
 Open access Journal Article DOI:10.1109/TG.2020.3005214

Heuristic Search Value Iteration for Zero-Sum Stochastic Games — Source link

Olivier Buffet, Jilles Steeve Dibangoye, Abdallah Saffidine, Vincent Thomas

Institutions: University of Lorraine, Institut national des sciences Appliquées de Lyon, University of New South Wales

Published on: 01 Sep 2021

Topics: Admissible heuristic, Heuristic, Markov decision process and Bellman equation

Related papers:

 Solving Discounted Stochastic Two-Player Games with Near-Optimal Time and Sample Complexity

 Policy iteration for decentralized control of Markov decision processes

 A sampled fictitious play based learning algorithm for infinite horizon Markov decision processes

 Markov Games: Receding Horizon Approach

 Planning Algorithms: Sequential Decision Theory

Share this paper:

View more about this paper here: https://typeset.io/papers/heuristic-search-value-iteration-for-zero-sum-stochastic-
1gli8j9nd7

https://typeset.io/
https://www.doi.org/10.1109/TG.2020.3005214
https://typeset.io/papers/heuristic-search-value-iteration-for-zero-sum-stochastic-1gli8j9nd7
https://typeset.io/authors/olivier-buffet-45xii12rd4
https://typeset.io/authors/jilles-steeve-dibangoye-3cd89qdzt4
https://typeset.io/authors/abdallah-saffidine-5gbyby1du9
https://typeset.io/authors/vincent-thomas-2vx3m5nlc0
https://typeset.io/institutions/university-of-lorraine-wzc63y7x
https://typeset.io/institutions/institut-national-des-sciences-appliquees-de-lyon-317wm89c
https://typeset.io/institutions/university-of-new-south-wales-2xt68jp7
https://typeset.io/topics/admissible-heuristic-3eskjixw
https://typeset.io/topics/heuristic-1j4coxuz
https://typeset.io/topics/markov-decision-process-340ddo4p
https://typeset.io/topics/bellman-equation-3kxmproe
https://typeset.io/papers/solving-discounted-stochastic-two-player-games-with-near-3zs5bjzw89
https://typeset.io/papers/policy-iteration-for-decentralized-control-of-markov-4o370z0joy
https://typeset.io/papers/a-sampled-fictitious-play-based-learning-algorithm-for-m2iqnigpat
https://typeset.io/papers/markov-games-receding-horizon-approach-3ulb4ru3au
https://typeset.io/papers/planning-algorithms-sequential-decision-theory-34ls7hmz72
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/heuristic-search-value-iteration-for-zero-sum-stochastic-1gli8j9nd7
https://twitter.com/intent/tweet?text=Heuristic%20Search%20Value%20Iteration%20for%20Zero-Sum%20Stochastic%20Games&url=https://typeset.io/papers/heuristic-search-value-iteration-for-zero-sum-stochastic-1gli8j9nd7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/heuristic-search-value-iteration-for-zero-sum-stochastic-1gli8j9nd7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/heuristic-search-value-iteration-for-zero-sum-stochastic-1gli8j9nd7
https://typeset.io/papers/heuristic-search-value-iteration-for-zero-sum-stochastic-1gli8j9nd7

HAL Id: hal-03080314
https://hal.inria.fr/hal-03080314

Submitted on 27 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heuristic Search Value Iteration for zero-sum Stochastic
Games

Olivier Buffet, Jilles Dibangoye, Abdallah Saffidine, Vincent Thomas

To cite this version:
Olivier Buffet, Jilles Dibangoye, Abdallah Saffidine, Vincent Thomas. Heuristic Search Value Iteration
for zero-sum Stochastic Games. IEEE Transactions on Games, Institute of Electrical and Electronics
Engineers, 2021, 13 (3), pp.1-10. ฀10.1109/TG.2020.3005214฀. ฀hal-03080314฀

https://hal.inria.fr/hal-03080314
https://hal.archives-ouvertes.fr

c©2020 IEEE / TRANSACTIONS ON GAMES / DOI: 10.1109/TG.2020.3005214 1

Heuristic Search Value Iteration

for zero-sum Stochastic Games
Olivier Buffet, Jilles Dibangoye, Abdallah Saffidine, Vincent Thomas

Abstract—In sequential decision-making, heuristic search al-
gorithms allow exploiting both the initial situation and an
admissible heuristic to efficiently search for an optimal solution,
often for planning purposes. Such algorithms exist for problems
with uncertain dynamics, partial observability, multiple criteria,
or multiple collaborating agents. Here we look at two-player
zero-sum stochastic games with discounted criterion, in a view
to propose a solution tailored to the fully observable case, while
solutions have been proposed for particular, though still more
general, partially observable cases. This setting induces reasoning
on both a lower and an upper bound of the value function,
which leads us to proposing zsSG-HSVI, an algorithm based on
Heuristic Search Value Iteration (HSVI), and which thus relies on
generating trajectories. We demonstrate that, each player acting
optimistically, and employing simple heuristic initializations,
HSVI’s convergence in finite time to an ǫ-optimal solution is
preserved. An empirical study of the resulting approach is
conducted on benchmark problems of various sizes.

I. INTRODUCTION

H
EURISTIC search techniques have been introduced to

solve single-agent single-criterion optimization problems

in deterministic settings, often for planning purposes, with

algorithms like A*, (L)RTA*, or RBFS [1, 2]. They have then

been extended to solving problems with stochastic dynamics

in the MDP or POMDP framework as in (L)RTDP, (L)AO*, or

HSVI [3, 4, 5], and even in multi-agent collaborative settings

in MAA* or FB-HSVI [6, 7]. In all these cases, a single

criterion is considered, so that guiding the exploration by being

optimistic remains a rather straightforward thing to do, even

when planning for multiple agents. When multiple criteria are

considered (for a single agent or collaborative agents), this

guidance can be adapted both when aggregating the criteria or

when searching for a Pareto front [8]. Our focus here is on

Manuscript received December 9, 2019; revised May 10, 2020; accepted
June 19, 2020. This work was supported by the French National Research
Agency through the “Planning and Learning to Act in Systems of Multi-
ple Agents” Project under Grant 19-CE23-0018-01. (Corresponding author:

Olivier Buffet.)

Olivier Buffet and Vincent Thomas are with Université de
Lorraine, INRIA, CNRS, LORIA, F-54000 Nancy, France (e-mail:
{olivier.buffet,vincent.thomas}@loria.fr).

Jilles Dibangoye is with Univ Lyon, INSA Lyon, INRIA, CITI, F-69621
Villeurbanne, France (e-mail: jilles-steeve.dibangoye@insa-lyon.fr).

Abdallah Saffidine is with the University of New South Wales, Sydney,
Australia (e-mail: abdallahs@cse.unsw.edu.au).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

c© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Digital Object Identifier 10.1109/TG.2020.3005214

non-collaborative multi-agent problems. We look in particular

at discounted two-player zero-sum stochastic games (zs-SGs)

with perfect information and finite state and action sets. Such

games can serve for instance in robust control [9], or in

solving or analyzing Real-Time Strategy games (e.g., µRTS

[10]). While particular partially observable SGs, hence more

general problems, have been solved through heuristic search

[11, 12] (see next section), this work fills a gap by proposing

and studying a simpler solution that is better suited to the fully

observable case.

Here, discounted zs-SGs are equipped with (i) an initial

state s0, and (ii) initial upper and lower bounds (U and L) of

the optimal value function, i.e., admissible heuristics. Under

these assumptions, we look at learning/trajectory-generating

algorithmic schemes (à la LRTA*, (L)RTDP or HSVI), and

show that trajectories can be generated by letting the two

players act optimistically—one greedily w.r.t. to an upper-

bound U of the optimal (Nash equilibrium) value, the other

w.r.t. to a lower-bound L—while ensuring that these two

bounds converge to the optimum. Using two bounds naturally

leads to algorithms resembling Bounded-RTDP and HSVI

[13, 5]. We take inspiration from HSVI, to derive our main

contribution, zsSG-HSVI, a heuristic-search algorithm that

provably converges in finite time to an error-bounded solution.

The paper is organized as follows. It first discusses re-

lated work on stochastic games in Section II and provides

background on normal-form games, Markov decision pro-

cesses (MDPs), and stochastic games in Section III. Shap-

ley’s reference algorithm, whose stopping criterion relies on

the Bellman residual (BR), is called here Shapley-BR. It is

presented alongside a variant we propose, Shapley-Gap, which

updates both a lower and an upper bound of the optimal

value function, stopping when the gap between them is small

enough. This new algorithm combines properties of Shapley-

BR and our contributed zsSG-HSVI. Then, Section IV presents

preliminary results on upper- and lower-bounded normal-

form games before proposing the key ingredients to deriving

zsSG-HSVI and proving its convergence. Finally, Section V

presents an empirical study before concluding in Section VI.

Complementary discussions and benchmark problem descrip-

tions are provided as supplementary material (referred here as

appendices).

II. RELATED WORK

Discounted zero-sum stochastic games (zs-SGs) have been

addressed using approaches such as exact dynamic program-

ming (DP) [14] (akin to Value or Policy Iteration for MDPs),

2 c©2020 IEEE / TRANSACTIONS ON GAMES / DOI: 10.1109/TG.2020.3005214

reinforcement learning (RL) [15], policy gradient [16], and

approximate DP [17, 18].

The total reward criterion common in board games, i.e., non-

discounted zs-SGs, requires all trajectories to end in a terminal

state, and has been addressed with (i) RL [15], (ii) backward

induction [19, 20], i.e., applying DP on reachable states while

pruning irrelevant branches based on conservative estimates,

(iii) sub-optimal heuristic search algorithms [21, 22], when

real-time constraints have to be enforced, and (iv) Simultane-

ous Move MCTS [20].1 Here, exact DP algorithms come with

the strongest convergence guarantees. Among them, backward

induction is a form of optimal heuristic search. The present

work differs in that it addresses problems with cycles, non-

zero rewards not restricted to terminal states (which may not

exist), and a discounted criterion.

Recent works addressed particular cases of discounted (two-

player) zero-sum partially observable stochastic games (zs-

POSGs) using heuristic search: Horák et al. [11] considered

One-Sided POSGs, i.e., the case where one player has access

to the system state, plus the action and observation of the other

player, and Horák and Bošanský [12] considered POSGs with

public observations, i.e., the case where each Player i knows

his own private state si and both players receive the same

public observations of each player’s private state, so that they

have common knowledge of Player −i’s belief over Player i’s
private state. Moving from MDPs and POMDPs (as in Smith’s

work 2007) to these settings requires changes to the algorithm

that make a different approach necessary to theoretically

analyze the finite-time convergence. In contrast, the present

paper looks at the simpler case of (fully observable) stochastic

games, which allows for an algorithm closer to the original

HSVI, as well as similar finite-time convergence results, thus

suggesting different convergence behaviors compared to the

aforementioned POSG versions.

To sum up, the present work thus fills a gap, both from a

theoretical and empirical viewpoint, in the study of heuristic

search for zero-sum games in between (fully observable) se-

quential games, non-discounted zs-SGs, and some discounted

zs-POSGs. We now turn to presenting necessary background

on game theory and heuristic search.

III. BACKGROUND

In the following, upperscripts indicate players, and sub-

scripts indicate time steps or iterations.

A. Normal-form/Matrix Games

A two-player game in normal-form is defined by a tuple

Γ
def

= 〈A1,A2, v1, v2〉, where Ai is player i’s (i ∈ {1, 2})
finite set of pure strategies, and vi : A1 × A2 7→ R is

player i’s payoff function. The objective is then, for each

player, to maximize his expected payoff. Unless they have

identical payoff functions, this is not about finding an optimum

of some function, but an equilibrium. A classical solution

concept is that of Nash Equilibrium (NE) [25], defined as

a pair (d1, d2) ∈ ∆(A1) × ∆(A2) of mixed strategies, i.e.,

1For other criteria, refer to [23].

probability distributions over pure strategies, such that no

player has any incentive to deviate on his own:

∀d′1 ∈ ∆(A1), v1(d′1, d2) ≤ v1(d1, d2),

∀d′2 ∈ ∆(A2), v2(d1, d′2) ≤ v2(d1, d2).

In a zero-sum game, v1 + v2 = 0—i.e., one player’s

gain is the other player’s loss—, and we will typically note

v = v1 = −v2. Player 1 then maximizes his expected

payoff, while Player 2 minimizes it. Also, as demonstrated

by von Neumann [26], such a game Γ has a single Nash

equilibrium value NEV(Γ) equal to both the minimax and

maximin values. As a consequence, strategies forming a (joint)

Nash equilibrium strategy (NES) can be found by solving

(often as Linear Programs):

dNES,1 = argmax
d1∈∆(A1)

min
a2∈A2

v(d1, a2),

dNES,2 = argmin
d2∈∆(A2)

max
a1∈A1

v(a1, d2).

B. Stochastic Games

A discounted 2-player zero-sum stochastic (or Markov)

game (zs-SG) [27, 28, 14] is specified by a tuple

〈S,A1,A2, P, r, γ, s0〉, where S is a finite set of states,A1 and

A2 are finite sets of actions (one per player), Pa1,a2(s′|s) is the

probability to transition from state s to s′ when actions a1 and

a2 are performed; r(s, a1, a2) is a (scalar) reward function;

γ ∈ [0, 1) is a discount factor; and s0 is the initial state.

Player 1’s objective is to maximize the expected γ-discounted

sum of rewards E[
∑

t γ
tRt|s0] while Player 2’s objective is

to minimize that same quantity. For convenience, we will

denote: πi : S → ∆(Ai) a stochastic strategy for player i;
and π = (π1, π2) a joint strategy (or pair of strategies) for

both players.

Such a game can be re-written in normal form and solved by

searching for a NE (as a mixed strategy). Yet, a more satisfying

solution concept here is that of Markov perfect equilibrium

(MPE), i.e., noting that a local normal-form game is faced in

each state, solutions which consist in one NE per reachable

state, with Markov strategies, i.e., decisions depending on the

current state alone, not on past information.2 Let us thus define

(i), for any s ∈ S and V ∈ R
|S|, the Shapley matrix game

Γs(V)
def

= [r(s, ◦, ◦) + γ
∑

s′ P◦,◦(s
′|s)V (s′)] (where (◦, ◦)

denotes the various action pairs (a1, a2) in the matrix), i.e.,

the normal-form game faced when in state s and assuming

that the expected discounted return obtained from subsequent

states is specified by value function V , and (ii) Shapley’s

optimality operator H : V 7→ NEV(Γ◦(V)), which computes

the NEV of each state’s Shapley matrix game given V . H is

a contraction mapping, and its unique fixed point is the value

function common to all MPE strategies, denoted V ∗. This

implies that, in any state s, all MPE strategies induce the same

expected discounted returned. Shapley’s algorithm for solving

zs-SGs Shapley [27], analogous to value iteration (VI) for

MDPs, consists in iteratively applying this operator to generate

a sequence of value functions Vk (randomly initialized) until

2As Shapley [27], we do not account for the pay-off relevance of states.

BUFFET et al.: HSVI FOR ZERO-SUM STOCHASTIC GAMES 3

ǫ-convergence (details below), as depicted in Appendix A

(Algorithm 3). Then, when in some state s at execution time,

both players have to act according to a NES of the induced

Shapley game matrix in s. Note: other exact algorithms also

handle problems with no initial states [14], while the present

contribution exploits one.

Stopping Criteria for Shapley’s Algorithm: We first gen-

eralize Shapley’s algorithm for 2-player zero-sum stochastic

games by distinguishing whether moves are simultaneous

or sequential, player 1 acting first or second. This simply

means trading the (simultaneous) minmax operator for Nash

equilibria in simultaneous normal-form games for a min-then-

max or max-then-min operator. In all three cases the same

algorithm converges due to the contraction property induced

by the discount factor.

Whatever the operator at hand, the algorithm usually (i)

updates the values asynchronously (à la Gauss-Seidel) and

(ii) is stopped when the Bellman residual (BR) is below some

threshold θ, i.e. ‖Vk − Vk−1‖∞ ≤ θ. Then, as for VI in the

MDP setting, to ensure that the value of the resulting pair of

strategies πk is within ǫ > 0 of the optimum, this algorithm

(denoted ShapleyBR) should use θ = 1
2
1−γ
γ ǫ.

All three update operators are monotone, i.e., (i) if Vk ≥
V ∗ (∀s), then Vk+1 ≥ V ∗, and (ii) if Vk ≤ V ∗ (∀s), then

Vk+1 ≤ V ∗. This allows us to propose a bounded algorithm,

ShapleyGap, that maintains an upper- and a lower-bound (U
and L) of V ∗, performing updates only at states s where the

gap/width U(s) − L(s) is larger than the desired threshold

ǫ > 0, and stopping the algorithm when ‖U − L‖∞ < ǫ.
The max (resp. min) player should then act “optimally” with

respect to L (resp. U). The whole process behind ShapleyGap

is detailed in Appendix A (Algorithm 4), and its finite-time

convergence is stated further on in Corollary 2.

C. MDPs and HSVI

Markov decision processes (MDPs) [29, 30] can be seen

as stochastic games in which one player—without loss of

generality, (minimizing) Player 2—has a single available ac-

tion, thus no decision to make. The problem is then to find a

strategy, also referred to as a policy, for (maximizing) Player

1. Here, the NEV becomes the optimal value function V ∗,

and acting greedily with respect to the value function induces

an optimal policy, so that there always exists a deterministic

optimal policy.

Bounded RTDP [13] and HSVI [5] (detailed in Algorithm 1)

are two algorithms that solve MDPs relying on (i) an initial

state s0 to focus on most relevant parts of the state space,

(ii) upper and lower bounds (U and L) of the optimal value

function V ∗, and (iii) performing pointwise updates of these

bounds at the states encountered while following trajectories.

While HSVI was initially introduced for solving POMDPs, we

focus on the generic (MDP) version presented by Smith [24]

rather than BRTDP, because it comes with stronger theoretical

guarantees (e.g., it converges in finite time rather than in the

limit). Both HSVI and BRTDP select actions greedily w.r.t.

the upper bound, and stop sampling trajectories when U(s0)−
L(s0) is below a threshold ǫ > 0. To select the next state given

s and a, HSVI picks a state s′ maximizing excess(s′, δ) =
Pa(s

′|s)(U(s′) − L(s′) − γ−δǫ), where δ is the depth of s′

in the current trajectory, to focus on states whose updates are

more likely to help.3 As we shall see later, the term γ−δǫ
ensures the convergence through a recursive process.

Algorithm 1: Heuristic Search Value Iteration

(in red: lines that will differ in the contributed algorithm)

1 Fct HSVI (ǫ)
2 Initialize L and U
3 while (U(s0)− L(s0)) > ǫ do

4 RecursivelyTry (s0, δ = 0)

5 return L

6 Fct RecursivelyTry (s, δ)
7 if (U(s)− L(s)) > γ−δǫ then

8 Update (s)
9 a∗ ∈ argmaxa∈A r(s, a)+γ

∑

s′ Pa(s
′|s)U(s′)

10 s′ ∈ argmaxs”∈S excess(s”, δ)
11 RecursivelyTry (s′, δ + 1)
12 Update (s)

13 return

14 Fct Update (s)
15 L← Update (L, s)
16 U ← Update (U, s)

IV. ALGORITHM AND CONVERGENCE PROOF

A. Bounding a Normal-form Game

As explained in the introduction, we would like to propose

heuristic search algorithms (à la HSVI) for solving 2-player

zs-SGs, i.e., focusing the computational efforts on relevant

parts of the state space by exploiting (i) the knowledge of the

initial state s0, and (ii) admissible heuristics for both players,

used to initialize upper and lower bounds of the value function.

While classical (1-player vs. nature) heuristic search requires

only an upper bound of the value function to optimistically

guide the search, 2-player zs-SGs shall require both an upper

and a lower bound (so as (i) to be optimistic for both players,

and (ii) to derive each player’s executed strategy). We will thus

end up computing Nash Equilibria (NEs) for both upper- and

lower-bounding Shapley matrix games Γs(U) and Γs(L) in

each encountered state s. Then, what does happen if, in some

state s, both NEs are equal? As demonstrated by the next two

results, in this case the obtained value is the NE value for that

state.

Lemma 1. If zs normal-form game Γup’s payoff vup upper-

bounds same-dimension zs normal-form game Γlo’s payoff vlo,

then NEV(Γup) ≥ NEV(Γlo).

Proof.

∀a1, a2 vup(a1, a2) ≥ vlo(a1, a2)

3BRTDP samples a state according to a distribution which resembles a
normalized version of this excess function.

4 c©2020 IEEE / TRANSACTIONS ON GAMES / DOI: 10.1109/TG.2020.3005214

∀a1 min
a2

vup(a1, a2) ≥ min
a2

vlo(a1, a2)

max
d1

min
a2

∑

a1

d1(a1)vup(a1, a2) ≥

max
d1

min
a2

∑

a1

d1(a1)vlo(a1, a2)

i.e., NEV(Γup) ≥ NEV(Γlo).

Corollary 1. In a zs-SG, if, in some state s, the NE values of

Γs(L) and Γs(U) are equal, then NEV(Γs(L)) = NEV(Γs(U))
is the NE value, V ∗(s), of the converged zs Shapley game in

that state (for the MPE of the zs-SG).

Proof. Applying the previous lemma in some state s, we

always have in our setting: NEV(Γs(L)) ≤ V ∗(s) ≤
NEV(Γs(U)). So, when NEV(Γs(L)) = NEV(Γs(U)), this is

also the value of V ∗(s).

We now turn to showing how to adapt HSVI to the zs-SG

setting. While U(s0)−L(s0) > ǫ, HSVI generates trajectories

by applying, in each encountered state, (i) an action selection

strategy and (ii) a next-state selection strategy. We now present

these strategies and other details of the proposed algorithm,

and prove that the latter finds strategies which are ǫ-optimal

in s0 in finite time.

B. Joint Action Selection

In an MDP, greedy action selection w.r.t. an optimistic

bound guarantees convergence. In a zs-SG, assuming that

player 2 has only one action, player 1 faces a reward-

based MDP and its optimistic bound is the upper one (U).

Conversely, if player 1 has only one action, player 2 faces a

cost-based MDP and its optimistic bound is the lower one (L).

Hence, noting NES
i(Γ) a NE strategy for player i in game

Γ, the proposed exploration strategy, when in state s:

• player 1 picks stochastic action dU,1 greedily w.r.t. to the

upper bound U , i.e., playing NES
1(Γs(U)); and

• player 2 picks stochastic action dL,2 greedily w.r.t. to the

lower bound L, i.e., playing NES
2(Γs(L)).

We call the resulting joint decision rule d = (dU,1, dL,2) a

tentative NES at s.

C. Next State Selection

After picking a joint strategy, the next state s′ can be se-

lected in various ways—e.g., sampling a1 from d1(·), a2 from

d2(·), then s′ from Pa1,a2(·|s) (à la (L)RTDP). Yet, to preserve

HSVI’s convergence guarantees, we prefer selecting a next

state s′ maximizing the expected excess EE(s, d1, d2, s′, δ)
def

=
∑

a1,a2

d1(a1)d2(a2)Pa1,a2(s′|s)
[

width(V̂ (s′))− γ−δǫ
]

︸ ︷︷ ︸

excess(s′,δ)

,

where V̂ denotes the pair (L,U), width((x, y))
def

= y − x, and

δ is the current depth. Note: In the following, operators on

value functions such as H are naturally extended to pairs of

function, e.g., H(V̂) = (H(L),H(U)).

D. Value Update

As for classical HSVI, we use point-based operators to

update the lower and upper bounds, i.e., operators that are

applied at a given point s, and define:

• a uniformly improvable (UI) lower bound L as respecting

HL ≥ L; and

• a strong point-based update operator for the lower bound

KL
◦ as respecting, for each s where it is applied and

any L, (i) (KL
s L)(s) = (HL)(s) and (ii) (KL

s L)(s
′) ≤

(HL)(s′) in any other point s′

(the same definitions apply to the upper bound U by re-

verting inequality operators). Uniform improvability, along

with monotonicity (Sec. III-B), is necessary to ensure that

lower (resp. upper) bounds remain lower (resp. upper) bounds.

The strong property is required to ensure convergence to the

optimal value function in the limit.

In our setting, we use a single update operator Ks for both

bounds, which, for any state s, only updates the value for this

state with the natural value updates:

(KsL)(s)
def

= NEV(Γs(L)),

(KsU)(s)
def

= NEV(Γs(U)),

and leaves L and U unchanged for other states.

As in the MDP setting, we have (for both L and U) that:

(i) our proposed operator is strong, thus conservative [24, Def.

3.24, 3.25]; and (ii) any conservative update operator preserves

UI [24, Th. 3.29]. We thus mainly need to ensure that our

initializations induce UI bounds (see next sub-section).

E. Upper- and Lower-Bound Initializations

As for POMDPs, one way to initialize the lower and upper

bounds is to compute the fixed point of an operator that lower-

or upper-bounds Shapley’s optimality operator H. Table I

shows the candidate operators for both bounds:

G
[L/U]
SEQ : a sequential game approximation—also known as

serialization—, i.e., setting U as the optimal value if player

1 acts after player 2 (the latter knowing the action choice

of the former), and L as the opposite;

G
[L/U]
TRIV : trivial approximations that translate to, ∀s,

U(s) =
1

1− γ
Rmax

def

=
1

1− γ
max

s′,a1,a2

r(s′, a1, a2) and

L(s) =
1

1− γ
Rmin

def

=
1

1− γ
min

s′,a1,a2

r(s′, a1, a2).

The former approximations require solving sequential games,

possibly with Shapley- or HSVI-like algorithms.4 The latter

two values can be computed in constant time.

Uniform Improvability: Without loss of generality, let

us discuss Uniform Improvability only for upper bounds. As

proposed above, the initial upper bound U is obtained as

the unique fixed point of some update operator Kup which

always “upper-bounds” Shapley’s optimality operator H. As

a consequence, HU ≤ KupU = U , so that U is uniformly

improvable. This approach is similar to Theorem 3.20 in [24,

page 71], and also applies to lower bounds.

4Churchill et al. [21] do so with an αβ-based algorithm, thus not dealing
with cycles and infinite horizons.

BUFFET et al.: HSVI FOR ZERO-SUM STOCHASTIC GAMES 5

TABLE I: Various update operators for the value function, ordered by
resulting value. Top: 2 operators for initializing U . Middle: optimal
Shapley operator. Bottom: 2 operators for initializing L.

(GU
TRIVV)(s) = maxs′,a1,a2,s′′r(s

′, a1, a2) + γV (s′′)

(GU
SEQV)(s) = mina2maxa1 Γs(V)(a1, a2)

(HV)(s) = mind2maxa1 Γs(V)(a1, d2)

= NEV(Γs(V)) = maxd1mina2 Γs(V)(d1, a2)

(GL
SEQV)(s) = maxa1mina2 Γs(V)(a1, a2)

(GL
TRIVV)(s) = mins′,a1,a2,s′′ r(s

′, a1, a2) + γV (s′′)

On-demand Initializations: The following discussion on

how to handle initializations is set in the context of zs-SGs,

but applies to other settings as well.

Value function initializations are often considered as part

of pre-computations performed a priori for all states, either

because all states equally need initializations (as here in Shap-

leyBR and ShapleyGap, but contrary to HSVI), or because

the initialization process provides values for all states anyway

(as here with the trivial initializations). Initializations based

on serialized versions of (simultaneous move) zs-SGs can be

obtained either through a serialized version of ShapleyBR or

ShapleyGap (i.e., with “serialized” operators), or through a

serialized version of HSVI. For (simultaneous) HSVI, our al-

gorithm will thus try to benefit from on-demand initializations,

calling (serialized) HSVI whenever needed. Note that a priori

initializations shall typically be used with “uniform” stopping

criteria, i.e., requesting the same property to be satisfied on all

states, while on demand initializations shall satisfy a property

at least at the state at hand, and possibly depending on the

current depth for algorithms such as HSVI (because less

precision is needed when going deeper in a trajectory). Some

implementation details are provided in Section V. Note that,

for the sake of clarity, Algorithm 2 does not reflect the process

of on-demand initializations.

F. Trials Termination Criterion and Convergence Proof

Let us end a trial when reaching a state s at depth δ
that is NEV-finished—i.e., when the excess, excess(s, δ), is

non-positive. Using this trial termination condition is the last

element needed to ensure that the zs-SG version of HSVI

converges in finite time. We essentially need to prove the

following key lemma before using results from [24].

Lemma 2 (Cf. [24, Lemma 6.1]). Let K◦ be a strong update

operator, let L and U be uniformly improvable value functions,

let s be a state, and let d∗ = (dU,1, dL,2) be the current

tentative NES at s. Then

width(KsV̂ (s)) ≤ γ
∑

s′

PdU,1,dL,2(s′|s)width(V̂ (s′)),

where P◦,◦ is naturally extended to mixed strategies (stochastic

actions).

Proof. We have

width(KsV̂ (s))

= width(HV̂ (s)) (Ks is strong)

= HU(s)−HL(s) (def. of width(·))

= NEV(Γs(U))− NEV(Γs(L)) (def. of H)

= max
d1

min
a2

vU (s, d1, a2)−min
d2

max
a1

vL(s, a1, d2)

= max
d1

min
d2

vU (s, d1, d2)−min
d2

max
d1

vL(s, d1, d2)

= min
d2

vU (s, dU,1, d2)−max
d1

vL(s, d1, dL,2)

≤ vU (s, dU,1, dL,2)− vL(s, dU,1, dL,2)

= γ
∑

s′

PdU,1,dL,2(s′|s)(U(s′)− L(s′))

= γ
∑

s′

PdU,1,dL,2(s′|s)width(V̂ (s′)).

This result is important as it upper-bounds the width at

s after update by a linear combination of the widths of

the states immediately reachable from s through d∗. Thus,

sufficiently reducing the widths of those next states (which

may change during execution) induces reducing the width at

s. This serves to show both HSVI’s and ShapleyGap’s finite-

time convergence.

Corollary 2. ShapleyGap converges in finite time to ǫ-optimal

lower and upper bounds.

Proof. Let Ui and Li denote the upper- and lower-bounding

value functions after i iterations of ShapleyGap. Let us demon-

strate by induction that ‖Ui−Li‖∞ ≤ γi‖U0−L0‖∞, until the

termination criterion is reached. This property trivially holds

for i = 0. Let us assume that it holds for some i ≥ 0. If

‖Ui − Li‖∞ ≤ ǫ, then the termination criterion is reached.

Otherwise, Lemma 2 can be applied at any state s such that

Ui(s)− Li(s) > ǫ, so that

Ui+1(s)− Li+1(s) ≤ γ
∑

s′

PdU,1,dL,2(s′|s)width(V̂i(s
′))

(where dU,1 and dL,2 have been computed by the algorithm)

≤ γ
∑

s′

PdU,1,dL,2(s′|s)γi‖U0 − L0‖∞

≤ γi+1‖U0 − L0‖∞.

For any other state, the gap is already less than (or equal

to) ǫ. The property thus holds for i + 1. As a consequence,

ShapleyGap converges in ⌈logγ(ǫ/‖U0 − L0‖∞)⌉ iterations.

Theorem 1. The HSVI variant for zs-SGs specified above—

through selection processes, update operators and trial stop-

ping criterion—converges in finite time.

Proof. (sketch inspired by [24]) First, the previous lemma

also holds when replacing the width by the excess [24,

Lemma 6.2]. As a consequence, if all successors s′ of s
reachable through d∗ are NEV-finished, then s′ is NEV-

finished as well [24, Lem. 6.3]. Also, HSVI always selects

an NEV-unfinished successor if one exists [24, Lem. 6.4],

and all states beyond depth δmax
def

= ⌈logγ(ǫ/‖U − L‖∞)⌉
are NEV-finished [24, Lem. 6.4] (e.g., with U0 and L0 the

initial bounds). A consequence is that any trial terminates

6 c©2020 IEEE / TRANSACTIONS ON GAMES / DOI: 10.1109/TG.2020.3005214

and the penultimate visited state becomes NEV-finished [24,

Lem. 6.7]. From this, the tree of reachable states from s0
has bounded depth δmax and finite branching factor β, so that

s0 will be NEV-finished (at depth 0) after at most βδmax−1
β−1

trials.

The complete algorithm is detailed in Algorithm 2. As

can be observed, the general algorithmic schema of HSVI is

untouched as it essentially differs in (i) the action selection

(relying on NESs) (lines 9–10), (ii) the next-state selection

(lines 11), and (iii) the bound updates (relying on NEVs)

(lines 16–17).

Algorithm 2: zsSG-HSVI (in red: differences with HSVI)

1 Fct HSVI (ǫ)
2 Initialize L and U
3 while width(s0) > ǫ do

4 RecursivelyTry (s0, δ = 0)

5 return L

6 Fct RecursivelyTry (s, δ)
7 if width(s) > γ−δǫ then

8 Update (s)
9 dU,1 ← NES

1(Γs(U))
10 dL,2 ← NES

2(Γs(L))
11 s′ ∈ argmaxs”∈S EE(s, dU,1, dL,2, s”, δ)
12 RecursivelyTry (s′, δ + 1)
13 Update (s)

14 return

15 Fct Update (s)
16 L← Update (L, s) /* uses NEV(Γs(L)) */

17 U ← Update (U, s) /* uses NEV(Γs(U)) */

Comparison with HSVI for POMDPs and POSGs: Note

that the finite branching factor, due to the finite number of

reachable states and despite the infinite set of actions, allows

deriving a version of HSVI with the same definition of the

excess function and the same convergence result (including

the bound) as HSVI for POMDPs [24]. In the contrary, the

potentially infinite branching factor in POSGs considered by

[11] and [12] requires adding a term to the excess function,

which induces an increased δmax, and relying on the Lipschitz-

continuity of the optimal value function to prove finite-time

convergence to an ǫ-optimal solution.5

G. Comparing HSVI, ShapleyGap, and ShapleyBR

ShapleyGap can be seen as in-between HSVI and Shap-

leyBR since this variant of the Shapley (BR) algorithm shares

the use of upper and lower bounds with HSVI. We here detail

these similarities that imply similarities in the convergence

behaviors.

5One could possibly derive a bound on the number of iterations before
convergence for these POSGs, but this would involve results related to
hypersphere packing, as well as the volume of both an hypersphere and a
regular simplex.

a) Similarities between ShapleyBR and ShapleyGap:

First, ShapleyBR and ShapleyGap both ignore the initial state

s0, contrary to HSVI, and stop when a uniform criterion (sat-

isfied by all states) is satisfied, while HSVI looks only at the

gap at s0. Also, they will both adopt the same ordering of state

updates (a rarely scrutinized factor), which may benefit (or, in

the contrary, disadvantage) value propagation through states,

and thus speed up (resp. slow down) the convergence process.

HSVI, on its side, updates states along visited trajectories,

so that not all states are visited, and not all visited states

attain a (local) convergence criterion. Finally, ShapleyGap and

ShapleyBR both use a priori initializations, while HSVI uses

on demand initializations.

b) Similarities between ShapleyGap and HSVI: Com-

pared to ShapleyBR, ShapleyGap and HSVI have not one,

but two value functions to update, so that each state update

is twice as expensive. Also, ShapleyBR will keep on updat-

ing all states at each iteration until it has converged, while

ShapleyGap will stop updating states at which the gap is

smaller than the required threshold, and HSVI will update

only visited states if their gap is beyond a depth-dependent

threshold. Finally, ShapleyGap and HSVI rely on the same

value function initializations, so that they are likely to be both

equally “lucky” (or “unlucky”) compared to ShapleyBR and

its different initialization.

To sum up, for a given problem instance, the same afore-

mentioned features may be beneficial (or conversely detrimen-

tal) either to both ShapleyGap and ShapleyBR, or to both

ShapleyGap and HSVI, so that one can expect ShapleyGap’s

results to often lie in-between ShapleyBR and HSVI.

H. Policy Execution

In the HSVI framework,6 a player should act greedily with

respect (i) to an optimistic bound of the optimal value function

for the heuristic search to converge (cf. the action selection

presented above), and (ii) to a pessimistic bound at execution

time so as to guarantee the worst-case expected return. More

precisely, at execution time, if in state s, player 1 (resp. 2)

should find a Nash equilibrium strategy dL for Γs(L) (resp.

dU for Γs(U)) and act according to dL,1 (resp. dU,2). That

way, player 1 makes sure to get the security level value

associated to Γs(L). The following example illustrates why

acting optimistically at execution time can be detrimental.

Example 1. Let us consider the matrix game Γα described in

Table II with its upper and lower bounds Γup and Γlo, all 3

games sharing the same NEV, 0. Yet, according to Γup, any

strategy (p, 1 − p) of (row) Player 1 (p ∈ [0, 1]) is part of a

NES. If Player 1, being optimistic, plays (p, 1−p) and Player

2, knowing that α is actually negative, plays (q, 1 − q), then

the obtained value is pαq (≤ 0), i.e., a loss for player 1 if

pq 6= 0.

This example also shows that Γup and Γlo having identical

NEV does not mean that they are equal on the support of the

tentative NE, i.e., the matrix values involved in the tentative

6This discussion also holds for ShapleyGap because of the use of upper
and lower bounds.

BUFFET et al.: HSVI FOR ZERO-SUM STOCHASTIC GAMES 7

TABLE II: An example game Γα (α ∈ [−1,+1]) with example

upper and lower bound games Γup and Γlo, their NESs and their
(NE) values.

game matrix NESs value

Γup

[

+1 0
0 0

]

((p, 1− p), (0, 1)) 0

Γα

[

α 0
0 0

]

[see text] 0

Γlo

[

−1 0
0 0

]

((0, 1), (q, 1− q)) 0

NE. Plus, while Γα always has NEV 0, its possible NESs

depend on whether α is negative, positive or null.

For player 1, this implies (i) either solving two-player

normal form game Γlo(s) when actually in state s at some

point during execution, or (ii) being equipped with (a) a pre-

computed decision rule in each state s visited by zsSG-HSVI,

and (b) a pre-computed or on-line-computable decision rule

in any other reachable state (so as to guarantee the value

associated to L’s initialization). Under these circumstances,

player 1 has an appropriate (γ−tǫ-rational if at time t) decision

to execute even in states not actually visited by the algorithm

(likewise for player 2, but relying on U), but reachable by

non-trembling players. This also ensures that player 1 has

appropriate—though not necessarily γ−tǫ-optimal—decisions

to execute even in states reached because player 2 acted sub-

optimally, in the sense that, if player 2’s hand trembles in

state s at t, then player 1’s expected return from s remains

at least L(s). Thus, zsSG-HSVI provides solutions strategies

that are not near-optimal Markov perfect equilibrium, but are

still robust to trembling hands.

Another consequence is that, while one could possibly

exploit the fact that, if s and s′ are symmetric states, then

U(s) = −L(s′), this requirement (being able to act according

to a player’s pessimistic bound) prevents us from exploiting

the 0 NEV of self-symmetric states in symmetric zs-SGs, i.e.,

when both players’ situations mirror each other.

V. EXPERIMENTS

The experiments compare zsSG-HSVI against ShapleyBR

and ShapleyGap (presented in Sec. III-B) on various problems.

A. Setup

a) Benchmark Problems: We have conducted experi-

ments on (a) a two-player soccer board game [31, 17],

parameterized by its dimensions w×h and the initial location

of the Max player (x0, y0) (the Min player being placed sym-

metrically); (b) a router/server flow control problem [9, 17],

parameterized by the maximum buffer size bMax and initial

buffer length bInit ; (c) (discounted) Alesia, a prototypical war

game [32], parameterized by the radius R of the field and the

two players’ initial numbers of units (units); and (d) Alesia2,

a novel variant where, at each time step, each player gets

a reward equal to its (positive or negative) progress. γ was

always set to 0.95 and ǫ to 0.001. These problems are detailed

in Appendix C.

b) Algorithms: HSVI, ShBR and ShGp denote the

(zsSG-)HSVI, ShapleyBR and ShapleyGap algorithms for

zs-SGs with trivial initializations (for ShBR: ∀s, V (s) =
Rmax+Rmin

2(1−γ)).

Alg1→2 (resp. Alg2→1) denotes the (sequential) version of

Alg ∈ {HSVI, ShBR, ShGp} where player 1 (resp. 2) moves

first, obtained by simply replacing the Nash update operators

by sequential ones, and, for HSVI, by letting player 1 (resp.

2) act greedily w.r.t. U (resp. L). These sequential versions

have the same convergence properties as the “simultaneous”

and MDP ones.

Finally, Alg+ denotes the version of Alg ∈ {HSVI, ShGp}
where U (resp. L) is initialized with the upper-bound (resp.

lower-bound) obtained with Alg2→1 (resp. Alg1→2) either

a priori (if Alg = ShGp, with the same error ǫ), or on-

demand (if Alg = HSVI, with the same error γ−δǫ). Note

that we do not mix algorithm schemas. Also, ShapleyGap’s

stopping criterion relies on the local gap at s0, unless used as

a (precomputed) initialization.

B. Results

The 3 sequential algorithms (player 1 moving first) and

3+2 simultaneous algorithms have been applied with a 3600s

timeout on various instances of the 4 problems. All exper-

iments have been conducted on a core i7 @ 1.9GHz with

4GB maximum heap size, using IBM CPlex to solve LPs.

The Java source code is available at https://buffet.gitlabpages.

inria.fr/HS4SG/ . Table III presents the results obtained on a

subset of instances in terms of time to convergence, number

of playouts (for HSVI) or iterations (ShGp/BR), and number

of states visited at least once (error at s0 is ≤ 0.001). Table IV

presents results on the hard instances of the Soccer problem,

adding the final error at s0.

Note that, in HSVI variants, the number of playouts (P)

is a number of generated trajectories, and thus should not be

compared with the number of iterations in ShGp and ShBR

variants (I).

1) Sequential Games: In the sequential case, HSVI1→2

is often dominated by ShBR1→2 and ShGp1→2 on small

problem instances. In the contrary, HSVI1→2 appears to be

dominating ShBR1→2 and ShGp1→2 on the largest problem

instances (except on two Soccer problem instances that require

visiting a large portion of the state space so that HSVI’s

natural pruning is not useful). An explanation is that, while

only trivial initializations are used, HSVI1→2 usually ignores

many states, which often allows for faster convergence. On

some overly large problems, this even prevents HSVI1→2

from experiencing the out-of-memory errors of its competitors.

In any case, i.e., regardless whether HSVI1→2 is better or

worse than ShGp1→2 and ShBR1→2, ShGp1→2’s convergence

time is often in-between that of HSVI1→2 and ShBR1→2

(to put it differently, ShGp1→2 is rarely better than both

HSVI1→2 and ShBR1→2, or by a small margin), which was

expected, as discussed in Sec. IV-G. As can be noted, some

problem instances need few iterations to converge, whatever

the algorithm: In the largest instances of Alesia, this is due to

the possibility for player 1 to easily defend itself and draw.

8 c©2020 IEEE / TRANSACTIONS ON GAMES / DOI: 10.1109/TG.2020.3005214

TABLE III: Running time (in seconds), number of playouts (P), iterations (I) and visited states (N) for easy instances of the Soccer problem,
and various instances of the FlowControl, Alesia, and Alesia2 problems, solved with serialized and simultaneous versions of HSVI, ShGp
and ShBR, using γ = 0.95 and ǫ = 0.001. In bold, shortest convergence times (distinguishing sequential and simultaneous games).

Algorithm → HSVI1→2 ShGp1→2 ShBR1→2 HSVI HSVI+ ShGp ShGp+ ShBR

Problem

�

|S| t P N t I t I t P N t P N t I t I t I

w h x0 y0 [Soccer]

5 4 0 0 762 3 2148 762 1 128 0 5 56 656 759 16 79 223 10 26 10 25 2 11
5 4 0 1 762 4 2225 762 1 75 0 5 58 717 761 16 96 229 11 26 10 25 2 11
5 4 1 0 762 0 89 270 0 4 0 5 4 42 123 0 1 0 2 4 2 3 2 11
5 4 1 1 762 3 1799 762 0 75 0 5 62 704 761 17 94 228 10 25 9 24 2 11
5 4 2 0 762 0 51 156 0 3 0 5 2 27 89 0 1 0 1 3 1 2 2 11
5 4 2 1 762 0 78 233 0 3 0 5 4 47 116 0 1 0 1 3 1 2 2 11
5 4 3 0 762 0 15 50 0 2 0 5 0 6 14 0 1 0 1 2 1 1 2 11
5 4 3 1 762 0 20 56 0 2 0 5 0 8 20 0 1 0 1 2 1 1 2 11
5 4 4 0 762 0 1 2 0 1 0 5 0 1 2 0 1 0 1 1 0 0 2 11
5 4 4 1 762 0 1 2 0 1 0 5 0 1 2 0 1 0 1 1 0 0 2 11

10 6 0 0 7.1K 19 14036 7.1K 6 78 0 10 588 6169 7.1K 64 175 1.3K 118 34 116 33 29 18
10 6 0 2 7.1K 20 13399 7.1K 6 77 0 10 598 6320 7.1K 78 245 1.6K 118 34 116 33 29 18
10 6 4 0 7.1K 2 523 2.3K 1 6 0 10 89 798 3.3K 2 1 0 24 6 21 5 29 18
10 6 4 2 7.1K 20 10725 7.1K 4 59 0 10 649 6644 7.1K 72 166 1.2K 108 29 103 28 29 18
10 6 8 0 7.1K 0 15 73 0 2 0 10 0 6 18 0 1 0 11 2 7 1 29 18
10 6 8 2 7.1K 0 20 75 0 2 0 10 0 8 16 0 1 0 10 2 7 1 29 18

bMax bInit [FlowCtrl]

100 10 101 0 130 78 0 181 0 98 18 129 77 0 1 1 8 181 7 168 2 98
100 90 101 0 130 78 0 181 0 98 18 129 77 0 1 1 8 181 7 168 2 98
500 10 501 0 177 99 0 237 0 238 33 156 138 0 1 0 50 237 33 165 24 238
500 90 501 0 177 99 0 237 0 238 33 156 138 0 1 0 48 237 34 165 25 238

1000 10 1.1K 0 220 118 0 262 0 264 40 175 133 1 1 0 107 262 67 165 53 264
1000 90 1.1K 0 220 118 0 262 0 264 40 175 133 0 1 0 106 262 68 165 53 264
5000 10 5.1K 0 294 103 3 319 2 322 64 233 173 1 1 0 647 319 334 165 332 322
5000 90 5.1K 0 294 103 3 319 2 322 64 233 173 1 1 0 648 319 334 165 324 322

R units [Alesia]

2 8 405 0 54 135 0 1 0 3 0 63 126 0 10 15 0 3 0 2 0 4
3 14 1.6K 0 228 702 0 2 0 6 2 297 653 0 23 72 3 4 3 3 3 7
4 20 4.0K 0 550 2.1K 0 3 0 8 9 760 2.0K 3 90 310 13 6 13 5 9 10
5 27 8.7K 2 1232 4.8K 1 3 2 11 30 1782 4.7K 12 221 931 46 8 38 7 29 13
6 33 16K 5 2175 8.9K 5 4 8 14 75 3244 8.6K 32 310 1.6K 100 10 96 9 65 15
7 40 26K 15 3598 16K 12 4 23 16 185 5497 16K 76 397 2.6K 210 11 204 10 145 18

50 30 98K 0 58 1.8K 11 1 99 30 28 1424 5.7K 0 1 0 580 9 531 8 795 30
60 35 157K 0 68 2.4K 25 1 252 35 49 1969 8.2K 0 1 0 1096 10 1039 9 1584 35
70 40 238K 0 78 3.2K 53 1 571 40 77 2646 11K 1 1 0 1973 11 1930 10 2973 40

R units [Alesia2]

2 8 405 0 68 138 0 1 0 3 0 97 161 0 24 42 0 4 0 2 0 4
3 14 1.6K 0 281 708 0 1 0 6 3 417 758 2 145 300 5 6 3 3 3 7
4 20 4.0K 0 592 1.9K 0 2 0 8 12 1092 2.1K 9 467 941 17 8 12 5 10 9
5 27 8.7K 1 1119 4.1K 1 2 2 10 32 2285 4.6K 31 1015 2.4K 52 10 40 7 27 11
6 33 16K 2 1887 7.4K 4 3 6 12 71 4021 8.1K 102 1968 4.4K 118 12 100 9 63 13
7 40 26K 5 2800 13K 9 3 20 14 181 7006 14K 279 3372 7.9K 240 13 237 11 139 15

50 30 98K 2 2082 8.7K 32 5 95 30 61 2901 8.3K 69 1625 4.6K 934 14 817 11 959 30
60 35 157K 5 3046 14K 87 6 244 35 104 4320 13K 165 2686 7.7K 1838 16 1563 12 1940 35
70 40 238K 11 4155 21K 194 6 570 40 204 6127 19K 332 3697 12K 3419 18 2857 13 3600 40

TABLE IV: Running time (in seconds) with a 3600s timeout (TO), number of playouts (P), iterations (I) and visited states (N) for hard
instances of the Soccer problem, solved with serialized and simultaneous versions of HSVI, ShGp and ShBR, using γ = 0.95 and ǫ = 0.001.
In bold, shortest convergence times (distinguishing sequential and simultaneous games), or timeout with smallest error in s0 (e).

Algorithm → HSVI1→2 ShGp1→2 ShBR1→2 HSVI HSVI+ ShGp ShGp+ ShBR

Problem

�

|S| t P e N t I e t I e t P e N t P e N t I e t I e t I e

w h x0 y0 [Soccer]

50 30 0 15 4.5M TO 1.2M .13 3.5M TO 53 0.05 1550 50 0 TO 23.8K 1.2 138K TO 1 1.1 0 TO 1 1.3 TO 0 1.3 TO 3 34.3
50 30 15 15 4.5M TO 1.2M .29 3.5M TO 54 0.02 1580 50 0 TO 24.6K 1.4 174K TO 1 1.1 0 TO 1 1.1 TO 1 1.0 TO 3 34.3
50 30 30 15 4.5M 560 0.2M 0 1.1M 1407 20 0 1566 50 0 TO 24.7K 1.3 176K 964 1 0 0 TO 1 1.0 TO 1 .98 TO 3 34.3

100 60 0 30 72M TO 1.2M .18 4.9M —— out of memory —— TO 24.0K 1.2 188K TO 1 1.1 0 —— out of memory ——

100 60 30 30 72M TO 1.1M .37 8.0M —— out of memory —— TO 24.6K 1.4 253K TO 1 1.2 0 —— out of memory ——

100 60 60 30 72M TO 1.2M .38 8.9M —— out of memory —— TO 24.6K 1.3 255K TO 1 1.2 0 —— out of memory ——

BUFFET et al.: HSVI FOR ZERO-SUM STOCHASTIC GAMES 9

2) Simultaneous Games: Similar observations can be made

while comparing HSVI, ShGp and ShBR, often (but not

always) with comparable numbers of iterations and of visited

states, though with much longer convergence times. The main

difference thus seems to be due to the time consumption of

the LP-based operator.

Let us now consider the versions with not-so-trivial ini-

tializations based on the sequential problems. ShGp+ usually

performs a bit fewer iterations than its counterpart ShGp, but

only saves time in FlowControl, and loses time in some other

problems. HSVI+ may perform fewer or much fewer iterations

than HSVI, sometimes a single one because the initial U and L
are equal. Yet, except in these cases, the total running time can

be much slower in HSVI+ than in HSVI (due to the many calls

to HSVI1→2 and HSVI2→1, which do not appear in the table).

The contrast can be observed by looking at results obtained on

Alesia vs Alesia2. Thus, while relying on a heuristic search is

clearly beneficial on large problem instances, whether to use

HSVI or HSVI+ depends on the problem at hand.

Note also that no runs have been interrupted due to numeri-

cal instabilities when solving LPs, which happens when using

a different LP solver (see also [33]).

VI. CONCLUSION AND FUTURE WORK

The present paper proposes zsSG-HSVI, a heuristic search

algorithm for discounted (two-player) zero-sum stochastic

games with cycles, and non-zero rewards in any transition.

The players’ opposite criteria naturally led to algorithms with

upper and lower bounds such as HSVI and BRTDP. The

principle of optimism in the face of uncertainty is maintained,

as well as that of acting (at execution time) according to the

pessimistic bound. As the original HSVI, on which it is based,

the resulting algorithm provably converges to an ǫ-optimal

solution in finite time. To make the picture more complete and

better analyze zsSG-HSVI, a variant of Shapley’s algorithm

is also introduced that, as zsSG-HSVI, maintains upper and

lower bounds of the optimal value function and stops when

the gap in-between them is below some threshold.

Experiments demonstrate that using zsSG-HSVI rather than

Shapley-BR may be detrimental on small problem instances,

but the benefit increases with the problem size. Also, Shapley-

Gap’s perfomance is typically in-between zsSG-HSVI and

Shapley-BR, whichever of the two converges faster, which was

expected as it mixes features of both other algorithms.

We now list several directions for future work.

a) Improvements: LPs could be solved faster by using

oracle methods (as in DOαβ [20]) and/or bootstrapping tech-

niques (because similar LPs are solved when re-visiting a

state). A still open question is how to handle heuristic ini-

tializations: which algorithms to use and with what precision

(depending on whether pre- or on-demand computations are

performed). Of course, other algorithmic schemes than HSVI

could be employed, typically based on the FIND-and-REVISE

schema [34], so that the main convergence results may be

addressed jointly.

b) General-Sum SGs: A direction for future research

is to extend the present work to solving general-sum SGs

(with possibly more than two players). This expectedly means

maintaining upper and lower bounds for each player. But a

first issue is that of choosing an appropriate solution concept,

since a given matrix game does not have a single NE value

any more. If planning for all players at once—i.e., assuming

each will commit to the strategy assigned to him—, then any

NE may be a valid solution. But what if planning for a single

player without constraints on the other players’ strategies?

c) POSGs: As mentioned in Sec. II, HSVI has been

first directly applied to particular zero-sum (two-player) par-

tially observable stochastic games (zs-POSGs): with one-sided

partial observability [11] and with public observability [12].

These problems allow (i) not having to deal with nested

beliefs, and (ii) reasoning about beliefs such that the optimal

value function is convex/concave in belief-space, which allows

defining generalizing value function approximators (upper-

and lower-bounds) as in POMDPs.

In contrast, an objective of the present work is to pave the

way to addressing general POSGs using a variant of HSVI

and value function approximation as already done for Dec-

POMDPs [7], i.e., using a sufficient statistic of the planner

called an occupancy state. In the case of a 2-player zero-sum

POSG, this means addressing the problem as an occupancy zs-

SG [35]. Then, the planning problem becomes deterministic,

but the state and action spaces are continuous, thus infinite:

one because it is a probability simplex, the other because it

contains all stochastic decision rules. Taking inspiration from

[11, 12], one shall be able to achieve ǫ-optimal convergence

in finite time using recursive partitioning and exploiting the

Lipschitz continuity of the value function [36].

APPENDIX A

SHAPLEY ALGORITHMS

The classical Shapley algorithm [27], here called Shap-

leyBR, is depicted in Algorithm 3, while the proposed Shap-

leyGap algorithm is depicted in Algorithm 4. With ShapleyBR,

an ǫ-optimal joint policy is obtained when both players act

greedily with respect to V . With ShapleyGap, an ǫ-optimal

joint policy is obtained when (maximizing) Player 1 acts

greedily w.r.t. L, and (minimizing) Player 2 acts greedily w.r.t.

U .

Algorithm 3: ShapleyBR (asynchronous)

1 Fct ShapleyBR (ǫ)
input : V initialized (randomly or otherwise)

output: V (12
1−γ
γ ǫ)-optimal

2 θ ← 1
2

(
1−γ
γ

)2

ǫ

3 repeat

4 BR← 0
5 for s ∈ S do

6 v ← V (s)
7 V (s)← Update (V, s)
8 BR← max{BR, |V (s)− v|}

9 until BR ≤ θ
10 return V

10 c©2020 IEEE / TRANSACTIONS ON GAMES / DOI: 10.1109/TG.2020.3005214

Algorithm 4: ShapleyGap (asynchronous)

1 Fct ShapleyGap (ǫ)
input : L and U lower and upper initializations

output: L and U ǫ-optimal lower and upper

bounds

2 repeat

3 gap← 0
4 for s ∈ S do

5 if U(s)− L(s) > ǫ then

6 L(s)← Update (L, s)
7 U(s)← Update (U, s)
8 gap← max{gap, width (s)}

9 until gap ≤ ǫ
10 return (L,U)

APPENDIX B

UPPER AND LOWER BOUND INITIALIZATIONS

Table I only presents a limited selection of operators that

can be used to compute upper and lower bounds of the optimal

value function. For completeness, Table V shows an extended

list of candidate operators for both bounds, which we also

describe with words as follows:

G
[L/U]
SEQ : a sequential game approximation—also known as

serialization—, i.e., U being the optimal value if player

1 acts before player 2, and L the opposite (the second

player knowing the action choice of the first player);

G
[L/U]
MDP : an MDP approximation, i.e., U (respectively L) being

the optimal value function of the MDP induced by

assigning to player 2 (resp. player 1) any fixed strategy—

e.g., random actions;

G
[L/U]
ORA : an MDP approximation with an oracle that predicts

the action of the random opponent (but not nature’s

move); or

G
[L/U]
TRIV : trivial approximations, e.g., ∀s,

U(s) = 1
1−γ maxs′,a1,a2 r(s′, a1, a2) and

L(s) = 1
1−γ mins′,a1,a2 r(s′, a1, a2).

Within Table V, the operators within some box (in-between

two lines) return “greater or equal” functions than the op-

erators within a lower box. Within the two boxes contain-

ing three operators, the only known ordering relations are:

GUORAV ≥ G
U
MDPV and GLMDPV ≥ G

L
ORAV. Of course, one issue

is whether deriving these bounding value functions is worth the

computational effort. The fixed points of the G·TRIV operators

can be computed in constant time (see above formulas), and

can serve as initializations for computing the fixed points of

the other operators, e.g., again by heuristic search. The G·ORA

operators are not worth considering as they would provide

loser bounds than other operators at the same computational

cost.

APPENDIX C

BENCHMARK PROBLEMS

The present section provides details on the benchmark

problems used in the experiments. They may differ from the

TABLE V: Various update operators for the value function, almost
ordered by resulting value. In the middle is the optimal Shapley
operator. Above are operators for initializing the upper bound U .
Below are operators for initializing the lower bound L.

(GU
TRIVV)(s) = maxs′,a1,a2,s”r(s

′, a1, a2) + γV (s”)

(GU
ORAV)(s) = Ea2∼Unif(A2)maxa1 Γs(V)(a1, a2)

(GU
MDPV)(s) = maxa1Ea2∼Unif(A2) Γs(V)(a1, a2)

(GU
SEQV)(s) = mina2maxa1 Γs(V)(a1, a2)

(HV)(s) = mind2maxa1 Γs(V)(a1, d2)

= NEV(Γs(V)) = maxd1mina2 Γs(V)(d1, a2)

(GL
SEQV)(s) = maxa1mina2 Γs(V)(a1, a2)

(GL
MDPV)(s) = mina2Ea1∼Unif(A1) Γs(V)(a1, a2)

(GL
ORAV)(s) = Ea1∼Unif(A1)mina2 Γs(V)(a1, a2)

(GL
TRIVV)(s) = mins′,a1,a2,s”r(s

′, a1, a2) + γV (s”)

original versions in the choice of certain parameters, in the use

of a discount factor, and in the possibility of resetting (rather

than ending in a terminal state).

A. Two-Player Soccer Game

This description (of the present implementation) is largely

inspired by Lagoudakis and Parr [17], itself inspired by

Littman [31].

The playground is a w×h rectangular grid representing an

horizontal soccer field: player 1 tries to score by getting out

of the grid with the ball through its left side (and respectively

through the right side for player 2). Each player is on his

own cell, cell coordinates being noted (x, y) ∈ {1, . . . ,W}×
{1, . . . , H}. The ball is always possessed by one of the 2

players. The initial location of the Max player is (x0, y0), the

Min player being placed symmetrically.

Each player has a choice of 5 actions: up (U), down (D),

left (L), right (R), and stand (S). At each time step the players

decide on which actions they are going to take and then a

fair coin is flipped to determine which player moves first. The

players move one at a time in the order determined by the

coin flip.

• If a player collides with a border or with another player

during a move, the player remains in his current position.

• If the player with the ball (attacker) runs into the oppo-

nent (defender), the ball is passed to the opponent.

• Therefore, the only way for the defender to steal the ball

is to be in the square into which the attacker intends to

move.

• The attacker can cross the goal line and score into the

defender’s goal, however the players cannot score into

their own goals.

Scoring for player 1 (resp. 2) results in an immediate reward

of +1 (resp. −1) and a restart of the game. The discount factor

for the problem is set to γ = 0.95, which encourages early

scoring.

In Soccer, the number of states is:

|S| = (w · h) · (w · h− 1) · 2 + 2.

BUFFET et al.: HSVI FOR ZERO-SUM STOCHASTIC GAMES 11

B. Flow Control

This description of the Router/server flow control problem

is largely inspired by Lagoudakis and Parr [17], itself inspired

by Altman [9].

A router is trying to control the flow of jobs into a server

buffer (of maximum buffer size bMax and initial buffer

length bInit) under unknown, and possibly changing, service

conditions. This problem can be modeled as an MDP with the

server being an uncertain part of the environment. However, to

provide worst-case guarantees the router can view the server

as an opponent that plays against him. This viewpoint enables

to router to adopt control policies that perform well under

worst-case/changing service conditions.

The system state is described by the current length of the

buffer. Available actions are:

• for the router: low (L) and high (H), corresponding to a

low (PAL) and a high (PAH) probability of a job arrival

to the buffer at the current time step, with 0 < PAL <
PAH ≤ 1;

• for the server: low (L) and high (H), corresponding to

a low (PDL) and a high (PDH) probability of a job

departure from the buffer at the current time step, with

0 ≤ PDL < PDH < 1.

Once the agents have picked their actions, the size of the buffer

is adjusted to a new state according to the chosen probabilities,

and the game continues.

The immediate cost R(s, a, o) for each transition depends

on the current state s and the actions a and o of the agents:

R(s, a, o) = c(s) + α × PAa + β × PDo, where c(s) is

a real non-decreasing convex function, α ≤ 0, and β ≥ 0.

c(s) is related to the holding cost per time step in the buffer,

α is related to the reward for each incoming job, and β
is related to the cost for the quality of service. The router

attempts to minimize the expected discounted cost, whereas

the server strives to maximize it. The discount factor is set

to γ = 0.95. Under these conditions, the optimal policies

can be shown to have an interesting threshold structure, with

mostly deterministic choices and randomization in at most

one state [9]. However, the exact thresholds and probabilities

cannot be easily determined analytically from the parameters

of the problems which might actually be unknown. These

facts make the problem suitable for learning with function

approximation. We tested our method on a buffer of length 100

with: PAL = 0.2, PAH = 0.9, PDL = 0.1, PDH = 0.8,

c(s) = 10−4s2, α = −0.1, β = +1.5. With these settings

neither a full nor an empty buffer is desirable for either player.

Increasing the buffer size beyond 100 does not cause any

change in the final policies, but will require more training

data to cover the critical area (0–100).

In FlowControl, the number of states is:

|S| = bMax + 1.

C. Alesia

This description of the Alesia game—illustrated by Fig. 1—

is largely inspired by Meyer et al. [32].

In this game, also known as “Footsteps”, “Citadel” or “Quo

Vadis?” [37], two citadels, each belonging to one player, are

Fig. 1: Alesia’s game field/board (copied from [32])

placed at distance D = 2R + 1 from each other. A mark is

initially placed in-between the citadels (in the middle). Each

player starts with 50 units (input parameter units).

At each time step, both players simultaneously bid/engage

(and definitely consume) some of their remaining units (at least

1 unit). The player with the highest bid pushes the marker one

distance unit towards the opponent’s citadel. In case of equal

bids, the marker does not move.

A player wins if he manages to move the marker to the

adversary’s citadel. Otherwise it is a draw. A win (respectively

a loss) leads to a reward of +1 (resp. −1).

In Alesia, the number of states is:

|S| = (2 ·R+ 1) · (units + 1)2.

Note: See also Oshi-Zumo (japanese for “pushing wrestler”)

[33], which is very similar, or the paper game Tennis.7

Alesia2: Soccer and Alesia share strong similarities as, in

both cases, players are on the same field/playground and each

would like to reach one side while confronting the other player.

In both cases, a large part of the state space has to be covered

for the value function to converge, even with a heuristic search

algorithm, due to non-zero rewards being given only when a

player reaches his target end of the field. In Alesia2, at each

time step the instant reward corresponds to the x position of

the “pack”. As a consequence, one does not need to cover a

large part of the state space to find optimal strategies for both

players.

REFERENCES

[1] S. Russell and P. Norvig, Artificial Intelligence: A Mod-

ern Approach. Englewood Cliffs, NJ: prentice Hall,

2010.

[2] V. Bulitko and G. Lee, “Learning in real-time search:

A unifying framework,” Journal of Artificial Intelligence

Research, vol. 25, pp. 119–157, 2006.

[3] B. Bonet and H. Geffner, “Labeled RTDP: Improving

the convergence of real-time dynamic programming,” in

Proc. of the 13th Int. Conf. on Automated Planning and

Scheduling, 2003, pp. 12–21.

[4] E. A. Hansen and S. Zilberstein, “LAO*: A heuristic

search algorithm that finds solutions with loops,” Artifi-

cial Intelligence, vol. 129, no. 1–2, pp. 35–62, 2001.

[5] T. Smith and R. Simmons, “Point-based POMDP algo-

rithms: Improved analysis and implementation,” in Proc.

of the 21st Conf. on Uncertainty in Artificial Intelligence,

2005, pp. 542–549.

7https://en.wikipedia.org/wiki/Tennis (paper game)

12 c©2020 IEEE / TRANSACTIONS ON GAMES / DOI: 10.1109/TG.2020.3005214

[6] D. Szer, F. Charpillet, and S. Zilberstein, “MAA*:

A heuristic search algorithm for solving decentralized

POMDPs,” in Proc. of the 21st Conf. on Uncertainty in

Artificial Intelligence, 2005, pp. 576–583.

[7] J. Dibangoye, C. Amato, O. Buffet, and F. Charpil-

let, “Optimally solving Dec-POMDPs as continuous-

state MDPs,” Journal of Artificial Intelligence Research,

vol. 55, pp. 443–497, 2016.

[8] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Daze-

ley, “A survey of multi-objective sequential decision-

making,” Journal of Artificial Intelligence Research,

vol. 48, pp. 67–113, 2013.

[9] E. Altman, “Flow control using the theory of zero-sum

Markov games,” IEEE Trans. on Auto. Control, vol. 39,

no. 4, pp. 814–818, 1994.

[10] S. Ontañón, N. A. Barriga, C. R. Silva, R. O. Moraes, and

L. H. Lelis, “The first MicroRTS artificial intelligence

competition.” AI Magazine, vol. 39, no. 1, 2018.

[11] K. Horák, B. Bošanský, and M. Pěchouček, “Heuristic

search value iteration for one-sided partially observable

stochastic games,” in Proc. of the 31st AAAI Conf. on

Artificial Intelligence, 2017, pp. 558–564.

[12] K. Horák and B. Bošanský, “Solving partially observable

stochastic games with public observations,” in Proc. of

the 33rd AAAI Conf. on Artificial Intelligence, 2019, pp.

2029–2036.

[13] H. B. McMahan, M. Likhachev, and G. J. Gordon,

“Bounded real-time dynamic programming: RTDP with

monotone upper bounds and performance guarantees,” in

Proc. of the 22nd Int. Conf. on Machine Learning, 2005,

pp. 569–576.

[14] T. E. S. Raghavan and J. A. Filar, “Algorithms for

stochastic games – a survey,” Zeitschrift für Operations

Research, vol. 35, no. 6, pp. 437–472, Nov 1991.

[15] M. Littman and C. Szepesvári, “A generalized reinforce-

ment learning model: Convergence and applications,” in

Proc. of the 13th Int. Conf. on Machine Learning, 1996,

pp. 310–318.

[16] M. Bowling and M. Veloso, “Multiagent learning using

a variable learning rate,” Artificial Intelligence, vol. 136,

no. 2, pp. 215–250, 2002.

[17] M. G. Lagoudakis and R. Parr, “Value function approxi-

mation inf zero-sum Markov games,” in Proc. of the 18th

Conf. on Uncertainty in Artificial Intelligence, 2002, pp.

283–292.

[18] J. Pérolat, B. Piot, M. Geist, B. Scherrer, and O. Pietquin,

“Softened approximate policy iteration for Markov

games,” in Proc. of the 33rd Int. Conf. on Machine

Learning, ser. Proc. of Machine Learning Research,

vol. 48, 2016, pp. 1860–1868.

[19] A. Saffidine, H. Finnsson, and M. Buro, “Alpha-Beta

pruning for games with simultaneous moves,” in Proc.

of the 26th AAAI Conf. on Artificial Intelligence. AAAI

Press, Jul. 2012, pp. 556–562.

[20] B. Bošanský, V. Lisý, M. Lanctot, J. Čermák, and

M. H. M. Winands, “Algorithms for computing strate-

gies in two-player simultaneous move games,” Artificial

Intelligence, vol. 237, pp. 1–40, 2016.

[21] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic

search for RTS game combat scenarios,” in Proc. of the

8th AAAI Conf. on Artificial Intelligence and Interactive

Digital Entertainment, 2012, pp. 112–117.

[22] R. O. Moraes, J. R. H. Mariño, and L. H. S. Lelis,

“Nested-greedy search for adversarial real-time games,”

in Proc. of the 14th AAAI Conf. on Artificial Intelligence

and Interactive Digital Entertainment, 2018, pp. 67–73.

[23] E. Solal, “Stochastic games,” Encyclopedia of Database

Systems, 2009.

[24] T. Smith, “Probabilistic planning for robotic exploration,”

Ph.D. dissertation, The Robotics Institute, Carnegie Mel-

lon University, 2007.

[25] J. Nash, “Equilibrium points in n-person games,” Proc.

of the National Academy of Science, vol. 36, no. 1, pp.

48–49, 1950.

[26] J. von Neumann, “Zur Theorie der Gesellschaftsspiele,”

Math. Annalen, vol. 100, 1928.

[27] L. S. Shapley, “Stochastic games,” Proc. of the National

Academy of Science, vol. 39, no. 10, pp. 1095–1100,

1953.

[28] ——, “Some topics in two person games,” Annals of

Mathematical Studies, vol. 5, pp. 1–28, 1964.

[29] R. Bellman, “The theory of dynamic programming,”

Bulletin of the American Mathematical Society, vol. 60,

no. 6, pp. 503–515, 1954.

[30] D. Bertsekas and J. Tsitsiklis, Neurodynamic Program-

ming. Athena Scientific, 1996.

[31] M. Littman, “Markov games as a framework for multi-

agent reinforcement learning,” in Proc. of the 11th Int.

Conf. on Machine Learning, 1994, pp. 157–163.

[32] C. Meyer, J.-G. Ganascia, and J.-D. Zucker, “Learning

strategies in games by anticipation,” in Proc. of the 15th

Int. Joint Conf. on Artificial Intelligence, 1997, pp. 698–

707.

[33] M. Buro, “Solving the Oshi-Zumo game,” in Advances

in Computer Games Conf. 10, 2003, pp. 361–366.

[34] B. Bonet and H. Geffner, “Faster heuristic search algo-

rithms for planning with uncertainty and full feedback,”

in Proc. of the 18th Int. Joint Conf. on Artificial Intelli-

gence, 2003, pp. 1233–1238.

[35] O. Buffet, J. Dibangoye, A. Delage, A. Saffidine,

and V. Thomas, “On Bellman’s optimality principle

for zs-POSGs,” Computing Research Repository, vol.

abs/2006.16395, 2020.

[36] M. Fehr, O. Buffet, V. Thomas, and J. Dibangoye,

“ρ-POMDPs have Lipschitz-continuous ǫ-optimal value

functions,” in Advances in Neural Information Process-

ing Systems 31, 2018, pp. 6933–6943.

[37] R. Morris and T. Watson, “Evolving strategies for the

game footsteps,” in Proc. of the 2008 UK Workshop on

Computational Intelligence, 2008.

