632 5.7 6.8 2.2

800 2.5 1.97 0.24 149 760 555 4.8 6.8 2.1

900 2.6 2.00 0.26 146 736 505 6.2 7.3 2.1

1000 3.0 2.17 0.31 129 667 437 4.6 6.6 2.0

1500 3.0 2.41 0.43 97 491 288 4.0 5.8 1.9

2000 4.0 2.81 0.59 88 379 227 4.7 4.8 1.8

2500 4.5 3.28 0.91 88 345 193 4.4 4.9 1.8

3000 4.7 3.65 1.15 82 347 173 4.6 4.9 1.8

5000 4.4 3.59 1.28 73 309 123 4.3 4.5 1.5

85900 1000 1.78 1.53 0.09 3557 9415 7634 4.2 5.2 2.9

1500 1.97 1.70 0.17 3149 7885 5343 4.3 5.7 2.8

2000 1.81 1.46 0.12 2819 6923 4750 4.1 5.1 2.5

2500 1.84 1.48 0.05 3100 7031 4640 4.8 6.1 2.6

3000 1.74 1.30 0.10 2405 5959 4532 4.1 5.2 2.6

4000 1.72 1.30 0.04 2440 5503 4098 3.9 4.5 2.2

5000 1.87 1.41 0.00 2597 5214 3423 4.1 4.3 2.0

6000 1.67 1.37 0.05 2328 5392 2872 4.0 4.2 1.9

7000 2.03 1.50 0.13 2276 4770 2526 4.3 4.3 1.9

8000 2.07 1.53 0.03 2681 4685 2344 4.1 4.6 2.0

9000 2.55 1.67 0.16 2796 4658 1992 4.1 4.3 1.8

10000 2.78 1.80 0.16 2629 4863 1813 5.1 4.5 1.8

15000 3.71 2.61 0.58 3144 5242 1552 5.3 6.0 1.8

– The solution quality provided by DEC slightly decreases as p increases; this is due
mainly to the decrease in the solution quality provided by the CLS procedure when
solving the subproblems.

– The computing times of DEC and LOPT diminisses as p increases. However, we can ob-
serve an increase in DEC computation times—as predicted by the complexity analysis—
only for very large values of p. For LOPT we cannot observe such an increase, meaning
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that solving the subproblems takes more time than finding close centres for generating
the subproblems.

– The solution quality of LOPT is very good, generally well below 1% over the value of
the best solution known.

– The proportion of subproblems solved by LOPT diminishes as p increases, showing that
γ is smaller than 1.

– The proportion of subproblems solved by DEC seems to be constant as assumed in the
complexity analysis of Section 3.2.

5. Conclusions

In this article we have proposed three new methods for heuristically and rapidly solving
centroid clustering problems. First, we propose CLS, a candidate list search that rapidly
produces good solutions to problems with a moderate number p of centres. Second, we
propose LOPT, a procedure that locally optimizes the quality of a given solution. This
method notably reduces the gap between the initial solution and the best solution known. The
third method proposed, DEC, is based on decomposing the initial problem into subproblems.
DEC and LOPT are well adapted to solve very large problems since their computing time
increases more slowly with the number of entities than that of other methods in the literature.
These methods can solve problems whose size is many order of magnitude larger than
the problems treated up to now. Despite its speed, they produce solutions of good quality.
The expected complexity of these procedures are given and experimentally verified on very
large problem instances.

In fact, LOPT is a general optimization method that can be considered as a new meta-
heuristic. Indeed it can be adapted for solving any large optimization problem that can be
decomposed into independent sub-problems. LOPT has been shown to be very efficient for
centroid clustering problems and vehicle routing problems. Future works should consider
to apply LOPT to other combinatorial optimization problems.

The success of the methods presented in this paper could be explained as follows: solving
problems with a very limited number of centres (e.g. below 15) is generally and easy task.
Thanks to the use of an adequate neighbourhood, the CLS method allows problems up to
50–70 centres to be treated in a satisfactory way. DEC treats the problem at a high level
and is able to determine the general structure of good solutions involving a large number of
centres. Starting with a solution that has a good structure, LOPT is able to find very good
solutions using a very simple improving approach. Therefore, it is interesting to remark that
a very simple improving scheme can lead to a very efficient method if an initial solution
with a good structure can be identified and an efficient neighbourhood is used. Indeed,
the quality of the solutions obtained by the DEC + LOPT method rival what one would
expect from a more elaborate meta-heuristic such as a genetic algorithm, taboo search
or simulated annealing. The use of inadequate neighbourhood structures can explain the
poor performances of previous implementation of such meta-heuristics. In summary, we
can say that our methods open new horizons in the solution of large and hard clustering
problems.
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Notes

1. The expert can even identify a number of Swiss Cantons in this figure. There are however differences that could
be appropriate for solving political problems, such as the union of the South part of Jura to the Canton of Jura,
the separation of the German-speaking part of Valais or the union of the small primitive Cantons.

2. In the context we use ALT, it is more interesting to have a non deterministic procedure. First, it may happen
that ALT is called many times for solving the same (sub-) problem. With a non deterministic procedure, it is
avoided to repeat exactly the same work. Then, let us mention that only non deterministic procedure can solve
NP-hard problems in polynomial time if P �= NP. Therefore, our personal view is to consider non deterministic
procedure potentially more interesting than deterministic ones, even if there is no theory supporting this for the
moment.

3. More precisely, such a behaviour can be mathematically proven. In that case, we propose to follow the usual
notation in statistics and to write Ō(.) for an expected running time derived from a mathematical analysis.
Therefore it can be written that the complexity of quick sort is Ō(n log n).

4. Without this assumption, the complexity is higher; with stronger assumptions (e.g. Euclidean distances), a
lower complexity can be derived.
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