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Abstract Design activities typically involve and culminate in the creation of models

representative of new ideas and conceptions. The format is often dictated by the specific

discipline, with ideas in design and technology education regularly being externalised

through the use of computer aided design (CAD). This paper focusses on the realisation

stage of a design process, specifically when conceptual ideas are being externalised

through CAD. Acknowledging students as novices or quasi-experts with regards to their

levels of technical expertise and recognising the limitations in the cognitive capacities of

humans suggests merit in investigating problem solving strategies through the lens of

heuristics. A comparative study was employed between two distinct CAD systems to

examine students modelling behaviour. Considering the situational context of the problems

encountered and the bounded rationality which the students are operating within, a number

of insights are generated from the findings which are of importance from a pedagogical

perspective within design and technology education.

Keywords Heuristics � Design behaviour � Design cognition � Modelling � Computer

aided design � Problem solving

Introduction

Humans differ in the amount of intelligence ascribed to them (Raab and Gigerenzer 2005)

and the knowledge afforded to a person allowing them to operate within a domain is

contained within their relevant schema. When engaging with a problem or task, the
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knowledge contained within acquired schema can be recalled from the long-term memory

into the working memory, with the comprehensiveness of the schema and the successful

transfer of this knowledge between memory systems being significant determinants of a

person’s capacity for success. Humans have the constraint of a limited capacity in their

working memory system which is suggested to be approximately seven chunks of infor-

mation (Miller 1956) however it has since been suggested that this number may be as low

as four (Cowan 2001). This limitation can prevent a person recalling necessary information

while problem solving, however in many respects it is circumvented as ‘‘information can

be brought back from long-term memory to working memory over indefinite periods of

time’’ (Kirschner et al. 2006, p. 77). In certain circumstances, such as when problem

solving, this limitation is significant as access may be required to more chunks of infor-

mation at a given time than a person’s working memory capacity permits. These cir-

cumstances are a differentiating characteristic between novices and experts, as having

more comprehensively developed schema allows experts to hold more bits of information

within each chunk (Chase and Simon 1973).

Students within design and technology education can arguably be described as novices

in the domain because they haven’t had the opportunity to acquire extensive schema

pertinent to the discipline. At most, students could be defined as quasi-experts or ‘‘indi-

viduals with more experience in a given domain than novices, but who do not have a

recognized standing as experts’’ (Kaufman et al. 2013, p. 332) because they are still in a

developmental process of learning and acquiring pertinent schema. Therefore, students

regularly engage with activities while not possessing all necessary associated knowledge.

Kimbell (2011, p. 7) eloquently describes this scenario by referring to a student being in a

state of ‘‘half-knowing’’ which suggests that the solution that students can strive for can

only be optimal within their bounded rationality. To counteract this limitation, when a

search for relevant cues of information is unsuccessful, students can exhibit heuristics to

aid them in solving a problem (e.g. Gigerenzer and Goldstein 1996). Through employing

appropriate heuristics, students can attain a solution which satisfies a problem despite not

having access to all relevant information. As ‘‘observed behaviour reflects the underlying

cognitive abilities of the individual’’ (Raab and Gigerenzer 2005, p. 188), examining the

problem solving strategies of design and technology students through the lens of heuristics

and behaviours is of interest to the discipline. These observations can provide insight into

the influence that the nature of an activity can have on thinking and into levels of student

attainment.

Problem solving behaviours and learning

The nature of the learning environment typical of design and technology education sees

students regularly encountering a variety of types of problems (Williams et al. 2008).

Design is one specific context which involves complex problem solving activity (Schütze

et al. 2003). The encountered problems both surround and are encompassed within tasks

that students engage in. Schoenfeld (1983, p. 41) defines a problem as ‘‘only a problem… if

you don’t know how to go about solving it’’. If a problem does not hold this characteristic

then it is more accurately defined as a task or an exercise and under this definition it is clear

that both a task and a problem can be sub-activities of each other within a learning activity.

Problems are critical within education as they support student inquiry into a subject

affording the opportunity to acquire and develop schema. Through the process of engaging
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with the unknown, new information can be identified which can then be accommodated or

assimilated into pre-existing schema. Piaget (1970) identifies this process as cognitive

adaption, defining assimilation as ‘‘the integration of external elements into evolving or

completed structures’’ (p. 706) and accommodation as ‘‘any modification of an assimila-

tory scheme or structure by the elements it assimilates’’ (p. 708). Given the complexity of

human cognition, no person experiences this process the same as another. Two contribu-

tory factors underpinning these experiences are cognition and behaviour. Cognitively, the

uniqueness of each person’s pre-existing schema will impact on the nature of the assim-

ilation and accommodation processes. Behaviourally, the judgements and decisions made

during the problem solving episode will impact what occurs during it. Considering the

previously described limitations of the human memory system, these behaviours can take

the form of heuristics where actions are taken to reduce effort within an activity (Shah and

Oppenheimer 2008).

The role of heuristics in problem solving

To exemplify the role of heuristics in human activity, it is worth considering the opposing

process that can be taken which involves considering all relevant information to arrive at

an ‘optimal’ solution. In judgement and decision making, the weighted additive rule is a

complex algorithm for arriving at an optimal decision which aims to describe the process

of attaining and considering all relevant information (Payne et al. 1993). It requires people

to expend cognitive effort on five tasks which include:

1. Identifying all cues,

2. Recalling and storing cue values,

3. Assessing the weights of each cue,

4. Integrating information for all alternatives,

5. All alternatives should be compared, and then the alternative with the highest value

should be stored (Shah and Oppenheimer 2008).

This algorithm is equally valid in the study of problem solving behaviours as when

engaging with a problem a person will make numerous decisions regarding their approach,

its implementation and evaluation. When posed with a problem while engaging in

designerly activity, the complexity of the involved decisions increases due to the divergent

nature of the activity and a selection process occurs where the person must choose one of

many potential solutions to strive for. Within problem solving however there is always an

unknown entity which must be negotiated (Schoenfeld 1983) whereas in decision making

and judgement it is feasible for all pertinent information to be known.

Operationalising the weighted additive rule within the context of solving a problem

would impose significant cognitive load (Sweller 1988) thus reducing the cognitive

resources available to learn during the problem. As previously discussed people have a

limited processing capacity and, in addition to this, problems also occur within specific

environments which must be negotiated. Amalgamating these two factors situates a person

solving a problem within a bounded rationality (Simon 1955, 1956), an environment

unique to the individual describing their relationship to the problem based on the interplay

between available cognitive resources and the task environment. As the cognitive load

increases as posed by the problem within the specific context, heuristics can be employed

to reduce mental effort, allowing for optimisation under situational constraints (Sargent

1993). Therefore, from a pedagogical perspective, heuristics have the capacity to support

learning by giving access to cognitive resources which can be allocated to learning and
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sense-making processes. Their employment however can also have negative implications if

information which is at the core of the learning activity is not sought by the student.

Alternatively, actions can be taken which alleviate the need to seek pertinent information

in the first place.

Employing heuristics: the adaptive toolbox

When considering the employment of heuristics, it is important to consider human activity

and intelligence from a broader perspective to rationalise why they are important. Two of

the prominent schools of thought on human intelligence include viewing intelligence as

predominantly cognitive or internal activity and as predominantly behaviouristic or

external activity. In both views human intelligence is conceptualised as a series of indi-

vidual processes which culminate into a holistic structure. The former is the concept that

human intelligence is constructed of a number of cognitive factors (e.g. Schneider and

McGrew 2012), a construct whose origins can be traced to the early work of Galton (1880)

and Spearman (1904). When studying intelligence, this conceptual framework is limited

because it does not describe how cognition translates into human behaviour (Sternberg

et al. 2001). The second school of thought, which is behaviouristic, is that of fast and frugal

heuristics as a model of intelligence consisting as parts of a larger system known as the

adaptive toolbox (Raab and Gigerenzer 2005). The heuristics are fast as they can help solve

problems quickly and frugal as they require little information (Gigerenzer 2004). The

adaptive toolbox is designed to achieve proximal goals and consists of a number of tools

such as search rules, stopping rules and decision rules (Gigerenzer 2001). In the context of

problem solving, search rules describe the process of searching for information, stop rules

denote strategies by which this search is stopped and decision rules describe how a

decision or inference is made subsequent to stopping the search. These rules are exhibited

through the employment of heuristics. Gigerenzer (2008) presents a series of heuristics

likely to be included in the adaptive toolbox which people can use adaptively either with or

without awareness. The selection process involved in choosing a heuristic is guided by

individual reinforcement learning, social learning and evolutionary training (Hutchinson

and Gigerenzer 2005). What is critical within this selection process is that the heuristics

within the adaptive toolbox are domain specific rather than domain general (Gigerenzer

2001). Therefore the situational context that the heuristics are being selected within is of

critical importance and the ecological rationality of the heuristic must be recognised.

Ecological rationality in the context of CAD modelling

Ecological rationality concerns the compatibility between strategy and environment.

Heuristics that are matched within their environments allow ‘‘agents to be ecologically

rationale, making adaptive decisions that combine accuracy with speed and frugality’’

(Gigerenzer 2001, p. 47) Therefore when studying heuristics and behaviours within edu-

cation, it is imperative to understand the ecological environment the student is operating

within. This environment does not necessarily need to be the physical space embodied by

the student. It can also be a virtual space which their actions manifest within such as a

computer aided design (CAD) modelling environment.

Design tasks within design and technology education are typically divergent and

therefore ‘‘may have multiple solutions or no solution at all, nor is there a guaranteed

procedure to reach that solution’’ (Schraw et al. 1995, p. 523–524). Therefore when CAD is

being used as a medium for externalising ideas, this activity becomes goal orientated as
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multiple ideas are created to support interaction between the student and their conceptions

and students’ goals involve generating models to support this dialogue. Considering the

relative complexity of CAD, it is conceivable that its utilisation would be positioned within

educational agendas both to afford students the capacity to develop the more speculative

competencies broadly inherent within designerly thinking with the more critical compe-

tencies of strategic CAD modelling. This dichotomy between designerly capacities and

discipline specific knowledge, such as strategic CAD modelling knowledge, is of sub-

stantial importance because if either is underdeveloped in their amalgamation the weaker

can reduce a student’s capacity to enact the other. For example, a distinct lack of disci-

plined knowledge could hinder the design process by impeding the critical refinement of a

speculative idea. Similarly, in a designerly context, a student may have the capacity to

utilise a modelling tool, but be unable to identify it as an appropriate tool at a given time or

be unable to determine how it should be used.

Therefore, in order to create CAD models of their conceptual ideas, students will need

to have attained the relative level of capacity to operate the CAD system. This level of

capacity is dictated by a level of strategic knowledge and an understanding of design

intent. It is widely regarded that expertise in CAD modelling is differentiated by strategic

modelling knowledge rather than command knowledge (Bhavnani et al. 1993; Lang et al.

1991; Rodriguez et al. 1998). However it is conceivable that this level of knowledge may

not be attained by students because they can be ‘‘so busy learning the commands that little

time is available for acquiring other kinds of information such as procedural [strategic]

knowledge’’ (Lang et al. 1991, p. 257; Chester 2007, p. 24–25). A consequence of not

attaining the required level of strategic knowledge is that ‘‘without proper forethought,

construction of a solid model can reach a critical stage where parametric manipulation is

no longer possible’’ (Rodriguez et al. 1998, p. 1) which may eliminate the efficacy of the

model itself. Coupled with the need to externalise a conceptual idea through CAD, students

must also consider the design intent of the model. Design intent is a similar concept to

strategic knowledge (Chester 2007) in that it refers to ‘‘strategies for incorporating max-

imum design flexibility and minimising design failure’’ (Rynne et al. 2003, p. 2). There-

fore, taking cognisance of the volume of discipline specific knowledge associated with

CAD modelling, its implementation as a pedagogical tool in a designerly context merits

investigation to ensure an appropriate synthesis between learning objectives and student

behaviours stemming from their associated levels of technical and designerly

competencies.

Hypothesis

The juxtaposition of divergent design tasks with CAD generates a complex ecological

environment for novice students to operate within. Having to externalise a conceptual idea

on a system where they may not have attained an appropriate level of associated knowl-

edge while at the same time having to do so with procedural considerations can be

problematic and therefore presents an unknown entity which students need to negotiate.

Smith (2001) notes a limitation of modelling as being a lack of ability to learn how to

create the model and this study aims to explore the strategies students employ when

confronted with this situation. This study therefore aims to test a two part hypothesis. The

first hypothesis is that students may satisfice their design, a concept described as deter-

mining ‘‘a path that will permit satisfaction at some specified level of all of its needs’’
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(Simon 1956, p. 136) and that this will be achieved through the employment of fast and

frugal heuristics. This paper describes a comparative study between two fundamentally

different CAD systems. As the CAD system is the primary independent variable and due to

the opposing nature inherent to these systems, the second part of the hypothesis is that the

heuristics employed will be different between the control and experimental group as

ecologically rational decisions are made. The employment of such heuristics, while sup-

porting the student in solving proximal problems, may be circumventing their attainment

of learning objectives concerned with developing problem solving skills and the acquisi-

tion of knowledge. Furthermore, observing the heuristics which are evidenced during

modelling episodes can provide insight into how students can be supported in similar

pedagogical activities.

Method

Approach

The aim of the study was to explore the approaches to problem solving employed by

students when CAD modelling. A comparative study was designed between two CAD

systems of different natures; a parametric CAD modelling system and a freeform moulding

CAD system. Two distinctly different CAD systems were included to investigate the

potential for specific heuristics to be unique to each type of system. A control and

experimental group were formulated within a cohort of post-primary students for the

purposes of this study with the control group utilising SolidWorks and the experimental

group utilising CRE8. Both groups were administered an identical design brief for which

they had to conceive an idea and model it using their designated CAD system. Following

this, the students were asked to model a prescribed organic geometry using their designated

CAD system to induce further problem solving episodes thus affording the potential for a

greater insight into the heuristics exhibited by the students. All modelling was captured and

analysed through a visual and verbal protocol analysis (Middleton 2008) and an adaptation

of Spillane et al. (2012) ‘Multidimensional Problem-Solving Codex’ was used to code the

data of the modelling organic geometry task.

Participants

The study cohort (n = 15) consisted of senior cycle design and technology students at

post-primary level within the Irish education system. The cohort had a mean age of

15.53 years with a standard deviation of 0.52 years and consisted of 12 males and 3

females. This ratio of males to females is representative of the demographic at a national

level (SEC 2015). The participants all had prior experience of SolidWorks which, in

conjunction with prior experience of design and technology at junior cycle, suggested their

appropriateness as participants for this study.

A control and experimental group were formed within the study cohort. Participants

were designated to either the control or experimental group based on their performance in

an assessment consisting of both geometric problem solving and parametric modelling

tasks. The average result of the experimental group was 61.25% and the average of the

control group was 59.23%. The experimental group consisted of eight participants and the

control group consisted of seven.
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Design of instruments

As CAD modelling at Irish post-primary level is typically operationalised through

SolidWorks it was selected for inclusion in this study (e.g. SEC 2016). As SolidWorks

is a parametric modelling system, it was decided to include a CAD tool where a

different modelling strategy is inherent to the software. A freeform surface modelling

system called CRE8 was selected because it is a 3D design and moulding program.

A Novint Falcon is required in conjunction with CRE8. The device provides haptic

feedback to the user allowing them to interact with their model through touch. Figure 1

depicts a participant modelling with CRE8 and the Novint Falcon to create an organic

geometry. Modelling with CRE8 has similarities to a Boolean approach to modelling as

it involves selecting a primary geometry such as a cube, cone or cylinder and

deforming it into the required form. Additional geometries can be subsequently added

as necessary relative to the initial geometry and manipulated through deformation as

appropriate.

The design brief required the participants to conceive a design for a chair which they

would model using their designated CAD system. This geometry was selected to ensure

a sufficient degree of familiarity with the object while providing a divergent task

whereby the CAD modelling period would be goal orientated. The intent of this task

was to examine the participants’ capacity to conceive and realise a design idea through

CAD with an understanding that pertinent levels of technical competency may be an

inhibitor.

Subsequent to this design activity the participants were required to model a prescribed

organic geometry using the same designated CAD system as before. This activity was

introduced because it was envisioned that during the previous design task participants

could conceive an idea which was within their capacity to model and therefore not present

any problematic activity, consequently preventing an investigation into the heuristics they

would exhibit. While the geometry of the organic stimulus was a familiar geometry, not

having any prior influence on its design suggested an increased potential for problems to

occur during the modelling task.

Fig. 1 A participant using CRE8 with the Novint Falcon to model an organic geometry
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Implementation

All participants had previous experience of SolidWorks having engaged with ten pre-

scribed lessons prior to the study. These lessons were structured and focused on modelling

primary solid geometries with a short period of time dedicated to unstructured exploration

of the software. No participant had prior experience of CRE8 or the Novint Falcon prior to

the study. A 20 min demonstration was delivered to the experimental group only. During

this time the group received a short overview of the technology which illustrated each

command within the software. This was followed by each participant experimenting with

the software and hardware for one min while asking questions to clarify any queries as a

group. They then participated in an individual modelling activity requiring them to model a

geometry which they selected at their own discretion. This allowed participants to

familiarise themselves with the software without being under observation by the remainder

of the group. Each participant was allocated five min for this activity to allow for the

development of personal constructs such as their own capability and the capacity of the

modelling tool. Upon completion, the control and experimental group were introduced to

the initial phase of the study which involved engaging with the design brief.

The design brief was administered to the participants as a group however they worked

individually to conceptualise their ideas. All participants were afforded 30 min to generate

a conceptual design under the premise that they would have to model it on their designated

CAD system. A further 30 min was allocated for the formulation of a modelling strategy

designed around Chester’s (2007) ‘CAD Workbook’ as a strategy to facilitate the devel-

opment of strategic knowledge pertinent to the modelling of their designs. Upon com-

pletion of their design, each participant was afforded 30 min individually to model their

designs using the CAD system assigned to their group. Participants were permitted to

request assistance while modelling during this activity to account for designs which were

beyond the participants’ level of capability. This assistance could only take the form of

instruction concerning the use of specific features within the CAD systems and was

delivered by a common member of the research team to ensure consistency. This expe-

rience was captured through both a visual and verbal protocol.

When all modelling was completed from the design activity, the second phase of CAD

modelling was initiated. This was an individual activity whereby participants were asked to

model a prescribed organic geometry within a five min time period. Again, the participants

utilised the CAD system designated to their group and this activity was also captured using

both a visual and verbal protocol. The time began immediately after a participant had

received the instructions. No assistance was given during this activity. Upon one partici-

pants completion the next participant would begin. No interaction was permitted between

participants throughout this phase.

Treatment of data

The video and verbal analyses were coded on a second by second basis to support a high

level of accuracy. When coding the modelling activity from the initial design activity, it

emerged that participants spent a relatively short amount of their time engaging with

problems, with the majority of the time being spent progressively working through tasks.

The control and experimental groups spent on average 20.09% and 4.98% of their time

respectively engaging with problems, with problem solving episodes lasting as short as 4 s

before the participants sought assistance. It was therefore decided to code their approaches
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to and actions within problems into six categories which were inductively derived from the

data:

1. Persist To persist with a strategy without seeking additional information in an attempt

to affect the outcome

2. Explore To persist with the same strategy but to seek other information in an attempt

to positively affect the outcome

3. Alternative To adopt or search for an alternative strategy

4. Abandon To abandon the problem and focus on modelling a different element of the

object

5. Seek assistance To ask for help in solving a problem

6. Assistance given The phase where the participant was receiving assistance

These phases were induced from an initial analysis of the data aiming to broadly

categorise the type of behaviour exhibited during problem solving episodes with the

analysis of the organic modelling activity focusing on the specific heuristics employed.

During the organic modelling activity the participants engaged with problems for longer

periods of time without the option to request assistance with problems. It was therefore

possible to gain a better insight into the heuristics which were employed. To analyse this

dataset, the participants behaviour was coded onto Spillane et al.’s (2012) ‘Multidimen-

sional Problem-Solving Codex’. For the purposes of this study, the ‘satisfycing’ category

was added to the original codex to account for cases where the exact intent of the beha-

viour was ambiguous but the action was implementary. The adapted codex which includes

satisficing is presented below (Table 1).

Spillane et al.’s (2012) codex is inclusive of a number of heuristics as well as a number

of behaviour descriptors. The heuristics included are:

• Recognition ‘‘If one of two objects is recognized and the other is not, then infer that the

recognized object has the higher value with respect to the criterion’’ (Goldstein and

Gigerenzer 2002, p. 76)

• Take the first ‘‘In familiar yet ill-defined tasks, choose one of the initial options

generated once a goal (and strategy) has been defined, rather than exhaustively

generating all possible options and subsequently processing them deliberatively’’

(Johnson and Raab 2003, p. 218)

• Working forwards ‘‘Proceeding from the given initial situation to the desired final

situation, from the data to the unknown’’ (Polya 1957, p. 227)

• Working backwards ‘‘Start from what is required and assume what is sought is already

found… inquire from what antecedent from the desired result could be derived’’ (Polya

1957, p. 227)

• Means-end analysis ‘‘The particular heuristic search system that finds differences

between current and desired situations, finds an operator relevant to each difference,

and applies the operator to reduce the difference’’ (Simon and Newell 1971, p. 152)

• Gaze ‘‘All relevant information is contained in one variable… attending to this one

variable alone and ignoring all causal relevant information’’ (Raab and Gigerenzer

2005, p. 192)

• Generate and test ‘‘Each possible combination of the variables is systematically

generated and then tested to see if it satisfies all the constraints. The first combination

that satisfies all the constraints is the solution’’ (Kumar 1992, p. 33)
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• Take the best ‘‘The Take the Best algorithm assumes a subjective rank order of cues

according to their validities…the highest ranking cue (that discriminates between the

two alternatives) [is] the best cue’’ (Gigerenzer and Goldstein 1996, p. 653)

Many of the other behaviour descriptors stem from Polya’s (1957) problem solving

cycle which contains the four stages of ‘understanding the problem’, ‘devising a plan’,

‘carrying out the plan’ and ‘looking back’. Bogard et al. (2013), when coding cognitive

processes, also describe many of the processes described in this codex and were also to use

this information to gain a significant insight into people’s problem solving processes.

Table 1 Problem-solving codex adopted in the study adapted from Spillane et al. (2012)

Phase No. Descriptor/indicator

Identifying 1 Recognition: Heuristic

2 Take the first: Heuristic

3 Effort and energy put into establishing the given problem, constructing constraints,
identifying components

4 Making sense of information in text, imagery, diagram, symbolism, signage,
checking components in task

5 Information is organised (verbally)

6 Goals, parameters, constraints are represented by statements, pictorially (sketch,
signage, etc.) and verbally

7 Criteria/goals are established

Planning 8 Working forwards: Heuristic

9 Working backwards: Heuristic

10 Concepts, knowledge and facts are assessed and considered

11 Various solutions approaches are considered

12 A conjecture/assumption is formulated

13 Strategic development of solution approach(es) is (are) imagined

14 Approach is determined

Implementing 15 Means-ends analysis: Heuristic

16 Gaze: Heuristic

17 Selection and implementation of various procedures (movement with purpose, plan
in action)

18 Constructs (logically/illogically) connected statements

19 Carries out set process/procedure/gives response (answer)

20 Satisficing

21 Evidence of sense making/attempts to fit in new information with existing
schemata/plan/process

22 Validation of conjecture is considered

Evaluating 23 Generate and test: Heuristic

24 Take the best: Heuristic

25 Results are tested for their suitability/reasonableness

26 Decision is made about validity of procedure/answer/solution

27 Cycles back or cycles forward based on results from checking/critiquing
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Findings

Initial modelling activity based on the design brief

An overview of the results generated from analysing the participant’s approaches to

problem solving within the initial modelling activity is depicted in Table 2. A number of

educationally relevant insights emerged from the results. The control group spent over

twice as long on average (89.69 s) engaging with the problems they encountered than the

experimental group (42.88 s). This may be due to slight differences in the initial

approaches to solving the problems evidenced by each group. The participants in the

control groups initial strategy to solving 12 of the problems they encountered was to

explore various ways to make their initial approach work while for 10 of the problems they

immediately requested assistance. In comparison, only two of the problems encountered by

the experimental group were initially explored while for nine problems assistance was

immediately sought.

Another pertinent insight stems from the percentages of time each group spent during a

problem engaging with certain approaches. The control group were more inclined to spend

time persisting (22.54%) with an approach and exploring (47.6%) various strategies to

getting that approach to work. The experimental group displayed a different strategy in that

a significant portion of their problem solving episodes (44.75%) involved receiving

assistance. Additionally, assistance was sought at some stage during each problem

encountered by the experimental group. Furthermore, no participant in either group

attempted to identify an alternative approach to any problem they encountered.

Table 2 Overview of problem solving episodes from within the initial modelling activity

Statistic Control group Experimental group

Modelling system SolidWorks CRE8

Total no. of problems 23 16

Total no. of problems successfully resolved 21 15

Total no. of problems with assistance given 18 16

Average length of problem 89.69 s 42.88 s

Average length of problem (no assistance) 114.4 s N/A

Average length of problem (with assistance) 82.93 s 42.88 s

Average length of time receiving assistance 28.47 s 20.47 s

Average length of time before seeking assistance 56.86 s 40 s

Initial approach to problems

Explore 12 2

Persist 1 5

Seek Assistance 10 9

Percentage of time per approach

Persist (%) 22.54 12.54

Explore (%) 47.60 30.90

Alternative (%) 0 0

Seek assistance (%) 6.40 11.81

Assistance given (%) 23.46 44.75
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Both groups had similar success rates in resolving their problems. The control group had

two unresolved problems. No assistance was sought in either problem. In both cases the

participants abandoned the problems and progressed to modelling different aspects of their

designs. The problem areas were not revisited with the features being omitted in the final

models. There was one unresolved problem in the experimental group. During this problem

the participant immediately sought assistance asking could flat geometry be created. The

relevant feature was identified to the participant who decided not to include the feature.

The problem areas were not revisited with the feature being omitted in the final model.

Organic modelling activity

Without the capacity to request assistance when modelling the organic geometries, a

deeper insight could be generated into how the participants were approaching problems

when CAD modelling with their respective software. The participants’ behaviours were

codified using the adapted version of Spillane et al.’s (2012) codex as previously discussed.

Figure 2 illustrates an example of the results of generated through codifying behaviour

using Spillane et al.’s (2012) codex. Utilising this codex can provide a more detailed

insight into the behaviours and heuristics a person exhibits. For the purposes of this study it

was decided to examine the typical heuristics which were evidenced by participants in this

environment to initiate an investigation into the ecological rationality in their selection. It

was also deemed appropriate to examine the amount of time participants spent in various

stages of their problem solving cycles.

Both groups evidenced similar behaviour however there were some differences which

may be attributional to the different modelling environments characteristic of the CAD

systems and the resulting strategies they espouse. The control group who utilised Solid-

Works typically carried out set processes (Kimbell 2011), generated and tested possible

approaches (Linn and Petersen 1985), evidenced the gaze heuristic (Johnson and Raab

2003), made decisions about validity (Novick and Bassok 2005), determined an approach

Fig. 2 Example behavioural analysis using the adapted version of Spillane et al.’s (2012) multidimensional
problem solving codex
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(Goldstein and Gigerenzer 2002) and identifying the problem (Bhavnani et al. 1993). The

experimental group who utilised CRE8 typically exhibited the gaze heuristic Johnson and

Raab (2003), tested results (Miller 1956), made decisions about their validity (Novick and

Bassok 2005) and to a lesser extend determined an approach (Goldstein and Gigerenzer

2002) and spent time making sense of information of perceived relevance to the problem

(Bogard et al. 2013). The complete set of results from the analysis into the exhibition of

heuristics and behaviours are depicted in Table 3.

Using this data, it was also of interest to analyse the time participants spent either

identifying information, planning an approach, implementing an approach or evaluating an

approach. The results of this analysis are presented in Fig. 3. In both groups the majority of

time was spent implementing an approach which was following by evaluating, identifying

critical elements and planning respectively to varying degrees.

Discussion

This study aimed to examine the heuristics and behaviours exhibited by students when

creating CAD models utilising two different CAD systems. Stemming from this, it was

hypothesised that when the students encountered a problem they would display heuristics

to satisfice problems without identifying all necessary information. It addition to this, it

was envisioned that these heuristics would be different between the control and experi-

mental groups reflecting the differences in the CAD systems being used. The results of this

study subsequently illustrated that while there was a difference in the individual heuristics

and behaviours across both groups, generally all students behaved in a fundamentally

similar way. At a macro level, the approaches to engaging in problems that were selected

Table 3 Average quantity per problem of behaviours and heuristics exhibited during the organic modelling
activity

Control group Experimental group

Behaviour
code

Average
quantity

Behaviour
code

Average
quantity

Behaviour
code

Average
quantity

Behaviour
code

Average
quantity

1 0.43 15 0.14 1 – 15 –

2 0.57 16 5.57 2 0.63 16 7.63

3 3.57 17 0.57 3 0.13 17 0.00

4 3.00 18 – 4 2.13 18 –

5 – 19 12.29 5 – 19 1.25

6 – 20 1.71 6 – 20 0.25

7 – 21 0.43 7 0.13 21 –

8 – 22 – 8 – 22 –

9 – 23 8.71 9 – 23 1.25

10 0.14 24 2.86 10 – 24 0.75

11 2.43 25 1.14 11 0.50 25 4.38

12 0.14 26 4.29 12 – 26 3.38

13 0.14 27 – 13 – 27 –

14 3.71 14 2.25
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suggest a circumvention of both learning processes and the engagement in activity which

could lead to the acquisition of the strategic knowledge associated with CAD expertise, and

the designerly knowledge inherent to the discipline. This has the potential to significantly

impact student learning within this subject area as the philosophical underpinning of the

discipline involves creating meaning through designerly activity. A misalignment in the

synthesis between these two areas can prevent students from actively engaging in the

learning process and ultimately prevent their attainment of pertinent educational goals.

This study generated a number of significant insights into the students’ engagement with

the problems they encountered while CAD modelling. An examination of a model can

illustrate the physical procedures which resulted in its creation however the cognitive

process which the student underwent is not necessarily apparent. From a learning per-

spective, this cognitive process is arguably the most beneficial aspect. While an efficient

problem solving approach may be selected to optimise performance in a problem or

educational experience, this efficiency has the potential to circumvent learning and

therefore the future application of knowledge and skills may be hindered. Considering the

factors suggested as being involved in the selection of a heuristic (Hutchinson and

Gigerenzer 2005), it is possible to theorise the rationales underpinning the students deci-

sion making and problem solving processes. Perhaps the most interesting behaviour

exhibited during the initial modelling task was the selection of strategies adopted by the

students. For both groups, a significant portion of problems were solved by the student

requesting assistance and in many cases this was the initial approach to the problem. With

evolutionary training being cited as a factor in students determining such an approach, this

may be suggestive of a pre-existing didactic contract the students were operating under. A

didactic contract describes ‘‘the interplay of mutual expectations between teacher and

students’’ (Verscheure and Amade-Escot 2007, p. 248). It may be the case that previous

educational experiences created a problem solving culture defined by an understanding that

people in the role of an educator will aid students in negotiating a problem through the

provision of a solution. Such a culture could have removed the need for students to explore

alternative approaches to encountered problems because they can solve it more efficiently

by requesting assistance and dissolving their own responsibility as a learner. The signifi-

cance of a problem lies in the relationship the learner has with the problem (Geiger and

Galbraith 1998) and therefore the presence of a teacher may be circumventing the students

Fig. 3 Analysis of time (%) spent in stages of problem solving cycles

952 J. Buckley et al.

123



forming that relationship as deep engagement is not an expectation. As the problems

encountered were CAD modelling problems, the decision not to explore alternative

approaches hinders the acquisition of strategic CAD knowledge. Therefore while the

potential proximal effect of this heuristic is that problems are successfully solved, the distal

effects may be that learning goals pertinent of the development of problem solving

competencies and strategic knowledge aren’t being reached. This is not to suggest that

teachers should remove themselves entirely from the problem solving equation. Vygot-

sky’s (1978) sociocultural theory describes learning as a social process occurring on two

levels, ‘‘first on the social level, and later, on the individual level; first, between people

(interpsychological) and then inside the child [learner] (intrapsychological)’’ (Vygotsky

1978, p. 57). This theory requires teachers to become co-constructers of learning with their

students. As a co-constructor of knowledge, the role of the teacher should concern the

guidance and facilitation of the student in reaching a solution rather than being a provider

of solutions.

An examination of the time spent in each stage of a problem solving cycle by the

students during the organic modelling task reveals a significantly low proportion of time

being spent planning an approach. The majority of time was spent in an implementation

stage followed by an evaluation stage. It is posited that additional time being afforded to

planning and identifying critical information may have supported the learners more in

these activities to develop a higher degree of flexibility in their capacity to engage with

these and future problems. ‘‘Flexible problem solving is associated with the ability to apply

one’s knowledge structures in relatively new situations’’ (Kalyuga and Hanham 2011,

p. 63) and there are a number of frameworks to support the development of such problem

solving skills. These include the ‘‘Theory of Inventive Problem Solving Technique’’ (Akay

et al. 2008) and ‘‘Systematic Inventive Thinking’’ (Barak and Goffer 2002) among others.

Both of these frameworks have potential within an educational context (Seery and Dela-

hunty 2015). However considering these students as novices, and based on the behaviours

they exhibited, it may be more beneficial to design pedagogical strategies for people at this

stage of their education which inform them about problem solving cycles. Combined with a

strategy which aims to develop the core knowledge base of the pertinent discipline, this

approach may aid in alleviating the reoccurrence of problems of a similar nature in future

activities supporting students in a deeper exploration of the subject.

An examination into the behaviours and heuristics most commonly demonstrated by the

students supports the evidence suggesting a lack of planning while engaging with a

problem. While implementing an approach, the gaze heuristic, describing a focus on a

single variable of information and ignoring causal information, was regularly displayed by

both groups. Other regularly evidenced behaviours provide insight into how an approach

was determined. In both groups the students typically would not plan an approach but

rather select an approach and test its validity. If the approach proved to be unsuccessful,

another would be selected and tested. This again suggests a need to teach students to plan

their approaches before implementation and try to envisage potential outcomes.

In response to the hypotheses underpinning this study, the findings suggest that the

participants in both groups did satisfice their designs. It is theorised that this is due to the

combination of a previously developed didactic contract and limitations in their cognitive

capacities. The exact weight of the influence each of these aspects has is undeterminable

from the results of this study, however further work to elicit this would be a significant

contribution to the discipline. With respect to the hypothesis that participants would utilise

different heuristics as a result of the modelling tool allocated to their group, the findings of

this study illustrate that this needs to be considered at two levels. At a macro level, the
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nature of the heuristics adopted by both groups were similar with the predominant

heuristics selected concerning implementation, followed by evaluation, identification and

finally planning. However, at a micro level, the exact heuristics used differed within these

categories. The findings from the macro level categories can have a direct impact within

education as support can be given to students in the planning stages of problem solving.

However further work is needed to examine the exact effects on learning that individual

heuristics can have. The high occurrence of the gaze heuristic suggests that from a ped-

agogical perspective, engaging students in reflective practices concerning the outcomes of

their approaches may aid in their problem solving success and the learning they can

achieve from problem engagement. Ultimately, an amalgamation of the evidence presented

in this paper illustrates the students aligning with the behavioural characteristics of novices

in that their overarching approach was that of a means-end heuristic (Novick and Bassok

2005). The behaviours they exhibited demonstrate both an underdeveloped knowledge

base and approaches which, while potentially optimal in the completion of the activities

themselves, are suboptimal in the development and acquisition of further pertinent

knowledge.

While the results of this study offer significant educational insight, further research is

needed into the behaviours exhibited by students and their subsequent effects during

educational transactions. The study cohort, while representative of the demographic of

technology education at a national level, contained only three female students. Linn and

Petersen (1985) provide evidence showing that males and females engage with problems in

different ways. Their results identify females as more analytical and males as more holistic.

Therefore, further work should consider the potential for gender differences in the adoption

of heuristics in educational settings. In addition, while in this study the nature of the

students’ previous educational experience likely influenced their behaviour, this past

experience was uncontrolled. It would be of interest to examine behaviours from a lon-

gitudinal perspective where previous educational experiences could be designed to

examine the effect of such experiences on behaviour selection. Finally, it is important to

note that the use of heuristics can be both positive and negative. Students can adopt

heuristics to alleviate some of the cognitive load being experienced during a learning

activity resulting in an increased capacity for learning. In design activities, the use of

heuristics can also result in an optimal solution within the constraints of the problem.

However, a negative implication can be that exposure to critical information may be

circumvented. It is therefore critical that educators are conscious of the potential for this to

occur and that they ensure the elements of the learning activity they determine to be

essential are clearly expressed to students.
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national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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