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I. INTRODUCTION 

This paper considers the planning of individual machine groups or 

work centers producing many different products such as components, sub

assemblies or assemblies. This production planning problem typically 

arises in a Material Requirements Planning (MRP) context. A central func··· 

tion of any MRP system is to determine what components, sub-assemblies or 

assemblies are required, how many, when and where they are needed. The 

net requirements or planned orders for manufactured items generate load 

profiles showing the overloads and underloads on each work center. These 

load profiles must be adjusted in order to meet the available capacity 

which consists of available manpower and limited resources. Since the 

input to the work centers is erratic, the machine loads may vary consider~ 

ably through time making the scheduling problem very difficult. Moreover, 

there is usually a high set-up cost and a substantial loss in productive 

time by changing production from one item to the other. The loading models 

presented in this paper prepare a loading plan that meets the company's 

production demand and minimizes production and inventory holding costs 

for each time period over a number of future time periods. 

The scheduling problem described above is known as the multi-item, 

multi-period lot size problem. The problem can be stated more formally 

in the following way : consider a single machine shop producing many dif

ferent items i, i=1, ••• , N, so as to meet a known requirement schedule 

dit' over a finite planning horizon t=1, ••• T and remain within the known 
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capacity limitations Lrt for a number of resources r, r=1, ••• R. The 

per unit capacity absorption uf product i, resou.rce type r, is deno"Ged 

by kir" Whenever a production run is started at the beginning of period 

t a set-up charge sit is incurred. Furthermore, there is a linear pro

duction cost vit and inventory Iit carried from period t to period t+1 is 

penalized at a rate of hit per unit per period. The number of units pro-

duced in period t, product i is denoted by xit• The objective ~s to ~nl

mize total costs subject to the demand and capacity constraints. 

Mathematically we obtain 

Subject to 

(1) 1i,t-1 + xit - Iit = dit ~ = 1 ' N 

t = 1 ' T 

N 
(2) E k. xit < 1rt r = 1 ' R 

i=1 ~r 

t = 1 ' T 

I. = I. = 0 
~0 ~T 

xit > O, Iit >o 

(3) o(xit) = 0 if xit = 0 

= 1 if x. > 0 
~t 

Constraint set (1) states that the inventory at the end of period 

t-1 plus production in period t equals demand in period t plus ending 
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inventory period t. Constraint set (2) says that the total capacity ab

sorption in any period t must be less than the aJailable capacity for all 

resources. Constraints (2) may also include a term to allow for losses 

of productive time due to production change-over. The (0,1) variables 

o(xit) are defined as follows : if' production is positive o(xit) is equal 

to 1 and a set-up cost is incurred, otherwise the variable takes on the 

value 0 and no set-up costs are included. The resulting model is of the 

mixed-integer type and from a computational point of view extremely dif

ficult to solve. 

In section II, the structure of the optimal solution is characterized 

and in section III two heuristic procedures are analyzed. The performance 

of both heuristics for a sample of test problems is examined in section IV. 
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II. CHARACTERIZATION OF THE OPTIMAL SOLUTION. 

The multi-item lot s1ze problem has attracted much attention during 

the past two decades. Several linear programming models have been suggested 

to solve the problem. Alan Manne [ 12] proposed the ~ollowing procedure: 

instead o~ searching for the optimal solution among all ~easible production 

plans, he restricts his attention to those production programs satisfying 

the following condition 

(4) 
' 

i = 1, ••• N, t= 1, ••• T. 

Condition (4) states that if production in period t, product i (xit) is 

positive then Ii,t-1 must be zero and vice versa. For each product there 

are 2T- 1 schedules satisfying (4). Without loss of generality the initial 

inventory (I. ) is assumed to be zero. 
10 

Table 1 illustrates condition (4) for a 3-period problem. 

Schedule 

2 

3 

4 

Table 1 

10 

10 

30 

10 

60 

20 

20 

0 

50 

0 

30 

30 

30 

0 

0 

T-1 Each of the 2 schedules for product i can now be denoted by a 
T-1 variable, for N products, we have a problem with N.2 variables. Next 

an LP problem is formulated in order to select for each product one o~ the 
~-1 

2- production schedules. There are two reasons why the above approach 

seems impracticable. Firstly, the number of variables can become extremely 
large and secondly, the solution to the LP problem 
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may result in "mixed" production schedules that is to say schedules ob

tained as combinations of two or more production schedules satisfying ( 4). 

However, mixed production schedules are unrealistic because fractional 

set-up costs are meaningless. 

The main objection from a theoretical point of view is the fact 

that the LP-model of Manne practically always results in approximate solu

tions. This loss in optimality is due to the fact that dominant schedules 

i.e., schedules which must be taken into consideration in order to find 

the optimal production plan constitute in fact a much wider class of pro

duction schedules than the ones characterized by ( 4'). 

Consider the following small h period - 3 product problem, with one capaci

ty constraint (R = 1) 

idit~J 2 3 4J 

1 I 20 30 40 10 

2 
I 
I 20 10 10 10 

3 1 25 30 30 30 
i 

--
i 1 2 3 

sit = si' ¥t 70 90 200 

vit = vi' ¥t 30 40 50 

hit = h.' ¥t 3 4 5 
J. 

k. 5 4 6 
J. 

Lt =' {450, 4oo, 450, 300} 

The optimal solution for this problem is given in the table below. 
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xit t I 1 2 3 4 
i ~I 

1 20 42 38 0 

2 30 0 20 0 

3 25 30 30 30 
--

Capacity 
370 390 450 180 absorption 

Constraint I 450 4oo 450 300 I 

Table 2. 

The best (but suboptimal) Wagner-Whitin type of solution is given in the 

next table. 

xit~ 
j 

4 
l 

i 1 2 3 

1 20 30 50 0 

2 40 0 0 10 

3 25 30 30 30 

Capacity 410 330 430 220 
absorption 

Constraint ! 450 4oo 450 300 

Table 3. 

To shed some light on these issues we characterize in what follows the 

extreme points of the solution set (P). 

The constraints of problem (P) can easily be represented by means 

of a network. This network representation is given in figure 1 : 
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R+NT+2 

1 

Figure 1. 

N T 
The input into nodes 1, ••• , R equals E E k. d.t, r=1, ••• R. 

i=1 t=1 lr 
1 

The flow over the arcs connecting nodes (1, ••• , R) and (R+1, ••• , R+T) 

represents the aggregate flow in each time period, for each resource type 
N 

and equals E k. x.t' t=1, ••• T, r=1, ••• R. This flow is restricted 
i=1 1r 1 

to be at most Lrt units (constraint set (2)). 

The flow over the arcs connecting nodes (R+1, ••• , R+T) and (R+T+1, ••• , 

R+(N+1)T) represents xit the amount produced in each time period for each 

dNT 
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product. Constraint set (1) is represented in the network by means of 

the in and outflows into nodes (R+T+1, ••• , R+(N+1)T). 

We clearly have two types of flows in the network above, first, the aggre

gate flow between the nodes (1, ••• , R) and (R+1, ••• R+T) and second, 

the individual product flow between nodes (R+1, ••• R+T) and (R+T+1, ... ~ 
R+(N+1)T). The aggregate flow is capacitated whereas the individual pro

duct flow is not (except for the conditions xit ~ O, Iit ~ 0). 

The constraint set of (P) is bounded and the objective function is 

concave so that its minimum will be achieved at one of the extreme points. 

In a network terminology, we shall refer as in [17} to such extreme points 

as extremal flows. Roughly speaking, a flow in an uncapacitated network 

is extremal if it is constructed in a way that prevents the formation of 

positive loops. A loop is defined as a sequence of nodes and arcs ob

tained by selecting one of the arc orientations and for which the first 

and last node coincide. A loop is positive if all of its arcs carry po

sitive flows. It is also well known [ 4 1 that a feasible flow in a 

capacitated network is extremal if and only if each of its positive loops 

contains at least one saturated arc, i.e. an arc whose flow is at capacity. 

In the network of figure 1 , loops can be formed in t1-ro ways : 

(1) between the aggregate and invidual product level, e.g. the loop formed 

by the sequence of nodes (1, R+1, R+T+1, R+T+2, R+2, 1) an by the arcs 

(1,R+1), (R+1, R+2T+1), (R+2T+1,R+2T+2), (R+2,R+2T+2) and (1,R+2) 

(2) on the individual product level, e.g. the loop formed by the sequence 

of nodes (R+1, R+T+1, R+T+2, R+2, R+NT+2, R+NT+1, R+1) and by the arcs 

(R+1, R+T+1), (R+T+1, R+T+2), (R+2, R+T+2), (R+1, R+NT+1), (R+NT, 

R+NT+2) and (R+2, R+NT+2). 

Production programs satisfying the Wagner-Whitin condition xit .Ii t-1 = 0, 
' will always be extreme flows. Such production programs always prevent the 

formation of positive loops. 
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If on the other hand xit'Ii,t-1 ~ 0 then two coniitions must be satisfied 

in order to have an extreme fl:Jw. We call these conditions respectLvely 

the aggregate flow condition and the individual product flow condition. 

In order to clarify these two conditions some additional terminolo

gy is needed. 

(a) N° is defined as the set of products for which xit.Ii,t-1 = 0, ¥t and 

N~ is defined as the set of products for which this property is not 

satisfied (N~0 = N). 

(b) ert is defined as the excess or slack capacity in period t, resource 

type r, i.e., 

N 
e = Lrt - 2: k .• x.t t = 1 ' 0 • ~ T rt i=1 1r 1 

r = 1 ' ... R. 

(c) A regeneration point, k, for product 1 1s defined as a period with 

zero ending inventory or Iik = 0. 

(d) Between each pair of successive regeneration points (k,l) for product 

i, 0 ~k <1 ~T, we have +;hat Iik = Iil = 0 and Iip >o, p = k-'1, ••. , 

1-1. Production between successive regeneration points (k,l) may 

either be zero or strictly positive. Assume that production is zero 

in q periods with 0 ~ q ~ (1-k) and positive in the remaining (1-k-q) 

periods. 

~ Consider a product i£N • 

Wa may say that the aggregate flow condition for product isN~ is satisfied 

if for each pair of regeneration points (k,l), with q periods of zero pro

duction and (1-k-q) periods of positive production, we have that for at 

least one resource type r, there is at most one of the (1-k-q) periods 

with positive excess capacity. 
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The aggregate flow condition is very similar to the property developed 

by Florian and Klein [ 5 ] , [ 9 ] , [ 10] for the sil"gle item capacity L:on

strained dynamic lot size problem. Since we are dealing with a network 

with R sources (resource types), the above condition must hold for at 

least one resource type [ 17 ] • 

In the above example N~ =· {1} • For product 1 however, the aggre

gate flow condition is satisfied, since for the pair of regeneration points 

(1,4), with zero production in period 4 (q=1) and positive production in 

periods 2 and 3 (1-k-q = 2), there is only one period (namely period 2) 

with positive excess capacity. 

If there is more than one product in the set~' then the aggregate 

flow condition is not enough to prevent the formation of positive loops. 

A second condition, the individual product flow condition, must be satis

fied. 

Consider products i', i" and i 0 belonging to~. The production and 

ventory flow between the pairs of regeneration points for products belonging 
~ .. 

to N may form pos2t1ve loops. 

The detection of positive loops can be illustratPd by means of the ~al

lowing graphical aid (see figure a). 

t t+1 t+2 

i' ~ 0 6 product 

·0 i" 0 
io 6 

figure 2 
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Consider the following pairs of regeneration points (t-1, t+2), 

{t-1, t+1) and (t, t+2) for respectively products i v, i" and i 0 • 

The horizontal line segments re~resent positive inventory between the 

pairs of regeneration points. Nodes labeled (6) refer to periods with 

positive production. Vertical lines are drawn only between.· labeled nodes. 

If through this procedure a connected path is formed, then a posi

tive loop will be formed between the regeneration points of the products 

belonging to N~. Note that this procedure enables us to detect all posi

tive loops. 

We say that the individual product flow condition is satisfied if 

no such connected path can be formed. 

It is obvious that this condition has a great influence on the construction 

of solution algorithms. 

By construction, D~, the set of feasible production plans X~ 

X~= {(x.t,I.t),lfi,t j x.t.I. t 1 = 0, ¥t,ie:N° 
l l l l, -

for ie:N~ an.d for which the aggregate and individual product flow 

conditions are satisfied} , 

corresponds to the finite set of extreme points. 
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III. HEURISTIC APPROACHES. ________ .. ____ _ 
The objective of heuristic approaches is to find "good" solutions 

for complex decision problems with less computational effort compared to 

the optimal seeking algorithms. Several heuristics have been proposed [2] 

[6 1, [8], [11], [13] for solving the multi-item scheduling problem. All 

those heuristics are based on Manne's LP formulation but since the number 

of variables usually turns out to be very large for practical problems, 

these methods have not been very successful. Moreover, these heuristics, 

require input (requirements, capacities, etc ••• ) over the complete planning 

horizon which is not desirable in an environment subject to many changes. 

Eisenhut r 3 1 on the other hand proposed a heuristic based on marginal 

analysis and at the same time lot sizes are determined on a period by period 

basis. His approach is basically myopic in the sense that only limited 

information is needed to make the current decision. Such sequential ap

proaches have also disadvantages especially for problems with capacity 

considerations. The main drawback of the Eisenhut heuristic lies in the 

fact that it can end up with an infeasible solution. We therefore propose 

to extend his heuristic by incorporating a feedback mechanism to escape 

from infeasibility. 

A. The Eisenhut Heuristic. 

The Eisenhut approach starts from a requirements matrix whose elements 

di t, i= 1 , • • • N, t=1 , • • • T are the net requirements for the different pro·

ducts over the planning horizon, and then tries to group requirements of 

different periods in the same lot without exceeding the capacity constraints, 

For each requirement, dit' a coefficient is calculated indicating if cost 

reductions are possible by including requirements of later periods in the 
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current production order. The derivation of this 11appreciation factor" 

goes as follows 

(7) 

( 8) 

s. + I.(t) 
c.(t) = J. 

J. ]. 
t 

J. = 1, ••• N, where 

c.(t) J.s the combined set-up and inventory holding cost per period J. 
for product i, for a production order including production re-

quirements for periods 1 up to t, with t ~ T 

s. denotes the set-up cost for product i 
]. 

I.(t) stands for the cumulative inventory holding cost corresponding J. 
to an order including requirements for periods 1 up to t, or 

with 

h. as the inventory holding cost per unit, per period for product J.. J. 

The objective J.S to minimize C.(t). We therefore calculate the first J. 
derivative of (7). 

(9) 

( 10) 

Since 

I! ( t) 
C! (t) = - 2

--J. t 

I. (t) J. 

where I!(t) J.s the change in inventory holding cost due to incor
J. 

porating the requirement dit in the present lot, or 

I! ( t) = h. (t-1) dit 
J. J. 

t ( t-1 )t 2 
t 

r (k-1) = or ( t-1) =- E (k-1) 1 
k=1 2 t k=1 



We can rewrite expression (10) as follows 

( 11 ) 
2h. 

Ii (t) = T 
t 
E (k-1 )dit] 

k=1 

Assuming that demand is constant through time, expression (11) reduces to 

( 12) 

Substituting ( 12) J.n ( 9), we obtain 

2 r. ( t) s. 
c! ( t) r. (t) -

]. ]. 
=-

t2 l. t2 l. t2 

or 

I.(t)- s. 
(13) c! ( t) 

]. ]. 

= 
l. t2 

Let C!(t) approach zero, and since t has discrete values we find t~, the 
l. 

best unconstrained order cycle if 

( 14) r.(t~) ~ s. and I.(t~+1) > s. 
]. ]. l. l. 

Note that criterium (14) is known as the Part Period Balancing criterium. 

Instead of using (13) Eisenhut prefers the following coefficient 

(15) u.(t) = 
l. 

C!(t) s.-I.(t) 
]. l. l 

d.;t t 2 d ..... • it 
i = 1, ••• N 

such that fort <t~ the term U.(t) will be positive, indicating a cost 
]. 

reduction and fort> t~, U.(t) will be negative indicating a cost increase. 
]. 
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Note that in (15) the coefficient C!(t) is devided by d.t so that the ap-
~ ~ -

preciation factor is now expressed in costs per unit per period (Our com-

putational experience indicate that the devision by dit is of no importance.) 

The procedure can be summarized as follows 

Construct the requirement matrix, the rows i, i=1, 

for the different products and the columns t, t=1, ... 
N stand 

T for the 

different time periods, the elements (i,t) indicate requirements 

dit for product i, period t. 

§~~-g_ Compute for each product i and each period t (except the first 

period, who's requirements must be satisfied), the coefficient 

U.(t), omitting negative values. If in the current period the 
l 

net requirements for product i are zero, i.e. dit = 0, then pro-

duct i is disregarded since it will not be advantageous to start 

a production run for that item. Postponing such a run will re

sult in lower inventory carrying charges. 

In order to determine the lot sizes for period t (starting at 

t=1) the following steps must be carried out. For each product 

i, the requirements of period t must be satisfied and hence in

cluded in the lot. Next, for each product, scan the appreciation 

factors of the most recent requirements which have not yet been 

included in the lot of period t. Select the highest positive 

U.(t) and add the corresponding requirements to the lot of period 
~ 

t except if insufficient capacity is available. If capaicity 

should be exceeded, the corresponding product is discarded and 

the next highest positive coefficient is selected. This step is 

repeated until capacity is reached for one of the resources, or 

until no positive coefficients remain. Note that each time that 

the order size is increased, the slack capacity ert must be up

dated. 



Update the requirements matrix by deleting the requirements of 

period t and all requirements included in the production orjers 

of period t. 

Repeat steps 2 to 4 until the requirements matrix is reduced to 

one column, namely the requirements of period T 

The above algorithm may best be illustrated by means of the problem example 

given in Section II. 

Ste.p 1 i~l 2 3 4 

I 35 40 30 37 

I 2 24 27 29 22 

3 I 0 50 47 42 

Step 2 

~I 1 2 3 4 

35x 400,375300 -37 
24x 270,61129- -2 22 

3 ox 50x 47x 42x 

• The coefficient for the requirements di 1 ~ i=1,2,3 need not be determined 

because they must be included in the production orders of period 1. The 

remaining capacities are : 

e11 = 230 - (35x2 + 24x3) = B8 

e21 = 170- (35x1 + 24x2) = 87 

• u1(2) 100 - 40 0,375, u2(2) 120 - 27x2 = 0,611 = = = 
22 .40 22 .27 
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u
3

(2), u
3

(3), u
3

(4) are not computed because demand 1n period 1 is zero. 

u (3 ) = 100 - 4o - 6o = 0 
1 lx30 

All other coefficients are negative. 

Step 3 u2(2) is the highest positive coefficient, the corresponding re

quirements are 27. We increase the lot of product 2 with 27 

units and reduce the available capacities correspondingly. 

e 11 = 88- (27x3) = 7 

e21 = 87 - (27x2) = 33 

The next highest coefficient is u
1
(2), but the production order for pro

duct 1 cannot be increased by 40 units as there is not enough capacity 

available. 

Step 4,2 

: I 
I 3 

2 

4ojf 
x 

0 

50 :!f. 

3 4 

300,583 37 

29:!f. 22% 

470,580 42-

e12 = 200- (40x2 + 50x1) = 70 

e22 = 180- (40x1 + 50x1) = 90 

Step 3 Highest coefficient : u1(3), increase the lot size for product 

1, period 2 by 30 units; the remaining capacities are 

e12 = 70 - (30x2) = 10 

e22 = 90- (30x1) = 60 



Step 3 

1·S. 

The second highest coefficient 1s u3(3), the order size cannot 

be increased by 47 units since capacity limits will be exceeded 

for resource 1. 

e13 = 270- (29x3 + 47x1) = 136 

e 23 = 160- (29x2 + 47x1) =55 

Highest coefficient : u2(4), increase lot size for product 2, 

period 3 with 22 units 

e 13 = 136 - (22x3) = 70 

e23 - 55- (22x2) = 11 

The net requirements corresponding to u3(4), the next highest 

coefficient, cannot be scheduled because of insufficient capacity. 

Step 4,5 4 

1 

2 

3 

37 

0 

42 

The resulting production plan 1s as follows 
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~I 2 3 4 

35 70 0 37 

2 51 0 51 0 

3 0 50 47 42 

Capacity 
used r=1 223 190 200 116 

r=2 137 120 149 79 

The alert reader should realize that 

a) The Eisenhut heuristic can easily handle problems where set-up times 

are important, simply by subtracting the set-up times from the availa

ble capacity each time that a production run ls started. 

b) The production programs found by the Eisenhut heuristic always satisfY 

the condition 

That means that the heuristic does not fully exploit the characteristics 

of optimal solutions as explained in section II. 

B. Extended Eisenhut Heuristic. 

1. Feedback Mechanism. 

The Eisenhut heuristic proceeds uni-directional through the requi

rements matrix without feed-back capability. As a result, the heuristic 

can end up with an infeasible solution and this often occurs when the 

capacity constraints are tight and level from period to period whereas 

demand has somehow an erratic behavior. To cure this deficiency and 

thereby enhance the applicability of the Eisenhut heuristic, the follow

ing feed-back mechanism is proposed. 
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If an infeasibility occurs in period t, i.e. if resource require

ments exceed the available capacity in period t, then we transfer demand 

of that period to period t-1 until either one of two conditions occurs : 

( 1 ) the capacity lim.i t of one of the resource constraints is attained in 

period t-1; (2) the infeasibility disappears in period t. If the in

feasibility still remains after this phase is completed further trans

fers of the same or different products must be made to earlier periods 

in a similar fashion. 

The resulting production programs practically always adhere to the 

characteristics of dominant schedules (section II). The aggregate flow 

condition is always satisfied, but the individual product flow condition 

may be violated for some extreme cases. 

Moreover, demand is shifted backward 1n such a way that no new set-ups are 

incurred and inventory holding costs are minimal. 

Let INFrt be the amount by which the demand requirements for re

source r, product i, exceed capacity in period t. The minimum number of 

units of product i to be transferred in order to restore feasibility for 

resource r is given by 

Where ral refers to the smallest integer greater than or equal to a. 

For practical reasons we always transfer an integer number of units, 

although from a theoretical point of view optimal solutions may be non

integer. 

Since feasibility must be restored for all resource constraints 

that are violated, we determine 

B. = max , {A. } 
1 x 1r 

rc:R 
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where R:x J.S the set of resources for which the capacity limit is exceeded. 

It is clear that no more than Ji t units will be -..,ransferred, hence, the 

number of units that -~be transferred for a specific product is given 

by 

C.- min.{B., J.t} , with C. >o, otherwise product i is discarded. 
l. l. l l. 

If C. units are transferred to period t-1, the inventory holding cost is 
l. 

increased by C .. h .• To minimize the costs caused by transferring units 
l l 

from t to period t-1 1-re select product q such that : 

a) there is a set-up J.n period t-1 (otherwise new set-ups would be created) 

b) the increase in inventory holding cost is n:inimal. 

In other -v;-ords, q is defined by 

m.in 
is1~ 

C .• h., 11here N~f == set of products for which there J.S a set
l , 

up 1n period t-1. 

It is clear that th~ feed--back p:-:ocedure may not cause an infeasibility 

1n period t-1. 

Let 

D - m1n 
Vr 

where la J refers to the g1·eatest integer less than or equal to a. 

D denotes the ma:ximu..m number of units of product q that can be transfer

red to period t-1 without violating the resource constraints for that 

period. 

The~tu~l number of units that will be transferred is then g1ven by E, 



where 

E - m~n (D, C ) 
q 

We now can end up in one of the following cases : 

22. 

a) Period t becomes feasible, and the Eisenhut heuristic continues with 

period t+1. 

b) Period t ~s still infeasible, and 

• either E = D, which means that it ~s impossible to transfer more 

units of product q to period t-1 without exceeding one of the 

R constraints of period t-1. vle therefore must transfer 

units to period t-2 using the procedure given above. Note 

that the infeasibility ~n period t is reduced by Dxk capa-
rq 

city units. 

• or E = C = d ,_ which means that in addition to the demand for pro·-
q qu 

clue::; 'h units of other products must be transferred to periofl 

t-1. The abovementioned procedure must be repeated after 

disregarding product q. 

A detailed flowchart ~s given ~n Appendix I. 

As we emphasized before, the interesting features of this proce·

dure are twofold : ( 1 ) solutions practically always satisfy the characte·
x ristics of dominant schedules , ( 2) if the data of the problem allow for 

a feasible solution the feedback mechanism will always find one. 

x The individual product flow condition is not always satisfied if back-
tracking is done for more than one product and for more than two periods 
back in time (this can happen if the capacity constraints are verY 
tight). Minor deviations are also possible because only integral number 
of units are transferred. 
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An example is used to illustrate the feedback procedure. Consider 

the following 4 product, 4 period problem with o1.e capacity constra~nt. 

dit t 2 3 4 

l. 

1 40 35 32 30 

2 30 35 37 34 

3 55 6o 55 50 

4 0 30 29 24 

Capacity 
Constraint 

Lt 270 290 220 280 

l. h. s. k. 
l. l. l. 

1 3 100 2 

2 1 100 2 

3 2 150 1 

4 50 3 

Applying the Eisenhut heuristic for the first 2 periods results in 

~ 1 2 

4o 35 

2 65 0 

3 55 115 

4 0 30 

The third period however is infeasible since the capacity absorption is 

32x2 + 37x2 + 29x3 = 225 and the capacity limit J.S 220. 
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Units must be transferred from period 3 to period 2. As there is only one 

capacity constraint, index r is omitted. 

INF3 = 225- 220 = 5, Nx = {1,3,4} , for product 2 there 2s no set

up in period 2. 

A1 = r2l = 3 
I 2 

A3 = ,r2 -~, = 5 
1 ' 

A4 = ~r t 1, = 2 

Since there is only one constraint we have that A. = B. 
2 2 

c. = min {B.' dit} c1 = m2n {3, 32} = 3 2 2 
c3 = m2n {5, o} = o, 

c4 = min {2' 29} = 2 

excluded because no 

transfers are possible. 

min 
iENx 

C.h. = min {3x3 
2 2 

2x1} selected product q = 4 

e2 = 290- (35x2 + 115x1 + 30x3) = 15; 

E =min (D, c4 ) =min (5, 2) = 2. 

The result of the preceeding steps is that 2 units of product 4 are trans

ferred to period 2. After this step feasibility is restored and the 

Eisenhut heuristic continues with period 4. 

The resulting production program 2s 
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2. A New Appreciation Factor. 
-------~-----------------

The Eisenhut appreciation factor is derived under the assumption 

that requirements are constant through time. This assumption was only 

necessary to replace the term I!(t) by t
2 

I.(t) (see section III) whereas 
l l 

the exact derivative assuming fluctuating demand is h.(t-1)d.t. 
l l 

Substituting this exact term in expression (9) results in 

C! (t) = 
l. 

h. ( t-1 )d.t 
l l 

t 

I. ( t) 
l 

Substituting for I.(t) = I.(t-1) + h.(t-1) d.t l l l l 

We obtain 

1 2 C! ( t) = -2 [ h. ( t-1 ) d. t - I. ( t-1 ) - s. ] 
l t l l l l 

Let C! (t) + 0, and s1nce t has discrete values we find the unconstrained 
l 

;!:. 
order cycle t lf 

( 16) 
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and 

We now prove that condition (16) 1s equivalent to the Silver-Meal criterium 

[ 14 ]. 

Silver-Meal [ 14] suggest to evaluate C.(t) successively for increasing 
l 

values of t until the following inequality is satisfied : 

( 17) c. ( t+ 1 ) > c. ( t) 
l l 

In [14] it is shown that (17) 1s equivalent to 

( 18) 2 
s. 

t d >..2:.+ 
i,t+1 h. 

l 

t 
L: (k-1) dik 

k=1 

After multiplying both sides by h. and substituting for 
l 

h. 
l 

t 
L: (k-1)dik = Iit 

k=1 

we obtain 

2 h.t D. t+1 > I.(t) + s. 
l l' l l 

thereby establishing the equivalence of the condition (16) and the Silver 

and Meal heuristic. 

In the multi-item capacitated lot size problem we propose the following 

appreciation factor 

( 19) U.(t) = 
l 

2 C!(t) I.(t-1) + s.- h.(t-1) d.t 
l l l l l 
~--- = ----------~~~-----------
dit dit" t2 


