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Heuristic Pattern Correction Scheme Using
Adaptively Trained Generalized Regression Neural
Networks

Tetsuya Hoya and Jonathon A. Chamb&snior Member, IEEE

Abstract—n many pattern classification problems, an relearning of the interfered patterns retrieved from past input
intelligent neural_system_is required vv_hich can learn the_ newly en- patterns stored in the network.
countered but misclassified patterns incrementally, while keeping Probabilistic neural networks (PNNs) [13] and generalized

a good classification performance over the past patterns stored in - .
the network. In this paper, an heuristic pattern correction scheme regression neural networks (GRNNs) [14] are the paradigms

is proposed using adaptively trained generalized regression neural Of RBF-NNs and share a special property, namely that they
networks (GRNNs). The scheme is based upon both network do not require iterative training; the weight vector between
growing and dual-stage shrinking mechanisms. In the network the RBFs and the output unit can be fixed as the target vector.
growing phase, a subset of the misclassified pattems in eachyyig atiractive property is particularly useful in online use of

incoming data set is iteratively added into the network until all th tt |assifi . tal fi b ickl
the patterns in the incoming data set are classified correctly. Then, (€ Patlern classilier, as incremental operation may be quickly

the redundancy in the growing phase is removed in the dual-stage achieved. Therefore, for application to online pattern correction
network shrinking. Both long- and short-term memory models of the misclassified patterns, the use of these networks is
are considered in the network shrinking, which are motivated gyijtable since, in practice, the size of the incoming data set is
from biological study of the brain. The learning capability of the normally very large.
proposed scheme is investigated through extensive simulation : L . .
studies. In this paper, an heuristic online batch pattern correction
. . scheme is proposed based upon a GRNN with both network
Index Terms—Generalized regression neural networks . . .
(GRNNSs), incremental learning, pattern classification, pattern growing and dual-stagg shrinking mechanisms. . -
correction. In the network growing phase, a subset of the misclassified
patterns in the incoming data set available at cycie added
into the network until there is no classification error within the
incoming data set. Then, the grown number of centroids is re-
EURAL networks have been successfully used in mamjuced in the dual-stage shrinking phase. In the shrinking mech-
pattern classification tasks [1]. Incremental training is a@nism, a new concept of both long and short-term centroids is
efficient learning mechanism for neural networks that adds némtroduced. Moreover, the short-term centroid sets form a lay-
knowledge without reinitializing the entire network. The develered shape, representing a more hierarchical memory structure.
opment of promising incremental learning methods has there-The proposed scheme, unlike the Parzen classifier-based ap-
fore been an issue with great interest in the study of neural nptoaches in [18], [19], takes dnstance-basedpproach with
works [2]-[10]. the aid of an hierarchical data partitioning mechanism, which
In the last decade, many successful applications using #laminates the need for statistical density approximation and its
family of radial basis function neural networks (RBF-NNspssociated considerable mathematical complexity.
[11], [12] for the development of incremental training systems In the next section, the heuristic pattern correction scheme
have been reported [2]-[6], [10]. In [2], incremental training igsing a GRNN is described. The network growing and shrinking
achieved by adding RBFs into the network and then adjustingechanisms are described in detail in Sections Il and IV.
their shape parameters. In contrast, in [3] a new RBF is creafeelction V is devoted to the simulation studies of the proposed
as a mixture of Gaussian distributions and this learning methscheme using three different data sets for pattern classification
is applied to multilinguistic handwritten character recognitioriasks from different domains and the learning capability of the
In recent work [10], a different incremental learning technigugroposed scheme is evaluated through extensive experimental
was proposed, in which new patterns are included with rasults.

. INTRODUCTION
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Fig. 1. lllustration of topological equivalence between the ML-GRNN witlHidden and: output units and the assembly of thalistinct subnets.

According to biological study [21], memory in the braincan In Step 2 above, the short-term centroid sefs
be divided into two different types, i.e., long- and short-terit = 1, 2, ..., p) thus form a layered shape, representing a
memory, depending on the retention time. In [21] and [11], Rierarchical memory structure. This partitioning basis has an
is also highlighted that long-term memory represents knowddvantage for giving a clear representation of the data stored at
edge stored in the brain for a long time or permanently, whikach correction cycle and, at the network shrinking phase, the
short-term memory is a compilation of knowledge representimgmoval of the redundancy (i.e., the least contributing centroids
the “current” state of the environment. described later) in the short-term memory can be efficiently
In the proposed pattern correction scheme, the conceptdaine.
both long- and short-term memory models are, therefore, con-
sidered and realized in terms of leakage in the information in lll. THE NETWORK GROWING MECHANISM

the network represented by the_ centr0|_ds. The network growing in the proposed scheme consists of ex-
The skeleton of the scheme is described as. follows. panding the current network such that the grown network can
Skeleton of the Pattern Correction Scheme: correctly classify all the patterns in the currently available in-
Step 1) Initial Setup: Configure the network with a set df; coming data set.
long-term centroids” = {cy, ¢, ...cx,} from the 14 (o this online, we exploit the special property of GRNNSs,
training set. Set cycle = 1 and the short-term cen- namely, that, for a newly added RBF, the weight vector between

troid set count = 1. . _ the hidden layer and the output can be fixed to the target vector.
Step 2) Network Growing:Select a subset of the misclassified

patterns by testing the incoming pattern data set avall: Network Setting for Pattern Correction

able a_t cyclen. Th?”’ _perform netv_vork growing until For the proposed pattern correction scheme, a fully connected
there is no classification error. This provides a&@t  ijavered GRNN (ML-GRNN) is used, which hdsinput
of N, short-term centroids from the misclassified patﬁeuronsM RBFs, andV output neurons. As illustrated in the
tems. o left part of Fig. 1, the structure of the ML-GRNN is similar to
Step 3) Network Shrinking: a well-known multilayered perceptron neural network [11] ex-
1) Long-Term Memory Updatéfthe cycleisamul- cept RBFs are used in the hidden layer and linear functions in
tiple of p (i.e.,» modp = 0), or when the total the output layer. In the figurey; (i = 1, 2..., L) denote the
number of the centroids in the network elements in the input vectar, ¢; (j = 1, 2, ..., M) (where
the number of the RBF&/ varies during the network reconfig-

p . .
Nigtar = Ni + N, whereN, = ZNGj (1) uration) for the RBF are given by

j=1
reaches/exceeds a given threshdlg i max, 1 o
shrink the total number of centroids in the net- ¢ = 272@_(”'”_"”3'” /207) 2)
work by employing a data-pruning method and
obtain Nl, new long-term centroids. Reset the{Nherewj is the centroid vectok is the radius]] ... ||? is the
set count = 1. squared Euclidean norm, angd (k =1, 2, ..., N) denote the

2) Short-Term Memory Leakage (Memory Forgetc')utput corresponding to Clags
ting): Otherwise, shrink only the sizes of the

short-term centroid se@j (J =1,2, ..., L) IStrictly speaking, the use of the term online in the proposed scheme may
Seti — i+ 1 not be appropriate since the incremental operation will not be done on a pattern
! by pattern basis. Here, the authors just intend to emphasize an online use of the
Step 4) Set — n + 1, then return to Step 2). proposed scheme.
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The target vector for Patteins given as a vector of indicator above, and add a total af selected patterns into
functions the GRNN. For each newly added RBF, the weight
vector between the new RBF and the output neurons
T; = (61, 62, ..., ON) is fixed identical to the target vector of the corre-
1 if patterni belongs to the class (digit) sponding misclassified pattern.

Step 4) Recalculate and fix the radii values of the centroids

6= J-10=12...N) ©) according to (4).
0 otherwise. Step 5) Test again the performance of the refined GRNN
With the setting above, the topology of the ML-GRNN with with all the patterns in the incoming data set.

N output units can be seen as a setdfsubnets with a de- Step 6) If there is no misclassification, terminate. Otherwise

cision unit as illustrated in the right part of Fig. 1, since the ent «— cnt + 1, and return to Step 2).

weight having the value zero can be removed from the network.In Step 4) above, the radii values of the RBFs should also be
Then, each subnet is viewed as a collection of RBFs which reffdated in order to avoid the overlapping areas covered by the
resents the entire pattern space for a single class. With the f&@2troids. The way in which the radii values are readjusted is
work on the right, the final decision is therefore made following€Scribed next.

the “winner-takes-all" strategy. C. Radii Setting of the GRNN Classifier

B. Selection of the Misclassified Patterns The setting of radii values is a significant factor for the design

To perform the incremental operation online, the selection ?f RB;F'IP\:NS ar|1_d _SUCh d_eterlml_natlonc;_s still an l()per? ISSue (1],
the misclassified patterns to be added must be done quickly. H‘]' 3 the prg_lr_l:;nalry simu atlfon Ztu |e|s, We aiso have Inves-
this paper, the selection is such that the misclassified patté'lgf"te the individual setting of radii values using one-nearest

which yields a minimum activation at the output neuron coﬁe'ghbor [22], however, the performance using this technique
d notyield better results than the radii setting with fixed values

responding to the correct class number. This selection is r . . . .
]. In this paper, fixed radii values for the respective RBFs are

sonable since that pattern (or the newly added centroid vect ‘ d and set identical di he followi q
will reinforce the “rather weak” area-covering of the distribu.t. refore used and set identical according to the following mod-

tion. However, it is necessary to consider the case in which tﬁ'&d radii setting found in [11]:

newly added pattern may just be a noisy instance. In this paper, d
s:;ch an instance would be deleted in the dual-stage shrinking 0= NV2M (4)
stage.

In commonly encountered pattern classification problem&here
the number of C|asseyc is norma”y knowna priori_ For d maximum Euclidean distance between the centroid
instance,N. = 10 for the pattern data sets of the digit Vvectors;
voice/character recognition tasks, corresponding to the digits® ~ number of RBF's;
from /ZERO/ to /NINE/. This knowledge is particularly im- N number of units in the output layer of the ML-GRNN.
portant to grow the network so that the overall classification In this paper, the radii values are updated during both the
performance for each class should be improgeenly There- network growing and shrinking phase according to [4].
fore, the maximum number of RBFs added in one correction

count must be fixed to the number of classes. IV. THE NETWORK SHRINKING MECHANISM
In the following, a summary of the operation to select the |, the network shrinking mechanism, the number of centroids
misclassified patterns is given. in the network is reduced. As mentioned earlier, this mecha-
1) Selection of the Misclassified Patterns: nism models a function of memory learning in the actual brain;
Step 1) Set = 0. newly arrived information in the brain is processed through two
Step 2) Forj = 1to N,, do the following. different types of memory, i.e., long- and short-term memory.

If there is no misclassification for Clags skip. In the context of neural networks, this process is considered to

Otherwise, select the misclassified pattern with &@ompress” the data stored in the network or, in other words,
minimum activation at the output neuron for Clgss remove redundancy in the nodes.

among all the patterns in Clagsthen sef «— 4+ 1. By exploiting this concept, the following assumptions are
Finally, the pattern correction is performed as the networkade in this paper:
growing given below. Assumption 1:The leakage in the short-term memory is
2) Network Growing Mechanism: more than that in the long-term memory.
Step 1) Set the iteration count for the correctiant, = 1. Assumption 2:The long-term memory is updated periodi-

Step 2) Test the performance of the GRNN with the Curreﬁﬂ”y (aS in the skeleton of the online Iearning scheme described
state using all the patterns in the incoming data sBfeviously, the period is determined by the vaie
available at cyclen. )

Step 3) Collect all the misclassified patterns in the incomirfy: L&akage in Short-Term Memory
data set. Then choose a subset of the misclassified=or the leakage of the short-term memohy, (s denotes
patterns according to the selection operation giveéshort term”) least contributing centroids are removed from
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each short-term centroid sé€; (i = 1,2,...,n mod p) namelythe OptDigit and PenDigit data set, for character recog-
after the network growing. The removal is based upon thmtion tasks chosen from “UCI Machine Learning Repository”
measurement quantified by the contribution of the centroaf the University of California.
(CQ). For the two data sets, i.e., the SFS and Pendigit, the volume
For an RBF¢; was partitioned into eight distinct sets: training and testing
(never used for training) and the remaining six for the incoming
1 N, . oy data set no. 1-6, while a total of 14 (one for training and testing,
cC., = 352 e~ leg—we, |I7/207) (5) and the remaining 12 for the incoming) partitioned data sets
j=1 were used for the OptDigit data set.
The original UCI data sets come with two distinct data sets
. ) _ ) ready for training and testing. For each UCI data set (i.e., the
zj (j = X pat_tern vectors in the incoming data SebptDigit and PenDigit data set), a total of 3600 feature vectors
1,2,..., Ni)  which belong to Class; for training and incoming were arbitrarily chosen from the orig-
We; centroid vector of the RBF;; inal training se€. Similarly, for testing, a total of 400 feature
vectors were selected among the vectors in the original testing

where

o radius of the RBF.

Note that, for each set, the, least contributing centroids areq,is set. Table | shows a list of the data sets used for the simu-
searched across all the classes. lation study in this paper.

The leakage in the short-term memory can then be summayqreqver, in order to confirm the consistency of the simu-

rized in the following. , lation results, three different combinations of the (training/six
Short-Term Memory Leakage (Memory Forgettingyom j,coming) data sets were tried for all the three data sets.

each short-term centroid sé; (: = 1,2,..., n mod p),

removel, least contributing centroids. The number of the totad. Parameter Setting for the Network Shrinking Mechanism

centroidsNe; after the removal is defined as In the simulation, the proposed online pattern correction

scheme was performed for the six (or, twelve for the OptDigit)
distinct incoming sets described in the previous section [i.e.,
the simulation was stopped at = 6(12)] and the following
parameters were used.

* Maximum number of the total centroidSiota) max =
Ni+ Ny max, WhereN, .. is the maximum number of
In contrast to the leakage in the short-term memory, all  the grown (short-term) centroids.

the centroids in the network are updated for the long-term « Number of removable centroids from the short-term
memory. This update will occur either after a specific period  memory:\, = 2.

(i.e., at a cycle where is a multiple ofp) or the total number « Period for updating the long-term memopy:= 2. (For

of the centroidsVi..1 reaches/exceeds the maximum number  example, the update occurred three times during the sim-
Niotal, max.2 FOr the update, a data-pruning method is used. ulation in this papet)

The data-pruning method (used in Step 3 of [Skeleton of |n the above, the maximum number of total centroids in the
the Pattern Correction Scheme]) must be selected so that flg@work is knowra priori and may be fixed, dependent on the
long-term centroids retain the “core” information gained duringipplication. Since this number represents the memory capacity
the last incoming cycles. (e.g., in practice this number is used to avoid memory over-

In other words, the role of the long-term centroids is to givefow problem in real implementation) and gives a threshold for
reasonably good generalization capacity as well as classificatige additional centroids in the network growing phase. How-
performance over the past patterns stored in the network. In ceqer, the choice must be dependent on the number of long-term
trast, the short-term centroids remawstantlythe current least centroids considering the generalization capability. For both the
contributing centroids. By exploiting these two different typesrs and the Pendigit data SEG, max Was fixed to 100, while
of memory, the network can be always kept in a compact sizeNg’ max = 300 for the OptDigit data set.

Moreover, with the introduction of the two-stage shrinking Similarly, A, can be fixed using tha priori knowledge; as
mechanism, the effect upon the pattern correction system ofya value), is increased, the more the network forgets the re-
noisy instance would also be small since, even if such an igent data. (In our examples, it was empirically found that the
stance may temporarily be added in the network growing phaselection), = 2 gives a reasonable tradeoff.)
such an instance will be removed either at the next cycle or latenn the simulation, the total number of the centroids in the net-
at the long-term memory update. work was pruned identical to the number of the initial centroids,

Ng, = max{Ng, — A, 0} (6)
where zero gives a floor (i.e., no removable centroids).

B. Long-Term Memory Update

3The original OptDigit data set contains a total of 3823 and 1797 vectors for
training and testing, respectively, while the original PenDigit data set consists
7494 and 3498 vectors for training and testing, respectively.

V. SIMULATION STUDY

In the simulation study, the proposed online pattern corred- ) _ . U
4In the simulation, the long-term update period was arbitrarily chosen and

tion scheme was applled to the three different data sets, nan}ﬁbﬁ top = 2 for all the three domain data sets. This was done in order to per-
the SFS [23] for digit voice recognition and the two data setsym the performance comparison of the data-pruning algorithms with a smaller
number of the parameters. However, different choicesdfl be discussed later
2This number corresponds to the “saturation” of memory capacity. in this section.
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TABLE |

DATA SETS USED IN THESIMULATION STUDY

95

Then the list is split int@2?— parts. As in VertexChain algo-
rithm, a total of2¢ representative patterns are obtained from the
absolute centers of the respective subgraphs. In SST-Splitting

. . .of | Num. of . L . L
Total N“m. Total N“f" of | Num.o e algorithm, an SST of the original graph is created as the initial
of Samples in | Samples in the | Long Term | In-coming  nartitioning target instead of the order list. After the recursive
Data Set || the Data Set | Training Set | Centroids | Data Sets splitting, a total of; disjoint subgraphs are obtained. (Note that,
SFS 900 270 80 6 unlike Vertex—Chain or List-Splitting algorithm, exactpyrep-
OpiDigit 4000 1200 160 12 re_sentative patterns can be obtgined aftames splitting, i.e., .
—— 2000 200 ” . this method does not have any limit on the number of generating
o representative patterns.)
Num. of Sam- | Num. of Sam- Num. of Data
ples in Each ples in the Points in a B. The SFS Data Set
Data Set || In-coming Set | Testing Set Feature Vector The SFS data set consists of a total of 900 utterances of the
SFS 90 90 256 digits from /ZERO/ to /NINE/ recorded in English by nine dif-
OptDigit 200 100 64 ferent speakers (mcIudlng_even numbers of femalq and male
— : speakers). Each utterance is sampled at 20 kHz and is converted
PenDigit 400 400 6 into a feature vector with a normalized set of 256 data points ob-

tained by the well-known LPC-mel-cepstral analysis (e.g., see ]
or [24]). The feature vector is therefore used as the input vector
i.e., Ninew = NNy (hOowever, the actual centroid vectors will besf the GRNN.
different from the initial setting). For the simulation using the SFS data set, two different con-

The numberN; ..., can be varied to represent the morgigurations of the data set were considered. The first corresponds
dynamic nature of the memory learning process and to obtainthe data set where both the training and the incoming data
(hopefully) an improved classification and better representatiggts evenly contain the utterances recorded by the nine speakers
of the pattern space. In concept, as in real brain tissue, model{gg-S Data Set 1), in the second the training set, in contrast, con-
multistage (or nested) shrinking mechanisms can be possiligns those recorded by only three speakers and each incoming
In reality, however, such dynamic configuration is very hard et contains an unknown speaker, for modeling a more general
analyze and is therefore not considered in this paper. situation (SFS Data Set 2). For both cases, the number of pat-

For the long-term memory update, four different data-pruningirns for each digit was evenly fixed so as to make the network
algorithms, i.e., thek-means [25], Vertex—Chain [26], grow in a “well-balanced” shape.

List-Splitting [26], and the shortest spanning tree (SST)-Split- 1) |nitial Choice of RBFs: The initial choice of the centroids
ting algorithm [26], were used and a performance comparisg@dm the training set was performed by theneans clustering
is made later in this paper. algorithm.

The three graph theoretic oriented algorithms in [26] are all |n the proposed shrinking mechanism, it is important to
based upon a combination of an hierarchical graph partitioniggnsider the ratio between the total number of long- and
of the original graph, which is formed from all the patterns ighort-term centroids in the network. Since, as described earlier,
the data set, into its subgraphs and the search for the locatigjiy-term centroids contribute to the fundamental generaliza-
of the centers [27] on each subgraph. In [28], the superiorifign capability of the network.
of the three data-pruning algorithms to theneans clustering  To confirm this, a comparison of the effect of varying the
algorithm, in terms of their both Computational and C|aSSifiC&|-umber of |ong-te|’m centroids upon the pattern correction
tion performance over the data sets collected from two speegfstem was made, using the SFS Data Set 1. Fig. 2 shows the
databases, is reported. variation in the classification performartceith the number of

The algorithms differ from each other in their ways of panong-term centroids chosen by tiemeans clustering method
titioning of the original graph into its disjoint subgraphs; iffixed at 20, 40, and 80« = 0: with the initial setup, the perfor-
Vertex—Chain algorithm, all the vertices in the original graph akfance is averaged over three different trials). In the figure, the
firstarranged on a chain, according to the distances frorithhe classification performance varied greatly with smaller numbers
dominant vertex{ = 1, 2, ...q, g is the counting number of of the centroids, whereas, with 80 long-term centroids, the per-
partitioning.), then the chain is cut into two pieces. This procefsrmance becomes much more stable. In the same figure, it is
is repeated fog times to obtain a total dlq disjoint subgraphs interestingly observed that the performance with 80 long-term
(i.e., tournament, in shape). For each subgraph, the locatiorcghtroids is slightly improved at each long-term update.
the absolute center is calculated and converted into the correm Fig. 3, on the other hand, the ratio between the total
sponding representative pattern of the data set2§mepresen- number of centroids in the network and long-term centroids is
tative patterns so obtained are therefore used for the long-tejien. The ratio, is simply defined as
centroids in this paper.

In contrast, the original graph i®cursivelypartitioned in —_— Niotal
both List-Splitting and SST-Splitting algorithms. In List-Split- ) N
ting algorithm, the distance between each vertex and the mos,, s paper, the term “classification performance” is defined as the correct
(first) dominant vertex is tabulated into an distance-order lisiassification rate over the testing set, unless explicitly denoted otherwise.
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Fig. 2. Variations in terms of the classification performance over the testifgg. 3. Variation in terms of the ratio between the number of the long-term
setafter the network shrinking (long-term memory update occurs at pattefgntroids and the total number of the centroids in the network.

correction cycles 2, 4, and 6. In theaxis of the figure, “0” corresponds to

the initial state).

preserves the generalization capability of the network achieved
N+ N, during the iterative correction cycles.
= N, (7) As in the tables, it is also observed that, for both cases, the
overall classification performance using the three data-pruning
In the figure (note that, unlike Fig. 2, the valug is cal- methods, i.e.k-means, List-Splitting, and SST-Splitting, is im-
culated before long-term memory update), the ratiavith 40  proved from the initial setting of the network, though the perfor-
or 80 long-term centroids becomes more steady in comparigoaance using the Vertex—Chain method is degraded as the pattern
with that of 20 centroids. This suggests that at smaller numbearrection cycle increases.
the long-term memory is easily collapsed by the grown centroids
at each pattern c_:orrection cycle, whereas, gt larger numberd)f-l-he Two UCI Data Sets
long-term centroids, the long-term memory is not affected and
the grown centroids are, in turn, considered to reinforce the clasin the simulation using the OptDigit data set, a total of
sification performance. 160 initial long-term centroids were obtained by theneans
In the simulation using SFS Data Set 1, a total of 80 long-teretustering algorithm, as for the simulation using the SFS data
centroids was thus considered to be suitable for the evaluatieats. Similarly, a total of 80 pruned vectors were used as initial
in terms of the generalization capability. Based upon the sateag-term centroids for the PenDigit data set. The numbers of
principle as for the SFS Data Set 1, the number for SFS Dalkee initial long-term centroids were fixed by means of tne
Set 2 was also fixed to 80. priori knowledge with the same principle as for the SFS Data
2) Simulation Resultsin Table Il and IV, the variations in Set 2 described in Section V-B1.
the total number of centroids in the network in order that a 1) Simulation ResultsTables VI and VIII, respectively,
perfect pattern correction is achieved by the proposed growislgow the variation in the total number of the centroids at the
mechanism are shown (the results shown are averaged overatiievement of perfect pattern correction using the OptDigit
three different trials) using SFS Data Set 1 and 2, respectivend PenDigit data sets. For the OptDigit, the total number of
As shown, for the SFS Data Set 1, the numbers of centroigentroids spreads between 166 and 197, while the numbers
spread between 87 and 115 for each data-pruning algorittepread between 88 and 118 for the PenDigit, as for the cases
while, similar to the case using SFS Data Set 1, the numbeiging SFS Data Set no. 1 and 2.
using the SFS Data Set 2 spread between 89 and 110. NotBlote that the total numbers of centroids using Vertex—Chain
that, for both cases, the numbers of centroids generated by thethod are, again, always greater than those using the other
Vertex—Chain method are always greater than the other ththeee data-pruning methods.
methods. In Table VII and IX, the classification performance with the
Table Il and V, in contrast, show the averaged classificatidasting data set after the shrinking phase is given using the Opt-
performance with the testing (unknown) data set after eabligit and PenDigit data set, respectively. In the tables, the per-
shrinking phase, using SFS Data Set 1 and 2, respectivelyfénmance using the Vertex—Chain method is degraded with in-
the tables, note that the classification performance after tbeeasing the pattern correction cycle as observed in the simula-
long-term memory update (i.e., at = 2, 4, and6) is not tionusing the SFS Data Set 1 and 2, while the performance using
degraded significantly for the case usihgneans, List-Split- the other data-pruning methods shows an improvement over the
ting, and SST-Splitting method. This indicates that the updatetial network setting.
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TABLE I
VARIATION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECT CORRECTION IS ACHIEVED USING SFS
DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=3to
Memory Update | Init. {n=1|n=2 |n=3 |n=4{n=5|n=6 n==6
k-means 92 98 87 94 93
List-Splitting 80 95 105 94 98 89 96 94
SST-Splitting 92 99 87 93 93
Vertex-Chain 97 105 102 115 105
TABLE Il

CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING SFS DyTA SET 1 (THE RESULTS ARE AVERAGED
OVER THREE DIFFERENT TRIALS)

Method for Classification Performance Average from
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update || Init. f n=1|n=2 |n=3{n=4|n=5|n=6 n==06
k-means 86.7% | 90.4% | 87.8% | 90.4% | 88.5% 89.0%
List-Splitting | 85.5% |} 90.4% | 83.7% | 88.5% | 87.7% | 90.4% | 87.8% 88.1%
SST-Splitting 85.9% | 88.2% | 88.5% | 90.0% | 88.9% 88.7%
Vertex-Chain 80.0% | 84.4% | 78.9% | 87.8% | 77.8% 83.2%
TABLE IV

VARIATION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECT CORRECTION|S ACHIEVED USING SFS DXTA
SET 2 (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=3to
Memory Update || Init. [ n=1{n=2{n=3 |n=4|n=5|n==6 n==6
k-means 90 103 91 105 97
List-Splitting 80 96 108 90 102 92 102 97
SST-Splitting 91 102 89 99 95
Vertex-Chain 95 110 96 109 103
TABLE V

CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING SFS DNTA SET 2 (THE RESULTS ARE AVERAGED
OVER THREE DIFFERENT TRIALS)

Method for Classification Performance Average from
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update | Init. [ n=1|n=2in=3 |n=4|n=5|n==6 n==6
k-means 82.2% | 87.8% | 84.8% | 85.6% | 85.9% 85.0%
List-Splitting || 84.1% || 83.7% | 87.4% | 89.6% | 84.4% | 87.8% | 87.8% 86.8%
SST-Splitting 87.8% | 87.0% | 89.3% | 88.2% | 89.6% 87.6%
Vertex-Chain 78.2% | 80.8% | 76.3% | 79.3% | 73.3% 78.6%
D. Discussion on the Results though the performance with the Vertex—Chain method is

degraded as the pattern correction cycles increase. It has also
In the simulation studies of the three different domain datseen observed that the number of grown centroids using the
sets, it has consistently been observed that the performakeetex—Chain method is always greater than that using the
with three out of the four data-pruning methods (ilemeans, other three data-pruning methods.
List-Splitting, and SST-Splitting method) used for updating These indicate that both the List-Splitting and SST-Splitting
long-term memory is improved over that of the initial setupnethods have the capability of refining the shape of the
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TABLE VI

TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECT CORRECTION IS ACHIEVED USING OPTDIGIT
DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After
Long Term the Pattern Correction at Cycle n
Memory Update | Init. [n=1|n=2| n=3 | n=4 | n=5 n==~6
k-means 169 171 178 168
List-Splitting 160 184 192 168 175 171 173
SST-Splitting 170 175 17 176
Vertex-Chain 173 185 181 195
Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=3to
Memory Update | n=7 |[n=8 | n=9|(n=10n=11 [n=12 n=12
k-means 168 174 168 171 166 176 172
List-Splitting 171 173 167 172 167 176 171
SST-Splitting 167 171 169 172 167 175 171
Vertex-Chain 184 197 180 191 181 197 186
TABLE VIl

CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING OPTDIGIT DATA SET (THE RESULTSARE AVERAGED

OVER THREE DIFFERENT TRIALS)

Method for Classification Performance
Long Term After the Network Shrinking at Cycle n
Memory Update || Init. =1|{n=2|n=3 | n=4| n=5 n==6
k-means 90.1% | 90.3% | 90.5% | 91.2% 90.9%
List-Splitting || 86.8% || 90.8% | 89.3% | 93.0% | 90.7% | 91.4% 91.3%
SST-Splitting 90.4% | 90.6% | 89.7% | 90.9% 90.8%
Vertex-Chain 84.3% | 86.1% | 83.0% | 84.1% 83.1%
Method for Classification Performance Average from
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update | n=7 | n=8 | n=9 jn=10 |n=11 | n=12 n=12
k-means 91.2% | 89.1% | 89.4% | 89.8% | 89.8% | 90.4% 90.3%
List-Splitting 91.2% | 89.8% | 89.9% | 88.9% | 89.5% ; 88.4% 90.4%
SST-Splitting || 90.7% | 90.1% | 90.4% | 91.1% | 91.2% | 90.2% 90.6%
Vertex-Chain 83.7% | 77.4% | 79.5% | 76.2% | 79.1% | 75.2% 81.9%
TABLE VIII

TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECT CORRECTION|S ACHIEVED USING PENDIGIT
DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=3to
Memory Update | Init. [ n=1|n=2 | n=3|{n=4|{n=5 n=6 n==~6
k-means 91 94 88 96 93
List-Splitting 80 103 112 95 103 94 101 98
SST-Splitting 91 97 89 98 94
Vertex-Chain 103 108 109 118 110

pattern space spanned by the long-term centroids as wellnasthod is, however, suffering from sparse distribution of the
the k-means clustering method and that the Vertex—Chailata points which affects the overall performance [26] and
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TABLE IX
CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING PENDIGIT DATA SET (THE RESULTSARE AVERAGED
OVER THREE DIFFERENT TRIALS)

Method for Classification Performance Average from
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update || Init. | n=1|n=2|n=3 |n=4|(n=5|n=6 n==6
k-means 92.8% | 93.9% | 90.3% | 92.3% | 90.3% 92.3%
List-Splitting 88.0% || 94.3% | 86.2% | 91.7% | 89.3% | 92.6% | 89.3% 90.6%
SST-Splitting 92.4% | 92.5% | 93.1% | 93.7% | 91.6% 92.9%
Vertex-Chain 82.7% | 93.4% | 82.1% | 91.0% | 74.4% 86.3%
is hence considered to be inappropriate for the shrinking TABLE X
mechanism. TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK
WHEN PERFECTCORRECTION ISACHIEVED USING OPTDIGIT DATA SET WITH

_ In the simulation, the long-term _Update periogl was a|Wa)_/3p = 4 (THE RESULTSARE AVERAGED OVER THREE DIFFERENT TRIALS)
fixed top = 2 for all the three domain data sets since the main

focus of the simulation study is to investigate the performant Method for Total Number of Centroids After
of the different data-pruning methods. In Table Xl another pe  Long Term the Pattern Correction at Cycle n
formance comparison using OptDigit data set where 4 iS  Memory Update || Init. [n=1|n=2|n=3 | n=4 | n=5 n=6
given. In comparison of Table VIl with Table X, itis observed  k.means 168 174
that the classification performance wijth= 4 is comparable or  wList-Splitting || 160 | 184 | 192 | 198 | 199 | 170 179
sometimes slightly better than that with= 2, at the expense  ssT-splitting 169 177
of the grown number of the centroids as observed by compari  vertex-Chain 180 190
Table VI with Table X. From these observations, it can be Sa ™ yethod for Total Number of Centroids After Average from
that the effect upon the generalization performance by mee 1, Torm the Pattern Correction at Cycle n n=51to
of the change ip would be relatively small, though there still yepory Update [n=7|n=8 |n=9 |n=10|n=11 |n=12| n-12
may be a tradeoff between the total number of centroids and 1™, .~ o | 181 | 170 | 172 | 17 | 18 76
generalization performance. Therefore, in more practical situ "o e "1 [ 188 | 168 | 172 | 172 | 18 7
tions, the value can be fixed according to the size (if known) (~ger i T | 1ea [ 10 | 172 | 177 | 184 e
thea priori number of the available incoming data sets. VerteeCnam 1 196 | 200 | 178 | 187 | 193 | 20 o1
VI. CONCLUSION CLASSIFICATION PERFORMANngSIE_IET:I(I; TESTING DATA SET AFTER THE
. L. . . SHRINKING PHASE, USING PENDIGIT DATA SET WITH p = 4 (THE RESULTS
In this paper, an heuristic online pattern correction scheme ARE AVERAGED OVER THREE DIFFERENT TRIALS)
using GRNNs has been proposed and applied to three data sets
from different domains, i.e., the SFS and the two UCI data set: Method for Classification Performance
with a variant of their initial settings. Within the proposed on-  Long Term After the Network Shrinking at Cycle n
line batch pattern correction scheme, both the network growin Memory Update | Init. | n=1|n=2|n=3 | n=4| n=5 | n=6
and the two-stage network shrinking mechanisms have beend  &-means 90.9% | 91.6% | 915%
veloped. List-Splitting || 86.8% || 90.8% | 92.3% | 91.2% | 89.4% | 80.9% | 89.4%
In the simulation study, it has been shown that the misclass sst-spiitting 90.9% | 91.4% | 91.3%
fied patterns can be perfectly corrected by the network growin:  vertex-Chain 83.1% | 82.1% | 85.6%
mechanism with comparably small number of centroids. Thit™ yhod for Classification Performance Average
property is considered to be particularly suitable for applicatior ., rerm Afer the Network Shrinking at Cycle n=1to
in strict security service systems where quick pattern correctio Memory Update || n=7 | n=8 | n=9 |n=10 | n=11|n=12 | n=12
and reco_gnitiop performance without failure over a specific pat —,_—- 0L7% | 91.2% | 91.5% | 91.5% | 91.4% | 91.2% | 91.4%
tern setis des!red. R List-Splitting 89.9% | 90.2% | 90.2% | 89.9% | 90.1% | 90.3% 90.3%
In contrast, in the network shrinking phase, both Iong-tgrrr SST-Splittimg | 91.6% | 92.7% | 92.79% | 92.7% | 92.5% | 91.7% | 91.8%
memory update and short-term memory leakage mechanisr Verroe-Cham W 86.5% 1 50.9% | s18% | 53.7% | sao% | 7a.0% | sa7%

have been considered based upon biological studies [21], [1.5

and realized in terms of the number of the centroids in the net-

work. Future work will be directed toward the development of
For the long-term memory update, it has been found thidte integrated algorithms/mechanisms which provide a more

the three data-pruning methods, i.e:means, List-Splitting, dynamic online based pattern correction scheme by exploiting

and SST-Splitting method, are suitable, while the Vertex—Chaboth the refining property of thé-means clustering and the

method is not due to the sparse distribution problem. hierarchical advantage of the graph theoretic methods.
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