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Abstra
t

The 
omputational Grid provides a promising platform for the eÆ
ient exe
ution of pa-

rameter sweep appli
ations over very large parameter spa
es. S
heduling su
h appli
ations

is 
hallenging be
ause target resour
es are heterogeneous, be
ause their load and availabil-

ity varies dynami
ally, and be
ause tasks may share 
ommon data �les. In this paper, we

propose a s
heduling algorithm for parameter sweep appli
ations on the Grid. We 
on-

sider standard heuristi
s for task/host assignment (Max-min, Min-min, Su�erage), and we

propose an extension of Su�erage 
alled XSu�erage. Using simulation, we demonstrate 3

results: 1) that XSu�erage 
an take advantage of �le sharing to a
hieve better performan
e

than the other heuristi
s under a wide variety of load 
onditions, 2) that it is possible to


hara
terize the environments under whi
h di�erent heuristi
s perform best, and 3) that

it is possible to 
hara
terize the performan
e of di�erent heuristi
s under the (realisti
)

assumption of varying a

ura
y of performan
e estimations.

1

This resear
h was supported in part by NSF Grant ASC-9701333, NASA/NPACI Contra
t AD-435-5790, and

DARPA/ITO under 
ontra
t #N66001-97-C-8531.

2

Department of Computer S
ien
e and Engineering, University of California San Diego, USA

3

�

E
ole Normale Sup�erieure de Lyon, Fran
e

1



1 Introdu
tion

Fast networks make it possible to aggregate CPU, network and storage resour
es into 
ompu-

tational Grids [1℄. Su
h environments 
an be used e�e
tively to support very large-s
ale runs

of distributed appli
ations. An ideal 
lass of appli
ations for the Grid is the 
lass of parameter

sweep appli
ations, appli
ations stru
tured as a set of multiple "experiments", ea
h of whi
h is

exe
uted with a distin
t set of parameters.

Exe
uting a parameter sweep on the Grid involves the assignment of tasks to resour
es.

Although the experiments (or tasks) of a parameter sweep appli
ation are independent, a number

of issues make s
heduling su
h appli
ations 
hallenging. First, resour
es on the Grid are typi
ally

shared so that the 
ontention 
reated by multiple appli
ations 
reates dynami
ally 
u
tuating

delays and qualities of servi
e. In addition, Grid resour
es are heterogeneous and may not perform

similarly for the same appli
ation. Moreover, although parameter sweep tasks are independent,

they may share 
ommon input �les whi
h reside at remote lo
ations, hen
e the performan
e-

eÆ
ient assignment and s
heduling of the appli
ation must in
lude 
onsideration of the impa
t

of data transfer times.

In [2℄, 3 heuristi
s (Max-min, Min-min and Su�erage) were proposed for the s
heduling

of independent tasks in single-user, homogeneous environments. In this paper, we modify

these heuristi
s to s
hedule parameter sweep appli
ations in shared, heterogeneous

environments and we propose an extended version of Su�erage, XSu�erage. We


hara
terize the environments in whi
h ea
h heuristi
 is performan
e-eÆ
ient and dis
uss how

a s
heduler might adapt its poli
y based on system 
hara
teristi
s, predi
tion a

ura
y, size of

shared �les, and other environmental parameters to promote appli
ation performan
e. We use a


lassi
 performan
e metri
: the appli
ation makespan [3℄, i.e. the time until until all appli
ation

output is available to the user.

Our ultimate goal is to in
lude our s
heduling algorithm in adaptive software designed to

dynami
ally s
hedule Grid parameter sweep appli
ations. Su
h software is being developed as

part of the AppLeS proje
t [4, 5, 6℄ and will be the topi
 of a future paper. The work presented

here is a �rst step in the development of a parameter sweep Grid appli
ation s
heduler.

This paper is organized as follows. In Se
tion 2, we present our models for both the appli
a-

tion and the underlying Grid environment. In Se
tion 3, we present our s
heduling algorithm.

Se
tion 4 dis
usses the di�erent task/host assignment heuristi
s. Se
tion 5 provides simulation

results, Se
tion 6 referen
es related resear
h works, and Se
tion 7 
on
ludes the paper.

2 A S
heduling Model for Parameter Sweeps on the Grid

We de�ne a parameter sweep appli
ation as a set of n independent sequential tasks (or ex-

periments) fT

i

g

i=1;::;n

. By independent we mean that there are no inter-task 
ommuni
ations or

data dependen
ies (i.e. task pre
eden
es). We assume that the input to ea
h task is a set of �les

and that a �le might be input to more than one task. In our model, without loss of generality,

ea
h task produ
es exa
tly one output �le. Figure 1 shows an example with input �le sharing

among tasks. We assume that the size of ea
h input and output �le is known a-priori.

We view the Grid 
omputing environment available to the user as a set of k 
lusters of


omputing resour
es fC

j

g

j=1;::;k

that are a

essible via k network links. Ea
h 
luster 
ontains a
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ertain number of hosts where a host 
an be any 
omputing platform, from a single-pro
essor

workstation to an MPP system, and is available in intera
tive or bat
h mode. We will 
all hosts

and network links resour
es. For ea
h 
omputation and �le transfer, we assume an estimate of

exe
ution time performan
e is available. On intera
tive hosts, the estimate is the appli
ation

exe
ution time whereas on bat
h resour
es, it is is the turnaround time (de�ned as the queue

waiting time plus exe
ution time). Su
h estimates 
an be provided by the user, 
omputed from

analyti
al models or histori
al information, or provided by fa
ilities su
h as the Network Weather

Servi
e (NWS) [7℄, ENV [8℄, Remos [9℄, and/or Grid servi
es su
h as those found in Globus [10℄.

Note that the a

ura
y and varian
e of the performan
e estimates 
an provide an additional

information. In this work we initiate a study of the impa
t of estimate a

ura
y on di�erent

s
heduling strategies.

We assume that a storage fa
ility (e.g. NFS) is available at ea
h 
luster so that �les 
an be

shared among the pro
esses running on di�erent hosts in the 
luster

4

. Figure 2 shows an example

with three 
lusters. In this work we assume that all input �les are initially stored on the user's

host, that all output �les must be returned to this lo
ation, and that there are no inter-
luster

�le ex
hanges. We assume for now that on
e assigned, tasks do not migrate between resour
es.

This s
enario �ts the 
urrent usage of several real-life, parameter sweep appli
ations (e.g. MCell

[11, 12℄, INS2D [13, 14℄ and others), and we leave alternate usage s
enarios for future work. The

models assumptions will be further dis
ussed in the full paper and we believe that our simplifying

assumptions make it possible to obtain initial meaningful results about a realisti
 environment

while keeping the simulation tra
table.

3 A Parameter Sweep S
heduling Algorithm

Our s
heduling algorithm, s
hedule(), takes into a

ount performan
e estimates to generate

a plan for the s
heduling of tasks that have not yet been assigned to hosts. To a

ount for

the Grid's dynami
 nature, s
hedule() 
an be 
alled repeatedly so that the s
hedule 
an be

modi�ed and re�ned. This is depi
ted on Figure 3. We denote the points in time at whi
h

s
hedule() is 
alled s
heduling events, a

ording to the terminology in [2℄. We assume that at

ea
h s
heduling event our s
heduler has a

ess to: (i) the 
urrent topology of the Grid (number

of 
lusters, number of hosts in those 
lusters, network links), (ii) the number and lo
ation of


opies of all input �les, and (iii) the list of 
omputations and �le transfers 
urrently underway.

Figure 4 shows the general skeleton for s
hedule() whose steps 
an be des
ribed as follows:

Step (1) determines the time of the next s
heduling event. This 
an take into a

ount environ-

ment behavior to in
rease or de
rease the s
heduling event frequen
y. Step (2) 
reates a Gantt


hart [15℄ that will be used to keep tra
k of task/host assignments. The Gantt 
hart 
ontains

as many 
olumns as resour
es. Figure 5 shows an example for an environment 
ontaining two


lusters with respe
tively two and three hosts. Step (3) inserts slots 
orresponding to tasks

that are 
urrently running into the 
hart. Two examples are shown on Figure 5 as bla
k-�lled

re
tangles slots at the beginning of the 
hart (one �le transfer and one 
omputation).

Step (5) is the 
ore of the algorithm in whi
h it is determined whi
h task should be performed

on whi
h host. This step is detailed in Se
tion 4. Examples of slot assignments are depi
ted

4

For the moment we do not model 
ontention arising from a

ess to shared �les within a 
luster.
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on Figure 5 in gray. In this example, input �le transfers are s
heduled on the network link to


luster C

2

, the 
omputation is then s
heduled on a host within that 
luster, and the output �le is

s
heduled to be returned to the user's host. Step (6) 
onverts the Gantt 
hart into a sequen
e

of instru
tions. These instru
tions 
an then be followed to intera
t with Grid software servi
es

(for job submission and monitoring, data motion, et
.).

4 Task/Host Assignment Heuristi
s

Almost every step of our s
heduling algorithm 
an use a variety of te
hniques. The ultimate goal

of our resear
h is to produ
e an adaptive algorithm that takes into a

ount Grid and appli
ation

information to 
hoose appropriates te
hniques at ea
h step. This paper is fo
used on step (5),

the 
ore of the algorithm: task-host sele
tion heuristi
s. We must identify heuristi
s that are

appli
able in Grid environments. Moreover task/host assignment heuristi
s must be eÆ
ient to


ompute, sin
e the s
heduler must not take longer to determine a s
hedule than the performan
e

bene�ts of using any individual s
hedule in pra
ti
e.

Three simple heuristi
s for s
heduling independent tasks for a uniform single-user environment

are proposed in [2℄: Min-min, Max-min, and Su�erage. They are based on work in [16℄. Min-min


omputes ea
h task's Minimum Completion Time (MCT) over the available hosts and the task

with the minimum MCT is assigned to its best host. The motivation behind Min-min is that

assigning tasks to hosts that 
omplete them fastest will lead to an overall redu
ed makespan.

Similarly, Max-min assigns the task with maximum MCT to its best host. The expe
tation is

to overlap long-running tasks with short-running ones. Finally, the rationale behind Su�erage is

that a host should be assigned to the task that would su�er the most if not assigned to that host

(i.e. by an alternative assignment). The task with the highest su�erage value (di�eren
e between

its best and se
ond-best 
ompletion time) takes pre
eden
e. More details on these heuristi
s 
an

be found in [2℄.

We modi�ed all 3 heuristi
s so that they (i) in
lude input and output data transfer times

when 
omputing MCT and (ii) take into a

ount the fa
t that some �les may already be present

on remote storage devi
es. In addition, we implemented an extended version of the Su�erage

heuristi
, XSu�erage. In XSu�erage, the su�erage value is 
omputed not with MCTs, but with


luster-level MCTs, i.e. by 
omputing the minimum MCTs over all hosts in ea
h 
luster. The

task with the highest 
luster-level su�erage values is then assigned to the host that a
hieves the

lowest MCT, in the 
luster that a
hieves the lowest 
luster-level MCT. The full paper will give

detailed algorithmi
 des
riptions of all the heuristi
s we are 
onsidering.

It is reasonable to expe
t that a su�erage strategy should lead to good performan
e in the

shared and heterogeneous setting, sin
e the su�erage value provides a 
onvenient and simple way

to re
e
t presen
e of input �les on remote 
lusters. The main idea is that a task would "su�er"

the least if it is assigned to a host on a 
luster that already has a

ess to some of its large input

�les. This is somewhat reminis
ent of the idea of task/host aÆnities introdu
ed in [2℄, where

some hosts are better for some tasks but not for others.
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5 Simulation Results

In order to evaluate the eÆ
ien
y of these heuristi
s we developed a simulator. The simulator

allows us to 
ompare heuristi
s under the same load 
onditions representing a wide variety of

system states. In addition, we veri�ed the a

ura
y of our simulated results by 
omparing ex-

perimental runs in shared, produ
tion environments with similarly loaded simulation appli
ation

exe
ution times. Our simulator takes as input s
hedule(), a task/host assignment heuristi
, a

des
ription of the appli
ation tasks and input/output �les, and a des
ription of the Grid topol-

ogy with performan
e 
hara
teristi
s of Grid resour
es (
onstant values, samples from random

variables, tra
es from the NWS [7℄)

5

. The output of the simulator is a makespan value based on

the set of input parameters. More details on the simulator 
an be found in [17℄.

Figures 6(a) and (b) show simulation results for an appli
ation that 
onsists of 400 tasks. Ea
h

task takes in input a 10K un-shared �le and one of eight identi
al shared �les, ea
h shared by 50

tasks. All tasks are identi
al in terms of 
omputational 
ost and produ
e a 10K output �le. The

graphs plot makespan vs. shared �le size for all four heuristi
s and for a self-s
heduled workqueue

strategy [18℄. This appli
ation setting is 
omparable to what some of our target parameter sweep

appli
ations (e.g. MCell [11, 12℄) require. The simulated Grid 
onsists of 4 
lusters 
ontaining

respe
tively 4, 5, 6 and 8 hosts. CPU loads, network laten
ies and bandwidths are modeled by

various tra
es from a
tual NWS measurements making this Grid heterogeneous. (The full paper

will give all the details about simulation settings). For large shared �le sizes on the graphs, the

average ratio between �le transfer time and 
omputation time for one task is about 40. This

means that on average it is 40 times more expensive to send a shared �le a
ross the network

than to run one task. For the smallest shared �le sizes in our study, that ratio is about 0.05.

For these experiments, the interval between s
heduling events was always 300 se
onds, and we

assumed 100% a

urate performan
e estimations.

Figure 6(a) shows the makespan for \small" shared �les. One 
an observe that the self-

s
heduled workqueue leads to better makespan than other heuristi
s when �les are so small

that the e�e
t of �le sharing be
omes negligible. However, the workqueue qui
kly be
omes

ineÆ
ient when shared �le size in
reases. One 
an also observe on that graph that Max-min

performs poorly. A

ording to results in [2℄, this must be due to the fa
t that our tasks all

have identi
al 
omputational 
osts. The remaining three heuristi
s seem to perform similarly for

small shared �le sizes. Figure 6(b) shows the results for large �le sizes. In that range XSu�erage

performs about 30% better than Min-Min and we believe that this is be
ause it 
an better


apture information about �le sharing with respe
t to storage resour
es. The Su�erage heuristi


performs very poorly (even worse than Max-min for large �les) due to the inability of host-level

su�erage values to exploit input �le lo
ations. In order to make these results more general and

to show how di�erent heuristi
s are best for di�erent types of Grid systems and appli
ations, the

full paper will 
ontain data from similar experiments in a wider range of settings.

A new avenue of resear
h that we have mentioned earlier is the study of quality of informa-

tion [19℄ on s
heduling, that is the impa
t of the performan
e estimation a

ura
y on di�erent

s
heduling strategies. We expe
t di�erent task/host sele
tion heuristi
s to rea
t di�erently to

degrading levels of a

ura
y and that strategies that do not depend on performan
e estimation

and fore
ast (e.g. self-s
heduled ones [20℄) may be more appropriate in situations when quality of

5

The simulator also allows for transient resour
es.
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information is low. Figure 7 shows simulation results for the same environment as above and for

a shared �le size of 36 MBytes. In this experiment we introdu
ed noise to the perfe
tly a

urate

estimates of the previous experiment by adding a random per
entage error to the fore
asts (pos-

itive, uniformly distributed). As the mean noise per
entage in
reases, this simulates in
reasingly

pessimisti
 fore
asts (over-estimations) of the task 
omputation times and �le transfer times. On

the graph we plot the makespan vs. di�erent values of that maximum per
entage error and for all

four heuristi
s and the self-s
heduled workqueue. One 
an see that XSu�erage seems to the most

tolerant to bad quality of information. The Max-min and Su�erage heuristi
s qui
kly be
ome

less eÆ
ient than the workqueue whose makespan does not depend on quality of information.

This �rst result is en
ouraging and motivates future work in the study of quality of information

with respe
t to s
heduling algorithms.

6 Related Work

A large number of resear
h works atta
k the question of mapping set of tasks onto set of pro-


essors in a view to minimizing overall exe
ution time. Many of these works fo
uses on sets

of independent tasks [16, 18, 20, 2℄. S
heduling heuristi
s found in [2℄ were adapted to our

framework as dis
ussed in Se
tion 4. Our 
ontribution is that we pay spe
ial attention to shared

appli
ation data, heterogeneous target resour
es, and a

ura
y of information.

A number of re
ent proje
ts [21, 22℄ address the question of simulating heterogeneous dis-

tributed environment for the purpose of evaluating s
heduling strategies. Few a
tual implemen-

tations are underway but Bri
ks [21℄ should be
ome available in the near future. However, Bri
ks

targets "global 
omputing systems" [23, 24, 25, 26, 10℄ rather than appli
ation s
hedulers. It

assumes 
onstant task and data arrival rates to servers and uses queuing theory, in an attempt

to model many users who asyn
hronously intera
t with a global 
omputing system. By 
on-

trast, our simulator is purely event-driven whi
h is more appropriate in our framework where

the s
heduler knows all tasks a-priori and is in 
harge of only one appli
ation.

7 Con
lusion and Future Work

In this paper we have proposed a s
heduling algorithm for parameter sweep appli
ations in Grid

environments. After pre
isely de�ning our appli
ation and Grid model, we adapted three stan-

dard heuristi
s for task/host assignment (Max-min, Min-min, Su�erage) and proposed an exten-

sion of the Su�erage heuristi
, XSu�erage. Initial simulation results demonstrated that: (i) XSuf-

ferage 
an lead to eÆ
ient s
hedules in the 
ase of input �le sharing among tasks; (ii) XSu�erage

seems to be more tolerant of ina

urate resour
e performan
e fore
asts and estimations.

A number of avenues are open for future resear
h. Those in
lude te
hniques for determining

the optimal s
heduling event frequen
y, more investigation of the impa
t of quality of information,

exploration of alternate s
heduling heuristi
s (e.g. randomized heuristi
s [27, 28℄),variations in

the initial lo
ation of input data and post-pro
essing of output data, as well as other performan
e

metri
s. The work des
ribed herein forms the basis for a pra
ti
al software proje
t that aims at

providing a programming environment for parameter sweep appli
ations (in
luding a s
heduler)

in shared, heterogeneous Grid environments.
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