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Abstract

The computational Grid provides a promising platform for the efficient execution of pa-
rameter sweep applications over very large parameter spaces. Scheduling such applications
is challenging because target resources are heterogeneous, because their load and availabil-
ity varies dynamically, and because tasks may share common data files. In this paper, we
propose a scheduling algorithm for parameter sweep applications on the Grid. We con-
sider standard heuristics for task/host assignment (Maz-min, Min-min, Sufferage), and we
propose an extension of Sufferage called XSufferage. Using simulation, we demonstrate 3
results: 1) that XSufferage can take advantage of file sharing to achieve better performance
than the other heuristics under a wide variety of load conditions, 2) that it is possible to
characterize the environments under which different heuristics perform best, and 3) that
it is possible to characterize the performance of different heuristics under the (realistic)
assumption of varying accuracy of performance estimations.
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1 Introduction

Fast networks make it possible to aggregate CPU, network and storage resources into compu-
tational Grids [1]. Such environments can be used effectively to support very large-scale runs
of distributed applications. An ideal class of applications for the Grid is the class of parameter
sweep applications, applications structured as a set of multiple ”experiments”, each of which is
executed with a distinct set of parameters.

Executing a parameter sweep on the Grid involves the assignment of tasks to resources.
Although the experiments (or tasks) of a parameter sweep application are independent, a number
of issues make scheduling such applications challenging. First, resources on the Grid are typically
shared so that the contention created by multiple applications creates dynamically fluctuating
delays and qualities of service. In addition, Grid resources are heterogeneous and may not perform
similarly for the same application. Moreover, although parameter sweep tasks are independent,
they may share common input files which reside at remote locations, hence the performance-
efficient assignment and scheduling of the application must include consideration of the impact
of data transfer times.

In [2], 3 heuristics (Maz-min, Min-min and Sufferage) were proposed for the scheduling
of independent tasks in single-user, homogeneous environments. In this paper, we modify
these heuristics to schedule parameter sweep applications in shared, heterogeneous
environments and we propose an extended version of Sufferage, XSufferage. We
characterize the environments in which each heuristic is performance-efficient and discuss how
a scheduler might adapt its policy based on system characteristics, prediction accuracy, size of
shared files, and other environmental parameters to promote application performance. We use a
classic performance metric: the application makespan [3], i.e. the time until until all application
output is available to the user.

Our ultimate goal is to include our scheduling algorithm in adaptive software designed to
dynamically schedule Grid parameter sweep applications. Such software is being developed as
part of the AppLeS project [4, 5, 6] and will be the topic of a future paper. The work presented
here is a first step in the development of a parameter sweep Grid application scheduler.

This paper is organized as follows. In Section 2, we present our models for both the applica-
tion and the underlying Grid environment. In Section 3, we present our scheduling algorithm.
Section 4 discusses the different task/host assignment heuristics. Section 5 provides simulation
results, Section 6 references related research works, and Section 7 concludes the paper.

2 A Scheduling Model for Parameter Sweeps on the Grid

We define a parameter sweep application as a set of n independent sequential tasks (or ez-
periments) {T;}i=1,.n. By independent we mean that there are no inter-task communications or
data dependencies (i.e. task precedences). We assume that the input to each task is a set of files
and that a file might be input to more than one task. In our model, without loss of generality,
each task produces exactly one output file. Figure 1 shows an example with input file sharing
among tasks. We assume that the size of each input and output file is known a-priori.

We view the Grid computing environment available to the user as a set of k clusters of
computing resources {C;},—1, j that are accessible via k network links. Each cluster contains a



certain number of hosts where a host can be any computing platform, from a single-processor
workstation to an MPP system, and is available in interactive or batch mode. We will call hosts
and network links resources. For each computation and file transfer, we assume an estimate of
execution time performance is available. On interactive hosts, the estimate is the application
ezecution time whereas on batch resources, it is is the turnaround time (defined as the queue
waiting time plus execution time). Such estimates can be provided by the user, computed from
analytical models or historical information, or provided by facilities such as the Network Weather
Service (NWS) [7], ENV [8], Remos [9], and/or Grid services such as those found in Globus [10].
Note that the accuracy and variance of the performance estimates can provide an additional
information. In this work we initiate a study of the impact of estimate accuracy on different
scheduling strategies.

We assume that a storage facility (e.g. NFS) is available at each cluster so that files can be
shared among the processes running on different hosts in the cluster*. Figure 2 shows an example
with three clusters. In this work we assume that all input files are initially stored on the user’s
host, that all output files must be returned to this location, and that there are no inter-cluster
file exchanges. We assume for now that once assigned, tasks do not migrate between resources.
This scenario fits the current usage of several real-life, parameter sweep applications (e.g. MCell
[11, 12], INS2D [13, 14] and others), and we leave alternate usage scenarios for future work. The
models assumptions will be further discussed in the full paper and we believe that our simplifying
assumptions make it possible to obtain initial meaningful results about a realistic environment
while keeping the simulation tractable.

3 A Parameter Sweep Scheduling Algorithm

Our scheduling algorithm, schedule(), takes into account performance estimates to generate
a plan for the scheduling of tasks that have not yet been assigned to hosts. To account for
the Grid’s dynamic nature, schedule() can be called repeatedly so that the schedule can be
modified and refined. This is depicted on Figure 3. We denote the points in time at which
schedule () is called scheduling events, according to the terminology in [2]. We assume that at
each scheduling event our scheduler has access to: (i) the current topology of the Grid (number
of clusters, number of hosts in those clusters, network links), (ii) the number and location of
copies of all input files, and (iii) the list of computations and file transfers currently underway.

Figure 4 shows the general skeleton for schedule () whose steps can be described as follows:
Step (1) determines the time of the next scheduling event. This can take into account environ-
ment behavior to increase or decrease the scheduling event frequency. Step (2) creates a Gantt
chart [15] that will be used to keep track of task/host assignments. The Gantt chart contains
as many columns as resources. Figure 5 shows an example for an environment containing two
clusters with respectively two and three hosts. Step (3) inserts slots corresponding to tasks
that are currently running into the chart. Two examples are shown on Figure 5 as black-filled
rectangles slots at the beginning of the chart (one file transfer and one computation).

Step (5) is the core of the algorithm in which it is determined which task should be performed
on which host. This step is detailed in Section 4. Examples of slot assignments are depicted

4For the moment we do not model contention arising from access to shared files within a cluster.



on Figure 5 in gray. In this example, input file transfers are scheduled on the network link to
cluster Cy, the computation is then scheduled on a host within that cluster, and the output file is
scheduled to be returned to the user’s host. Step (6) converts the Gantt chart into a sequence
of instructions. These instructions can then be followed to interact with Grid software services
(for job submission and monitoring, data motion, etc.).

4 Task/Host Assignment Heuristics

Almost every step of our scheduling algorithm can use a variety of techniques. The ultimate goal
of our research is to produce an adaptive algorithm that takes into account Grid and application
information to choose appropriates techniques at each step. This paper is focused on step (5),
the core of the algorithm: task-host selection heuristics. We must identify heuristics that are
applicable in Grid environments. Moreover task/host assignment heuristics must be efficient to
compute, since the scheduler must not take longer to determine a schedule than the performance
benefits of using any individual schedule in practice.

Three simple heuristics for scheduling independent tasks for a uniform single-user environment
are proposed in [2]: Min-min, Maz-min, and Sufferage. They are based on work in [16]. Min-min
computes each task’s Minimum Completion Time (MCT) over the available hosts and the task
with the minimum MCT is assigned to its best host. The motivation behind Min-min is that
assigning tasks to hosts that complete them fastest will lead to an overall reduced makespan.
Similarly, Maz-min assigns the task with maximum MCT to its best host. The expectation is
to overlap long-running tasks with short-running ones. Finally, the rationale behind Sufferage is
that a host should be assigned to the task that would suffer the most if not assigned to that host
(i.e. by an alternative assignment). The task with the highest sufferage value (difference between
its best and second-best completion time) takes precedence. More details on these heuristics can
be found in [2].

We modified all 3 heuristics so that they (i) include input and output data transfer times
when computing MCT and (ii) take into account the fact that some files may already be present
on remote storage devices. In addition, we implemented an extended version of the Sufferage
heuristic, XSufferage. In XSufferage, the sufferage value is computed not with MCTs, but with
cluster-level MCTs, i.e. by computing the minimum MCTs over all hosts in each cluster. The
task with the highest cluster-level sufferage values is then assigned to the host that achieves the
lowest MCT, in the cluster that achieves the lowest cluster-level MCT. The full paper will give
detailed algorithmic descriptions of all the heuristics we are considering.

It is reasonable to expect that a sufferage strategy should lead to good performance in the
shared and heterogeneous setting, since the sufferage value provides a convenient and simple way
to reflect presence of input files on remote clusters. The main idea is that a task would ”suffer”
the least if it is assigned to a host on a cluster that already has access to some of its large input
files. This is somewhat reminiscent of the idea of task/host affinities introduced in [2], where
some hosts are better for some tasks but not for others.



5 Simulation Results

In order to evaluate the efficiency of these heuristics we developed a simulator. The simulator
allows us to compare heuristics under the same load conditions representing a wide variety of
system states. In addition, we verified the accuracy of our simulated results by comparing ex-
perimental runs in shared, production environments with similarly loaded simulation application
execution times. Our simulator takes as input schedule(), a task/host assignment heuristic, a
description of the application tasks and input/output files, and a description of the Grid topol-
ogy with performance characteristics of Grid resources (constant values, samples from random
variables, traces from the NWS [7])°. The output of the simulator is a makespan value based on
the set of input parameters. More details on the simulator can be found in [17].

Figures 6(a) and (b) show simulation results for an application that consists of 400 tasks. Each
task takes in input a 10K un-shared file and one of eight identical shared files, each shared by 50
tasks. All tasks are identical in terms of computational cost and produce a 10K output file. The
graphs plot makespan vs. shared file size for all four heuristics and for a self-scheduled workqueue
strategy [18]. This application setting is comparable to what some of our target parameter sweep
applications (e.g. MCell [11, 12]) require. The simulated Grid consists of 4 clusters containing
respectively 4, 5, 6 and 8 hosts. CPU loads, network latencies and bandwidths are modeled by
various traces from actual NWS measurements making this Grid heterogeneous. (The full paper
will give all the details about simulation settings). For large shared file sizes on the graphs, the
average ratio between file transfer time and computation time for one task is about 40. This
means that on average it is 40 times more expensive to send a shared file across the network
than to run one task. For the smallest shared file sizes in our study, that ratio is about 0.05.
For these experiments, the interval between scheduling events was always 300 seconds, and we
assumed 100% accurate performance estimations.

Figure 6(a) shows the makespan for “small” shared files. One can observe that the self-
scheduled workqueue leads to better makespan than other heuristics when files are so small
that the effect of file sharing becomes negligible. However, the workqueue quickly becomes
inefficient when shared file size increases. One can also observe on that graph that Max-min
performs poorly. According to results in [2], this must be due to the fact that our tasks all
have identical computational costs. The remaining three heuristics seem to perform similarly for
small shared file sizes. Figure 6(b) shows the results for large file sizes. In that range XSufferage
performs about 30% better than Min-Min and we believe that this is because it can better
capture information about file sharing with respect to storage resources. The Sufferage heuristic
performs very poorly (even worse than Max-min for large files) due to the inability of host-level
sufferage values to exploit input file locations. In order to make these results more general and
to show how different heuristics are best for different types of Grid systems and applications, the
full paper will contain data from similar experiments in a wider range of settings.

A new avenue of research that we have mentioned earlier is the study of quality of informa-
tion [19] on scheduling, that is the impact of the performance estimation accuracy on different
scheduling strategies. We expect different task/host selection heuristics to react differently to
degrading levels of accuracy and that strategies that do not depend on performance estimation
and forecast (e.g. self-scheduled ones [20]) may be more appropriate in situations when quality of

5The simulator also allows for transient resources.



information is low. Figure 7 shows simulation results for the same environment as above and for
a shared file size of 36 MBytes. In this experiment we introduced noise to the perfectly accurate
estimates of the previous experiment by adding a random percentage error to the forecasts (pos-
itive, uniformly distributed). As the mean noise percentage increases, this simulates increasingly
pessimistic forecasts (over-estimations) of the task computation times and file transfer times. On
the graph we plot the makespan vs. different values of that maximum percentage error and for all
four heuristics and the self-scheduled workqueue. One can see that XSufferage seems to the most
tolerant to bad quality of information. The Max-min and Sufferage heuristics quickly become
less efficient than the workqueue whose makespan does not depend on quality of information.
This first result is encouraging and motivates future work in the study of quality of information
with respect to scheduling algorithms.

6 Related Work

A large number of research works attack the question of mapping set of tasks onto set of pro-
cessors in a view to minimizing overall execution time. Many of these works focuses on sets
of independent tasks [16, 18, 20, 2]. Scheduling heuristics found in [2] were adapted to our
framework as discussed in Section 4. Our contribution is that we pay special attention to shared
application data, heterogeneous target resources, and accuracy of information.

A number of recent projects [21, 22] address the question of simulating heterogeneous dis-
tributed environment for the purpose of evaluating scheduling strategies. Few actual implemen-
tations are underway but Bricks [21] should become available in the near future. However, Bricks
targets ”global computing systems” [23, 24, 25, 26, 10] rather than application schedulers. It
assumes constant task and data arrival rates to servers and uses queuing theory, in an attempt
to model many users who asynchronously interact with a global computing system. By con-
trast, our simulator is purely event-driven which is more appropriate in our framework where
the scheduler knows all tasks a-priori and is in charge of only one application.

7 Conclusion and Future Work

In this paper we have proposed a scheduling algorithm for parameter sweep applications in Grid
environments. After precisely defining our application and Grid model, we adapted three stan-
dard heuristics for task/host assignment (Maz-min, Min-min, Sufferage) and proposed an exten-
sion of the Sufferage heuristic, XSufferage. Initial simulation results demonstrated that: (i) XSuf-
ferage can lead to efficient schedules in the case of input file sharing among tasks; (ii) XSufferage
seems to be more tolerant of inaccurate resource performance forecasts and estimations.

A number of avenues are open for future research. Those include techniques for determining
the optimal scheduling event frequency, more investigation of the impact of quality of information,
exploration of alternate scheduling heuristics (e.g. randomized heuristics [27, 28|),variations in
the initial location of input data and post-processing of output data, as well as other performance
metrics. The work described herein forms the basis for a practical software project that aims at
providing a programming environment for parameter sweep applications (including a scheduler)
in shared, heterogeneous Grid environments.
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schedule() {

(1) compute the next scheduling event
(2) create a Gantt Chart, G

(3) foreach computation and file transfer currently underway

compute an estimate of its completion time
fill in the corresponding slots in GG
(5) until each host has been assigned enough work

use heuristic to assign tasks to hosts, by filling slots in GG

(6) convert G into plan

Figure 4: Scheduling algorithm
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