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Abstract—This paper tackles the problem of admitting real-
time tasks onto a symmetric multi-processor platform, where a
partitioned EDF-based scheduler is used. We propose to combine
a well-known utilization-based test for the first-fit partitioning
strategy, with a simple heuristic based on the number of tasks
and exact knowledge of the utilization of the first few biggest
tasks. This results in an effective and efficient test improving
on the state of the art in terms of admitted tasks, as shown by
extensive tests performed on task sets generated using the widely
adopted randfixedsum algorithm.

I. INTRODUCTION

Since the seminal work by Liu and Layland [1] on opti-
mality of EDF in scheduling implicit-deadline, independent
and periodic real-time tasks on single-processor systems, re-
searchers have been struggling in looking for equally simple
admission tests for multi-processor platforms.

While some optimal scheduling algorithms have been de-
veloped for multi-processors too [2]–[5], these algorithms are
generally considered complex and/or not too efficient (causing
large numbers of tasks migration) and are not used in practice.

Instead, current OS kernels focus on using some variations
of the scheduling algorithms used for single-processor systems
(mainly fixed priority scheduling and EDF). Algorithms such
as EDF can be applied to multi-core/multi-CPU scheduling
using the global scheduling approach (leading, for example,
to G-EDF) or the partitioned scheduling approach (leading,
for example, to P-EDF).

P-EDF is not work-conserving, making sometimes ineffec-
tive use of the available processing power. On the other hand,
G-EDF is work-conserving so it would seem to make a better
use of the underlying physical resources than P-EDF. However,
utilization-based analysis for G-EDF is not useful, as the
schedulability bound is 1 independently from the number of
processors/cores [6]. Also other kinds of schedulability anal-
ysis for G-EDF are not simple and quite pessimistic. On the
other hand, P-EDF statically assigns tasks to cores and denies
migrations. Thus, analysis is easier since the system designer
can apply well-consolidated results for uni-processors, at the
cost of less robustness to temporary overheads and the need
for offline partitioning.

A. Contributions

In this paper, a simple admission strategy is proposed to
admit, on a multi-processor platform under P-EDF schedul-
ing, independent periodic/sporadic real-time tasks with known
WCETs and minimum inter-arrival times. The proposed test

is based on combining a well-known utilization-based test [7]
valid under a first-fit allocation strategy across the available
cores, with a heuristic based on peeking at the utilizations of
the heaviest few k tasks in the set, bounding the utilization of
the remaining tasks with the one of the kth heaviest task.

The proposed test is evaluated against the utilization-based
test alone over task sets randomly generated using the well-
known randfixedsum algorithm [8]. The evaluation fo-
cuses on the capability to admit additional tasks into the
system, as well as the additional overheads due to the com-
putational complexity needed for the new test. We show that
the technique can be proposed as an on-line admission test
for dynamic real-time systems where real-time tasks can enter
and leave at any time. Our approach does not require to
know the whole taskset from the beginning and it allows for
incrementally partitioning the taskset.

II. RELATED WORK

The problem of real-time tasks partitioning is implicitly
based on the bin-packing problem, where items must be
allocated into bins such that the final bins weights are less
than 1 and, for example, the number of used bins is minimized.
The bin-packing problem is known to be NP-hard in the strong
sense, thus making other related interesting problems, like par-
titioning tasks to achieve the minimum energy consumption,
intractable in polynomial time as well. Different bin-packing
heuristics (designed to work around the problem complexity)
have been investigated in previous works and some interesting
conclusions are reported in [9]–[13]. For example, if items
are sorted in non-increasing order, then you get closer to the
optimum bin-packing. The reader can refer to [14] for a survey.

Efficient heuristics to tackle the bin-packing problem have
also been investigated [15]–[20] to cope with tasks arriving
and departing dynamically in an on-line fashion. In this
case, repacking of previously packed items can improve the
algorithm performance.

The problem of partitioning real-time tasks on multiple
CPUs/cores has also been studied in the case of uniform mul-
tiprocessors [21], [22], where processors may have different
speeds.

In order to allow for a better exploitation of the resid-
ual capacity in partitioned scheduling approaches for multi-
core platforms, semi-partitioned techniques have been pro-
posed [23]. These allow for splitting a real-time task into two
pieces that are allocated on two different cores. This way, if the



task cannot complete on the first core, it can continue on the
second one under certain conditions. These techniques make
schedulability analysis and admission tests particularly more
involved than simple utilization-based tests, and require more
advanced scheduling features with controlled migrations.

Finally, some previous works consider the partitioning of
real-time tasks on heterogeneous multicores. For example,
in [24] tasks are allocated on ARM big.LITTLE platforms,
also trying to adaptively minimize the energy consumption
under a dynamically partitioned EDF scheme. Other works
such as [25], [26] use ILP formulations to partition indepen-
dent constrained-deadline sporadic tasks upon heterogeneous
multiprocessor platforms. Finally, [27] extends the study to
tasks with shared resources.

In this is paper, we propose an improved admission test for
partitioned EDF systems, starting from the approach appeared
in [7]. The latter performs a test based on the overall taskset
utilization, as well as the utilization of the heaviest task. We
combine it with an approach based on the number of tasks
in the taskset, using not only the highest utilization in the
taskset, but also the subsequent highest few ones, resulting in
the capability to save a number of partitionable tasksets that
the original test would not admit.

III. PROPOSED APPROACH

Consider a set Γ = {τi}i=1,...,n of n tasks with utilizations
{Ui} to be scheduled under P-EDF on m processors. Without
loss of generality, assume the tasks are sorted by decreasing
utilizations: Ui ≥ Ui+1 for all i < n.

The well-known test in [7] admits the tasks when their
overall utilization does not exceed the value:

n∑
i=1

Ui ≤
m ∗ β + 1

β + 1
(1)

where β ,
⌊

1
U1

⌋
. As evident, the test relies heavily on the

maximum utilization U1 among the tasks to admit, introduc-
ing quite some pessimism for tasksets having a single task
significantly heavier than the others.

On the other hand, an alternative simple admission test that
can be used is the one that constraints the number n of allowed
tasks in the system to be lower than a maximum value nmax

based on the biggest utilization U1. Considering that each of
the m cores fits at most b1/U1c tasks, we have:

n ≤ nmax = m

⌊
1

U1

⌋
(2)

However, for some task sets the value of U1 might be
particularly higher than the one of the other tasks, thus it would
result in admitting a particularly low number of tasks.

The core idea proposed in this paper is the one of a simple
admission test that works around this pessimism by consider-
ing up to a number of k highest utilizations U1, . . . , Uk, then
relying on Uk as a bound for the utilization of the remaining
tasks {τk+1, . . . , τn} in the set, which, along with τk itself,
will be referred to as small tasks in what follows. As it will

be clear in a moment, this results in a particularly simple and
efficient test for small k values, k = 2 or k = 3.
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Figure 1: CDF of the kth maximum (various curves) among
4 (left plot) or 8 (right plot) randomly generated utilizations.

To reinforce the motivations behind our proposal, we con-
sider n tasks with uniformly random and i.i.d. utilization
distribution within [0, 1] ⊂ R. Looking at the cumulative
distribution function (CDF) of the kth maximum among the
utilizations (which is the (n−k+1)−order statistic), we have
a significant shift of the distribution towards lower values as k
increases. This is shown in Figure 1 for n = 4 (left plot) and
n = 8 (right plot), and k = 1, . . . , 4 (various curves). Also, it
is evident that in Equation (2) particularly important “bending”
points for the number of admitted tasks are those where U1

falls below 1/2, 1/3, 1/4, etc... In Figure 2 we visualize
the probability of the kth maximum (on the X axis) among
n randomly drawn utilizations falling below said thresholds
(various curves), for n = 4 (left plot) and n = 8 (right plot).
For example, for n = 8 tasks, the probability of Uk ≤ 0.5
goes from a negligible value of ∼ 0.0039 for k = 1, up to
consistent values of ∼ 0.14 for k = 3 and ∼ 0.36 for k = 4.
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Figure 2: CDF of the kth maximum (various curves) among
4 (left plot) or 8 (right plot) randomly generated utilizations.

For simplicity and without loss of generality, we assume
n ≥ m ≥ k in what follows.

The main idea is that we have to consider all of the possible
allocations of the heaviest k−1 tasks partitioning them across
a subset of k−1 processors. Without loss of generality, we can
assume these are the first k− 1 processors among the m ones
available on the platform. Whenever each of said processors j
hosts a subset ΓH

j of the first k − 1 heavy tasks, with overall
utilization UΓH

j
,
∑

i∈ΓH
j
Ui ≤ 1 (note ΓH

j can be an empty
set for one or more processors here), its utilization available
to host small tasks is 1−UΓH

j
, therefore each processor j < k

can host a maximum number of small tasks nSj equal to:

nSj =

⌊
1−

∑
i∈ΓH

j
Ui

Uk

⌋
, for j < k, (3)



where the m−k+1 remaining processors will exclusively host
small tasks, so the maximum number of tasks nSj for j ≥ k
is:

nSj =

⌊
1

Uk

⌋
, for j ≥ k. (4)

Therefore, the number of tasks nmax that can be admitted is:

nmax =

k−1∑
j=1

(∣∣ΓH
j

∣∣+ nSj
)

+

m∑
j=k

nSj

= k − 1 +

k−1∑
j=1

⌊
1−

∑
i∈ΓH

j
Ui

Uk

⌋
+ (m− k + 1)

⌊
1

Uk

⌋
(5)

Now, if we know a-priori where the k−1 heaviest tasks will
be placed, then the sets {ΓH

j } above are known, and we have
readily available their overall utilizations UΓH

j
=
∑

i∈ΓH
j
Ui.

On the other hand, if we are able to pin the heaviest tasks
down to specific cores, then we can tackle the problem of best
assignments {ΓH

j } so that nmax is maximized, however this
is not considered here and left as possible future work.

Instead, we are interested in formulating a test that holds
regardless of the exact location of the heaviest tasks {ΓH

j }. So,
we want to compute the minimum possible nmax as derived
accounting for all the possible distributions of the k − 1
heaviest tasks over k − 1 processors respecting the single-
processor EDF schedulability test UΓj ≤ 1∀j < k.

Therefore, the test to be applied requires to verify that
n ≤ nmax with nmax as from Equation (5), for any possible
partitioning of the k − 1 tasks with highest utilization across
k−1 processors, where the saturation bound of UΓH

j
≤ 1∀j <

k is respected.
Once we have the maximum number of admissible tasks

nmax, we can compute its corresponding admitted maximum
utilization:

Umax =

k−1∑
i=1

Ui + (nmax − k + 1)Uk (6)

Note that it may well happen that tasksets with utilization be-
low said threshold are not admitted by our test in Equation (5),
if they have too many tasks.

A. Computational complexity

A straightforward implementation of the general test de-
scribed above requires:

1) the identification of the k − 1 tasks with the highest
utilization, and of the kth highest utilization value Uk;

2) identify all the possible ways for partitioning the iden-
tified k − 1 heaviest tasks across k − 1 cores ΓH ={

ΓH
j

}
j=1,...,k−1

(including those in which one or more
subsets ΓH

j are empty);
3) perform the test in Equation (5) for each said task

distribution ΓH .

We focus on how expensive it is to update the information
in the above three steps when a new task enters the system,
and we need to decide whether to admit it or not. We assume
n tasks including the new one to be admitted, and k ≥ 2 for
the sake of simplicity.

The first step can be realized efficiently for large values of n
and/or k, by adopting a min-heap for the biggest k−1 elements
and a max-heap for the remaining n−k+1 ones. This leads to
a logarithmic complexity of O(log (k−1)+log (n−k+1)) ≡
O(log (k(n− k)),

The second step requires an O
(
(k − 2)k−1

)
complexity,

because, no matter where τ1 is placed, for each additional task
among the remaining k− 2 heaviest ones identified in step 1,
we have to evaluate its placement on any of the k − 1 cores
under consideration, and discard those placement actions that
would exceed the schedulability bound UΓH

J
≤ 1.

The third step requires to compute k− 1 division and floor
operations using the k − 1 different leftover bandwidths that
are easily obtained while enumerating the individual subsets
ΓH
j ⊆ ΓH . This test needs to be repeated for each of the

possible partitions ΓH as enumerated in step 2.
Therefore, considering also the operations needed for the

first step, the final overall complexity turns out to be:

O
(
log (k(n− k)) + (k − 1)(k − 2)k−1

)
≡ O

(
log (k(n− k)) + kk

)
.

(7)
Note that looking at whether the new task lands within the
min-heap or the max-heap, some of the steps above may be
simplified and/or optimized away. These details are omitted
for the sake of brevity.

B. Practical examples for small values of k

Despite the scaring appearence of Equation (7), for small
values of k the test described above can easily and practically
be calculated. For example, for k = 1 it degenerates into
the easy verification of Equation (2). However, it is more
interesting to explicitly formulate it for higher values of k.

For k = 2, we have:

nmax = 1 +

⌊
1− U1

U2

⌋
+ (m− 1)

⌊
1

U2

⌋
. (8)

For k = 3, we need to distinguish two cases. If U1+U2 ≥ 1,
then the two heaviest tasks can only be placed on distinct
cores, and the test simplifies in:

nmax = 2 +

⌊
1− U1

U3

⌋
+

⌊
1− U2

U3

⌋
+

⌊
1

U3

⌋
(m− 2) . (9)

On the other hand, if U1 +U2 < 1, then the two heaviest tasks
can be found either on the same CPU or on distinct CPUs,
so we need to take the worst-case among the two and add a
minimum operation:

nmax = min

{⌊
1− U1 − U2

U3

⌋
+

⌊
1

U3

⌋
,

⌊
1− U1

U3

⌋
+

⌊
1− U2

U3

⌋}
+ 2 +

⌊
1

U3

⌋
(m− 2) .

(10)



C. Non-combinatorial bound

As mentioned, the above bound nmax on the number of
admissible tasks requires a combinatorial evaluation of all the
possible placements of the heaviest k−1 tasks. This becomes
easy to perform only for very small values of k.

However, for higher values of k (which is useful with a
higher number n of tasks to be admitted) we can provide
a conservative bound for nmax that does not suffer of the
combinatorial complexity for its computation, and it is still
useful to admit additional tasks into the system.

Exploiting the fact that:

∀x, y ∈ R, bxc+ byc ≥ bx+ yc − 1, (11)

nmax as from Equation (5) above can be bounded as:

nmax ≥ 1+

⌊
k − 1−

∑k−1
i=1 Ui

Uk

⌋
+(m− k + 1)

⌊
1

Uk

⌋
(12)

Indeed, the nmax formulation in Equation (5) contains the
summation of the result of k− 1 ceil operations (one for each
of the k − 1 first cores possibly hosting heavy tasks), which
can be bounded applying the approximation in Equation (11)
exactly k − 2 times, resulting in the first term of (k − 1) in
Equation (5) being reduced to just 1. Note that this bound
is correct for any possible partitioning {ΓH

j } of the k − 1
heaviest tasks across the first k − 1 cores, and regardless of
which subsets of said tasks actually fit onto a single core.
Indeed, the final bound for nmax turns out to be identical in
all these cases, and equal to the one in Equation (12).

Therefore, the approximated test in Equation (12) has
generally linear complexity in the number of tasks. However,
optimized implementations are possible for repeating the test
incrementally whenever a new task joins the taskset. For
example, using a two-heaps implementation, as detailed in step
1 in section III-A, leads to a final logarithmic complexity of:

O(log k(n− k)). (13)

IV. EVALUATION

This section evaluates the combinatorial admission tests
given by Equation (5) for the cases k = {2, 3, 4}, along
with their non-combinatorial approximated variants in Equa-
tion (12), comparing with the test in Equation (1) (referred to
as utilization-based test in what follows). As it will become
clear, the joint use of the test in Equation (1) and some of
the proposed one(s) results in a viable, efficient and useful
admission test for P-EDF that admits more tasksets than
Equation (5) alone would do.

Tasksets have been generated with the taskgen.py pro-
gram1 by Emberson et al. [8] and the number of CPUs is
fixed to m = 4 or m = 8. The admission tests have been
repeated on a variety of tasksets with different cardinality
and overall utilization. For each overall utilization among the
values in {1.5, 1.6, ..., 2.9, 3.0} for m = 4 cores, and those in
{4.0, 4.1, ..., 5.0} for m = 8 cores, 100 random tasksets have

1The tool is available at: http://retis.sssup.it/waters2010/tools.php

been generated and the admitted tasksets have been counted
for each configuration. Each taskset contains a number of tasks
varying in the range {6, 7, . . . , 17, 18} for m = 4 cores, and
belonging to the set {9, 12, 15, 18, 21, 24} for m = 8 cores.
Results are shown in Figure 3 for the two cases of m = 4 and
Figure 4 for m = 8 cores.

A. Motivational example

Consider the taskset of 6 tasks in Table I generated with
the taskgen program by Emberson et al. and having total
utilization 2.6. It is among the ones used to make the plot
in Figure 3a for 4 cores (m = 4). The tasks are already sorted
for convenience.

Table I: Taskset for the motivational example

U1 U2 U3 U4 U5 U6
∑

i Ui

0.9237 0.5331 0.3762 0.2627 0.2528 0.2514 2.6

Equation (1), which is a utilization-based test, would not
admit the taskset because it only considers the first maximum

β =

⌊
1

U1

⌋
= 1

2.6 >
4 ∗ 1 + 1

1 + 1
= 2.5

(14)

while Equation (5) and Equation (12) would admit it for k = 3,
for example. Notice that, differently from Equation (1), these
equations are based on the number of tasks in the taskset.

Equation (5) for k = 2 would behave as Equation (8).
It would not admit the taskset since it does not meet the
schedulability check, being nmax smaller than the number of
tasks in the taskset:

6 > 4 = 1 +

⌊
1− 0.9237

0.5331

⌋
+ (4− 1)

⌊
1

0.5331

⌋
(15)

Equation (5) for k = 3 would behave as Equation (9). It
would admit the taskset, since the schedulability test holds:

6 ≤ 7 = 2 +

⌊
1− 0.9237

0.3762

⌋
+

⌊
1− 0.5331

0.3762

⌋
+ (4− 2)

⌊
1

0.3762

⌋
(16)

Equation (12) for k = 2 would not admit the taskset too:

6 > 4 = 1 +

⌊
2− 1− 0.9237

0.5331

⌋
+ (4− 2 + 1)

⌊
1

0.5331

⌋
(17)

Equation (12) for k = 3 would admit the taskset:

6 ≤ 6 = 1+

⌊
3− 1− (0.9237 + 0.5331)

0.3762

⌋
+(4−3+1)

⌊
1

0.3762

⌋
(18)

Finally, Equation (12) would admit the taskset for k = 4
as well:

6 ≤ 8 = 1+

⌊
4− 1− (0.9237 + 0.5331 + 0.3762)

0.2627

⌋
+(4−4+1)

⌊
1

0.2627

⌋
(19)

In fact, Equation (5) has combinatorial complexity and it
tries to partition the first k − 1 heaviest tasks in all the
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(d) n = 18

Figure 3: Comparison of equations behavior for m = 4 and varying the number of tasks in each taskset

possible ways over the first k− 1 cores as shown in Figure 5.
Therefore, it constitutes a viable test only for small values of
k. On the other hand, the test in Equation (12) has a reduced
computational complexity, making it more suitable for real-
world admission tests if higher values of k are needed. Figure 5
shows the possible partitioning configurations for k = 3 and
k = 4 that must be checked to determine whether the taskset
is admissible or not.

B. Experimental comparison of the admission tests

This section evaluates the mentioned admission tests for P-
EDF with the settings described in section IV. In Figure 3
and Figure 4, Utilization-based test refers to Equation (1),
Combinatorial test refers to Equation (5) and Linear test
refers to Equation (12). Util.-based or Comb. k = 4 is the
logical or between Equation (5) and Equation (1) for each
taskset, while Util.-based or Linear k = 4 is the logical or
between Equation (12) and Equation (1) for each taskset.

While the utilization-based test generally achieves higher
rates of accepted tasks for lower system utilizations, the new
ones proposed in this paper tend to save an interesting number
of tasksets when the total utilization increases, particularly for
smaller numbers of tasks in tasksets.

As shown in Figure 3a and Figure 3b, the tests based on
the number of tasks in the taskset tend to be stricter and
admit less tasksets. However, there are cases in which they
admit tasksets that the utilization-based test would not admit
(e.g., Figure 3a). This results in an interesting increase in
the total number of admitted tasksets, when the tests are
used in a combined way. These cases are highlighted by
the or bins in the histograms, counting how many tasksets
satisfy either the original utilization-based test in [7], or
the new ones from Section III. In all the experiments using
the exact combinatorial tests, increasing k (i.e., reasoning on
more utilizations) also enhances the capability of the paper
equations, and in particular k = 4 achieves the best results.

The combinatorial test produces higher schedulability ratios
than the linear one for all k, at the cost of higher computational
complexity. Increasing k achieves better results too, since more
utilizations are taken into account for the checks.

Analyzing the graphs in Figure 3 when the number of
tasks in each taskset increases (i.e., n increases), all admission
checks show generally better performance with lower system
utilizations. Moreover, the effectiveness of the paper equations
gets poorer when increasing n and for n = 18 the utilization-
based test dominates. The effectiveness of the paper equations
with smaller k tends to decrease quite fast. The same trend
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Figure 4: Comparison of equations behavior for m = 8 and
varying the number of tasks in each taskset

is in Figure 4 for the case of 8 cores. For lower system
utilizations, Equation (1) is the only one admitting all tasksets.
However, for lower tasks number (n = 12), the number of
admitted tasksets with Equation (1) falls down and the paper
equations take over. The same does not hold for higher number
of tasks (n = 21), where the utilization-based test always
dominates. Generally speaking, the proposed tests perform
better and dominate for lower number of tasks in the tasksets.
In these cases Equation (1) collapses. The contrary applies
for higher number of tasks in tasksets. Therefore, the main
outcome is that using both Equation (1) and the proposed
tests makes the admission check more robust, as highlighted
with the or cases in the graphs.

Finally, note that the conclusions drawn from the com-
parison performed in this section refer to tasksets randomly
generated with the taskgen.py program [8]. However, things
might be different for alternative distributions of the task
utilizations. For example, when the utilizations are better
balanced among the tasks and when the first few highest
utilizations are not too different from the ones of the very next
task, the proposed technique would not result advantageous.
A more realistic comparison should consider benchmarks or
tasksets used in certain industrial domains. Our choice of
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Figure 5: Some of the possible partitioning configurations
that Equation (5) must check, for k = 3 (top) and k = 4
(bottom). Configurations that are impossible due to violation
of EDF schedulability are marked with a red cross.

using the taskset generator by Emberson et al. has been
dictated by its popularity and wide acceptance in the real-time
community.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of admitting real-time tasks onto
a SMP platform under partitioned EDF scheduling has been
tackled. We proposed an easy-to-compute test that combines
the well-known utilization based test for first-fit allocation
heuristics as studied in [7] with a test based on looking at
the k biggest utilizations.

An extensive validation performed on randomly generated
tasksets shows that our proposed test is able to admit onto the
system a number of tasksets that would be discarded by the
original test in [7] due to its pessimistic behavior.

Concerning possible future works on the topic, we plan
to extend the technique for uniform and/or heterogeneous
multi-processor systems, where processors may have different
computational capabilities, and to make the technique also
usable on SMP platforms with DVFS energy-saving features.
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