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Abstract — In this paper, we address the problem of routing school buses in a rural area.  We approach 
this problem with a node routing model with multiple objectives that arise from conflicting viewpoints.  
From the point of view of cost, it is desirable to minimize the number of buses used to transport students 
from their homes to school and back.  And from the point of view of service, it is desirable to minimize the 
time that a given student spends in route.  The current literature deals primarily with single-objective 
problems and the models with multiple objectives typically employ a weighted function to combine the 
objectives into a single one.  We develop a solution procedure that considers each objective separately and 
search for a set of efficient solutions instead of a single optimum.  Our solution procedure is based on 
constructing, improving and then combining solutions within the framework of the evolutionary approach 
known as scatter search.  Experimental testing with real data is used to assess the merit of our proposed 
procedure. 
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1. Introduction 

The problem of scheduling and routing school buses deals with the important question of how to transport 
students to and from schools in the safest, most economical and most convenient manner.  The scheduling 
and routing activities are often controversial because the problem must deal with multiple objectives.  
Although the vehicle routing literature in general has dealt with many objectives, the most relevant in the 
context of routing and scheduling of school buses are: 
 

1. to minimize the transportation cost 
2. to minimize the transportation time 

 
Several alternatives exist when tackling these objectives.  For example, the transportation cost can include 
capital and operational costs.  The transportation time may be measured in terms of the total length of the 
route, the average time or the maximum time that a student spends in the bus.  Since the motivation of our 
work stems from a specific transportation problem in large and sparse rural area, we consider the objectives 
of minimizing the total number of buses while simultaneously minimizing the maximum time that a student 
spends in the bus.  Specifically, we have considered the bus routing problem in primary and secondary 
schools in the Province of Burgos (Spain).  The current solution to this problem has been the focus of 
controversy because of severe service deficiencies.  In this paper we use real data from these schools to 
show how the level of service can be increased with the same capital expenditures.  Alternative solutions 
are also given where administrators and school officials can analyze the tradeoff between cost and quality 
of service. 
 
In the scheduling and routing of school buses in a sparse rural area, the routing is the key element for 
finding good solutions.  As mentioned in Bodin and Berman (1979), in a rural area, routes tend to be long 
and the buses do not reach their maximum physical capacity.  That is, the buses reach an allowed route 
length (measured in terms of time) before they are completely full.  In addition to the features that are 
common to transportation problems in rural areas, in the particular problem that we are tackling, we can 
ignore the time required to reach the first student.  This is due to the definition of transportation time that 
we use, where we try to minimize the maximum time that a student spends in the bus.  Since the bus is 
empty before picking up the first student, the transportation time before the first pickup occurs can be 
ignored.  Although our problem occurs in a rural area, it is a single load problem.  In the single load 
problem, routes either pick up or deliver students to a single school.  Note that some rural areas consider 
the mixed problem, where a single bus picks up students from more than one school.  In this situation, 
some students are delivered to one school and others remain on the bus and are transported to a different 
school along with students that are picked up between the two schools.  Additional characteristics of a 
variety of routing and scheduling problems, including those related to school buses, are described in the 
comprehensive survey by Bodin, et al. (1983). 
 
We approach this problem with a solution procedure based on the evolutionary approach called scatter 
search, which originated from strategies for creating composite decision rules and surrogate constraints.  
Recent studies have demonstrated the practical advantages of this approach for solving a diverse array of 
optimization problems from both classical and real world settings, including problems in transportation and 
routing.  Scatter search, in contrast to other evolutionary procedures such as genetic algorithms, provides 
unifying principles for joining solutions based on generalized path constructions in neighborhood and 
Euclidean space and utilizes strategic designs where other approaches resort to randomization.  Additional 
advantages are provided by intensification and diversification mechanisms that exploit adaptive memory, 
drawing on foundations that link scatter search to tabu search. 
 
In our application, we use the referent set of solutions in scatter search as a repository of efficient and non-
efficient solutions that can be used to generate new ones.  Efficient solutions are members of the reference 
set due to their quality, as measured by the values associated with the multiple objective functions.  
Dominated solutions are also part of the reference set to provide the diversity necessary to explore the 
solution space.  Our implementation, as described subsequently, proposes innovative mechanisms to update 
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and maintain the reference set of solutions as well as strategies for combining solutions.  Experimental 
testing with real data is used to assess the merit of our proposed procedure. 

2. Problem Description 

Consider the problem of transporting a group of students from their homes to a school.  The students live in 
locations that are geographically dispersed around the school and the set of available buses have different 
capacities.  We use the following notation to give a formal description of the problem: 
 

N = { 0, 1, …, n } : a set of locations where 0 indicates the school and j (for j = 1, …, n) 
is the index of a location where one or more students live. 

M = { 1, …, m } : a set of buses 
Ri = { ri(1), …, ri(ni) } : the route for bus i, where ri(j) is the index of the jth location visited 

and ni is the number of locations in the route.  We assume that every 
route finishes at the school, i.e., ri(ni+1) = 0. 

tjk : the direct traveling time from location j to location k, for j = 0, …, n 
and k = 0, …, n and tjk = 0 for j = k. 

ci : the capacity of a bus i 
qj : the number of students to be picked up at location j, for j = 1, …, n 
length(i) : the length of route i (which is also the maximum traveling time 

corresponding to the students picked up at the first location) 
 
Note that according to our definitions, the length of route i is calculated as: 
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 ri(j) ≠ rk(j) ∀ i,k ∈ M and ∀ j ∈ N (5) 
 
Objective function (1) attempts to minimize the number of buses while objective function (2) minimizes the 
maximum time in the bus.  Note that the maximum time in the bus is also the route length measured from 
the point that the first students are picked in location ri(1).  Constraints (3) enforce the physical capacity of 
each bus.  In rural settings, as we discussed in the introduction, these constraints are typically not binding.  
Equations (4) and (5) indicate that all the students must be picked up and that a given location cannot be 
assigned to more than one route. 
 
The objectives in our problem are in conflict.  That is, a solution that minimizes the number of buses tends 
to increase the maximum traveling time, and vice versa.  In fact, if a single bus could have enough physical 
capacity to serve all the locations, this will be the trivial solution to the problem that considers only the first 
objective function.  Similarly, the trivial solution to the problem that considers only the second objective 
function is to utilize one bus for each location, i.e., to make m = n.  A common approach when dealing with 
multi-objective problems is to create a composite objective function that is a weighted combination of the 
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individual objectives.  For instance, the following objective function could be used as a proxy of our bi-
objective function: 
 

Minimize m + λ tmax 
 
The advantage of using a composite function is that all the known methodology to search for optimal 
solutions to single-objective problems can be applied.  This is not a trivial item considering the amount of 
research that has been direct to develop exact and heuristic procedures for single-objective optimization 
problems.  The disadvantage, however, is that in practical settings it is unrealistic to expect that the 
decision makers can agree on a λ value that represents their desire for trading off cost and service.  This 
disadvantage can be overcome by solving the problem with several λ values.  Nevertheless, a more direct 
approach is to solve the problem considering both objective functions separately and giving the decision 
maker a set of solutions that represent the “the best possible service” at a given cost.  Since the number of 
buses in a solution is bounded by n, because in our setting it is possible to assume that qj ≤ ci for j ∈ N and 
i ∈ M, a practical approach is to minimize tmax for each possible value of m.  The solution approach that we 
describe in the following section follows this general philosophy without taking it to the extreme of treating 
objective (1) as a constraint in the model. 

3. Solution Approach 

The solution approach that we have developed for our bus routing problem consists of an adaptation of 
scatter search.  Scatter search (SS) is a novel instance of evolutionary methods, because it violates the 
premise that evolutionary approaches must be based solely on randomization — though they likewise are 
compatible with randomized implementations such as the one we describe here.  SS is also novel, in 
comparison to the well known genetic algorithm (GA) class of evolutionary methods, by being founded on 
strategies that only piecemeal came to be proposed as augmentations to GAs more than a decade after their 
debut in scatter search.  Scatter search embodies principles and strategies that are still not emulated by 
other evolutionary methods, and that prove advantageous for solving a variety of complex optimization 
problems.  More about the origin and multiple applications of scatter search can be found in Glover (1998), 
Glover, Laguna and Martí (1999) and Laguna (2000). 
 
Our adaptation consists of the following elements: 
 

H1 and H2: Two constructive heuristics to generate routes 
SWAP: An exchange procedure to find a local optimal value for the length of each 

route 
INSERT: An exchange procedure to improve upon the value of tmax 
COMBINE: A mechanism to combine solutions in a reference set of solutions in order to 

generate new ones. 
 
The elements in our procedure are designed in such a way that the routes continue to approach the school as 
the bus moves.  We first describe each element and then summarize the entire procedure, which provides an 
overall view of how these elements interact. 

Constructive Heuristic H1 

This heuristic is based on a clustering mechanism.  However, the procedure keeps the locations assigned to 
each cluster ordered, and therefore the clusters can be referred to as routes.  The procedure starts with the 
following n routes: 
 

Ri = { i } for i = 1, …, n 
 
Candidate List — We build an ordered candidate list with the BestPairs best route pairs (Ri, Rk).  The best 
pair of routes is the one with the minimum traveling time between the two routes.  When the routes in a 
given pair contain a single location, the time between the pair of routes is simply the traveling time between 
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their corresponding locations.  When a route has more than one location, we consider the endpoints of the 
routes to find the minimum distance.  That is, the minimum distance between routes Ri and Rk is given by: 
 

{ })()1()()1( ,min
iikkki nrrnrr tt  

 
Note that this assumes that there are only two ways in which routes Ri and Rk can be joined: 
 

R′ = { ri(1), …, ri(ni), rk(1), …, rk(nk) } 
R″ = { rk(1), …, rk(nk), ri(1), …, ri(ni) } 

 
Merging — We randomly choose one pair of routes from the candidate list.  Let routes i and k be such that 

0),(0),( iikk nrnr tt ≤ .  We attempt to merge the routes, considering R′ first and then R″.  If the merging R′ is 
feasible, we stop.  A feasible merging of routes Ri and Rk is such that the resulting route does not violate 
either of the following inequalities: 
 

route length ≤ TMAX (6) 
number of students in the bus ≤ capacity (7) 

 
Note that TMAX is a target value for the second objective function value.  This value is necessary to 
control the length of the routes generated with H1, so the routes do not become impracticably long.  The 
procedure attempts to merge up to TrialPairs pairs using the same candidate list, where 
TrialPairs < BestPairs.  After TrialPairs merging attempts have been made, the candidate list is rebuilt.  
The process stops when no more routes can feasibly merge.  The output of the heuristic is a set of solutions 
with number of routes ranging from ml to mh, where ml ≥ 1 and mh ≤ n. 

Constructive Heuristic H2 

This constructive heuristic is based on creating sectors around locations that are sequentially chosen.  The 
size of a sector is determined by an input parameter (Angle).  When a location is selected and it does not 
belong to an already defined sector, a new sector is defined around the chosen location (see Figure 1).  This 
is the case, for instance, when the procedure starts and the first location is chosen.  In subsequent 
selections, we check whether the chosen location belongs to a sector or not. 
 

Figure 1. Definition of a sector around a chosen location. 
 
The locations are ordered according to the decreasing value of tj0 (the traveling time from location j to the 
school) for j = 1, …, n.  Let tm be the traveling time of the first location in the list (which is the unassigned 
location that is farthest away from the school).  The next location to be assigned is randomly chosen from 
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all those unassigned locations with traveling time to school larger than or equal to tm*α, where α is a 
parameter for this heuristic.  A chosen location is either assigned to an existing sector if the assignment 
does not violate the feasibility constraints (6) and (7) or a new sector is defined.  To test the feasibility 
constraint (6), the chosen location is inserted in the position of the route that causes the least increase in 
length.  When a new route is created, we allow for either the first location or the last location of existing 
routes in the same sector to move to the new route if this move decreases tmax. 

Exchange Procedure SWAP 

This exchange procedure has the goal of reducing the length of a route.  The procedure is applied to route k, 
for k = 1, …, m, and the outcome is a locally optimized route length.  From i = 1, …, nk-1 and j = i+1, …, 
nk, the procedure tests the reduction of length(k) produced by exchanging the positions of rk(i) and rk(j).  If 
length(k) is reduced, the locations are exchanged.  The procedure stops when no more exchanges are 
possible that result in a shorter route length. 

Exchange Procedure INSERT 

This exchange mechanism is based on removing a location from one route and inserting it into another 
route.  We select i, the index of the longest route, i.e., length(i) = tmax.  If more than one route has the 
maximum length one is arbitrarily chosen.  A location v is chosen such that the removal of this location 
from route i causes the maximum decrease in length(i).  We then search for a route k where to insert 
location v.  We build a list of NearLoc locations w that consists of the nearest locations to v.  We attempt to 
insert v before and after w (which is currently in route k) provided: 
 

1. k ≠ i 
2. length(k) + slack ≤ length(i) 
3. number of students in route k + qv ≤ c 

 
We select the best insertion of the two.  The procedure is performed until no insertion is found that results 
in a decrease in the value of tmax.  Our insertion procedure is similar to the one suggested in Chapleau, et al. 
(1984) in the context of the capacitated arc routing problem. 

Combination Method COMBINE 

This method consists of generating new solutions from the combination of two existing solutions.  The 
procedure starts by matching the routes from one solution to the routes of the other solution.  The rationale 
behind route matching is to find the common structure of the two solutions being combined to transfer this 
structure to the newly generated solution.  After the solutions are matched, the procedure generates a newly 
combined solution by a voting mechanism.  The combination method can be better explained with an 
illustrative example. 
 
Suppose that we would like to combine the following two solutions (A and B) to a problem with n = 10.  
Both solutions have two routes and we assume that Ai is the ith route for solution A and Bi is the ith route 
for solution B: 
 

A1 = { 4, 2, 7, 1 } 
A2 = { 5, 10, 6, 9, 3, 8 } 
 
B1 = { 2, 6, 8, 10, 9 } 
B2 = { 3, 4, 7, 1, 5 } 

 
The matching procedure builds a square matrix match, where the (i,k) element contains the number of 
common elements between route i and k (i.e., the cardinality of the intersection of the elements in the 
matched routes).  The matching matrix for our example looks as follows: 
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 B1 B2 
A1 1 3 
A2 4 2 

 
Note that A2 and B1 have four elements in common (6, 8, 9 and 10) while A1 and B2 have 3 elements in 
common (4, 7 and 1), resulting in match(1,2) = 3 and match(2,1) = 4.  Also, match(1,1) = 1 because 
A1 ∩ B1 = { 1 } and match(2,2) = 2 because A2 ∩ B2 = { 3, 5 }.  According to the maximum matching 
values, we match A2 with B1 and consequently A1 and B2 to generate, respectively, routes N1 and N2 in a 
new solution.  The new solution is constructed in n steps, in which one location is assigned to a route in 
each step.  The matched pairs are alternatively used for each assignment.  Table 1 shows the sequence of 
assignments associated with our illustrative example. 
 

Table 1. Combination steps. 

Step Pair Vote 1 Vote 2 Assignment Selection rule 
1 (A1,B2) 4 3 N1 = { 4 } random 
2 (A2,B1) 5 2 N2 = { 2 } random 
3 (A1,B2) 7 3 N1 = { 4, 3 } 3 before 7 
4 (A2,B1) 5 6 N2 = { 2, 5 } 5 before 6 
5 (A1,B2) 7 7 N1 = { 4, 3, 7 } same location 
6 (A2,B1) 10 6 N2 = { 2, 5, 6 } random 
7 (A1,B2) 1 1 N1 = { 4, 3, 7, 1 } same location 
8 10 8 N2 = { 2, 5, 6, 10 } 10 before 8 
9 9 8 N2 = { 2, 5, 6, 10, 8 } 8 before 9 

10 

(A2,B1) 

9 9 N2 = { 2, 5, 6, 10, 8, 9 } same location 
 
In step 1, we arbitrarily start building route N1 with the pair (A1,B2).  The first element in route A1 is 
location 4, and therefore this route votes for location 4 to be in the first position of N1.  The vote is shown 
in the column labeled “Vote 1”.  The vote associated with B2 goes to location 3 and is shown in the column 
labeled “Vote 2”.  Since locations 4 and 3 occupy the first position in their respective routes, we break the 
tie by randomly choosing one location.  The chosen location is number 4 and is placed in the first position 
of route N1.  The assignment in step two is similar to the assignment in step 1, with the first location for N2 
chosen randomly between the first locations of A2 and B1.  In step 3, A1 votes for location 7 and B2 votes 
for location 3.  Note that A1 cannot vote for location 2, because this location was already assigned to N2 in 
the previous step.  Since location 7 is in the third position of route A1 and location 3 is in the first position 
of route B2, the rule is to give preference to the location in the earlier position and therefore location 3 is 
selected.  Note that this rule is also applied in steps 4, 8 and 9.  Also note that in steps 5, 7 and 10, the same 
location receives both votes. 
 
Note that although in rural areas buses are normally operating under capacity, the combination procedure 
must consider that the new routes cannot violate the physical capacity of the buses.  For simplicity, we did 
not address this issue in the description above.  However, in the cases when an assignment cannot be made 
because of a violation in the bus capacity, the location is placed in a special unassigned set.  We attempt to 
assign the locations in the special unassigned set to the new routes using a fast bin-packing heuristic.  If the 
heuristic fails, the combined solution is then discarded. 

Scatter Search Outline 

The overall procedure operates as follows and is outlined in Figure 2.  The constructive heuristics H1 and 
H2 are applied with several values for TMAX and the resulting solutions are stored in separate pools, one 
for each value of m.  As expected, the larger the value of TMAX the larger the frequency in which the 
heuristics construct solutions with a small number of routes.  Conversely, solutions with large number of 
routes are obtained when the value of TMAX is decreased.  The procedure then attempts to improve upon 
the solutions constructed by H1 and H2.  The improvement consists of first applying SWAP to each route 
and then applying INSERT to the entire solution.  If any route is changed during the application of INSERT 
then we apply SWAP one more time to all the changed routes.  The procedure now iterates within a main 
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loop, in which a search is launched for solutions with a common number of routes.  The main loop 
terminates when all the m-values have been explored. 
 
From all the solutions with m routes, choose the best b to initialize the reference set (RefSet).  Note that the 
criterion for ranking the solutions at this step is tmax, since all solutions have the same number of routes.  
The procedure performs iterations in an inner-loop that consists of searching for a solution with m routes 
with an improved tmax value.  The combination procedure COMBINE is applied to all pairs of solutions in 
the current reference set RefSet.  Since the reference set consists of b solutions, the number of solutions 
generated by COMBINE is (b2-b)/2.  The combined solutions are improved in the same way as described 
above, that is, by applying SWAP then INSERT and finally SWAP to the routes that changed during the 
application of INSERT.  We refer to the resulting set of distinct solutions as ImpSet.  The reference set is 
then updated by selecting the best b solutions from the union of RefSet and ImpSet.  Steps 5, 6 and 7 in the 
outline of Figure 2 are performed as long as at least one new solution is admitted in the reference set. 
 

1. Construct solutions — Apply constructions heuristics H1 and H2 
with several values of TMAX. 

2. Improve solutions — Apply SWAP to each route in a solution and 
INSERT to the entire solution.  Finally, apply SWAP o any route 
changed during the application of INSERT. 

3. Build solution pools — Put all solutions with the same number of 
routes in the same pool. 

for ( each solution pool ) do 
 4. Build the reference set — Choose the best b solutions in the 

pool to build the initial RefSet. 
 while ( new solutions in RefSet ) do 
 5. Combine solutions — Generate all the combined solutions 

from pairs of reference solutions where at least one 
solution in the pair is new. 

 6. Improve solutions — Apply SWAP to each route in a 
solution and INSERT to the entire solution.  Finally, 
apply SWAP o any route changed during the application 
of INSERT. 

 7. Update reference set — Choose the best b solutions from 
the union of the current reference set and the combined-
improved solutions to update the RefSet. 

 end while 
end for 

Figure 2. Scatter search outline. 
 
Note that after the reference set is updated, the combination procedure may be applied to the same solution 
pairs more than once.  However, the combination procedure includes some randomized elements and 
therefore the combination of two solutions may result in a different outcome every time COMBINE is 
applied. Also, the size of the reference set is increased if the updating procedure fails to add at least one 
new solution.  The additional solutions come from the original pool of solutions generated with the 
construction heuristics.  The reference set size is increased up to 2*b, where b is the initial size. 

4. Computational Testing 

All the experiments reported in this section were performed in a Pentium III 700 MHz machine.  In the 
real-world problem that motivated this study, there are 42 primary (elementary) schools and 16 (middle) 
secondary schools.  Since the students are already assigned to each school, we have a set of 58 bus routing 
problems.  From the set of 42 elementary school problems, there are only 3 that have enough locations to 
make the testing of our procedure interesting.  These problems have 46, 49 and 55 locations (i.e., pickup 
points), and we will refer to them as problems P7, P14 and P41, respectively.  The rest of the problems in 
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the set have significantly less locations, making their solution a trivial exercise.  We use these three 
problems to perform an initial experiment consisting of comparing the solutions generated by H1 and H2.  
The parameter values used for experimentations are: 
 

NearLoc = 4 
BestPairs = 20 
TrialPairs = 5 
Angle = 36 
α = 0.75 
TMAX = 30, …, 90 
b = 20 

 
Figure 3 shows 1400 solutions obtained with H1 for problem P7, where the y-axis represents the value of 
tmax and the x-axis represents the value of m. 
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Figure 3. Solutions generated with H1 for problem P7. 

 
Note that the maximum route length hits a barrier at 45 minutes and it does not decrease even if the number 
of buses is set to almost 50.  Figure 4 shows 1650 solutions generated with H2 for the same problem P7.  
An obvious difference between the solutions generated by H1 and those generated by H2 is their dispersion 
with respect to the maximum route length.  While H1 tends to generate more dispersed solutions, H2 tends 
to generate solutions of similar quality for each number of buses.  Since our construction heuristics have 
complementary characteristics, we use both to generate the initial pool of solutions to be subjected to the 
scatter search. 
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Figure 3. Solutions generated with H2 for problem P7. 

 
Table 2 shows the best tmax associated with a specific number of buses for each procedure and problem 
instance.  Note that H1 not only produces solutions that are more dispersed, but also the best solutions tend 
to be better than those constructed by H2.   
 

Table 2. tmax values of routes for three elementary school problems. 

 P7 P14 P41 
Buses H1 H2 H1 H2 H1 H2 

4   77 68   
5   34 41   
6   30 35   
7 110  28 35   
8 97 71 26 35  63 
9 96 69 23 32  62 

10 75 69 25 29 76 62 
11 61 69 21 24 56 62 
12 58 59  23 55 61 
13 56 59  27 48 60 
14 58 54  23 48 61 
15 48 57  29 48 53 
16 48 58  31 48 49 
17 48 58  31 44 49 
18 46 57  31  49 
19 46 57  47  49 
20 46 53  23  49 
21 45 56    48 
22  58    47 
23  58    47 
24  49    46 
25      45 
26      45 
27      44 
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An interesting research question regarding the performance of our algorithm relates to the contribution of 
scatter search to the final quality of the solutions for each number of buses.  Figure 4 shows the 
approximation of the efficiency frontier for the solutions generated with H1 compared to the approximation 
that results after the application of scatter search.  Although there are 5 instances (number of buses) in 
which the scatter search is not capable of improving upon the best solution generated by H1, in the 
remaining instances the average improvement is 15%.  The average CPU time to run the scatter search 
procedure to generate each solution in the approximate efficient frontier is 0.6 seconds. 
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Figure 4. Approximation of the efficient frontier with H1 and after SS is applied. 

 
In our next and final experiment, we compare the solutions generated by our procedure with the solutions 
currently implemented in practice in the 16 middle schools.  (We refer to these problems as S1 to S16.)  In 
addition, we compare our solutions with those generated by a tabu search implementation that seeks to 
minimize tmax while keeping the number of buses fixed (Delgado and Pacheco, 2000).  The tabu search 
approach was designed to minimize tmax while keeping the total routing cost “close” to the cost of the 
solution currently used.  The cost function considers the distance traveled, the number of students in the bus 
and the number of pickup points. 
 
Table 3 shows the results of this experiment.  The first column shows the problem number.  The second and 
third columns respectively show the number of buses and the maximum route length (in minutes) 
corresponding to each problem in the current solution (i.e., the solution currently implemented in practice).  
The fourth and fifth columns respectively show the number of buses and the maximum route length (in 
minutes) for each problem as generated with the tabu search procedure in Delgado and Pacheco (2000).  
The columns labeled m-1 to m+3 show a partial segment of the approximation of the efficient frontier 
generated with our scatter search procedure.  The m-value corresponds to the number of buses in the 
current solution.  This means that for problem S1, the approximate efficient frontier is given for a number 
of buses ranging from 11 to 15.  To compare the maximum route length between the current solution and 
the scatter search solution, one must compare the values in the column labeled m in the scatter search 
section with the column labeled “Buses” in the current solution section.  Note that the scatter search 
solutions consistently improve upon the current solution, with an average improvement of 23.4%, a 
maximum of 40% and a minimum of 12%. 
 



Corberán, et al. / 12 

The actual transportation problem has a policy in which no route should be longer than 60 minutes.  
However, the current solutions violate this policy in the middle schools S1, S4, S6, S8 and S9, with the 
maximum violation of 30 minutes in S9.  The scatter search finds routes that comply with the policy in all 
but 2 schools (S6 and S9), for which the violations are 2 and 8 minutes, respectively.  In some situation 
such as schools S1, S3, S5 and S7, scatter search finds routes that comply with the policy with one less bus 
than the current solution. 
 
Table 3. Comparison of results for 16 middle school problems. 

 Current Solution Tabu Search Scatter Search 

Problem 
Buses 
(m) 

Route 
Length Buses 

Route 
Length m-1 m m+1 m+2 m+3 

S1 12 70 14 48 57 56 53 51 48 
S2 5 45 8 29 46 36 32 29  
S3 6 60 7 45 54 46 43 39  
S4 3 70 5 36  52 42 37 33 
S5 4 60 4 43 55 44 39   
S6 4 80 6 45 81 62 53 47 44 
S7 6 60 7 37 51 45 38 36  
S8 9 75 11 51 61 59 50 47 44 
S9 5 90 7 52 82 65 53 50 48 

S10 6 60 6 41 44 41 40   
S11 4 60 5 45 67 51 45 39  
S12 2 25 4 9  15 14 9  
S13 6 45 7 29 39 34 32 29  
S14 5 60 5 46 53 46 37   
S15 7 50 8 40 50 44 42 40  
S16 2 60 3 38 84 51 38 35  

 
We point out that in some problems, the tabu search procedure finds solutions that dominate those found 
with our scatter search.  For example, in problem S4, that tabu search solution has a tmax of 36 minutes with 
5 buses while scatter search yields a tmax of 37 minutes with the same number of buses (see entry in row S4 
and column m+2).  This situation occurs in 7 out of the 16 problems, however, the difference is never more 
than 3 minutes.  Also note that the empty entries in the last five columns of the table mean that either 
scatter search was not able to find a solution with the specified number of buses or the solution it found was 
dominated.  In terms of computational time, our scatter search procedure averages 4.8 seconds, which we 
believe is at least an order of magnitude less than the times required by the tabu search implementation, 
although we cannot confirm this given the information in Delgado and Pacheco (2000).  The solution times 
are not critical in this context, because the routes do not change in real time. 
 

5. Conclusions 

The research described in this paper was motivated by a bus routing problem in a sparse rural area.  The 
nature of the underlying optimization problem was bi-objective.  We chose to develop a method capable of 
dealing with both objectives simultaneously, instead of creating a single objective function as a weighted 
combination of the two individual objectives.  The procedure is based on the scatter search framework and 
uses two constructive heuristics to generate solutions for the initial reference set.  The novel features of our 
procedure include the constructive heuristics as well as the combination method, which is based on a voting 
scheme.  Our computational testing reveals the ability of our procedure to approximate the efficient frontier 
for each routing problem.  Decision makers may use efficient solutions to estimate the best service level 
(given by the maximum route length) that can be obtained with each level of investment (given by the 
number of buses used).  Our results show that several of the solutions implemented in practice are not 
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efficient.  The main contribution of our research is that our procedure gives the decision maker a set of 
solutions from which he/she can choose the best compromise between cost and quality of service. 
 

References 

Bodin, L. D. and L. Berman (1979) “Routing and Scheduling of School Buses by Computer,” 
Transportation Science, vol. 13, no. 2, pp. 113-129. 
 
Bodin, L., B. Golden, A. Assad and M. Ball (1983) “Routing and Scheduling of Vehicles and Crews: The 
State of the Art,” Computers and Operations Research, vol. 10, no. 2, pp. 63-211. 
 
Chapleau, L. J. A. Ferland, G. Lapalme and J-M. Rousseau (1984) “A Parallel Insert Method for the 
Capacitated Arc Routing Problem,” Operations Research Letters, vol. 3, no. 2, pp. 95-99. 
 
Delgado, C. and J. Pacheco (2000) “Problemas de Rutas Minmax: Aplicación al Transporte Escolar de 
Burgos,” Departamento de Economía Aplicada, Universidad de Burgos. 
 
Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” in Artificial Evolution, Lecture 
Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer and D. Snyers (Eds.), 
Springer-Verlag, pp. 13-54. 
 
Glover, F., M. Laguna and R. Martí (1999) “Scatter Search,” to appear in Theory and Applications of 
Evolutionary Computation: Recent Trends, A. Ghosh and S. Tsutsui (Eds.), Springer-Verlag. 
 
Laguna, M. (2000) “Scatter Search,” to appear in Handbook of Applied Optimization, P. M. Pardalos and 
M. G. C. Resende (Eds.), Oxford Academic Press. 
 


