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ABSTRACT The integration of Software Defined Networking (SDN) and Network Function Virtual-
ization (NFV) is considered to be an efficient solution that enables the forecasting of highly scalable,
optimal performance of 5G networks by providing an effective means of network functionality. The
distributed multi-controller architecture approach is an emerging strategy that primarily aims to support
network functions performed through the application of a control plane, to provide versatile network traffic
management. However, the management of resource allocations across multiple data centers is an important
issue that still affects 5G core networks. Using such a strategy in 5G core networks requires the controllers
to be correctly located, in order to improve network reliability and cost-effectiveness. Thus, to address the
controller placement problem (CPP) in a distributed 5G network, we proposed an efficient, heuristic multi-
objective optimization approach, using dynamic capacitated controller placement problem (DCCPP). It is
based on the K-center problem, to solve the capacitated controller placement problem (CCPP), which acts as
a resource location problem, in which the location and number of controllers can be allocated to maximize
resources. A Greedy Randomized Search (GRS) algorithm was used to solve the dynamic assignment of
nodes to controllers to achieve load balancing. The design of the heuristic method provides proper load
balancing, efficient cost management, and network resource management, as compared to the basic CCPP
model. The results indicate that the allocation and the optimum number of controllers under an effective
decentralized policy could achieve a higher degree of efficiency through resource assignment in such a
densified network.

INDEX TERMS 5G, SDN, controller placement problem, resource assignment, heuristic, optimization.

I. INTRODUCTION

The advent of the fifth generation (5G) has created an
exponential increase in traffic volume, accompanied by the
immense use of applications and various service charac-
teristics, which have added to the complexity of network
management and orchestration. This poses imminent chal-
lenges to all aspects of the 5G wireless network design [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurice J. Khabbaz .

The Network Software and Virtualization concept embodies
the Software Defined Networking (SDN) and Network Func-
tion Virtualization (NFV), which are enabling techniques
aimed at solving and reconfiguring the complexity of the net-
work, alongwith efficient resource sharing [2]. SDN provides
operational intelligence by decoupling the network control
functions from the data layer devices to support advanced
automation for the 5G network management [3]. At the same
time, NFV provides a useful abstraction of the functionalities
of the network services. Moreover, it offers a new scalable
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infrastructure to accommodate a wide range of network
functions [4], [5].
The integration of NFV and SDN is run at a cloud-based

architecture leveraging model for the 5G core network archi-
tecture (5G-CN) [6]. It facilitates the sharing of physical
network resources and chaining functions between different
sections of a virtual network. VNFs are designed to support
all network traffic functions performed through a central-
ized control plane for 5G-CN management and orchestration
requirements by providing a wide range of interconnected
services [7].
The centralized server is meant to call upon the con-

trollers for the network to be flexible enough to endorse
the versatile policy configurations for managing the CNs
and rapid deployment of new functionalities [8]. However,
the deployment of network functions in a single controller
has a drawback that is sufficiently linked to the optimum
performance, that affects the guaranteed level of quality of
service (QoS), necessary for large-scale 5G network man-
agement [9]. In this context, the adoption of multiple con-
trollers for 5G networks in the control layer tackles flexibility,
scalability and performance degradation [10]. In addition,
unexpected network demands, and dynamic changes of
topology create different load distributions amongst the
controllers, as well as uneven coordination for controlling
event problems. Therefore, maintaining a group of controllers
needs careful attention to the allocation of resources and the
control planes and management [11].
Nevertheless, the problem of network resource allocation

in the distributed multi-control architecture of 5G based
SDN is one of the most critical strategic challenges, requir-
ing proper planning and optimization of both the control
plane and the physical infrastructure layers. It targets proper
resource allocation management of the control plane to guar-
antee adequate latency and bandwidth requirements, that pro-
vide a sufficient QoS, even if part of the system has a failure
tolerance or load balancing capability issue [12], [13]. The
solution is meant to find the best position for the number
of controllers, as well as the assignment of switches to each
controller, to achieve a reliable connection between the con-
trollers and the network’s physical components, to prevent
any controllers from overloading. The mapping and place-
ment of SDN controllers and switches are known as controller
placement problem (CPP) [14]. It is important to assign user
requests to different cluster controllers to balance the work-
load between them. When decreasing the overall response
time for offloaded tasks, significant consideration should be
given toward planning the required demand for traffic volume
and service request control tools [15].
In this framework, several preliminary techniques have

recently addressed the issues for CPP and dynamic switch
assignment, as well as switch migration approaches. Each
controller has a limited capacity in terms of handling the
volume of traffic requests [16]. As traffic varies, the switches
are dynamically planned and assigned to various controllers,
as shown in [17] and [18]. Other researchers have tackled the

issue based on load balancing [19], [20] and switch migration
schemes [21]. Therefore, the aforementioned studies pro-
vided heuristics techniques for the CPP as a resource location
problem, in which the metric number of switches focused
on the impact of the optimal selection of the positioning of
the controller locations and determined the weight of the
switches based on the latency or distance. However, most
of the previous works dealt with CPP in a single domain.
They concentrated on load balancing without calculating the
exact number of controllers against the network traffic load,
as well as for evaluating the efficiency of assigning resource
management.

The fundamental concept of this paper is to present the
management and control framework for 5G-based SDN net-
work architecture through efficient network planning and
optimization for 5G-CNs. The methodology presented seeks
to implement a framework as a solution for the CPP in the dis-
tributed architecture, to find trade-offs between the number of
controllers, and determine the dynamic load assignment cost.
In other words, the optimized model should maximize the
performance of the network, manage the deployment costs
incurred, and maintain the required load balancing between
the network components, all while ensuring high network
resource utilization.

The CPP is considered to be an NP-hard problem.
Accordingly, heuristics is a method of tackling the optimiza-
tion problem effectively. In particular, the applicability of a
specific capacitated facility location (CFL) problem based
on the K-center algorithm is investigated by developing a
capacitated CPP (CCPP) model.

In this paper, the key contribution is to examine the location
of dynamic traffic flow controllers based on the number of
controllers and switch-to-controllers assignment for different
average traffic situations within the network. The load metric
was limited to the impact of optimal placement selection and
guarantees that each partition was capable of shortening the
maximum end-to-end latency. Therefore:

• The dynamic capacitated controller placement problem
algorithm (DCCPP) is proposed to determine the allo-
cation of controllers in the distributed control layers
under dynamic traffic. Subsequently, a demonstration
is shown how this layer can fulfill the specifications of
the adaptive load balancing and the management of the
resource in two applications.

• An optimal solution is also developed for both the loca-
tion and the number of controllers using CCPP based
on the generalization of K-center algorithm and Graph
Theory.

• The resource scheduling efficiency is then investi-
gated to measure the quality of the switch-to-controller
assignment, which is handled by the controller. In the
context of the switch assignment, the basic prin-
ciples of the Greedy Randomized Search (GRS)
algorithm are utilized based on the use of the neigh-
borhood specified through the construction of demand
points.
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Thus, our proposed (DCCPP) attempts to answer the ques-
tions for the following sub-problems: ‘How to measure the
load of controllers and determine when to perform switch
migration’; and ‘How to define a trade-off between controller
assignment costs, and the load balancing ratio.’
A detailed analysis of optimal network architecture is also

provided, with a systematic assessment carried out across
different topologies under various parameter settings, in a
consistent manner. Our method is based on the reasoning
above. In this work, we aim to ensure that the algorithm
conforms to the 5G network requirements to ensure that the
network variables are completely realized and that their val-
ues are optimally modified to achieve an exemplary network
configuration.
This paper is organized into five sections. Following an

introduction, the integration of SDN andNFV into the 5G-CN
is investigated, and the resource management of the CPP is
then explained in Section II. Related literature is presented in
Section III. The proposed algorithm and the controller place-
ment, and the allocation problem formulation are described in
Section IV. The proposed solutions for dynamic capacitated
controller placement problems are discussed in Section V.
The model performance evaluation is provided in Section VI.
Finally, a conclusion is given in Section VII.

II. INTEGRATION OF SDN AND NFV INTO 5G CORE

NETWORK

This section presents a systematic redefinition of the 5G
wireless network control/management functions used in the
5G-CN review. In particular, it describes the general design
of the 5G core. In this work, we focus on a distributed model
applied to a specified multi-control layer that demonstrates
the efficiency of SDN and NFV technologies in 5G.

A. KEY ELEMENTS FOR 5G CORE NETWORKS

ARCHITECTURE

The 5G network continues to advance toward reconfiguring
the legacy network by enabling intelligence systems to be
operated effectively across both access and core network
based on SDN and NFV. It will also serve a wide range of net-
works, highly agile network controls, and cloud allocations to
meet the needs of both network diversified traffic operations
and big data demands [22], [23]. Based on SDN, the control
plane functions are split from the forwarding capability of
the physical layer elements (e.g., firewalls and routers) and
reassigned to the centralized SDN controller. The control
plane virtualization is configured by adding new network
functions (NFs) to the software base instead of modifying
each hardware switch [24].
Dynamic deployment of NFs can be implemented to

achieve satisfactory separation of the resource slices.
NF chaining can be implemented to provide flexibility in the
5G network infrastructure and allows virtualized services to
be resourced in the 5G core cloud network, which can be
replicated across different networks [25]. Figure 1 shows a
layered architecture and generic SDN/NFV for 5G-CN.

FIGURE 1. General integrated SDN/NFV layer architecture [6].

Therefore, the 5G-based SDN/NFV is projected to be a
multi-tenant solution. Many autonomous network operators
and service providers use the same physical structure and
computing platform [26]. Consequently, there is a logical vir-
tual layer solution between the control plane and the forward
paths on the NE, which defines the path forward to navigate
the virtual network [27].

B. MULTI-CONTROLLER ARCHITECTURE BASED ON 5G

The control plane’s controller is a software program that
runs on a high-speed virtual machine (VM) in the cloud
or data center (DC) for real-time network implementation.
It enables functions related to the control and management
of 5G components, such as routers and switches, to be demon-
strated hierarchically. It also handles the processes involved
in the infrastructure planning, routing, and security appli-
cations through a set of interfaces with the VM network
application [28].

A detailed multi-control architecture for the 5G-CN is
presented in Figure 2. It has two main planes; the 5G control
and management plane and the 5G physical infrastructure
plane. Centralized control in such a 5G network with many

FIGURE 2. The multi-control architecture for 5G core network.
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alternatives signaling paths in the congested network results
in increased demand and a large amount of overhead [29].
This illustrates that using a centralized controller would
adversely affect the entire network, rendering it insufficient
for a single controller. However, the controller should man-
age all network traffic generated by the 5G network, but its
limited resources would become a single point of failure [30].
Therefore, the deployment of a hierarchical multi-

controller structure is seen as a potential solution that avoids
the bottleneck, i.e., the controllers. It also maintains the
demand for traffic loads to be distributed amongst multiple
containers at the edge for traffic management of the growing
capacity in order to achieve scalability. However, resource
management remains an open issue in the 5G wireless
network [31].
Our control layer of the model consists of two layers:

a core control layer and cloud controllers. The core con-
trol layer technically acts as a centralized controller, where
multi-controllers from various suppliers for multi-application
configurations have been further improved. This improve-
ment includes the high processing capacity of the controller
clusters equipped with advanced multi-threading technolo-
gies and constructive trafficmanagement systems [32]. In this
regard, the deployment of the multi-layer architecture of
a cloud orchestrator, or a distributed DC infrastructure,
enables automated deployment and coordination of new
systems, resources, and end-to-end services across edge
networks [33].
On the other hand, the cloud controllers must have a clear

vision of the entire network at each core. It is responsible for
managing each local root controller in a centralized manner,
effectively monitoring and scheduling the area’s resources to
accommodate different Internet functions.
The SDN local controllers in the control layer also dis-

tribute the flow control resource decision-making through
each infrastructure subnetwork switch, pushing the compu-
tation storage to the network’s edge [34]. They also provide
NEs with rules that regulate their handling of packets to avoid
a substantial amount of signaling generated between remote
gateway applications and offload control over accessible net-
work resources [35]. In addition, the edge server gathers data
from nodes continuously. Depending on the specific case
to optimize the 5G-CN, it sets out an optimal routing path
according to the states of the cells. Such an edge controller
paradigm for a 5G-CN controller has become a trend that
brings computational services, infrastructure, and facilities
closer to the terminal devices [36].
Indeed, coordination between the network components and

their controllers is influenced by the structure of the dis-
tributed control plane, along with the number and location of
multiple controllers within the SDN network, to satisfy the
QoS constraint. This allows the management of connectivity
services that produce some side effects in terms of the latency
between the nodes, and their controllers, which is essential.
It provides the ability to properly define the end-to-end (E2E)
services [37].

Although several deployments of controllers solve the
issue of capacity, they also increase the cost of utilization.
Thus, the best way to reduce the overall network costs
(CapEX /OpEX) is by minimizing the number of functions
and the number of controllers. Such integrated converged
resource management can provide an energy-aware and
efficient allocation of resources means.

C. SCOPE OF 5G NETWORKS RESOURCE MANAGEMENT

The 5G-CNs must have an efficient resource management
technique to optimize resource allocation and schedule users
to support increased demand for network capacity and user
experience. Taking advantage of the virtualization and pro-
grammability of the core network functions ensures the effec-
tive use of network resources for sharing, services amongst
slices of the shared resource pool, and flexible 5G core
scheduling [38].

The resource management decision process is distributed
through network edge nodes that allow re-configuration
based on the feedback of the network state. More concisely,
this ensures the continuous aggregation of edges, and the
allocation of bandwidth, computing, and storage capacity,
to virtual connectivity elements. This leads to lower latencies
and achieves the required reduction in operating costs. It also
ensures improved network management for the user experi-
ence regarding the quality key approaches to reduce imple-
mentation and operating costs. The network storage resource
is better used if the load is distributed more uniformly across
the network (WAN or cloud), allowing traffic to be offloaded
and preventing a bottleneck in the core network [39].

Besides, by integrating advanced routing protocols and
traffic engineering algorithms, this strategy offers increased
coverage for diversified 5G networks in lieu of load balancing
and on-demand deployment with high service criteria for
developing an efficient model. However, in a multi-controller
architecture, different flow configuration models are feasible,
as the controller-based core network has precisely a robust
network vision. It is responsible for determining the rules for
the maintenance and management of thousands of sub-layer
DCs for providing optimized solutions for the overall produc-
tivity of high-capacity resources and functions [40].

III. RELATED WORKS

The integration of SDN and NFV is implemented using
a combination of software on the IT servers and properly
configuring the OpenFlow switches for the scalability of
the control plane to minimize the cost of running network
services. Therefore, researchers introduced NFV and VNF
chaining in the SDN-based architecture and control plane
frameworks and developed an efficient mapping of the virtual
network resources [41].

Work in [28] was based on the same architecture for incor-
porating SDN and NFV into mobile devices. It implemented
a dynamic deployment of the mobile gateway for load traf-
fic balancing. It focused on addressing resource allocation
through an orchestration controller, managing the virtual
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function chaining and services, maintaining the performance,
and preserving the network resources, maximizing controller
reliability and load balancing capabilities in the dense WAN
networks. However, the above works were considered to only
focus on latency metrics for the shortest physical distance
between the controllers and switches.
The implementation of controllers within a network con-

trol plane, single or multiple controllers, is based on the
size of the network that to be deployed. At the same time,
the cost-reduction framework for CPP is described in [42].
The deployment used specified latency as a metric to deter-
mine the best location and the number of controllers in
the control plane for optimal network architecture design.
Contrastingly, in [43], the mathematical derivation of the
model was used to reduce the costs of the SDN network
by considering different parameters and the interconnection
of all network components. However, the abovementioned
CPP research optimization literature ignored network traffic
analysis, which is a vital element of the existing networks,
in general.
The latency requirements of the switch-controller and

inter-controller with the capacity of the controllers were taken
into account to meet the traffic load management of the
switches. Analyzing the SDN-WAN fault tolerance meant
that the load balancing constraint amongst the controllers in
the sub-domains in terms of their demand and availability
was a key element in the distributed network. The load bal-
ancing played a crucial role in enhancing QoS and customer
experience [3]. An assessment of the Pareto Optimum Set
of the Controller Placement Optimization approach (POCO)
paradigm for the controller’s resilience often identified a
trade-off between the controller’s load balancing, and net-
work traffic, as suggested in [44].
The SDN-based framework assigned switches to the con-

troller when other service efficiency requirements were met.
As an extension of this work is the dynamic controller loca-
tion heuristic in the SDN [45]. The method was investigated
using the K-medoid CPP and evaluated via Pareto’s optimum
solution. Similar studies in [20] suggested a CCPP based on
theK-means and amatching algorithm for switch assignment.
However, these methods focused on finding a trade-off based
on the average latency and did not consider network resource
flow traffic analysis.
The purpose of the dynamic configuration was to distribute

the load amongst the controllers based on the traffic load gen-
erated by the controllers themselves [46]. It is advantageous
to move a switch from a heavily loaded controller to a lightly
loaded one. Thus, work in [47] introduced a dynamic slave
controller assignment method in case of a network failure
due to overloaded controllers. To avoid a network crash, it is
essential to assign andmigrate switches between the slave and
a master controller for load balancing. The controller utiliza-
tion is measured by the number of switches (flows) managed
by the controller based on network traffic fluctuations and
how they handle network traffic.

The proposed algorithms in [48] followed a clique-based
approach, using the graph theory to identify high-quality
solutions heuristically. It was then evaluated for actual WAN
topologies, and the resultant effects were extensively exam-
ined for local network control over the entire partition and
stability of the control plane. An elastically distributed con-
troller architecture was proposed in [49]. Their solutions
proposed to include mapping of resources between the switch
and the controller, with the inclusion of a new controller for
balancing the load. However, the authors only assumed delay
in the emulation environment. The work in [50] developed a
dynamic optimization algorithm for optimizing controllers
and the best switch allocations for large-scale networks
enabled by SDN. The developed algorithm was based on
the Slap Swarm Optimization Algorithm (SSOA), which
includes chaotic maps to optimize the performance of the
algorithm. However, the optimization model was used to
only optimized the minimum number of controllers without
considering the analysis of traffic for load balancing.

IV. THE CONTROLLER PLACEMENT AND DYNAMIC

ALLOCATION PROBLEM FORMULATION

Throughout this section, we introduce a general optimiza-
tion framework for describing CPP in a distributed system
compatible with the mapping of controllers for large-scale
implementation of the SDN and NFV in the 5G-CN, as set
out in Section (II) above.

The planning involved two types of decisions; (1) placing
a controller at a location in subnetworks, installing and turn-
ing on the servers to maintain a local set of switches for
various network forwarded traffic, (2) a dynamic controller
management approach focused on the demand sites for each
controller, depending on the flow assignment and capacity
required by each controller. This focused primarily on
latency, load balancing, and robustness. We considered the
solution viable if the service level agreement was accepted.
The optimum feasible solution tried to reduce the linear
combination of total installation costs by a detailed analysis
of the DCCPP in terms of allocation. This often-considered
assignment algorithm and the reassignment switch algorithm.

A. NETWORK MODEL DESCRIPTION

A network representation of the problem is presented as an
undirected graph G(N ,E). N {N ∈ (Cj, Si)} represents a
set of network nodes and E represents a physical commu-
nication link between a group of network elements, respec-
tively. The network nodes consist of a set of controllers
(Cj) and switches (Si). The controllers could be located at
demand sites or separately across various candidate locations
j(j ∈ Cj, j = 1, 2, 3, . . . ,m) in a network. Besides, S(i ∈

S, i = 1, 2, 3, . . . , n ) is a set of demand points that identify
switches or other network physical resource elements. Simul-
taneously, dij denotes the shortest distance between cluster
controllers and their nearest switches in the subnetworks. For
example, from the perspective of the controller, it is more
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able to automatically handle the allocated topology bringing
it closer to switches, minimizing the control traffic overhead
and latency.
The connectivity between switches and controllers is criti-

cal since it forms part of the frequent flow profile and requires
little bandwidth resources. Notice that as controllers respond
to the dynamic requests from nodes in their service area,
all controllers can be characterized by the existing capacity
constraints and the total resources that each controller can
manage through migrating controllers and reassign switches
are inevitable [17]. Table 1 summarizes the primary notations
used in our model.

TABLE 1. The primary notations used in the model.

In each feasible region, the decision recorded is to decide
Yj the position of controllers amongst the switches and Xij
assign switches to controllers. A subset of feasible location
solutions was chosen for the core network, and a necessary
minimum number of controllers used was specified. Then,
the positioning strategies for all available switches were
established. So, the efficiency can be maximized in such
a way that the requirements of the QoS are still met. The
distance between the nodes and their respective centers is an
important design parameter for dealing with center allocation
problems. Therefore, for the purpose of load balancing and
reliability, each controller should maintain the same work-
load for the input services, the upper bound for the number
of centers, and the total load for the output of the K sets.
Given the above definitions of the networkmodel description,

the DCCPP problem can be formulated as follows

Minimize (CUtiK + CAssig) (1)

The optimization model reflects two objective functions,
the cost-utility function and the assignment cost function,
to minimize the overall network resource cost. The first term
of the objective function (1) is the cost-utility function CUtiK .
It reflects the overall fixed cost of locating controllers by
covering all demand request nodes. The second term is the
assignment cost CAssig represents the weighted flow traffic
generated at the switch and the delay from the switch to the
controller.

B. CONTROLLER LOCATION COST

We considered the controller utilization cost as an operating
cost toward the maintenance and communication costs as
an initial assumption. The setup of the infrastructure and
maintenance costs of the controllers were almost static for the
different network service providers. The number of servers
was related to the number of computational resources, i.e.,
CPU cores, needed for the NFV functions chains, i.e., virtual
gateways, or SDN function chains, i.e., controllers [7]. Since
our main focus was the network design, the cost of locating a
minimum number of controllers is defined as:

Minimize CUtzK =
∑

j∈m

Yj (2)

Subject to :
∑

j,i∈N

Yj ≥ 1, ∀j, i ∈ N , (3)

∑

j∈J

Yj = K , (4)

Xij ≥ yj, i ∈ Si, j ∈ Cj, (5)
∑

i∈n

Xij = 1, ∀i ∈ n, (6)

Xij−Yj ≤ 0 j ∈ K , i=1, 2, 3, . . . , n, (7)

Yj,Xij=0, 1 j ∈ K , i=1, 2, 3, . . . , n, (8)

Equation (3) assured that there is only one controller for
each control domain. Constraint (4) divided the network into
the K (K ⊂ j) service regions. Note that K is the minimum
number of controllers required for each demand sites within
the minimum delay grantee. While constraint (5) guarantees
a given NE, which is assigned to the nearest active controller
or server itself. Constraints (6) and (7) were the assignment,
or demand satisfaction constraints, which ensured that each
NE was assigned precisely to exactly one controller, j, and
the requested demand was satisfied by the located controller
in the cluster. This confirmed that each switch was attached to
the established controller within the distance limits. Finally,
equation (8) defines the auxiliary decision variables as binary.
The controllers would then be in a good location to

appropriately adapt their resource utilization to provide the
bandwidth required and the optimum response time for the
forwarding devices.
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C. END TO END NETWORK DELAY

The latency between the controllers and their associated
switches is the most crucial design factor for some
delay-sensitive applications and determines the efficiency of
the 5G network. The end-to-end network delay consists of
three components: Packet sending delay (τi), propagation
delay (τij), and processing latency (γj). According to [49],
the processing latency for NFV and SDN switches is min-
imal (microseconds), compared to the network propagation
latency of a widespread core network topology, which is in
the order of milliseconds.
The calculation of the propagation delay between the con-

trollers and their NE on a graph depends on the location
chosen to achieve a minimum distance between the demand
to be assigned and the controllers on a given network. The
travelling flow latency cost is defined as the minimum delay
between the controllers and switches path to elaborate on the
shortest path. The algorithm examined the weighted distance
from the node to the near center in such a way that satisfied
the following condition, as in:

Minimize DNW = (Max(dij)) (9)

Subjected to : τNW ≤ Tthreshold τNW ≥ 0, j ∈ CK (10)

Equation (9) shows that the essence of reducing latency
was an important principle through which we can accurately
identify the required number of controllers by monitoring
the minimum latency Tthreshold in order to minimize costs.
Constraint (10) focuses on the network delay bound con-
straint, which declares the types of decision variables and
their restrictions. Higher latency typically refers to switches
failing to implement flow rules in time, influencing network
reliability and availability.

D. DYNAMIC ASSIGNMENT COST

The controller is responsible for scheduling interconnect-
ing services throughout the distributed network. Therefore,
assigning the switch to the core controllers requires band-
width and delay measurement before the average workload is
exceeded. The SDN controller handles and controls several
request-demand messages (PACKET IN) from switches. The
controller then calculates the flow routing path to initiate a
traffic flow exchange. If the requested controller accepts the
request, it returns either the approved acceptance ACK or the
denied ACK. Incoming traffic can be handled dynamically
with a flow table structure.

On the other hand, the SDN controller informs the nodes
how to distribute the flow through the (PACKET OUT)
message. Subsequently, the controller load consists of the
(PACKET IN) and (PACKET OUT) arrival flows. As we
consider all the control domains that the flow passes through,
traffic thus consists of all concerned requests for flow setup
and reply-responses. However, in the selected path, the capac-
ity of usable bandwidth is shared by multiple switches and is
assigned by the controller. Overloading the controller leads
to increase response delay of network events and failure of

the controller [51]. However, the total delay from the source
to the destination depends on the path diversity. The perfor-
mance metrics, such as response time, is calculated based on
the elapsed time between the transmitted data packets and the
successful receipt of the data packets themselves.

The workload in a service region depends on both the
average arrival rate of flow (λi) that is requested for by each
switch and the travel time (τij) between the nodes i and j,
respectively. We modelled the switch weight λij(t)dij as the
number of new flows per unit of distance, as in:

λij(t) =
∑

i∈n

λi(t) (11)

Then, the total amount of average arriving flows requested
by the switches and accommodate at the controller is:

fc(dj) =
∑

i∈n

λij(t)fr (di), (12)

To this end, the controller load is given by:

LC (Cj) =
∑

i,j∈N

fc(d)j (13)

The controller load is defined as capacity to handle the
number of flow events from all current switches to their
domain controllers. The higher the number of flows (or
switches) that the active controller manages, the more it
is utilized to achieve the best cost to obtain an equal and
balanced resource distribution between the controllers under
the constraint capacity.
Thus, it is crucial for such bottleneck problems to balance

the load using a dynamic load balancing approach that is
proposed for clustered controllers based on the idea of a
switch reassignment mechanism. The approach helps in the
mitigation of unnecessary signaling and resource utilization.
Therefore, each partition load is adjusted, and splitting occurs
across the number of switches in the controller management
domain and the size of the flow to be processed by each
switch. As a result, neighboring domain controllers in the
sub-networks try to create a destination to change the resource
itself and cooperate in a distributed manner to decide the
available resources providing the required bandwidth for the
allocation process feedback on the network’s state [4].
The aim is to decrease the resource cost by assigning the

total number of servers available (e.g., in the DCs deployed).
The sum of the switches’ weight cost should therefore be
reduced at a single DC location. Note that since the con-
trol plane requires more resources (or memory) to adapt to
dynamic flow profiles, the system needs to be reconfigured.
The load-balancing algorithm iteratively adjusts the traf-

fic flow splitting ratios so that traffic can be diverted from
the maximum utilization link in the network. Similarly,
in the multi-control 5G-CN, the used and available data flow
resources are not local concepts but are linked to the adjacent
nodes at the end of the path. Therefore, to extend the CPP
problem, the dynamic assignment traffic allocation problem

2608 VOLUME 9, 2021



A. A. Z. Ibrahim et al.: Heuristic Resource Allocation Algorithm for Controller Placement in Multi-Control 5G

is formulated as a linear programming model. Both the num-
ber of required servers and the resource assignment cost
CAssig are minimized according to the following equation:

Minimize CAssig =

n
∑

i=1

m
∑

j=1

λij(t)dijXij +
∑

J∈K

fc(dj)YijK

(14)

Equation (14) is subjected to the previous constraints (4),
(5), (6), and (7). All the switches must be allocated and
controlled by their fixed controllers in a subdomain YK = 1,
∀K ∈ C . They have to satisfy the demand request send to the
controller, as follows:

∑

j∈J

λiXij = fr (di) for i = I and j = J , (15)

Otherwise, constraint (15) follows the flow balance con-
straint, which enforces a total load of each located controller
to satisfy its desired switch requests.

∑

j∈K

fr (di)Xij ≥ fc(dj), (16)

Both constraints (15) and (16) are related to the flow vari-
ables and the assignment decision, which belongs to the same
controller. The requested flow by a switch can be set by the
controller j, only if it is available on the controller, j. The con-
straints forbid the delivery ofPACKET_IN from the controller
to the switch if the controller is overloaded. Through the
model, constraint (17) is a capacity constraint for controller
capability as described in:

∑

i∈N

fr (di)Xij ≤ ςjYj. (17)

Ensuring the number of switch demands XijK is assigned to
a given controller, which does not exceed its maximum upper-
bounded nominal capacity ςj.

Solving the objective function in (14) results in balancing
the load according to the amount of traffic to migrate between
the network devices while minimizing the cost amongst all
paths in the network. It also specifies the incoming traffic
flow correlated with the demand, of which it originates from
the switch and enters the node (λij) where the controller is
situated. It must be equal to the demand fraction served by
that controller, as well as the outgoing traffic flow leaving that
node since this demand is optimally assigned to another con-
troller. The pseudo-code for Algorithm 1 is given in Table 2.
The placement algorithm is summarized in Algorithm 1.
For each problem mentioned above, we attempted to

construct a subgraph G(N ,E,K ) == (
⋃K

j=1 Nj,
⋃K

j=1 Ej)
corresponding to the given completed edge-weighted graph
structure, such that the length of the longest edge constraint
by (5) and (6) and the maximum path capacity of an edge
E(i, j) ∈ (2ςj ≤ fr (di)) was minimized. Accordingly, in each
feasible region, the dominated set switch SijK ⊂ Si∈n was to
reside in the nearest available controller Cj ⊂ Ck . The edges’

TABLE 2. The Pseudo-code for DCCPP K-center Algorithm.

weights corresponded to the shortest path distances and satis-
fied the dij ≤ dijk values of the decision binary variables Xij ∈

{0, 1}. It is necessary to ensure that, at
∑

j∈m

ςjk ≥
∑

J∈K

fc(dj)

the location of the controllers provided a feasible solution
by having an adequate cumulative capacity to meet all of the
necessary demands and certain boundary criteria that needed
to be specified. Firstly, the transfer should not impose the
capacity constraint of the controller, and secondly, the min-
imum number of controllers that met the above constraints
need to be known. The optimal solution for the optimization
model can therefore be set to the minimum cost-network load
(fr (di)) with a lower bound, the minimum quantity of ςj, and
the demands (fc(dj)) of the network flow problem shown.
Moreover, as the dynamic traffic changes, the value of the
K controllers also changes dynamically. Then it is mapped to
the SDN switches for the maximum number of controllers

VOLUME 9, 2021 2609



A. A. Z. Ibrahim et al.: Heuristic Resource Allocation Algorithm for Controller Placement in Multi-Control 5G

in terms of the upper bounds. Both methods can use the
average delay of the decision-levels (location, allocation, and
capacity). Based on the constraints (16) and (17), we can
see that such a property is still held for, which establishes
the dynamic assignment of switches. In the following, we
provided some definitions for the algorithm design.

1) THE LOAD BALANCES RATIO

The main load of the controller comes from the processing
of the flow requests by the switches. In order to sustain
uniformly distributed traffic across all switches, any con-
troller on a subnetwork must compute resources while the
switches generate requests and maintain their load. It covers
the traffic volumes provided by the controller. Before reas-
signing the switch, we need to identify the threshold that
uses the controller load to determine the network factor or
assignment factor. The threshold value β can be expressed as
the difference between the load value of the controller and its
capacity is:

β =
1

ςj(CK )
(
∑

j∈K

(ςj(CK ) − Lc(Cj)K )) (18)

This threshold reduces the disparity between the number
of switches assigned to the maximum load controller and the
minimum load controller. The framework then sends invita-
tions based on the threshold set out in (18). If the demand
requested by the switch exceeds the load threshold of the
controller, it will be overloaded, and the overall demand will
be blocked. On this basis, the blocking meets the criteria set
out in (19), and the blocking is then specified in accordance
with the following conditions:







ςj(CK ) > β, underprovision

ςj(CK ) < β , overloaded

ςj(CK ) = β , balanced







(19)

The controller uses the blocking amount to reassign the
necessary demand nodes to another controller on the net-
work. Rerouting traffic from heavily loaded controllers to
middle-boxes is primarily responsible for analyzing and
tracking, or dropping, malicious traffic. This process ensures
the reliability and resilience of the network.We also described
the resource blocking ratio as one of the techniques assessed
to maintain a lack of connection, or link interruption, due
to the controller capacity overload. The general working
concept of the load calculation module was discussed in
Algorithm 1.

2) THE RESOURCE SCHEDULING EFFICIENCY

Obviously, each controller can only serve a limited number of
switches. The network resource is best used if the load is more
equitably distributed and balanced across the network. The
goal of the switch assignment cost strategy is to assign certain
switches between network controllers until the controllers
exceeded their load based on higher assignment performance.
Therefore, the resulting topology is analyzed in terms of
the efficiency of the resource scheduling at the controller to

measure the performance of the number of active controllers
demands requested by the switches, concerning the capacity
of the cluster’s controller.

ηRe sorceAssig =

∑

i,j∈N

fc(dj)

∑

j∈K

ςj(CK )
(20)

In view of the role of the controllers, the idea here is to
develop solutions in a variety of ways in terms of resource
performance. Certain switches may have a higher prefer-
ence depending on their distance when assigned to the con-
troller. Among the resulting availability and blocking ration,
Algorithms 2 and 3 have optimum assignment costs by
minimizing variable server costs. The pseudo-code of
Algorithms 2 and 3 for scheduling and rescheduling are
shown in Tables 3 and 4, respectively.

TABLE 3. The pseudo-code for resource scheduling.

V. THE PROPOSED SOLUTION APPROACH FOR DYNAMIC

CAPACITATED CONTROLLER PLACEMENT PROBLEM

This section presents an approximate solution for the DCCPP
in the 5G-CN based SDN and NFV, which is analytically for-
mulated as a heuristic NP-hard problem [44]. Our strategy for
the proposed Algorithm 1 requires utilizing the center in each
subnetwork of the desired clusters {(C1,C2, . . . ,CK ),Cj,
j ∈ CK }. Concurrently, assigning the switches to each center
on the minimum accepted delay level ensures scalability and
load balancing based on the available objective functions.
In this context, such a solution is referred to as capacitated
K -center problems.
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TABLE 4. The pseudo-code for resource re-scheduling.

Given the location of the controllers in Algorithm 1, there
are essentially three levels of decisions for a feasible region;
the number of controllers, the assigned demand nodes and
the capacity to deliver optimum location costs, which is
achieved by reducing the number of variable costs of the
nodes. Though, all capacity and demand constraints have
been relaxed due to the assignment problems in the first
and second cases of the DCCPP.
Consequently, once the controllers are configured or bipar-

tite domains are established, the forwarding device may be
optimally assigned to the network. The algorithm calculates
the weighted distance between each point and the center of
the cluster by choosing the controller to become the cen-
troid for each cluster. The deployment between switch and
controller [λijdij] forms a traffic matrix. These switches are
allocated to the nearest controller based on the used standard
minimum cost delay function Xij ∈ {d(Cj, Si)} and the flow
request technique. The shortest path distance is then calcu-
lated based on the coordinates and the adjacent matrix. The
node with the highest end-to-end latency to the centroid is
selected as the second initial center until all the centroids
are located together. The centroids are then recalculated as a
means of all points assigned to them with an initial partition
based on a modified capacitated K -center algorithm. After
a number of iterations, the algorithm repeats from solving
the above model described by the constraints (3)–(8) across
all centers of the network CK , (j = 1, 2, 3, . . . ,K ), which is
constructed as making sure no point is left out. At this point,
the first two levels of decisions {Yj}, and {Xij} which have
been initially obtained, are then used to construct the service

regions. Such clustering considers only the location of the
nodes assigned to each controller and can thus deliver arbi-
trarily low imbalanced results. The final possible locations
are those with a minimum sum of costs.

There is no a priori information on the number of con-
trollers to be located in the CCPP. Our algorithm began with
one controller and implemented an algorithm that raised the
number of controllers by one unit for each iteration sequence.
The algorithm stopped when there were no changes to the
objective function by picking many controllers. This proce-
dure evaluated the location selection process, in which each
iteration of the solution minimized the sum of the fixed
location of node costs.

The assignment cost of the switches to the controllers was
determined by the weight of the link or the shortest distance
to the controller.

The closed pseudo-computing code for assigning or
scheduling switches to the controllers is seen for Algorithm 2
in Table 3. In this case, the GRS technique was used to
solve a switch assignment problem. This heuristic approach
is an iterative process, in which each iteration consisted of
two phases; construction and a local search. The construc-
tion phase offered a viable solution to the objective of the
respective traffic forwarding problem. The algorithm related
to the interconnected path between the nodes in the network
determined the controller location’s neighborhood structure.
This included the traffic matrix. Generally, the neighborhood
focused on the demand point (switches). The nearest con-
troller represented the controller in the clusters and switches
were assigned to the controller when considering all delays
and loads.

Scheduling began with the input of the original traffic
assignment matrix in Algorithm 2. The loop from line 2 to
line 11 assigned a positive input of the actual traffic matrix
to one of the controller mode matrices, CK , in the decompo-
sition. The controllers in line (4) then examined the capac-
ity constraints related to the control and satisfaction links.
To ensure that the controller capacity was not exceeded, each
controller tested the threshold level β for normal operation
levels. However, if there was a variation in the controller’s
capacity, it would be overloaded and subjected to extra data
blocking. Otherwise, a new switching mode matrix is initial-
ized in line (7) of Algorithm 2 to accommodate all unassigned
entries and conflicts associated with the drop. The neighbor-
ing area under generation is then completed in lines 13–15 of
Algorithm 1 by the blocking matrix. The algorithm repeats
the search process for all the nodes in the request list, as the
solution varies. If the solution is improved (lower bound),
the algorithm preserves the current assignment or restores the
feasible assignment to retain the optimum cost.

The integrated nature of the problem does not mean
that such sub-problems (position and assignment) cannot
be isolated, where the location of the controller reflects
decision-making at the strategic level, and the switch assign-
ment stage provides flexibility at the operational stage.
Using a decision-supporting multi-objective optimization
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workflow provides scope for flexible management
decision-making.
At this stage, the rescheduling of the blocked nodes is

carried out and oriented via the assigning principle. A nego-
tiation process is initiated between the controller and the
assigned switch, based on the traffic volume and the min-
imum distance specified beforehand. Secondly, when the
controller gets ACK messages from its neighbor, it decides
on one of its migration switches and sends a notification of
migration to its neighbor. The next cluster controller selection
often depends on estimating the shortest distance and load
balancing ratio in (18) to ensure the latency threshold and the
controller bandwidth limits as desired.

The rescheduling process can be carried out by modifying
the roles of the controllers in order to set the traffic flowing
along with the new dijK ∈ LC from the demand point to the
next controller. However, the next controller is determined
by the minimum distance and the corresponding nominal arc
capacity

∑

J∈K

fc(dj)KYijK ≤ β. Assuming that all controllers

have an equivalent capacity (ςj) to serve whatever is assigned
to them. Therefore, for load balancing and reliability to be
handled (so-called capacitated constraints), the assignment of
each request to its nearest located controllers can be gradually
optimized until the best possible assignment is achieved.
In this case, if the demand surpasses the capacity, it means
that the controller has reached the maximum processing
capacity and is overloaded. To this end, a few nodes will be
blocked (dropped) or sent to the nearest cluster, or redundant
controllers will depend on the layout of the distributed control
plane.

The accuracy of the results can be further enhanced by
executing the algorithm code several times for each itera-
tion. Besides that, in both cases, we assumed the balanced
version of these problems. A potential way to solve this
situation, where

∑

i∈I

fr (di) ≥
∑

j∈K

ςj is to bound the maxi-

mum number of nodes, is assigned to a single controller by
constraints 17 and 19.
Hence, Algorithm 1 aims to determine the number and

location, where a cost function depends on the vertices. For
Algorithm 2, the objective is to pick a set of centers where the
total cost is at most K , such that the distance is minimized.
If the solution improves (lower objective), it keeps the new
location. Otherwise, it restores the initial location. Then,
it repeats the procedure for all demand points to be located.
Algorithm 3 is responsible for rescheduling the overloaded
switches to neighboring controllers.
Following a procedure that has been generalized for all

graphs, G, the solution with a minimum center is the final
solution for a balanced K-center problem. In all instances of
the algorithms, we considered the optimal versions of these
problems.

VI. MODEL PERFORMANCE EVALUATION

In this section, the network reflected the actual physical prop-
erties of a communication link to calculate parameters that

evaluated its performance. Therefore, the findings focused on
four evaluated criteria; delay cost, network load cost, number
of controllers, and network size.

A. SIMULATION MODEL

In the simulation, we considered the random traffic and
location scenarios for different networks consisting of several
SDN nodes randomly deployed in a 2000 km × 2000 km
square area as in [51]. The location of the nodes followed a
uniform random distribution in the simulation region. A node
can request demand from 0 up to 100 kbps/req within the
network under service region. The processing capacity of
the controller is set to 1800 k flows/s as adapted from [20].
We considered that all controllers had the same function-
alities. Besides, we identified the minimum and maximum
controller capacity required to satisfy all specifications.
The controllers can be located at any of these node degree
locations, depending on the calculation of the node values
concerning the number of node neighbors.

The empirical results of the model conducted over the
various WAN topologies architecture are presented. The
link weights are set to become the propagation delay tool,
which measured the distance between the controllers and the
switches. The proposed algorithm was then implemented and
tested in MATLAB using an Intel Core i7/Gen 10 processor
and 12GB of RAM.

B. ASSIGNMENT COST AND DELAY

Testing was carried out in a simulated environment with
different topologies, across 25, 34, 42, 54, 61, 100 and
150 nodes. The number of K controllers ranged from 1 to 8.
The focus was on quantifying the trade-off between the load
balancing rate using the switch assignment method and the
task cost. Then, we evaluated the switch assignment cost for
each process.

Simulations were conducted to assess the behavior of the
networks when the number of controllers varied. We eval-
uated our proposed algorithm’s performance regarding the
adoption of total assignment costs and end-to-end latency.
It is compared to the previous proposed CCPP methods,
K-mean algorithm and Kuhn-Munkres (K-M) for capacity
matching strategy in [43], and the capacitated K-median
based on the minimum-cost flow algorithm in [52].

To meet this purpose, we first calculated the total cost loca-
tion value using the normal capacitated location based on the
K-center method to obtain an optimum number of controllers.
The problem of the trained positioning of the controller was
considered to reduce the delay of the control paths and the
load of the controllers. Other techniques, however, measured
the switch migration and minimized load balancing.

Figure 3 displays the assignment costs of the three
methods. Our method DCCPP and the two other methods,
2 and 3, as well as the number of controllers used over various
network sizes. As shown, the assignment costs increased with
the number of controllers used. Our approach showed that an
optimal number of controllers and a range of network sizes
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FIGURE 3. Assignment cost for different three methods.

could be achieved at a low cost. The process of locating the
central controllers in theDCCPPwas performed directly from
the first step. However, the other twomethods used to find the
controller depend on the search steps.
In comparison, our approach selected the number of con-

trollers with minimal iterations, compared to other methods
that picked the number of clusters after several iterations.
Many iterations meant more burden toward the controller
output, which, at the same time, leads to a computationally
expensive system. To sum up, in our method, the correct
number of controllers can be determined to prove that our
assignment algorithm was effective and accurate, compared
to other CCPP assignment algorithms.
The average delay and number of controllers were quanti-

fied over various network sizes. Simultaneously, the proposed
algorithms performance improvements were evaluated under
a realistic network model, as shown in Figure 4. Our method,
the DCCPP, could achieve a lower delay than the other two
methods. As the K value increased, the average delay of
three approaches decreased. However, the K-center locates
the nodes resulting in producing good clustering from the first
steps of the algorithm, while, the K-median searches for good
clustering resulting in consuming time to locate the nodes.
In addition, to balance the number of switches assigned to
each controller, certain switches were assigned to another
controller.

FIGURE 4. The trade-off between the network average delay and number
of controllers over different networks for different three methods.

Figure 5 shows the trade-off and dominant effects of
the average network delay and the average number of

FIGURE 5. The average network delay and number of controllers over
different sizes of the network.

controllers and their locations for the same group of topolo-
gies. Each boxplot corresponded to a set of minimum and
maximum delays (short distances) for each network, which
were grouped according to their sizes. For example, the selec-
tion of the optimal controllers was calculated at a minimum
value for the average delay.

As the number of controllers increased, the delay reduced
since the nodes were allocated to a minimum distance.
In other words, all controllers were assigned during the min-
imum average delay. Although the delays with fewer con-
troller numbers were high, the nodes were located far off from
the controllers.

Therefore, we presented the results for these different
topologies to investigate the impact of the deployment of the
controllers across a variety of controllers (the preselection K
for 1 to 8 controllers). The results focus on four evaluated
criteria the delay cost, network load cost, controller center
resources cost, controller numbers, and the size of the ranging
network.

Firstly, the algorithm located points based on the distance.
After allocating controllers in clusters and assigning the
switches to their nearest controllers based on the capacity,
the switches started to request data from controllers within
the cluster. Therefore, if the number of switches associated
with a specific controller capacity was met, there was no
need for rescheduling. It noted that the trend analysis to
determine the optimum resource balance between controllers
and network nodes must be performed in various situations,
as the optimum ratio can vary for each particular situation.

C. CONTROLLER LOAD BALANCING

In the DCCPP, the selection of the optimum controllers was
determined at theminimum value of the average delay and the
capacity. This was done in consideration of the management
and deployment costs of the controllers.

Figure 6 illustrates the relationship between the number of
controllers before rescheduling and load balancing ratio (β).
The ratio β indicates the number of blocked data that reflects
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FIGURE 6. The balance ratio and number of controllers over different
network sizes.

the difference between the load of the controller and its capac-
ity. Blocking data gradually declined to a balanced level (near
zero), with the increase in the number of controllers. The
controller’s resources, including storage and limited capacity
to schedule switches, could accommodate and maintain a
limited number of OpenFlow switches.
During an overload decision, some nodes may be blocked.

The blocking rate gradually declines with an increase in the
controllers. In the case of the topologies mentioned above,
load balancing is desirable to provide a better load dis-
tribution between the controllers. However, the scheduling
efficiency depends on the blocking ratio (balance index),
which decreases with an increasing number of controllers
over different network sizes.
For the different number of controllers, the balance factor is

very different. For example, at K = 1 and K = 2, the higher
balance factor shows a higher blocking rate of data. But, when
K > 3, all cases’ balance factor is near zero, whichmeans that
there is no overload at the controllers. The blocking data then
declines gradually to become zero, with an increase in the
number of controllers. At this point, the load is well balanced
amongst controllers.

The resulting configuration of the topology was also eval-
uated in terms of resource performance (rescheduling effi-
ciency) for overload cases. The performance was defined
as the amount of demand requested by the switches for the
capacity of the cluster controller. Figure 7 describes the rela-
tionship between many controllers, the performance of the

FIGURE 7. Impact of the resource performance over different topologies
and number of controllers before rescheduling of resources.

assigning switches, and the blocking ratio under a balanced
factor. In this work, we have defined the efficiency of the
scheduling ratio, from (20), to be between 10% and 100%
of the data traffic demand over several iterations.

D. SELECTION OF OPTIMUM NUMBER OF CONTROLLERS

The optimal number of controllers was selected for optimum
efficiency. However, the performance varied based on the
distance between the nodes. Some nodes were very far off
from the controller, resulting in poor resource scheduling,
contributing to low performance.

Consider a scenario with a number of 54 nodes (medium
size network), where, typically, the selected control num-
ber is picked with a higher efficiency before the reschedul-
ing is approximately set at 80%. This optimum number of
controllers maximizes performance and minimizes network
load costs, as discussed in Figure (2). This observation
extends to different sizes of topologies, ranging from small
(25, 42, 54) to wide (61, 100, 150) nodes and all the number
of controllers used. In our methodology, the added reschedul-
ing of resources would compromise for more reliability and
balancing of resources. For Algorithm 3 within rescheduling,
each node can search for the next server on the line, based on
the shortest distance and the available capacity.

Figure 8 shows the relationship between the number of
controllers and resource scheduling efficiency. The selection
of controllers for each size of the network was decided with
optimal resource efficiency. For example, for a network with
a size of 100 nodes with an efficiency of 92%, the cor-
responding number of controllers is 5. However, there are
3 controllers for 54 nodes, 1, 2 and 3 controllers for a 95%
performance level.

FIGURE 8. The optimal number of controllers at maximum resource
efficiency before rescheduling.

In this case, the optimum number of controllers should be
chosen for other considerations, such as the lower balance
factor seen in Figure 9. Locations that optimize performance
and minimize the expense of network loads to find an opti-
mum number of controllers are seen in Figure 9. The execu-
tion of the rescheduling of resources would also compromise
for much better reliability and minimal blocking of resources.
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FIGURE 9. The optimal number of controllers at maximum resource
efficiency after rescheduling.

Nevertheless, a higher number of controllers raises the
deployment costs incurred, maintaining the controllers
required. More controllers also mean a waste of resources,
particularly for a densified network.

VII. CONCLUSION

In this paper, the integration of SDN and NFV for efficient
5G-CNwas presented.We developed a resource management
algorithm to identify the controller placement in distributed
5G SDN NFV-based network architecture. The optimal solu-
tion for both the location and the number of controllers under
dynamic traffic was achieved through the proposed DCCPP
based on the generalization of K-center algorithm and
Graph Theory. Also, the GSR heuristic was used for switch
assignments and scheduling of resource allocation problems.
We also investigated the resource scheduling efficiency to
measure the quality of the switch-to-controller assignment
handled by the controller. Our framework achieved the
proposed management scheduling algorithms to meet the
load balancing and optimal resource management cost in
the distributed control layer. The results indicated that the
allocation and the optimum number of controllers under an
effective decentralized policy could achieve a higher resource
assignment efficiency to accomplish an exemplary network
configuration.
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