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Abstract—Multistatic unmanned aerial vehicle-borne synthetic
aperture radar (MuUAV-SAR) plays an important role in the
applications of environmental monitoring and disaster warning
because its distributed platforms can provide high-resolution
imagery by fusing the multiple measurements. However, the
flight paths of the multiple platforms are limited for such an
unmanned system since the flight safety and the path length are
basic conditions for guaranteeing the effective observation. This
paper first studies the observation signal model of MuUAV-SAR
imaging system, and then analyzes the factors that determine
the imaging resolution, while these factors are all determined
by the flight path of UAVs. Secondly, MuUAV-SAR imaging
path planning problem is established as a constrained multi-
objective optimization problem (CMOP), which considers the
navigation and imaging performance of UAV in the process
of completing path planning task in detail. For this CMOP,
a heuristic search method is proposed to solve it, which can
ensure that each step achieves local optimum, and it can also
list all feasible solutions to meet the application requirements for
selection. Finally, experimental results verify the effectiveness and
practicability of the proposed heuristic path planning method.

Index Terms—Synthetic aperture radar, resolution analysis,
UAV path planning, MuUAV-SAR imaging.

I. INTRODUCTION

S
YNTHETIC aperture radar (SAR) is widely used in disas-

ter warning, structural mapping and marine applications

with advantages of day and night, all-weather, wide swath,

long-range imaging features [1-9]. However, because of the

limitation of the SAR imaging principle, there will be an imag-

ing blind area in the forward-looking area of radar platforms

[10-13]. In order to overcome this problem and obtain more

observed information from different views, new radar systems,

such as bistatic radar and multi-static radar have emerged and

became a research hotspot in recent years [14-18]. Compared

with the traditional monostatic SAR, the platforms of multi-

static SAR system are completely dispersed in space, which

can change the relative spatial configuration of each radar

platform more flexibly and adjust the flight path to realize the

multi-view observation of the region of interest without blind

spots. Moreover, by fusing multi-view information of multi-

static radar platforms, higher resolution observation images

can be obtained in a shorter time [19-24]. Recently, there have
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been some research on multi-platform data fusion and reso-

lution enhancement of multi-static SAR [24-26]. In [27, 28],

the generalized ambiguity function and resolution expression

of BiSAR are analyzed and derived, which provides a basis for

further deriving the fusion resolution of multi-static SAR [26].

On the basis of [28, 29], the azimuth resolution of the multi-

static SAR imaging system with separated transmitters and

receivers is deduced according to the distribution regularities

of echo in wave number domain, and the feasibility of echo

data fusion of multiple radar platforms to improve imaging

resolution are verified [21, 27]. Even when the observation

time of a single platform is insufficient, MuUAV-SAR can

splice the echo data from multiple transmitters to achieve

the same high-resolution observation effect, which is the

benefit brought by MuUAV-SAR while it also brings more

resource consumption. Therefore, it is necessary to optimize

the performance requirements and resource consumption.

Compared with airborne and spaceborne SAR, UAV-borne

SAR has a shorter radar range and narrower beam coverage

[9, 30], it often works in spotlight SAR mode. Higher imaging

resolution can be obtained by the accumulation of echo

data through long-time observation of the region of interest

[29, 31-33]. For MuUAV-SAR imaging system, high imaging

resolution is highly dependent on a good path, and it is also

very important to comprehensively consider the path distance

of multiple platforms, terrain threats and other factors. As a

special SAR imaging system, UAV-borne SAR imaging with

receiving and transmitting antennas on the same platform is

studied in [1, 32-36]. However, the transmitter and receiver

are separated in MuUAV-SAR imaging system, which brings

higher flexibility to the system, while some problems need to

be solved urgently at the same time. In practical application,

the flight paths of UAV usually pass through some hills and

canyons [37, 38]. And the flying heights of UAVs are limited

to some extent, which will cause the line of sight of UAVs

to be blocked by obstacles such as hills and forests, and then

lead to the missing of echo data. Aiming at the situation that

radar line of sight is blocked or echo signal is interfered,

the method of signal processing by data extrapolation under

the condition of missing data is put forward [39-41]. These

methods are also applicable to MuUAV-SAR imaging system.

Besides, UAV is also affected by weather, flight performance

and other factors during flight, which causing its nonlinear

flight path. Researchers proposed some processing methods

of echo signal under the condition of nonlinear flight path

[17, 42, 43]. When all of the above problems are solved, multi-

UAV cooperative high-resolution imaging is feasible. In order



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3106449, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

2

to obtain high-resolution imaging of designated areas using

MuUAV-SAR imaging system, it is necessary to plan a path

as short as possible to guide UAVs to form as large aperture

accumulation as possible while avoiding terrain obstacles.

Path planning for UAV to complete specific optical ob-

servation or flight task has been extensively studied [44-

47]. However, in the existing studies about multistatic SAR

imaging, there are few on path planning. In general, most UAV

path planning problems are usually modeled as optimization

problems, and different intelligent optimization methods are

proposed according to different optimization problem models.

Some improved algorithms based on Genetic Algorithm (GA),

Particle Swarm Optimization (PSO) algorithm and Ant Colony

Optimization (ACO) algorithm are common, they usually need

to set process parameters artificially, and different process

parameters make the final results vary widely and have no

regularity [48-51]. Therefore, it is urgent to propose a stable

method that can provide a series of feasible paths for flight

task executors to choose. It will also make it possible to choose

the most suitable path in any application scenario.

We have discussed the problem of UAV path planning for

distributed radar imaging preliminarily in [52]. In order to

further verify the effectiveness and feasibility of the proposed

method, further research is carried out, including the following

three aspects: 1. The azimuth resolution is discussed detail

combined with MuUAV-SAR imaging model [53]. 2. The

analysis of the influence of the weight hyperparameters of

the objective function is added. 3. The imaging effects of 2-

D scenario targets corresponding to different planned paths

are compared. In this paper, the observation geometry model

of MuUAV-SAR imaging is established and the echo signal

model is then derived in detail, firstly. Secondly, taking a

certain transmitter and a receiver in MuUAV-SAR imaging

system as an example, the factors that determine azimuth

resolution are analyzed. In the mode of spotlight SAR, the

effective azimuth angle variations of receivers are taken as

a measure of the imaging resolution. Thirdly, the navigation

and imaging performance of MuUAV-SAR platforms are taken

into consideration and they are clearly defined as a constrained

multi-objective optimization problem (CMOP) with three ob-

jective functions and two constraints. Finally, a heuristic search

method for UAV path planning is proposed. Task executors can

select the optimal path from the feasible solution set based on

actual application demand. Finally, some path planning results

and corresponding imaging results are given, which proves the

effectiveness of this method to improve azimuth resolution.

The organization of the rest of this paper is as follows.

Section II established the geometric model and echo signal

model of MuUAV-SAR imaging system. Section III analyzed

azimuth resolution in detail. Section IV combines the

navigation and imaging performance of UAVs to establish a

CMOP, and a heuristic search method is proposed to solve

the optimization problem. Simulation results are shown in

Section V. Section VI covers the conclusions.

II. ECHO SIGNAL MODELING FOR MUUAV-SAR IMAGING

SYSTEM

In order to realize the modeling of the echo signal model,

the geometric observation model is established according

to the MuUAV-SAR imaging detection task. Based on the

geometric observation model, the echo signal model can be

derived.

A. Geometric observation model
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Fig. 1. The geometric observation model of MuUAV-SAR imaging system.

As the geometric observation model shown in Fig.1, a

MuUAV-SAR imaging system contains one transmitter and M
receivers. The position of transmitter is T (rT , θT , ϕT ) and the

mth receiver is located at Rm (rRm
, θRm

, ϕRm
). A reference

point in the observation scene is selected as the origin O

and the Cartesian coordinate system is established. The

position of target point P can be expressed as (xP , yP , zP ) =
(rP cos θP cosϕP , rP cos θP sinϕP , rP sin θP ), where

rP , θP , ϕP express radial distance, pitch angle and azimuth

angle respectively. The transmitter hovers in the air and

ensures that the transmitted beam can always cover the

imaging area. Receivers fly along the planned path with the

velocity
−→
VRm

.

B. Echo signal model

For convenience, assume that UAV radar platforms and

imaging scene lie in the same plane as the top view of the

geometric observation model shown in Fig. 2. The imaging
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Fig. 2. The top view of the geometric observation model.

system record echo data in spotlight SAR mode. Transmitter

radiate linear frequency modulation (LFM) signal is as follow

S(τ) = rect

(
τ

Tr

)
· exp

(
jπkτ2

)
· exp (j2πfcτ) (1)
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where τ is fast time variable, Tr is pulse width, k is chirp

rate, and fc denotes the carrier frequency of the transmitter.

After being reflected by the observation scene, the echo signal

received by the mth receiver can be expressed as

Sm(τ, t) = A · rect

(
t

Ta

)
· rect

[
τ −RmP (t)/c

Tr

]
·

exp
{
jπk[τ −RmP (t)/c]

2
}
· exp

[
−j

2πfc
c

RmP (t)

] (2)

where A expresses the amplitude of the echo signal, which

is determined by target scattering coefficients and the power

attenuation of the transmitted signal in propagation. t, Ta, c
represent slow time variable, synthetic aperture time and the

velocity of the electromagnetic wave, respectively. RmP (t) =
RTP (t) + RRmP (t) denotes the range history of target point

P. Then, through Fourier transform of the above echo signal

along the distance direction, the distance frequency domain

expression of the echo can be obtained as follows

Sm(fτ , t) = A · rect

(
t

Ta

)
· rect

[
fτ
kTr

]
· exp

[
−jπ

f2
τ

k

]
·

exp

[
−j

4π

c
(fcm + fτ )RmP (t)

]

(3)

where fτ expresses the frequency variable. Similarly,

RmO(t) = RTO(t) + RRmO(t) expresses the range history

of the origin O. Then the echo frequency domain expression

of O can be similarly written as

Sref (fτ , t) = A ·exp

(
jπ

f2
τ

k

)
·exp

[
j
2π

c
(fc + fτ )RmO(t)

]

(4)

and it is set as a reference function. After completing the

pulse compression and range migration correction, the echo

frequency domain expression of P can be expressed as

Sm(fτ , t) = A · exp

{
j
2π

c
(fc + fτ ) [RmO(t)−RmP (t)]

}

(5)

Further, assuming that the size of the observed scene is much

smaller than the distance between the radar platforms and the

observed scene center, which can be considered as the far field

condition, then we can approximately deduce the range history

as

RmO(t)−RmP (t)

= |RTO(t) +RRmO(t)| − |RTP (t) +RRmP (t)|

≈ xP [sinϕT (t) + sinϕRm
(t)] + yP [cosϕT (t) + cosϕRm

(t)]
(6)

Therefore, the frequency domain expression echo of the mth

receiver in the beam coverage area Ω can be expressed as

Sm(fτ , t) =

∫∫

(x,y)∈Ω

σ (x, y) · ej·[xkxm(fτ ,t)+ykym(fτ ,t)]dxdy

(7)

where σ (x, y) is the scattering coefficients of target points.

kxm(fτ , t), kym(fτ , t) are wave number domain variables and

they can be denoted concretely as follows




kxm(fτ , t) =
2π

c
(fc + fτ ) [sinϕT (t) + sinϕRm

(t)]

kym(fτ , t) =
2π

c
(fc + fτ ) [cosϕT (t) + cosϕRm

(t)]
(8)

It can be found in (8) that wavenumber domain variables are

related to the frequency variable fτ and the azimuth angle ϕ(t)
of the radar platforms. As sampling time goes on, the azimuth

variation and frequency sampling of the radar platforms make

the echo data map to spatial spectrum in wavenumber domain.

According to the position relationship among the multiple

radar platforms, the echo data can be projected into a new

coordinate range. The echo data of the MuUAV-SAR can be

projected into the wavenumber domain together as

s (kx, ky) =
M∑

m=1

A
′

ms [kxm(fτ , t), kym(fτ , t)] (9)

where A
′

m denotes the normalized amplitude of the fused spa-

tial spectrum. Finally, the relationship between the wavenum-

ber domain echo and the PSF can be expressed by matrix

Fourier transform (MFT) as

σ (x, y) =

∫∫

(kx,ky)∈Dk

s (kx, ky) · e
−j·[xkx+yky ]dkxdky (10)

where Dk expresses the boundaries of the fused spatial spec-

trum area [54].

III. AZIMUTH RESOLUTION ANALYSIS FOR MUUAV-SAR

IMAGING

To analyze the azimuth resolution of MuUAV-SAR imaging

system, the relationship between the distribution regularities

of spatial spectrum in wavenumber domain and the azimuth

resolution is derived. By analyzing the equivalent bandwidth of

azimuth direction in wavenumber domain, the factors related

to azimuth resolution of MuUAV-SAR imaging system can be

indicated.

Based on the analysis in Section II, the range and azimuth

resolutions of MuUAV-SAR imaging system are related to the

transmitting signal bandwidth and the azimuth angle variations

of radar platforms, respectively. The range resolution can

be matched with the azimuth resolution by adjusting the

bandwidth of the transmitted signal, which will not be further

analyzed in this paper. For spotlight SAR, the resolution

in azimuth direction can be analyzed in the wavenumber

domain [22]. As spatial spectrum in wavenumber domain

shown in Fig. 3, assuming that the corresponding sampling

points in the wavenumber domain are Kfmin

start and Kfmin

end at the

beginning and end of echo recording and fmin is the lowest

frequency in the frequency band of the transmitted signal.

The difference between these two points determines the lowest

azimuthal resolution of the system [27]. Therefore, the azimuth
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Fig. 3. Spatial spectrum in wavenumber domain.

resolution can be calculated by

∆ρaz =
2π∣∣∣∣

∥∥∥∥
−−−−−→
OKfmin

end

∥∥∥∥−

∥∥∥∥
−−−−−→
OKfmin

start

∥∥∥∥
∣∣∣∣

=
2π√

|kendx − kstartx |
2
+
∣∣kendy − kstarty

∣∣2

(11)

where
(
kstartx , kstarty

)
and

(
kendx , kendy

)
represent the coordi-

nates of the starting point and the ending point. Substitute

(8) into (11) and utilize trigonometric function transformation,

and then the azimuth resolution expression can be derived as

follow

ρmaz =
c

2 (fc + fmin)



sin2

∆ϕT

2
+ sin2

∆ϕRm

2
+

2 sin
∆ϕT

2
sin

∆ϕRm

2
cos

β′

2




−
1

2

(12)

where β′ = βend + βstart, in which βend = ϕend
T − ϕend

Rm
,

βstart = ϕstart
T − ϕstart

Rm
represent the bistatic angles corre-

sponding to the starting and ending point of recording echo

data, respectively [21]. ∆ϕT and ∆ϕRm
are the azimuth

change value of the transmitter and receivers relative to the

origin O in the process of recording echo. Particularly, in the

hypothesis of this paper, the transmitter hover in the air, so

there is no azimuth variation for the transmitter. The azimuth

resolution varies with the movement of the radar receiver

platforms, which means ∆ϕT = 0. And the movement

distance of the radar platform in the synthetic aperture time

is much less than the distance between radar platform and the

scene center, i.e. ∆ϕRm
is close to 0. Therefore, the azimuth

resolution can be approximately expressed as

ρmaz =
c

2 (fc + fmin) sin (∆ϕRm
/2)

≈
λmax

2∆ϕRm

(13)

where λmax = c/ (fc + fmin) is maximum wavelength of

LFM signal. When the MuUAV-SAR imaging system contains

M receivers with small viewing angle differences, the azimuth

resolution of the system can be approximately described as

ρaz ≈
λmax

2
M∑

m=1
∆ϕRm

(14)

The azimuth resolution of the system is jointly influenced by

the wavelength of the transmitted signal and the azimuth angle

variations of UAV radar platforms in the process of recording

echo, and the azimuth angle variations of the radar platforms

are the dominant factor for the microwave radar system on

UAVs according to (14). In general, larger azimuth variation

can help improve azimuth resolution, which will also lead to

an increase in path distance. Therefore, the purpose of UAV

path planning is to design a path with a large azimuth angle

variation and as short as possible through optimization during

synthetic aperture time while ensuring the normal flight of

UAV.

IV. OPTIMIZATION PROBLEM FORMULATION AND PATH

PLANNING SOLVING FOR UAV

Comprehensive analysis the factors such as detection task,

navigation constraints and imaging resolution of UAV radar

platforms, the UAV path planning problem is established as a

CMOP. To solve this CMOP problem, a heuristic optimization

algorithm is proposed and the optimal path can be selected

from the feasible solution set according to the actual appli-

cation demand. Finally, the computational complexity of this

proposed path planning method is given.

A. Path planning task analysis

The purpose of the path planning for this problem is to

develop a method to design a path as short and safe as possible

under the condition of meeting the resolution requirement. In

the MuUAV-SAR imaging system hypothesized in this paper,

the transmitter hovers in the air in the process of recording

echoes. Therefore, all the azimuth bandwidth is contributed by

the receivers and it is necessary to complete path planning for

multiple receiver platforms [55]. A series of feasible solutions

can be obtained after optimization, and then screen the most

suitable one according to the actual application requirements.

To simulate the specific application requirements, a Digital

Elevation Model (DEM) data set of a mountainous area is se-

lected and the interested imaging observation area is identified

to complete the path planning of MuUAV-SAR imaging system

as Fig. 4 shows. According to the detection requirements, the

starting point and the ending point of UAV flight are set, and a

reasonable path is planned between the two points. Firstly, in

order to reduce resource consumption, it is necessary to limit

the distance of UAV flight path. Secondly, in order to ensure

UAVs fly safely, the threat of terrain to UAV flight should be

considered. Thirdly, combined with the analysis in Section III,

to finish azimuth high-resolution imaging, the azimuth angle

variations of the receiver platforms relative to the observation

scene center will also be considered as one of the objective

functions of path planning. Finally, it should be noted that

the transmitted signal should be normally received. It requires

that the radar line of sight of the receiver is not be obstructed
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by obstacles for a continuous period of time, which will be

further explained in Section IV-B.
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Fig. 4. Path planning model of MuUAV-SAR imaging system.

B. Optimization problem formulation

Fig. 2 shows the top view of the geometric observation

model, and suppose that two UAVs act as receivers start flying

with the same speed
−→
VRm

from different starting points A

and B in space. After the same period of time t̃, the two

receivers will travel the same distance d =
∣∣∣−→VRm

∣∣∣ t̃, which

means the maximum range of motion for UAV receivers during

this period t̃ is a circle with the starting point as the center and

the length d as the radius. Through simple geometric analysis,

if the rays emitted from the center of the scene are tangent

to the circle at the red points and set them as the theoretical

ending points of the two receivers, the imaging system will be

able to obtain the best azimuth resolution in theory according

to (14).

Fig. 5 is the 3-D model of UAV path planning and schematic

diagram of radar line of sight occlusion analysis. To quanti-

tatively evaluate the navigation and imaging performance in

path planning problem, a comprehensive objective function is

designed as follow

f(x) = k1fdistance(x) + k2fthreat(x) + k3f∆ϕ(x) (15)

where k1, k2, k3 are all constants, which represent the weight

of each sub-objective function according to different applica-

tion requirements. x represents a specific planning path. The

meaning of each sub-objective function is defined in detail as

follows.

As shown in Fig. 5 (a), the path between starting point

Pstart and ending point Pend is divided into N path points,

which are obtained by solving optimization problems and

further analysis will introduced in detail in Section IV-C.

In practical application, the flight path of UAV cannot be a

polyline, so it is necessary to smooth the planned path points

by cubic spline interpolation. The detailed steps of cubic spline

interpolation can be found in [56]. Then, we can model the

path of a UAV receiver as a coordinate sequence

L = [S1 (Pstart) , S2, . . . , SN (Pend)] (16)

where Si is the ith path point and their 3-D coordinates are

(xi, yi, zi) , i = 1, 2, . . . , N . Then the whole flight distance

can be described as

fdistance(x) =
N−1∑

i=1

∥∥∥−−−−→SiSi+1

∥∥∥, (i = 1, 2, ..., N) (17)

where ‖·‖ is the Euclidean distance between two points. The

flight distance fdistance(x) should be minimized to avoid

excessive energy and mechanical losses.

Considering the physical factors such as the size and inertia

of the UAVs, if the distance between UAVs and the terrain is

closer, it will be more threatened. Therefore, the terrain threat

function in the whole path process can be defined as

fthreat(x) =
N∑

i=1

1

hi(x, y)− zi(x, y)
(18)

where hi(x, y), zi(x, y) are the height of the ith path point

and the height value of the terrain directly below it. The value

of the terrain threat function fthreat(x) needs to be as small

as possible to ensure that UAVs will not hit the terrain during

flight.

In order to ensure that the signal transmitted by the trans-

mitter at a certain path point can be normally received by

receivers, it is necessary to judge whether the radar line of

sight is blocked by obstacles. As shown in Fig. 5 (b), the

spatial triangle formed by two consecutive Si, Si+1 and the

target point P is △ PSiSi+1. The projection of △ PSiSi+1

in XOY plane is triangle △ P
′

S
′

iS
′

i+1, which contains J grid

points. For any of the J grid points contained in the region

of the triangle △ P
′

S
′

iS
′

i+1, if all of them satisfy (19), the

azimuth angle variation formed by the path points Si and Si+1

can be regarded as effective ∆ϕRm
(x)

zj(x, y) > hDEM (x, y), (j = 1, 2, .., J) (19)

where zj(x, y) and hDEM (x, y) are the height of the inner

point of the spatial triangle △ PSiSi+1 and DEM directly

above the point (x, y), respectly. Otherwise, if there is a point

triangle region △ PSiSi+1 that does not meet condition (19),

this path point will not be included in the point set that

contributes to the effective azimuth angle accumulation. The

MuUAV-SAR imaging system includes multiple receivers and

the azimuth angle variation of each receiver radar platform

is beneficial to the improvement of azimuth resolution in the

spotlight SAR model. If the effective azimuth angle variation

of each receivers is ∆ϕRm
(x), then the sub-objective function

of azimuth angle can be set as

f∆ϕ(x) =
M∑

m=1

‖∆ϕRm
(x)− |ϕEm

− ϕSm
|‖ (20)

where M denotes the number of receivers in imaging system.

ϕEm
, ϕSm

represent the azimuth angles corresponding to the

starting point and the theoretical ending point of the mth

receiver shown in Fig. 2, respectively. On the other hand, htop

needs to be set as the upper bound of the path search space

to reduce the search range of the solution algorithm as shown

in Fig. 4. Finally, the lower resolution cannot obtain effective
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Fig. 5. 3-D model of UAV path planning and schematic diagram of radar line of sight occlusion analysis.

imaging results, so a resolution threshold ρ̂az needs to be set as

the constraint condition to determine whether there is enough

continuous azimuth angle accumulation in the whole path.

Synthesize the above analysis, the path planning optimiza-

tion problem is modeled as

min f(x)

s.t.





hi(x, y) 6 htop∥∥∥−−−−−→SkSk+n

∥∥∥ · cos θk,k+n ·
1

RSP

>
λ

2ρ̂az

(21)

From Sk to Sk+n, there are n continuous path points that can

provide effective azimuth variation. And in (21),

∥∥∥−−−−−→SkSk+n

∥∥∥
represents the Euclidean distance of the space vector from Sk

to Sk+n. cos θk,k+n is the angle between the space vector
−−−−−→
SkSk+n and the ground-piston. RSP indicates the distance

between the receiver radar platform and the target point. λ is

the wavelength of the transmitted signal.

In (15), fdistance(x) and fthreat(x) comprehensively de-

scribe the navigation performance of UAV flight, and f∆ϕ(x)
represents the resolution performance in azimuth for MuUAV-

SAR imaging system. The two constraints jointly ensure the

feasibility and effectiveness of the actual flight and imaging

detection tasks of UAVs. However, the minimization of nav-

igation performance and imaging performance sub-objective

functions are usually contrary to each other. Paths correspond-

ing to longer path distance and higher terrain threat can bring

better azimuth resolution, while a better imaging resolution

inevitably requires larger azimuth angle variation, which leads

to a longer planning path. Therefore, an optimized planning

path should achieve a compromise among these sub-objective

functions on the premise of satisfying constraints. An path

planning solution method needs to be designed to obtain a

feasible solution to this problem, so that executors can choose

the corresponding weights according to the needs of actual

tasks.

C. Path planning for MuUAV-SAR imaging

As analyzed in Section IV-B, it is impossible to achieve

optimal navigation performance and imaging performance syn-

chronously, because these two performances are contradictory.

Therefore, the proposed method need to automatically indicate

the feasible planning paths that meet certain conditions in the

feasible solution set, and they represent the tradeoff of each

performance in different tasks. Task executors can select the

most appropriate path from the solution set to complete the

imaging detection task. A greedy search algorithm is proposed

to solve this CMOP and the specific algorithm process is listed

in TABLE I. The two receivers are independent of each other

and path planning can be carried out simultaneously.

Taking a receiver as an example, the main procedure of path

planning method is given as follows.

Step 1) Initialization and input of searching algorithm:

Initialization and input are divided into three steps. At first,

read DEM data and set the upper bound htop of search space,

and put physically unreachable points into closed set C. Path

points in the closed set C cannot be reached and will not

be involved in the search process of UAV path planning.

Secondly, input the starting point Pstart and ending point Pend

of the path planning. Thirdly, set the current point Pcurrent as

the starting point Pstart.

Step 2) Setting hyperparameter space K:

Based on the actual scene and resolution requirements,

the appropriate value range of the hyperparameter k is set

to ensure that the contributions of the three sub-objective

functions are similar. Then, according to the requirements of

the planning speed, the appropriate value step is set to divide

the value space of the hyperparameters, and the value space K

is obtained. Finally, a set of hyperparameters k = [k1, k2, k3]
T

from the value space K is selected as the weight of each

objective function.

Step 3) Searching the extended points:

Take the current point Pcurrent as the center and search

in all directions. And then find out the points that may



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3106449, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

7

TABLE I

PATH PLANNING ALGORITHM PROCESS

Algorithm 1: Path planning for MuUAV-SAR imaging system.

Initialization: Add points can not reach to closed set C.

Input: Start point Pstart and ending point Pend.

Set hyperparameter space K = {k1, . . . ,kI} where ki = [ki1, ki2, ki3]
T

for ki in K do

Let Pcurrent = Pstart.

while Pcurrent 6= Pend do

Add points near current point Pcurrent to open set O (not include points in C).

Calculate evaluation function v(x) for every point new added in O :

f(x) = ki1fdistance(x) + ki2fthreat(x) + ki3f∆ϕ(x)

h(x) = discance(Pcurrent, Pend)

v(x) = f(x) + h(x)

Choose point with minimum v(x) value as the next point Pcurrent.

Add Pcurrent to C.

end while

Backtrack O to get the planned path li.

end for

for path li do

if ρli 6 ρmax do

Add path li to solution set L.

end if

end for

Output the planning path set L

arrive at the next moment according to the distribution of the

surrounding environment and the velocity vector
−→
VRm

of the

UAV receivers which are called extended points Pextend. All

extended points will be added to the open set O, and they will

be used as candidate points for the next planning.

Step 4) Evaluating the extended points:

First, calculate the evaluation function v(x) one by one for

the extended points Pextend in the open set O. v(x) can be

calculated by

v(x) = f(x) + h(x) (22)

where f(x) is the objective function in (21) and h(x) =∥∥∥−−−−−−−−−→PcurrentPend

∥∥∥ is the Euclidean distance from the current

path point Pcurrent to the ending point Pend. Then, sorting

the evaluation functions v(x) of all extended points, and

finding out the extended point corresponding to the minimum

evaluation function Pv(x)
min

. Finally, take the extended point

as the next path point, that is, let Pcurrent = Pv(x)
min

and

put Pv(x)
min

into the close set C simultaneously. Repeat this

step until the planning path reaches the ending point, i.e.

Pcurrent = Pend.

Step 5) Backtracking path points:

On the basis of Step 4), trace back the adjacent points in

open set O from the ending point Pend to Pstart and obtain a

trace li. Perform cubic spline interpolation on trace li to obtain

the final smooth planned path l̃i and add it to path solution

set L for subsequent screening.

Step 6) Update of weight hyperparameters:

Selecting different weight hyperparameters

k = [k1, k2, k3]
T will obtain different planned paths and

correspond to different navigation and imaging performance.

First, update a new set of hyperparameters ki = [ki1, ki2, ki3]
T

from the set K = {k1, . . . ,kI}, and reset Pstart = Pcurrent

to complete initialization. Then, return to Step 3) for new

path planning.

Step 7) Planning path screening:

Calculate the azimuth resolution of all paths in the planning

path set L and remove paths that do not meet the navigation

and imaging resolution from L according to constraints in

(21). And then output the remaining paths in L.

After the above solving steps, a solution set L of the

planned path can be obtained. Flight task executors can choose

the appropriate path according to the actual demand for the

imaging resolution and the path distance.

D. Time Complexity

The time consumption of the proposed method is mainly

caused by the following three parts.
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Part 1) Objective function calculation:

Assuming that L search times are required at most in the

path planning process, that is, the search length is L. And in

each search process, it is necessary to calculate the objective

functions of D feasible directions, so the time complexity in

the whole path planning process is D × L, where D < 27,

so the time complexity of one path is O (L). Furthermore,

the times of vector ki needs to traverse is K, so we need to

plan K paths, the actual time complexity of objective function

calculation is O (KL).
Part 2) Path points backtracking:

After the path planning is completed, K paths are obtained.

Each path retains no more than N path points, we need

to backtrack from the ending point to find the path points.

Therefore, in the process of backtracking, it is necessary to

search the path points for N times for each path, and the time

complexity is O (K).
Part 3) Planning path screening

After traversing, we need to calculate the azimuth resolution

for all paths, and discard paths do not satisfy constraints (21).

The time complexity is O (K).
Through analyzing, it is found that the calculation time

length of the Part 1) will change with the search times L,

and the value of KL is much larger than the value of K. So

it can be concluded that the calculation of objective function

contribute the main calculation load.

V. SIMULATION RESULTS

In this section, the performance of the proposed path plan-

ning method for MuUAV-SAR is thoroughly verified under

different navigation and imaging conditions. First, the joint

influence regularities of different weight hyperparameters on

imaging performance is analyzed. Then, based on the results

of path planning, the imaging resolution performance of point

targets are analyzed and the 2-D scenario targets imaging

results are compared.

Fig. 6 is the flowchart of path planning and MuUAV-SAR

imaging. In the simulation process, set a task requirement

and determine the starting point and ending point of the

two receivers firstly. Secondly, by using the path planning

method proposed in this paper, the feasible path solution

set is obtained. Thirdly, select a path to complete the echo

generation according to the geometric relationship between

the UAV planned path and the imaging scene. Then the

echo is projected to the wavenumber domain to complete the

fusion of the echoes of two receivers. Finally, the imaging

results are completed by using the MFT.

A. Path planning performance analysis

Firstly, a typical mountainous area is selected on the

map and the DEM of this area is read as shown in Fig.

10 (a), (c), (e). This DEM actually corresponds to an

1689.69 m × 1126.46 m area, where the side length of each

grid is 11.26 m. Set htop = 300 m as the upper bound

Read the DEM data 

Parameters Initialization and input 

Calculate v(x) of extended points 

Choose k = [k1, k2, k3]T form K 

Move to extended point with 
minimum v(x) 

Reach the ending point 

Backtrack and get the path 

planning result 

All k in K are chosen 

Screening paths in L 

Generate the echo data 

Project echo data to 

wavenumber domain 

Data fusion of receivers 

Use MFT to get the 

imaging result 

Select a path 

Yes 

No 

Yes 

No 

MuUAV-SAR imaging 

imaging 

Path planning 

Fig. 6. The flowchart of path planning and MuUAV-SAR imaging.

of spatial path search. Then, a MuUAV-SAR imaging sys-

tem consisting of one UAV as transmitter and two UAVs

as receivers is used to realize cooperatively imaging of a

designated area. The imaging scene center is O (0, 0, 0).
The starting point and ending point of two receivers are lo-

cated at P 1
start (−980, 237, 85)m, P 2

start (−935, 304, 113)m
and P 1

end (−935, 304, 113)m, P 2
end (−958, 248, 113)m. The

hovering position of the transmitter is T (−529.2, 0, 33.8)m.

To recognize the ground target effectively, the azimuth res-

olution requirement ρ̂az in (21) in this experiment is set to

0.5 m. Other simulation parameters are listed in the TABLE

II. Finally, start path planning using the method proposed.

TABLE II
PARAMETERS OF MUUAV-SAR IMAGING SYSTEM

Parameter Value

UAV transmitter velocity 0 m/s

UAV receiver velocity 5 m/s

Carrier frequency 8 GHz

Bandwidth 800 MHz

Sampling rate 1.2 GHz

Pulse repetition interval (PRI) 500 µs

Pulse width 2 µs

We analyze the influence and regularity of three weight hy-

perparameters kdis (k1) , kthr (k2) , kphi (k3) for UAV navi-

gation and imaging performance in optimization model (21).

The two weight kdis, kphi take values at intervals of 0.3
between 0 and 4.5 and kthr take values at intervals of 1

between 1 and 5. For the imaging performance here, we only

consider the azimuth resolution, which is quantified by the

sum of effective azimuth angle variations of all receivers in
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Fig. 7. Influence of weight hyperparameters on imaging performance.

this imaging system according to (14).

Fig. 7 illustrates the influence of different weight hyper-

parameters on imaging performance. Three-dimensional co-

ordinates respectively represent the values of three weight

parameters kdis, kthr, kphi, and the color of each point ex-

presses the quantization of the value of azimuth angle variation

according to the colorbar. It is easy to find that the influence

of weights kdis and kphi on imaging performance is consistent

for different values of kthr. Therefore, it can be concluded that

kthr is not the dominant factor for imaging resolution. In order

to obtain a path with shorter path distance and better imaging

performance, it is necessary to further study the influence

regularity of angle weight kphi and distance weight kdis.

Fig. 8 illustrates the distribution regularity of effective az-

imuth angle variations and path distance when kthr = 1, 3, 5.

It should be noted that the imaging resolution are limited to

some extent in practical application. Based on the constraints

in (21), not all the planned path results corresponding to

the hyperparameters are effective, so the threshold value is

set for screening feasible path. In Fig. 8(a)-(c), the blue

transparent plane is the threshold plane drawn by the second

constraint in (21), which means that no path meeting the

required imaging resolution can be found using the weights

corresponding to points below the plane. Therefore, these

weight hyperparameters should be discarded. When kdis is

small and kphi is large, there is a large stable region, which can

easily select more hyperparameters combinations to realize the

high-resolution imaging. In Fig. 8(d)-(f), with the increase of

weight kphi, the path distance will increase, while the weight

kdis increases, the path distance will decrease. Matching and

sorting the sub figure in Fig. 8 vertically according to (a) and

(d), (b) and (e), (c) and (f), the final feasible solution set can

be obtained as shown by the blue circle in Fig. 9 when the

requirements of all objective functions are within the expected

range.

In Fig. 9, the horizontal axis ”Distance” represents the sum

of the path distance of the two receivers, while the vertical

axis ”Angle” represents the sum of the effective azimuth angle

variation obtained during the flight of the two receivers. The

red and blue points in Fig. 9 are all the remaining feasible

paths after screening. The points below the red line can not

reach the resolution requirements which need to be discarded.

The hyperparameters corresponding to three points A, B and C

are selected from these points to complete the path planning,

and the results are correspond to path A, B and C in Fig. 10

(a),(c),(e), respectively.

In Fig. 10 (a),(c),(e), black and green solid dots represent the

starting point and ending point of path planning respectively.

Hovering transmitter and imaging scene center are separately

represented by he black diamond and the red square. The red

curves represent the part of radar line of sight is blocked by

terrain and the blue curves are the part that can form effective

azimuth angle variations in flight path. In combination with

Fig. 9, it can be concluded that path A has the largest effective

azimuth angle variations, but it also brings an increase in

path distance. Path B has the shortest path distance but the

effective azimuth angle variations are reduced. The navigation

and imaging performance of path C is between path A and B,

which provides a compromise proposal.

The simulation device is a PC with an i7-10600k 4.1 GHz

CPU and 16 GB RAM and the simulation software is a 64-bit

MATLAB. Under the above simulation conditions, the total

time for all planned path is 836 s and objective function

evaluation time for one planned path is 4.56 s. It should be

noted that the objective function calculation for each planned

path provides the major computational load.

B. Imaging resolution performance analysis

Combined with the above solution and analysis of the

path planning problem, the path planning method based on

greedy thought proposed in this paper list feasible solution

sets through weight screening to meet different application

requirements. The imaging results of point target simulation

and 2-D scenario target simulation are illustrated to verify the

imaging performance corresponding to different planned paths.

In addition to the simulation parameters listed in TABLE

II, signal-to-noise ratio (SNR) is a parameter needs special

explanation that the echo signal is corrupted by the additive

white gaussian noise (AWGN), and SNR is defined as

SNR = 10log10
Ps

σ2
(23)

where Ps represents the peak power of the echo signal and σ2

is the variance of the noise.

1) Point target simulation: The problem is that the

MuUAV-SAR imaging system consisting of one transmitter

and two receivers needs to fly through the canyon area and

finish the imaging task in a designated scene. Then start the
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Fig. 8. Distribution regularity of effective azimuth angle variations and path distance when kthr is constant. (a) Angle-kdis,kphi (kthr = 1). (b) Angle-
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path planning by utilizing the proposed method and the point

target imaging simulation is carried out with the planned path.

It is easy to find that a longer distance is necessary to im-

prove the imaging resolution by increasing the azimuth angle

variations. And the point with the best imaging performance

is point A in Fig. 9 corresponding to path A in Fig. 10. If

energy and mechanical losses are considered to shorten the

flight path distance, the imaging quality will be sacrificed and

the shortest path is the point B in Fig. 9 corresponding to path

B in Fig. 10. The path C in Fig. 10 corresponding to point C

in Fig. 9 satisfies the compromise between path distance and

imaging performance. These three paths are used to complete

the point target simulation verification. In the original scene,

nine point targets are arranged in three rows and three columns

and imaging processing carried out based on (10) [57, 58].

Fig. 10 illustrates the path planning and point target imaging

results corresponding to different weight parameters. The

navigation and imaging performance quantitative results of

specific paths are shown in TABLE III. What needs special

explanation is the calculation method of resolution unit area

Scell and it represents −3 dB main lobe area. Because of the

data fusion of multiple echo signals, the resolution unit is no

longer an ellipse but a polygon. The area of the resolution unit

can be approximately expressed as

Scell =
π

4
· ρmax · ρmin (24)

where ρmax and ρmin represent the longest and the shortest

diameter in the resolution unit, respectively [19, 59].

Comprehensive analysis the information shown in Fig. 10 and

TABLE III, the path A has a longer distance corresponding to

the best imaging performance, while the path B is shortened

but the imaging performance is lost. Path C is a compromise

between the above two performances.
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Fig. 10. Path planning and point target simulation results. (a) Path A. (b) Point target imaging result of Path A. (c) Path B. (d) Point target imaging result
of Path B. (e) Path C. (f) Point target imaging result of Path C.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT PATHS

 

                  Path No. 
Indexes                         

Path A Path B Path C 

 , ,dis thr phik k k  (3.6,3.0,3.9) (4.2,1.0,2.1) (3.0, 3.0, 2.1) 

Total path distance of  

T1 and T2 (m) 186.8 170.3 179.7 

Total terrain threat of  

T1 and T2 (1/m) 0.45 0.51 0.42 

Total azimuth angle 
variation(rad) 0.053 0.022 0.043 

PSLR (dB) 
ρmax -13.38 -12.05 -12.87 

ρmin -13.51 -13.13 -13.35 

ISLR (dB) 
ρmax -11.56 -10.01 -11.23 

ρmin -11.43 -11.08 -11.26 

 

2) 2-D scenario target simulation: To further validate the

practicability of the path planning method proposed in this

paper, the simulation experiments of the 2-D scenario target

are carried out.

Fig. 11 (a)-(c) are the imaging results corresponding to

path A, B and C shown in the last sub-section, respectively.

Comparing Fig. 11 (a) and (b), Fig. 11 (a) retains more edge

information, such as the edge of river bank and fence in area I

is clearer. Further, calculate the values of image entropy (IE)

of the area I and area II and the result is illustrated beside

the imaging results. The IE of these two areas in Fig. 11 (a)

are much smaller than that in Fig. 11 (b), and the IE of the

selected area in Fig. 11 (c) lies between (a) and (b).

It can be concluded that the clear observation of ground

objects can be realized by choosing path A, with a resolution

of 0.2m, but it requires two receivers to fly a longer distance. If

path B is chosen, the flight distance of UAV can be reduced,

but some edge information of ground objects may be lost.

Path C can obtain better resolution when the path length is

relatively short.

VI. CONCLUSION

In this paper, a MuUAV-SAR imaging system with multiple

receivers is proposed and the echo signal model and azimuth

resolution are studied firstly. The application of multiple

receivers improves imaging resolution, however it will come

at the expense of increasing the total flight distance and

flight threat. Then, the navigation and resolution performance

of UAVs are considered to establish a CMOP. A heuristic

search solution method based on greedy thought is proposed

to solve this CMOP, which can not only ensure that every

step of the search is optimal under certain conditions, but

also provide a series of feasible path solution set that meet

the requirements for flight task executors to choose. Finally,

the imaging simulation results and resolution performance

analysis verified the feasibility and practicability of the path

planning method.
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Fig. 11. Simulated results for 2-D scenario. (a) 2-D scenario imaging result of Path A. (b) 2-D scenario target imaging result of Path B. (c) 2-D scenario
target imaging result of Path C.
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