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Abstrat

The omputational Grid provides a promising platform for the eÆient exeution of pa-

rameter sweep appliations over very large parameter spaes. Sheduling suh appliations

is hallenging beause target resoures are heterogeneous, beause their load and availabil-

ity varies dynamially, and beause tasks may share ommon data �les. In this paper, we

propose a sheduling algorithm for parameter sweep appliations on the Grid. We on-

sider standard heuristis for task/host assignment (Max-min, Min-min, Su�erage), and we

propose an extension of Su�erage alled XSu�erage. Using simulation, we demonstrate 3

results: 1) that XSu�erage an take advantage of �le sharing to ahieve better performane

than the other heuristis under a wide variety of load onditions, 2) that it is possible to

haraterize the environments under whih di�erent heuristis perform best, and 3) that

it is possible to haraterize the performane of di�erent heuristis under the (realisti)

assumption of varying auray of performane estimations.

1

This researh was supported in part by NSF Grant ASC-9701333, NASA/NPACI Contrat AD-435-5790, and

DARPA/ITO under ontrat #N66001-97-C-8531.

2

Department of Computer Siene and Engineering, University of California San Diego, USA

3

�

Eole Normale Sup�erieure de Lyon, Frane

1



1 Introdution

Fast networks make it possible to aggregate CPU, network and storage resoures into ompu-

tational Grids [1℄. Suh environments an be used e�etively to support very large-sale runs

of distributed appliations. An ideal lass of appliations for the Grid is the lass of parameter

sweep appliations, appliations strutured as a set of multiple "experiments", eah of whih is

exeuted with a distint set of parameters.

Exeuting a parameter sweep on the Grid involves the assignment of tasks to resoures.

Although the experiments (or tasks) of a parameter sweep appliation are independent, a number

of issues make sheduling suh appliations hallenging. First, resoures on the Grid are typially

shared so that the ontention reated by multiple appliations reates dynamially utuating

delays and qualities of servie. In addition, Grid resoures are heterogeneous and may not perform

similarly for the same appliation. Moreover, although parameter sweep tasks are independent,

they may share ommon input �les whih reside at remote loations, hene the performane-

eÆient assignment and sheduling of the appliation must inlude onsideration of the impat

of data transfer times.

In [2℄, 3 heuristis (Max-min, Min-min and Su�erage) were proposed for the sheduling

of independent tasks in single-user, homogeneous environments. In this paper, we modify

these heuristis to shedule parameter sweep appliations in shared, heterogeneous

environments and we propose an extended version of Su�erage, XSu�erage. We

haraterize the environments in whih eah heuristi is performane-eÆient and disuss how

a sheduler might adapt its poliy based on system harateristis, predition auray, size of

shared �les, and other environmental parameters to promote appliation performane. We use a

lassi performane metri: the appliation makespan [3℄, i.e. the time until until all appliation

output is available to the user.

Our ultimate goal is to inlude our sheduling algorithm in adaptive software designed to

dynamially shedule Grid parameter sweep appliations. Suh software is being developed as

part of the AppLeS projet [4, 5, 6℄ and will be the topi of a future paper. The work presented

here is a �rst step in the development of a parameter sweep Grid appliation sheduler.

This paper is organized as follows. In Setion 2, we present our models for both the applia-

tion and the underlying Grid environment. In Setion 3, we present our sheduling algorithm.

Setion 4 disusses the di�erent task/host assignment heuristis. Setion 5 provides simulation

results, Setion 6 referenes related researh works, and Setion 7 onludes the paper.

2 A Sheduling Model for Parameter Sweeps on the Grid

We de�ne a parameter sweep appliation as a set of n independent sequential tasks (or ex-

periments) fT

i

g

i=1;::;n

. By independent we mean that there are no inter-task ommuniations or

data dependenies (i.e. task preedenes). We assume that the input to eah task is a set of �les

and that a �le might be input to more than one task. In our model, without loss of generality,

eah task produes exatly one output �le. Figure 1 shows an example with input �le sharing

among tasks. We assume that the size of eah input and output �le is known a-priori.

We view the Grid omputing environment available to the user as a set of k lusters of

omputing resoures fC

j

g

j=1;::;k

that are aessible via k network links. Eah luster ontains a
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ertain number of hosts where a host an be any omputing platform, from a single-proessor

workstation to an MPP system, and is available in interative or bath mode. We will all hosts

and network links resoures. For eah omputation and �le transfer, we assume an estimate of

exeution time performane is available. On interative hosts, the estimate is the appliation

exeution time whereas on bath resoures, it is is the turnaround time (de�ned as the queue

waiting time plus exeution time). Suh estimates an be provided by the user, omputed from

analytial models or historial information, or provided by failities suh as the Network Weather

Servie (NWS) [7℄, ENV [8℄, Remos [9℄, and/or Grid servies suh as those found in Globus [10℄.

Note that the auray and variane of the performane estimates an provide an additional

information. In this work we initiate a study of the impat of estimate auray on di�erent

sheduling strategies.

We assume that a storage faility (e.g. NFS) is available at eah luster so that �les an be

shared among the proesses running on di�erent hosts in the luster

4

. Figure 2 shows an example

with three lusters. In this work we assume that all input �les are initially stored on the user's

host, that all output �les must be returned to this loation, and that there are no inter-luster

�le exhanges. We assume for now that one assigned, tasks do not migrate between resoures.

This senario �ts the urrent usage of several real-life, parameter sweep appliations (e.g. MCell

[11, 12℄, INS2D [13, 14℄ and others), and we leave alternate usage senarios for future work. The

models assumptions will be further disussed in the full paper and we believe that our simplifying

assumptions make it possible to obtain initial meaningful results about a realisti environment

while keeping the simulation tratable.

3 A Parameter Sweep Sheduling Algorithm

Our sheduling algorithm, shedule(), takes into aount performane estimates to generate

a plan for the sheduling of tasks that have not yet been assigned to hosts. To aount for

the Grid's dynami nature, shedule() an be alled repeatedly so that the shedule an be

modi�ed and re�ned. This is depited on Figure 3. We denote the points in time at whih

shedule() is alled sheduling events, aording to the terminology in [2℄. We assume that at

eah sheduling event our sheduler has aess to: (i) the urrent topology of the Grid (number

of lusters, number of hosts in those lusters, network links), (ii) the number and loation of

opies of all input �les, and (iii) the list of omputations and �le transfers urrently underway.

Figure 4 shows the general skeleton for shedule() whose steps an be desribed as follows:

Step (1) determines the time of the next sheduling event. This an take into aount environ-

ment behavior to inrease or derease the sheduling event frequeny. Step (2) reates a Gantt

hart [15℄ that will be used to keep trak of task/host assignments. The Gantt hart ontains

as many olumns as resoures. Figure 5 shows an example for an environment ontaining two

lusters with respetively two and three hosts. Step (3) inserts slots orresponding to tasks

that are urrently running into the hart. Two examples are shown on Figure 5 as blak-�lled

retangles slots at the beginning of the hart (one �le transfer and one omputation).

Step (5) is the ore of the algorithm in whih it is determined whih task should be performed

on whih host. This step is detailed in Setion 4. Examples of slot assignments are depited

4

For the moment we do not model ontention arising from aess to shared �les within a luster.
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on Figure 5 in gray. In this example, input �le transfers are sheduled on the network link to

luster C

2

, the omputation is then sheduled on a host within that luster, and the output �le is

sheduled to be returned to the user's host. Step (6) onverts the Gantt hart into a sequene

of instrutions. These instrutions an then be followed to interat with Grid software servies

(for job submission and monitoring, data motion, et.).

4 Task/Host Assignment Heuristis

Almost every step of our sheduling algorithm an use a variety of tehniques. The ultimate goal

of our researh is to produe an adaptive algorithm that takes into aount Grid and appliation

information to hoose appropriates tehniques at eah step. This paper is foused on step (5),

the ore of the algorithm: task-host seletion heuristis. We must identify heuristis that are

appliable in Grid environments. Moreover task/host assignment heuristis must be eÆient to

ompute, sine the sheduler must not take longer to determine a shedule than the performane

bene�ts of using any individual shedule in pratie.

Three simple heuristis for sheduling independent tasks for a uniform single-user environment

are proposed in [2℄: Min-min, Max-min, and Su�erage. They are based on work in [16℄. Min-min

omputes eah task's Minimum Completion Time (MCT) over the available hosts and the task

with the minimum MCT is assigned to its best host. The motivation behind Min-min is that

assigning tasks to hosts that omplete them fastest will lead to an overall redued makespan.

Similarly, Max-min assigns the task with maximum MCT to its best host. The expetation is

to overlap long-running tasks with short-running ones. Finally, the rationale behind Su�erage is

that a host should be assigned to the task that would su�er the most if not assigned to that host

(i.e. by an alternative assignment). The task with the highest su�erage value (di�erene between

its best and seond-best ompletion time) takes preedene. More details on these heuristis an

be found in [2℄.

We modi�ed all 3 heuristis so that they (i) inlude input and output data transfer times

when omputing MCT and (ii) take into aount the fat that some �les may already be present

on remote storage devies. In addition, we implemented an extended version of the Su�erage

heuristi, XSu�erage. In XSu�erage, the su�erage value is omputed not with MCTs, but with

luster-level MCTs, i.e. by omputing the minimum MCTs over all hosts in eah luster. The

task with the highest luster-level su�erage values is then assigned to the host that ahieves the

lowest MCT, in the luster that ahieves the lowest luster-level MCT. The full paper will give

detailed algorithmi desriptions of all the heuristis we are onsidering.

It is reasonable to expet that a su�erage strategy should lead to good performane in the

shared and heterogeneous setting, sine the su�erage value provides a onvenient and simple way

to reet presene of input �les on remote lusters. The main idea is that a task would "su�er"

the least if it is assigned to a host on a luster that already has aess to some of its large input

�les. This is somewhat reminisent of the idea of task/host aÆnities introdued in [2℄, where

some hosts are better for some tasks but not for others.
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5 Simulation Results

In order to evaluate the eÆieny of these heuristis we developed a simulator. The simulator

allows us to ompare heuristis under the same load onditions representing a wide variety of

system states. In addition, we veri�ed the auray of our simulated results by omparing ex-

perimental runs in shared, prodution environments with similarly loaded simulation appliation

exeution times. Our simulator takes as input shedule(), a task/host assignment heuristi, a

desription of the appliation tasks and input/output �les, and a desription of the Grid topol-

ogy with performane harateristis of Grid resoures (onstant values, samples from random

variables, traes from the NWS [7℄)

5

. The output of the simulator is a makespan value based on

the set of input parameters. More details on the simulator an be found in [17℄.

Figures 6(a) and (b) show simulation results for an appliation that onsists of 400 tasks. Eah

task takes in input a 10K un-shared �le and one of eight idential shared �les, eah shared by 50

tasks. All tasks are idential in terms of omputational ost and produe a 10K output �le. The

graphs plot makespan vs. shared �le size for all four heuristis and for a self-sheduled workqueue

strategy [18℄. This appliation setting is omparable to what some of our target parameter sweep

appliations (e.g. MCell [11, 12℄) require. The simulated Grid onsists of 4 lusters ontaining

respetively 4, 5, 6 and 8 hosts. CPU loads, network latenies and bandwidths are modeled by

various traes from atual NWS measurements making this Grid heterogeneous. (The full paper

will give all the details about simulation settings). For large shared �le sizes on the graphs, the

average ratio between �le transfer time and omputation time for one task is about 40. This

means that on average it is 40 times more expensive to send a shared �le aross the network

than to run one task. For the smallest shared �le sizes in our study, that ratio is about 0.05.

For these experiments, the interval between sheduling events was always 300 seonds, and we

assumed 100% aurate performane estimations.

Figure 6(a) shows the makespan for \small" shared �les. One an observe that the self-

sheduled workqueue leads to better makespan than other heuristis when �les are so small

that the e�et of �le sharing beomes negligible. However, the workqueue quikly beomes

ineÆient when shared �le size inreases. One an also observe on that graph that Max-min

performs poorly. Aording to results in [2℄, this must be due to the fat that our tasks all

have idential omputational osts. The remaining three heuristis seem to perform similarly for

small shared �le sizes. Figure 6(b) shows the results for large �le sizes. In that range XSu�erage

performs about 30% better than Min-Min and we believe that this is beause it an better

apture information about �le sharing with respet to storage resoures. The Su�erage heuristi

performs very poorly (even worse than Max-min for large �les) due to the inability of host-level

su�erage values to exploit input �le loations. In order to make these results more general and

to show how di�erent heuristis are best for di�erent types of Grid systems and appliations, the

full paper will ontain data from similar experiments in a wider range of settings.

A new avenue of researh that we have mentioned earlier is the study of quality of informa-

tion [19℄ on sheduling, that is the impat of the performane estimation auray on di�erent

sheduling strategies. We expet di�erent task/host seletion heuristis to reat di�erently to

degrading levels of auray and that strategies that do not depend on performane estimation

and foreast (e.g. self-sheduled ones [20℄) may be more appropriate in situations when quality of

5
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information is low. Figure 7 shows simulation results for the same environment as above and for

a shared �le size of 36 MBytes. In this experiment we introdued noise to the perfetly aurate

estimates of the previous experiment by adding a random perentage error to the foreasts (pos-

itive, uniformly distributed). As the mean noise perentage inreases, this simulates inreasingly

pessimisti foreasts (over-estimations) of the task omputation times and �le transfer times. On

the graph we plot the makespan vs. di�erent values of that maximum perentage error and for all

four heuristis and the self-sheduled workqueue. One an see that XSu�erage seems to the most

tolerant to bad quality of information. The Max-min and Su�erage heuristis quikly beome

less eÆient than the workqueue whose makespan does not depend on quality of information.

This �rst result is enouraging and motivates future work in the study of quality of information

with respet to sheduling algorithms.

6 Related Work

A large number of researh works attak the question of mapping set of tasks onto set of pro-

essors in a view to minimizing overall exeution time. Many of these works fouses on sets

of independent tasks [16, 18, 20, 2℄. Sheduling heuristis found in [2℄ were adapted to our

framework as disussed in Setion 4. Our ontribution is that we pay speial attention to shared

appliation data, heterogeneous target resoures, and auray of information.

A number of reent projets [21, 22℄ address the question of simulating heterogeneous dis-

tributed environment for the purpose of evaluating sheduling strategies. Few atual implemen-

tations are underway but Briks [21℄ should beome available in the near future. However, Briks

targets "global omputing systems" [23, 24, 25, 26, 10℄ rather than appliation shedulers. It

assumes onstant task and data arrival rates to servers and uses queuing theory, in an attempt

to model many users who asynhronously interat with a global omputing system. By on-

trast, our simulator is purely event-driven whih is more appropriate in our framework where

the sheduler knows all tasks a-priori and is in harge of only one appliation.

7 Conlusion and Future Work

In this paper we have proposed a sheduling algorithm for parameter sweep appliations in Grid

environments. After preisely de�ning our appliation and Grid model, we adapted three stan-

dard heuristis for task/host assignment (Max-min, Min-min, Su�erage) and proposed an exten-

sion of the Su�erage heuristi, XSu�erage. Initial simulation results demonstrated that: (i) XSuf-

ferage an lead to eÆient shedules in the ase of input �le sharing among tasks; (ii) XSu�erage

seems to be more tolerant of inaurate resoure performane foreasts and estimations.

A number of avenues are open for future researh. Those inlude tehniques for determining

the optimal sheduling event frequeny, more investigation of the impat of quality of information,

exploration of alternate sheduling heuristis (e.g. randomized heuristis [27, 28℄),variations in

the initial loation of input data and post-proessing of output data, as well as other performane

metris. The work desribed herein forms the basis for a pratial software projet that aims at

providing a programming environment for parameter sweep appliations (inluding a sheduler)

in shared, heterogeneous Grid environments.
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