
European J. Industrial Engineering, Vol. 1, No. 4, 2007 431

Heuristics for the single machine scheduling

problem with early and quadratic tardy penalties

Jorge M.S. Valente

LIAAD, Faculdade de Economia

Universidade do Porto,

Rua Dr. Roberto Frias,

Porto 4200-464, Portugal

Fax: +351-22-550-50-50

E-mail: jvalente@fep.up.pt

Abstract: This paper considers the single machine scheduling problem with
linear earliness and quadratic tardiness costs, and no machine idle time. Several
dispatching heuristics are proposed, and their performance is analysed on
a wide range of instances. The heuristics include simple scheduling rules,
as well as a procedure that takes advantage of the strengths of these rules.
Linear early/quadratic tardy dispatching rules are also considered, as well as a
greedy-type procedure. Extensive experiments are performed to determine
appropriate values for the parameters required by some of the heuristics.
The computational tests show that the best results are given by the linear
early/quadratic tardy dispatching rule. This procedure is also quite efficient, and
can quickly solve even very large instances.

[Received 15 December 2006; Revised 20 July 2007; Accepted 24 July 2007]

Keywords: heuristics; scheduling; single machine; early penalties; quadratic

tardy penalties; no machine idle time; dispatching rules.

Reference to this paper should be made as follows: Valente, J.M.S.

(2007) ‘Heuristics for the single machine scheduling problem with early and

quadratic tardy penalties’, European J. Industrial Engineering, Vol. 1, No. 4,

pp.431–448.

Biographical notes: Jorge M.S. Valente is an Assistant Professor of Operations

Research at the Faculty of Economics, University of Porto, Portugal. He received

a PhD in Management Science and an MS in Economics from the University of

Porto. His current research interests include production scheduling, combinatorial

optimisation, heuristic techniques and agent-based computational economics.

1 Introduction

This paper considers a single machine scheduling problem with linear earliness and

quadratic tardiness costs, and no machine idle time. Formally, the problem can be stated

as follows. A set of n independent jobs {J1, J2, . . . , Jn} has to be scheduled on a single

machine that can handle at most one job at a time. The machine is assumed to be continuously

available from time zero onwards, and preemptions are not allowed. Job Jj , j = 1, 2, . . . , n,

requires a processing time pj and should ideally be completed on its due date dj . For a

given schedule, the earliness and tardiness of Jj are defined as Ej = max
{

0, dj − Cj

}

and

Copyright © 2007 Inderscience Enterprises Ltd.

432 J.M.S. Valente

Tj = max
{

0, Cj − dj

}

, respectively, where Cj is the completion time of Jj . The objective

is to find a schedule that minimises the sum of linear earliness and quadratic tardiness costs
∑n

j=1

(

Ej + T 2
j

)

, subject to the constraint that no machine idle time is allowed.

Scheduling models with a single processor may appear to arise infrequently in practice.

However, this scheduling environment does indeed occur in several activities (for a recent

example in the chemical industry, see Wagner et al. (2002)). Moreover, the performance of

many production systems is quite often dictated by the quality of the schedules for a single

bottleneck machine. Models with a single processor are then most useful in practice for

scheduling such a machine. Also, the analysis of single machine problems provides insights

that prove valuable for scheduling more complex systems. In fact, multiple processor

systems can sometimes be relaxed to a single machine problem, or a sequence of such

problems. Furthermore, the solution procedures for some complex systems, such as job

shop environments, often require solving single machine subproblems.

Scheduling models with both earliness and tardiness penalties are compatible with the

philosophy of Just-In-Time (JIT) production. The JIT production philosophy emphasises

producing goods only when they are needed, and therefore takes up the view that both

earliness and tardiness should be discouraged. Therefore, an ideal schedule is one in which

all jobs are completed exactly on their due dates. Earliness/tardiness problems are also

compatible with a recent trend in industry, namely supply chain management. This approach

seeks to integrate the flow of materials from the suppliers to the customers, in order to

improve the efficiency of the supply chain and to provide a better service to the end-user.

The adoption of this approach has caused organisations to view early deliveries, in addition

to tardy deliveries, as undesirable.

Linear earliness and quadratic tardiness costs are considered in this paper. On the one

hand, early deliveries or early completions of jobs result in unnecessary inventory that ties

up cash, as well as space and resources required to maintain and manage the inventory.

These costs tend to be proportional to the quantity of inventory held, and therefore a linear

penalty is used for early jobs.

On the other hand, late deliveries can result in lost sales and loss of goodwill, as

well as disruptions and delays in stages further down the supply chain or production line.

A quadratic penalty is considered for the tardy jobs, instead of the more usual linear tardiness

or maximum tardiness functions. As described in Sun et al. (1999), the quadratic penalty

may be preferable to these two other tardiness measures for the following reasons.

Firstly, the maximum tardiness measure does not distinguish between schedules where

tardiness occurs for all jobs, or only one, as long as the maximum tardiness is the same.

Secondly, when a linear tardiness is used, it is possible that a single or only a few jobs

contribute the majority of the cost, without regard to how the overall tardiness is distributed.

In fact, the linear tardiness criterion does not differentiate between sequences where all jobs

are only a little tardy, or a single job is extremely late, as long as the total cost is equal.

The quadratic penalty overcomes these problems, and provides a more robust performance

measure. Moreover, a quadratic tardiness penalty is also appropriate in practice. Indeed,

the tardiness of a job is an important attribute of service quality. Also, a customer’s

dissatisfaction tends to increase quadratically with the tardiness, as proposed in the loss

function of Taguchi (1986).

In this paper, it is assumed that no machine idle time is allowed. This assumption

is appropriate for many production settings. Indeed, when the capacity of the machine

is limited when compared with the demand, the machine must be kept running to meet

customers’ orders. Idle time must also be avoided for machines with high operating costs,

Heuristics for the single machine scheduling problem 433

since the cost of keeping the machine running is then higher than the earliness cost incurred

by completing a job before its due date. Furthermore, the assumption of no idle time is

also justified when starting a new production run involves high set-up costs or times. Some

specific examples of production settings where no idle time assumption is appropriate have

been given by Korman (1994) and Landis (1993). More specifically, Korman considers

the Pioneer Video Manufacturing (now Deluxe Video Services) disc factory at Carson,

California, while Landis analyses the Westvaco envelope plant at Los Angeles.

This problem has been previously considered by Valente (to appear). He proposed a

lower bounding procedure based on a relaxation of the job completion times, as well as

a branch-and-bound algorithm. The corresponding problem with inserted idle time was

studied by Schaller (2004), who presented a timetabling procedure to optimally insert idle

time in a given sequence, as well as a branch-and-bound procedure and simple and efficient

heuristic algorithms.

The single machine early/tardy problem with linear earliness and tardiness costs
∑n

j=1

(

Ej + Tj

)

has also been previously considered by Garey et al. (1988), Kim

and Yano (1994) and Schaller (2007). Garey et al. (1988) show that the problem is

NP-hard, and propose a timetabling procedure. Kim and Yano (1994) present some

properties of optimal solutions, and use them to develop both optimal and heuristic

algorithms. Schaller (2007) develops a new lower bound and a new dominance condition,

and also shows how to strengthen the lower bounds proposed by Kim and Yano (1994).

The computational tests show that the new lower bounds improve the efficiency of a

branch-and-bound algorithm.

Valente and Alves (to appear) presented several heuristics for the problem with quadratic

earliness and tardiness costs and job-dependent penalties
∑n

j=1

(

hjE
2
j + wjT

2
j

)

, and no

machine idle time. The minimisation of the quadratic lateness
∑n

j=1 L2
j , where the lateness

of Jj is defined as Lj = Cj − dj , has also been previously considered. Gupta and Sen

(1983) presented a branch-and-bound algorithm and a heuristic rule for the problem with

no idle time. Su and Chang (1998) and Schaller (2002) considered the insertion of idle

time, and proposed timetabling procedures and heuristic algorithms. Sen et al. (1995)

presented a branch-and-bound algorithm for the weighted problem
∑n

j=1 wjL
2
j where idle

time is allowed only prior to the start of the first job.

Baker and Scudder (1990) provide an excellent survey of scheduling problems with

earliness and tardiness penalties, while Kanet and Sridharan (2000) give a review of

scheduling models with inserted idle time that complements our focus on a problem with

no machine idle time. Also, a recent survey of multicriteria scheduling problems is given

in Hoogeveen (2005). This survey also considers and reviews problems with earliness and

tardiness penalties.

In this paper, several dispatching heuristics are proposed, and their performance is

analysed on a large set of instances. Three simple but widely used scheduling rules are

considered, and an adaptation of one of those rules to a quadratic tardiness objective function

is proposed. A heuristic that tries to take advantage of the strengths of the best-performing of

these simple rules is also developed. Modified versions of early/tardy dispatching procedures

originally proposed for the weighted problem with fully linear costs are also presented.

These heuristics have been suitably adapted, in order to take into account the quadratic

tardiness cost, as well as the non-weighted nature of the considered problem. Finally, a

greedy-type heuristic procedure is also presented. Extensive computational experiments

are performed in order to determine appropriate values for the parameters required by some

of the heuristics.

434 J.M.S. Valente

The remainder of this paper is organised as follows. The heuristics are described in

Section 2. In Section 3, the computational results are presented. Finally, some concluding

remarks are provided in Section 4.

2 The heuristics

2.1 Simple linear dispatching rules

Three simple scheduling rules are considered, namely the Longest Processing Time (LPT),

Earliest Due Date (EDD) and Shortest Processing Time (SPT) heuristics. The LPT (SPT)

rule schedules the jobs in non-increasing (non-decreasing) order of their processing times,

while the EDD heuristic sequences the jobs in non-decreasing order of their due dates.

These rules only require sorting, and their time complexity is then O(n log n).

These heuristics are considered for two major reasons. On the one hand, these rules

are quite well-known and widely used in many production settings. Therefore, it seems

reasonable to include them for comparison purposes.

On the other hand, these rules have some interesting properties for the related problem

with a fully linear objective function
∑n

j=1

(

Ej + Tj

)

. Indeed, the LPT heuristic is

particularly adequate to problems where most jobs will be completed early. In fact, the

LPT sequence is optimal if it does not contain any tardy jobs. Conversely, the SPT

rule is optimal if it generates a schedule with no early jobs. Therefore, this rule is

appropriate for problems where most jobs will be tardy. Finally, the EDD heuristic usually

performs better than either the LPT or SPT rules when the number of early and tardy jobs

is relatively balanced.

Therefore, each one of these simple rules can perform quite well, under the appropriate

circumstances, for the problem with a completely linear objective function. For this

reason, it seems appropriate to analyse their performance for the problem with a quadratic

tardiness cost.

2.2 Simple quadratic dispatching rule

The SPT rule is locally optimal, under the appropriate conditions, for the linear total

tardiness problem
∑n

j=1 Tj . In fact, if two adjacent jobs are always tardy, regardless of

their order, it is optimal to schedule those jobs in SPT order. In this section, a dispatching

rule derived from a local optimality condition for the quadratic tardiness problem
∑n

j=1 T 2
j

is presented. Therefore, this heuristic is an adaptation of the SPT rule to a quadratic objective

function. This procedure can also be seen as an adaptation of the WPT_sj _T dispatching

rule proposed by Valente and Alves (to appear) for the problem with quadratic early/tardy

costs and job-dependent penalties.

Theorem 1: Consider any two adjacent jobs Ji and Jj that are always tardy, regardless of

their order. In an optimal sequence, all such adjacent pairs of jobs must satisfy the following

condition:

(

1

pi

)

[

pj + 2 (t + pi − di)
]

≥

(

1

pj

)

[

pi + 2
(

t + pj − dj

)]

where job Ji immediately precedes job Jj and t is the start time of job Ji .

Heuristics for the single machine scheduling problem 435

Proof: The condition can be established using simple interchange arguments. For the sake

of brevity, the details are omitted.

Theorem 1 provides a local optimality condition for two adjacent jobs that are always

tardy, regardless of their order. The left (right) side of this expression can be interpreted

as the priority of job Ji with respect to job Jj (job Jj with respect to job Ji) at time t .

A dispatching rule priority index can then be derived by comparing the priority of each job

with an average job with processing time p, where p is the average processing time of the

remaining unscheduled jobs. Therefore, the priority index of job Jj at time t , denoted as

Ij (t), can be calculated as:

Ij (t) =

(

1

pj

)

[

p + 2 max
(

t + pj − dj , 0
)]

At each iteration, the SPT_sj dispatching rule selects the unscheduled job with the largest

priority. The priority index of the SPT_sj heuristic includes both a SPT component and a

slack (sj) related component (the slack of job Jj is defined as sj = dj − t − pj). When a

job is early, the SPT_sj heuristic is equivalent to the SPT rule, since the priority of job Jj

is then equal to
(

1/pj

)

p. When a job is tardy, however, the SPT ratio
(

1/pj

)

is modified

by a slack-related component, and the priority increases with the job’s tardiness.

The SPT_sj dispatching heuristic is particularly suited to problems where most jobs will

be completed after their due dates, since it is derived from a local optimality condition for

tardy jobs. Therefore, the SPT_sj rule is essentially an adaptation of the SPT heuristic to a

quadratic tardiness objective. The time complexity of the SPT_sj heuristic is O
(

n2
)

.

The following numerical example will be used to illustrate the proposed heuristics.

Consider an instance with six jobs, with processing times 8, 10, 6, 4, 3 and 5, and due

dates 15, 10, 9, 2, 12 and 17, respectively. In the first iteration, at time t = 0, the average

processing time p of the remaining unscheduled jobs is 6.3333. The priorities of the six

available jobs are 0.7917, 0.6333, 1.0556, 2.8533, 2.1111 and 0.9048. Job 4 has the largest

priority, and is then selected for processing. After the subsequent iterations are performed,

the final sequence 4-5-3-2-1-6, with objective function value 891, is then obtained.

2.3 The CS heuristic

Early computational tests were performed with the LPT, EDD, SPT and SPT_sj dispatching

rules. These tests showed that the SPT_sj heuristic performed better than the SPT rule.

Moreover, the preliminary tests also showed that the best results were given by the EDD

(SPT_sj) heuristic for problems where most jobs were early (tardy). The LPT heuristic was

outperformed by the other procedures, even for instances where most jobs were early.

In fact, the LPT heuristic focuses on minimising the earliness costs, and completely

disregards the tardiness component of the objective function. This means that the LPT

sequence may contain a few jobs that are quite tardy, even for instances where most jobs

will indeed be early. Since the objective function penalty for tardiness is much higher than

the penalty for earliness, the LPT sequence will have a large cost, even though it minimises

the earliness component.

In this section, a heuristic (denoted as Critical Slack (CS)) that tries to take advantage of

the strengths of the EDD and SPT_sj rules is presented. At each iteration, the CS heuristic

uses one of these two rules to choose the next job. Indeed, the CS procedure selects the rule

that is expected to provide the best performance, given the characteristics of the current

workload.

436 J.M.S. Valente

The CS heuristic classifies the current workload as non-tardy or tardy. When most jobs

have large slacks, the current workload is classified as non-tardy. Conversely, a tardy load

consists mainly of jobs with low slacks. At each iteration, the CS heuristic analyses the

characteristics of the current set of unscheduled jobs, and classifies the workload as either

non-tardy or tardy. Then, the CS procedure selects the EDD (SPT_sj) rule when the load

is non-tardy (tardy).

Two versions of the CS heuristic are considered. These versions share the same basic

framework, and differ only in the criterion used to classify the workload as non-tardy

or tardy. In both versions, a CS value crit_slack is first calculated. This critical value is

calculated as crit_slack = slack_prop × nU × p, where nU is the number of unscheduled

jobs, and 0 ≤ slack_prop < 1 is a user-defined parameter. Therefore, the critical slack value

is then a proportion slack_prop of the total processing time of the currently unscheduled

jobs.

The CS_AS version calculates the average slack s of the remaining unscheduled jobs.

The workload is then classified as non-tardy (tardy) if s > crit_slack (s ≤ crit_slack).

In the CS_LP version, on the other hand, each job is first classified as

non-tardy or tardy. A job is said to be non-tardy (tardy) if sj > crit_slack

(sj ≤ crit_slack). The proportion of non-tardy and tardy jobs is then calculated,

and the current workload is classified as non-tardy (tardy) if the percentage of

non-tardy (tardy) jobs is the largest. The time complexity of both versions of the CS heuristic

is O
(

n2
)

.

Consider the numerical example that was previously presented, and assume

slack_prop = 0.2. In the first iteration, the critical slack value is equal to 7.6. In the CS_AS

version, the average slack s of the remaining unscheduled jobs is 4.5. Since s < crit_slack,

the load is classified as critical, and the SPT_sj rule is used to select the next job.

The priorities of the six unscheduled jobs are 0.7917, 0.6333, 1.0556, 2.8533, 2.1111 and

0.9048. Job 4 is selected for processing, since it has the largest priority. After the subsequent

iterations are performed, the final sequence 4-5-3-2-1-6, with objective function value 891,

is then obtained. The same final sequence is also generated by the CS_LP version.

2.4 Linear early/quadratic tardy dispatching rules

Ow and Morton (1989) developed two early/tardy dispatching rules, denoted as LINET

and EXPET, for the fully linear problem with job-dependent earliness and tardiness

penalties
∑n

j=1

(

hjEj + wjTj

)

(where hj and wj are the job-specific earliness and tardiness

penalties, respectively). In this section, adaptations of these rules to the linear earliness and

quadratic tardiness problem are proposed. Therefore, the heuristics proposed by Ow and

Morton have been suitably modified, to take into account the quadratic tardiness cost, as

well as the fact that hj = wj = 1. The proposed heuristics are denoted by EQTP_LIN and

EQTP_EXP, where EQTP stands for Earliness and Quadratic Tardiness Penalties.

Both versions of the EQTP dispatching rule calculate a priority index for each remaining

job every time the machine becomes available, and the job with the highest priority is

selected to be processed next. Let Ij (t) denote the priority index of job Jj at time t . The

EQTP_LIN version uses the following priority index Ij (t):

Ij (t) =

⎧

⎨

⎩

(

1/pj

) [

p + 2
(

t + pj − dj

)]

if sj ≤ 0
(

p/pj

)

−
(

1/pj

)

(p + 1) sj/kp if 0 < sj < kp

−
(

1/pj

)

otherwise

where k is a lookahead parameter and sj and p are as previously defined.

Heuristics for the single machine scheduling problem 437

The EQTP_EXP rule instead uses the following priority index:

Ij (t)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1/pj

) [

p + 2
(

t + pj − dj

)]

if sj ≤ 0
(

p/pj

)

exp
[

− (p + 1) sj/kp
]

if 0 < sj < [p/ (p + 1)] kp
(

1/pj

)−2 [(

p/pj

)

−
(

1/pj

)

(p + 1) sj/kp
]3

if [p/ (p + 1)] kp≤sj <kp

−
(

1/pj

)

otherwise

where sj , p and k are as previously defined.

The EQTP_LIN and EQTP_EXP dispatching rules assign a priority value of −
(

1/pj

)

to jobs that are in no danger of becoming tardy (sj ≥ kp). This assures that two jobs that

have large slacks will be scheduled in LPT order. Conversely, the SPT_sj rule is used to

calculate the priority value when a job is on time or late (sj ≤ 0). The EQTP_LIN and

EQTP_EXP heuristics differ in the calculation of the job priorities for the intermediate

values of the job slack. The priority decreases linearly as the job slack increases in

the EQTP_LIN dispatching rule, while exponential and cubic functions are instead used

in the EQTP_EXP heuristic.

The effectiveness of the EQTP_LIN and EQTP_EXP heuristics depends on the value of

the lookahead parameter k. This parameter should reflect the number of competing critical

jobs, that is, the number of jobs that may clash each time a sequencing decision is to be

made (for details, see Ow and Morton, 1989). In the proposed implementation, the value of

k is calculated dynamically at each iteration. Therefore, each time a scheduling decision has

to be made, the characteristics of the current workload are used to determine an appropriate

value for the lookahead parameter.

The following procedure is used to compute the value of the lookahead parameter k

at each iteration. First, a critical slack value crit_slack is calculated, just as previously

described for the CS heuristics. Then, each job is classified as critical if 0 < sj ≤ crit_slack,

and non-critical otherwise. Therefore, a job is considered critical if it is not already tardy

(sj > 0), but is about to become tardy (sj ≤ crit_slack). Finally, the lookahead parameter

k is set equal to the number of critical jobs. The time complexity of the EQTP_LIN and

EQTP_EXP dispatching rules is O
(

n2
)

.

Again, consider the previous numerical example, and assume slack_prop = 0.25. In the

first iteration, at time t = 0, the critical value crit_slack is equal to 9.5. Three jobs have a

slack 0 < sj ≤ 9.5, and the lookahead parameter is then set at k = 3. In the EQTP_LIN

version, the priorities of the six available jobs are 0.4539, 0.6333, 0.8626, 2.5833, 0.9532

and 0.3534. Job 4 is selected for processing, since it has the largest priority. Once the

remaining iterations are performed, the final sequence 4-5-3-2-1-6 (with an objective

function value of 891) is obtained. The EQTP_EXP version, on the other hand, generates

the sequence 4-2-5-3-1-6, with objective function value 938.

2.5 Greedy heuristic

In this section, a greedy-type procedure, denoted by Greedy, is presented. This heuristic is

an adaptation of a procedure originally introduced by Fadlalla et al. (1994) for the mean

tardiness problem, and later adapted to other problems (see, for instance, Valente and Alves,

2005; Volgenant and Teerhuis, 1999).

Two different versions of the Greedy heuristic are considered. These versions share the

basic framework, and differ only slightly in the calculation of the job priorities. Let cxy ,

with x �= y, be the combined cost of scheduling jobs Jx and Jy , in this order, in the next

two positions in the sequence, that is, cxy is the sum of the costs of Jx and Jy when they are

438 J.M.S. Valente

completed at times t +px and t +px +py , respectively. Also, let L be a list with the indexes

of the yet unscheduled jobs and P(j) the priority of job Jj . The steps of the Greedy_v1

version are:

Step 1. Initialisation:

Set t = 0 and L = {1, 2, . . . , n}.

Step 2. Calculate the job priorities:

Set P(j) = 0, for all j ∈ L;

For all pairs of jobs (i, j) ∈ L, with i < j , do:

Calculate cij and cji ;

If cij < cji , set P(i) = P(i) + 1;

If cij > cji , set P(j) = P(j) + 1;

If cij = cji , set P(i) = P(i) + 1 and P(j) = P(j) + 1.

Step 3. Select the next job:

Schedule job l for which P(l) = max
{

Pj ; j ∈ L
}

;

Set t = t + pl and L = L \ {l}.

Step 4. Stopping condition:

If |L| = 1, stop;

Else, go to step 2.

In the Greedy_v2 version, Step 2 is instead given by:

Step 2. Calculate the job priorities:

Set P(j) = 0, for all j ∈ L;

For all pairs of jobs (i, j) ∈ L, with i < j , do:

Calculate cij , cji and |cij − cji |;

If cij < cji

set P(i) = P(i) + |cij − cji |;

set P(j) = P(j) − |cij − cji |.

Else

set P(i) = P(i) − |cij − cji |;

set P(j) = P(j) + |cij − cji |.

If cij < cji , it seems better to schedule job Ji in the next position rather than job Jj .

Conversely, it seems preferable to schedule job Jj next when cij > cji . In the Greedy_v1

version, the priority P(j) of job Jj is therefore the number of times job Jj is the preferred

job for the next position when it is compared with all the other unscheduled jobs. In the

Heuristics for the single machine scheduling problem 439

Greedy_v2 version, for all pairs of jobs (i, j), with i < j , the priority of the preferred job

is instead increased by |cij − cji |, while the priority of the other job is decreased by that

same value. The time complexity of both versions of the Greedy heuristic is O
(

n3
)

.

Again, consider the numerical example. In the first iteration, the priorities of the six

unscheduled jobs are equal to 2, 3, 4, 5, 0 and 1, in the Greedy_v1 version. In the Greedy_v2

version, these priorities are instead equal to −184, 4, −2, 392, −54 and −156. In both

versions, job 4 has the largest priority, and is selected for processing. After the subsequent

iterations are performed, the final sequence 4-3-5-2-1-6 (with objective function value 872)

is then obtained, for both versions.

3 Computational results

In this section, the set of test problems used in the computational tests is first presented, and

the preliminary computational experiments are described. These experiments are performed

to determine appropriate values for the parameters required by the CS and EQTP heuristics.

Moreover, the performance of the alternative versions of the CS, EQTP and Greedy

heuristics is also analysed in these initial experiments in order to select the best-performing.

Finally, the computational results are presented. The heuristic procedures are first compared,

and the heuristic results are evaluated against optimum objective function values for some

instance sizes.

The instances used in the computational tests are available online at http://www.fep.up.pt/

docentes/jvalente/benchmarks.html. The objective function value provided by the

EQTP_EXP heuristic, as well as the optimum objective function value (when available), can

also be obtained at this address. Throughout this section, and in order to avoid excessively

large tables, results will sometimes be presented only for some representative cases.

3.1 Experimental design

The computational tests are performed on a set of problems with 10, 15, 20, 25, 30, 40,

50, 75, 100, 250, 500, 750, 1000, 1500 and 2000 jobs. These problems were randomly

generated as follows. For each job Jj , an integer processing time pj was generated from

one of the two uniform distributions [45, 55] and [1, 100], in order to obtain low (L) and high

(H) variability, respectively, for the processing time values. For each job Jj , an integer due

date dj was generated from the uniform distribution [P (1 − T − R/2) , P (1 − T + R/2)],

where P is the sum of the processing times of all jobs, T is the tardiness factor, set at

0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 and R is the range of due dates, set at 0.2, 0.4, 0.6 and 0.8.

For each combination of problem size n, processing time variability (var), T and R, 50

instances were randomly generated. Therefore, a total of 1200 instances were generated

for each combination of problem size and processing time variability. All the algorithms

were coded in Visual C++ 6.0, and executed on a Pentium IV – 2.8 GHz personal computer.

Due to the large computational times that would be required, the Greedy heuristic was only

applied to instances with up to 500 jobs.

3.2 Parameter adjustment tests

In this section, the preliminary computational experiments are described. These initial

experiments were performed to determine appropriate values for the parameters required

440 J.M.S. Valente

by the CS_AS, CS_LP, EQTP_LIN and EQTP_EXP dispatching rules. The performance

of the alternative versions of the CS, EQTP and Greedy heuristics was also analysed, in

order to select the best-performing versions. A separate problem set was used to conduct

these preliminary experiments. This test set included instances with 25, 50, 100, 250, 500,

1000 and 2000 jobs, and contained five instances for each combination of instance size,

processing time variability, T and R. The instances in this smaller test set were generated

randomly just as previously described for the full problem set.

Extensive computational tests were performed to determine an appropriate value for the

slack_prop parameter used by the CS_AS, CS_LP, EQTP_LIN and EQTP_EXP heuristics.

The values {0.00, 0.05, 0.10, . . . , 0.95} were considered, and the objective function value

was computed for each slack_prop value and each instance. An analysis of these results

showed that a value of slack_prop= 0.15 provided the best performance for the CS_AS and

CS_LP heuristics. For the EQTP_LIN and EQTP_EXP dispatching rules, the best results

were given by slack_prop values in the range [0.55, 0.95]. The slack_prop parameter was

then set at 0.60 for both the EQTP_LIN and the EQTP_EXP heuristics, since this value

consistently provided good results for all instance types.

The slack_prop parameter is instance-dependent, so the best results can be achieved

with different values when several instances are considered. Consequently, the values

recommended above for this parameter will not provide the best possible performance

for all instances. Nevertheless, the computational tests that were performed showed that the

chosen values do consistently provide good results across all the instance types.

The slack_prop parameter is also problem- and shop-dependent. Therefore, other

parameter values may be more appropriate for problems or shops whose characteristics are

different from those of the considered test instances. For instance, production environments

that use due date setting methods such as CON, SLACK or TWK may require different

slack_prop values. In such environments, experiments should be performed to determine

adequate values for the slack_prop parameter. These experiments are likely to be costly

and/or difficult to perform, although this task is simplified by the fact that only one parameter

has to be fine-tuned.

The performance of the alternative versions of the CS, EQTP and Greedy heuristics

was also analysed in these preliminary computational experiments, in order to select

the best-performing versions. Therefore, the following three (h1 versus h2) pairs of

alternative heuristic versions were compared: (CS_AS versus CS_LP), (EQTP_EXP versus

EQTP_LIN) and (Greedy_v1 versus Greedy_v2).

Table 1 presents the average relative improvement in objective function value

provided by the h1 heuristic over its h2 counterpart (%imp), as well as the percentage

number of times version h1 performs better (<), equal (=) or worse (>) than version h2.

The relative improvement given by versionh1 is calculated as (h2_ofv − h1_ofv) /h2_ofv×

100, where h2_ofv and h1_ofv are the objective function values of the appropriate

heuristic versions.

The performance of the alternative versions of the CS heuristic is quite similar. In fact,

the objective function values provided by these alternative versions is generally quite close,

particularly for the medium and large size instances. The CS_AS version, however, usually

provides better results than its CS_LP counterpart for a slightly larger number of instances.

The EQTP_EXP heuristic performs better than its EQTP_LIN alternative, particularly for

instances with a high processing time variability. Indeed, the EQTP_EXP version provides

on average a relative improvement in the objective function value of over 3% for instances

with a high variability. For low variability instances, however, this improvement is under 1%.

Also, the EQTP_EXP version gives better results for a larger number of the test instances.

Heuristics for the single machine scheduling problem 441

Table 1 Heuristic version comparison

n Low var High var

%imp < = > %imp < = >

CS_AS 25 0.97 8.33 91.67 0.00 0.33 11.67 81.67 6.67

versus 50 0.12 13.33 82.50 4.17 0.02 16.67 67.50 15.83

CS_LP 100 0.03 9.17 83.33 7.50 −0.03 25.00 62.50 12.50

250 0.07 6.67 76.67 16.67 0.13 15.83 62.50 21.67

500 0.00 13.33 70.83 15.83 0.03 28.33 54.17 17.50

1000 0.00 15.83 73.33 10.83 0.03 21.67 59.17 19.17

2000 0.00 15.00 67.50 17.50 0.00 25.00 51.67 23.33

EQTP_EXP 25 0.41 43.33 55.83 0.83 3.81 65.83 25.00 9.17

versus 50 0.15 45.00 53.33 1.67 3.86 65.00 25.00 10.00

EQTP_LIN 100 0.10 48.33 49.17 2.50 3.73 65.00 23.33 11.67

250 0.13 43.33 48.33 8.33 3.51 52.50 23.33 24.17

500 0.08 40.83 45.83 13.33 3.37 49.17 25.00 25.83

1000 0.07 42.50 45.83 11.67 3.03 49.17 25.00 25.83

2000 0.07 40.83 45.00 14.17 2.81 49.17 25.00 25.83

Greedy_v1 25 0.05 54.17 45.83 0.00 −0.50 80.00 9.17 10.83

versus 50 0.24 64.17 34.17 1.67 4.19 85.00 0.83 14.17

Greedy_v2 100 0.01 78.33 20.83 0.83 5.70 83.33 0.00 16.67

250 0.25 83.33 15.83 0.83 4.51 82.50 0.00 17.50

500 0.10 87.50 12.50 0.00 5.51 82.50 0.00 17.50

The Greedy_v1 version clearly outperforms its Greedy_v2 alternative when the processing

time variability is high. In fact, the Greedy_v1 heuristic provides a relative improvement

in the objective function value of about 4–5% (with the exception of the instances with 25

jobs). For instances with low variability, the relative improvement given by the Greedy_v1

heuristic is below 1%. Also, for both low and high variability settings, the Greedy_v1

version gives better results for around 80% of the test instances. In the following sections,

results will only be presented for the CS_AS, EQTP_EXP and Greedy_v1 versions.

3.3 Heuristic results

In this section, the computational results for the heuristic procedures are presented. Table 2

gives the average objective function value (ofv) for each heuristic, as well as the percentage

number of times a heuristic provides the best result when compared with the other heuristics

(%best). The average objective function values are calculated relative to the EQTP_EXP

heuristic, and are therefore presented as index numbers. More precisely, these values

are calculated as heur_ofv/eqtp_exp_ofv × 100, where heur_ofv and eqtp_exp_ofv are

the average objective function values of the appropriate heuristic and the EQTP_EXP

dispatching rule, respectively.

The best results are given by the EQTP_EXP dispatching rule, closely followed by the

CS_AS procedure. In fact, the EQTP_EXP heuristic not only provides the lowest average

objective function value, but also gives the best results for a large percentage of the instances

442 J.M.S. Valente

(particularly for the largest instances, or when the variability of the processing times is low).

The CS_AS procedure also performs quite well, providing an average objective function

value that is quite close to the results given by the EQTP_EXP heuristic.

Table 2 Heuristic results

Var Heur n = 25 n = 100 n = 500 n = 2000

ofv %best ofv %best ofv %best ofv %best

L LPT 156.92 4.50 162.79 1.33 163.93 0.83 164.47 0.00

EDD 100.81 8.67 100.93 3.25 100.95 2.75 100.95 3.67

SPT 140.70 0.00 144.86 0.00 145.82 0.00 145.92 0.00

SPT_sj 102.05 15.92 101.52 15.50 101.31 29.08 101.25 31.83

CS_AS 100.10 32.67 100.05 23.42 100.05 27.83 100.04 24.58

EQTP_EXP 100.00 65.83 100.00 71.25 100.00 86.58 100.00 91.75

Greedy_v1 101.57 49.25 101.89 38.92 101.96 36.25 – –

H LPT 325.02 0.08 364.43 0.00 377.41 0.00 380.17 0.00

EDD 134.93 4.83 139.77 0.75 141.89 1.67 142.08 1.83

SPT 129.45 0.00 133.08 0.00 134.78 0.00 134.82 0.00

SPT_sj 102.36 5.17 101.39 0.92 101.08 12.75 100.99 25.00

CS_AS 100.13 20.92 100.25 10.42 100.29 18.08 100.29 23.50

EQTP_EXP 100.00 43.75 100.00 55.25 100.00 53.92 100.00 91.83

Greedy_v1 102.44 45.33 103.63 35.67 103.92 49.92 – –

The SPT_sj and the Greedy_v1 heuristics also provide good results. The Greedy_v1

procedure gives an average objective function value that is about 2–3% worse than the

EQTP_EXP heuristic, but it nevertheless provides the best results for a significant number

of instances. The SPT_sj procedure performs well for medium and large instances, since it

provides an average objective function value that is about 1% worse than the results given

by the EQTP_EXP dispatching rule.

The simple LPT and SPT rules perform rather poorly, giving results that are substantially

worse than those of the other heuristics. The linear SPT rule was clearly outperformed by its

SPT_sj quadratic counterpart, meaning that the modifications that were introduced in this

linear rule, in order to adapt it to a quadratic objective function, have indeed significantly

improved its performance. Therefore, it is certainly important to address the quadratic

tardiness component of the cost function and develop a specific procedure, instead of simply

using a heuristic appropriate for a linear tardiness objective function.

The EDD rule does provide an average objective function value that is quite close to the

EQTP_EXP results for instances with a low processing time variability, but its performance

is quite poor when the variability is high. The CS_AS heuristic performs considerably better

than either of the EDD and SPT_sj rules, particularly when the variability of the processing

times is high. Consequently, a considerable performance improvement can be achieved by

selectively using these two simple heuristics (i.e. by choosing at each iteration the rule that

is expected to perform better, given the characteristics of the current job load).

Table 3 presents the effect of the T and R parameters on the average objective

function value (calculated relative to the EQTP_EXP heuristic). This Table gives results

for the best heuristics (the EQTP_EXP is omitted, since its values would all be equal

Heuristics for the single machine scheduling problem 443

to 100) and for instances with 100 jobs. The SPT_sj heuristic provides an average

objective function value that is quite close to the results given by the EQTP_EXP

dispatching rule for instances with a large tardiness factor T . The SPT_sj rule,

however, performs considerably worse when the tardiness factor is low. This result is

to be expected, since the SPT_sj heuristic is particularly well suited to problems where

most jobs will be completed after their due dates, since it is derived from a local optimality

condition for tardy jobs. When the tardiness factor T is high, most jobs will be tardy and the

SPT_sj rule indeed performs well. For low values of T , on the other hand, the proportion

of tardy jobs is lower, and the performance of the SPT_sj heuristic correspondingly

deteriorates.

Table 3 Objective function value, relative to the EQTP_EXP heuristic, for instances

with 100 jobs

Heur T Low var High var

R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8

SPT_sj 0.0 108.50 111.19 114.96 116.03 204.42 202.17 215.09 207.42

0.2 160.11 376.49 315.94 184.66 131.46 794.73 565.84 467.52

0.4 123.33 169.45 277.28 1325.44 119.35 156.01 280.71 1876.76

0.6 108.34 115.34 115.49 101.34 104.68 112.71 115.49 109.19

0.8 101.59 100.00 100.00 100.00 100.53 100.49 100.05 100.02

1.0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

CS_AS 0.0 102.82 102.78 102.73 102.68 135.53 133.37 131.02 126.46

0.2 79.42 100.73 104.17 103.68 62.01 126.35 135.65 130.47

0.4 100.57 100.04 100.01 100.13 99.97 100.41 102.19 109.45

0.6 100.47 100.00 100.01 100.07 100.15 100.19 101.06 106.77

0.8 100.42 100.00 100.01 100.02 100.15 100.11 100.60 101.93

1.0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Greedy_v1 0.0 100.35 100.61 100.85 101.82 100.35 100.98 101.82 103.93

0.2 179.73 331.87 160.98 125.95 242.03 487.37 254.17 169.94

0.4 138.45 175.98 236.52 986.42 183.55 217.47 337.38 1351.64

0.6 114.44 117.69 114.65 100.50 132.66 132.32 125.99 101.88

0.8 102.45 100.00 100.00 100.00 105.71 99.98 99.99 99.99

1.0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

The CS_AS heuristic is quite close to the EQTP_EXP dispatching rule for T ≥ 0.4.

However, the CS_AS heuristic is clearly outperformed when most jobs are early, particularly

when the variability of the processing times is high. In fact, when the processing time

variability is high (low), the CS_AS heuristic provides an average objective function value

that is about 30% (3%) worse than the results given by the EQTP_EXP procedure when

T = 0.0 or T = 0.2 and R ≥ 0.4. The Greedy_v1 heuristic performs well for instances

where most jobs are early (T = 0.0) or tardy (T = 1.0). The performance of the Greedy_v1

procedure deteriorates when the tardiness factor T takes on intermediate values. Therefore,

444 J.M.S. Valente

the Greedy_v1 procedure is less effective when there is a greater balance between the

number of early and tardy jobs.

The heuristic runtimes (in sec) are presented in Table 4. The Greedy_v1 heuristic is

computationally demanding, and therefore can only be used for small and medium size

instances. The other heuristic procedures are quite fast, even for large instances. The simple

LPT, EDD and SPT rules are the most efficient, since they only require sorting, which can

be performed in O(n log n) time. The SPT_sj and CS_AS procedures are also quite efficient,

even with their higher O
(

n2
)

time complexity. The EQTP_EXP dispatching rule, even

though it also requires O
(

n2
)

time, is more computationally demanding. Nevertheless, this

heuristic is still extremely fast, being capable of solving even quite large instances with

2000 jobs in less than 0.3 sec on a personal computer. The EQTP_EXP is then the heuristic

procedure of choice, since it not only provides the best results, but is also computationally

efficient.

Table 4 Heuristic runtimes (in sec)

Var Heur n = 100 n = 250 n = 500 n = 1000 n = 1500 n = 2000

L LPT 0.0000 0.0001 0.0002 0.0004 0.0006 0.0006

EDD 0.0000 0.0000 0.0001 0.0002 0.0004 0.0004

SPT 0.0000 0.0001 0.0002 0.0003 0.0004 0.0006

SPT_sj 0.0001 0.0009 0.0030 0.0123 0.0267 0.0477

CS_AS 0.0002 0.0009 0.0036 0.0139 0.0312 0.0544

EQTP_EXP 0.0005 0.0041 0.0153 0.0600 0.1360 0.2412

Greedy_v1 0.1887 2.9302 23.3965 – – –

H LPT 0.0000 0.0001 0.0001 0.0004 0.0006 0.0008

EDD 0.0000 0.0001 0.0001 0.0002 0.0003 0.0006

SPT 0.0001 0.0001 0.0001 0.0003 0.0004 0.0007

SPT_sj 0.0001 0.0007 0.0030 0.0123 0.0264 0.0464

CS_AS 0.0001 0.0010 0.0037 0.0144 0.0326 0.0593

EQTP_EXP 0.0007 0.0042 0.0160 0.0639 0.1433 0.2548

Greedy_v1 0.1858 2.8757 22.9192 – – –

3.4 Comparison with optimum results

In this section, the heuristic results are compared with the optimum objective function values

for instances with up to 20 jobs. The optimum results were obtained using the branch-and-

bound algorithm proposed byValente (to appear). Table 5 presents the average of the relative

deviations from the optimum (%dev), calculated as (H − O) /O × 100, where H and O

are the heuristic and the optimum objective function values, respectively. The percentage

number of times each heuristic generates an optimum schedule (%opt) is also given.

From Table 5, it can be seen that the heuristics are much closer to the optimum for

instances with a low processing time variability, with the exception of the SPT procedure.

The EQTP_EXP and CS_AS heuristics perform quite well for instances with a low

variability, giving results that are 1–2% above the optimum. The other heuristics are

far from the optimum, with the exception of the EDD rule. When the variability of the

processing times is high, however, even the best-performing EQTP_EXP and CS_AS

Heuristics for the single machine scheduling problem 445

heuristics are 10–20% above the optimum (though the deviation from the optimum decreases

with the instance size for the EQTP_EXP procedure). For the Greedy_v1 heuristic, the

average deviation from the optimum is quite large for instances with a high processing

time range. However, this heuristic provides an optimum solution for a large number of

instances. In fact, for some problem sizes, particularly when the variability is low, the

Greedy_v1 procedure generates an optimum solution for over 50% of the instances.

Table 5 Comparison with optimum objective function values

Var Heur n = 10 n = 15 n = 20

%dev %opt %dev %opt %dev %opt

L LPT 641.48 7.08 1047.29 6.00 1404.28 4.33

EDD 1.50 9.17 1.71 2.00 1.86 0.92

SPT 586.77 0.00 835.35 0.00 1088.79 0.00

SPT_sj 128.88 23.67 119.50 21.17 98.89 18.17

CS_AS 1.61 30.33 1.53 24.25 1.66 20.58

EQTP_EXP 1.78 45.58 2.14 34.50 1.83 28.17

Greedy_v1 38.79 62.17 55.41 54.67 54.59 48.17

H LPT 1659.80 2.17 2786.84 0.50 3755.46 0.50

EDD 32.07 0.33 36.33 0.00 37.32 0.00

SPT 589.29 0.00 810.08 0.00 1051.87 0.00

SPT_sj 195.66 7.17 230.05 5.25 224.85 3.50

CS_AS 13.48 8.33 14.47 5.75 14.84 3.42

EQTP_EXP 22.14 22.25 16.45 11.92 11.96 8.67

Greedy_v1 40.18 52.67 68.90 35.83 92.85 30.33

The effect of the T and R parameters on the relative deviation from the optimum is

presented in Table 6. This table gives results for the best heuristics and for instances

with 20 jobs. The SPT_sj heuristic is quite close to the optimum for instances with a

large tardiness factor T . The average relative deviation from the optimum, however, is

substantially higher when the tardiness factor is low. This is to be expected, since the

SPT_sj heuristic is particularly suited to problems where most jobs will be tardy. When

the tardiness factor T is high, most jobs will indeed be tardy and the SPT_sj rule is then

quite close to optimal. For low values of T , on the other hand, the number of tardy jobs is

lower, and the average deviation of the SPT_sj heuristic from the optimum correspondingly

increases.

The CS_AS dispatching rule is quite close to the optimum when the tardiness factor is

greater than or equal to 0.6. The performance of the CS_AS heuristic, however, is clearly

inferior when most jobs are early, particularly when the variability is high. In fact, the CS_AS

heuristic is about 30–50% above the optimum for high variability instances with T = 0.0

or T = 0.2. The effect of the T and R parameters on the average relative deviation from

the optimum is similar for the EQTP_EXP and the Greedy_v1 heuristics. These procedures

are much closer to the optimum when nearly all jobs are early (T = 0.0) or when there

is a larger proportion of tardy jobs (T ≥ 0.6). The performance of these dispatching rules

deteriorates, particularly for the Greedy_v1 heuristic, when T = 0.2 or T = 0.4.

446 J.M.S. Valente

Table 6 Relative deviation from the optimum for instances with 20 jobs

Heur T Low var High var

R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8

SPT_sj 0.0 15.57 24.92 22.35 70.52 131.89 141.19 191.15 194.88

0.2 103.34 312.48 261.33 382.97 125.65 620.08 1546.85 729.72

0.4 22.38 62.02 168.47 873.41 22.86 64.63 185.59 1377.21

0.6 8.82 16.02 17.08 9.92 5.60 12.68 17.66 22.90

0.8 1.50 0.14 0.00 0.00 1.45 1.81 1.10 1.08

1.0 0.00 0.00 0.00 0.00 0.05 0.07 0.09 0.11

CS_AS 0.0 2.90 2.98 3.00 2.57 37.15 33.52 36.63 31.75

0.2 3.59 4.47 5.13 4.67 13.20 54.29 53.44 46.79

0.4 1.35 0.66 1.30 4.43 2.73 3.51 8.13 19.82

0.6 1.11 0.33 0.01 0.10 1.94 1.45 1.75 5.18

0.8 1.10 0.08 0.00 0.01 1.22 1.31 0.91 1.20

1.0 0.00 0.00 0.00 0.00 0.05 0.07 0.09 0.11

EQTP_EXP 0.0 0.19 0.09 0.08 0.11 0.66 1.64 2.65 2.64

0.2 17.05 13.56 3.98 2.23 60.07 91.36 26.80 20.54

0.4 0.10 0.13 0.42 5.92 6.34 4.57 13.49 44.53

0.6 0.02 0.02 0.01 0.01 3.97 1.38 1.23 1.88

0.8 0.01 0.01 0.00 0.00 1.68 0.82 0.30 0.25

1.0 0.00 0.00 0.00 0.00 0.03 0.05 0.05 0.06

Greedy_v1 0.0 0.75 1.41 2.90 5.44 3.33 8.85 16.18 19.08

0.2 74.84 173.11 170.09 198.99 127.37 265.48 287.64 371.61

0.4 28.41 61.53 108.97 453.53 60.78 70.64 139.77 814.20

0.6 9.88 10.13 8.51 0.91 18.66 17.10 5.51 1.05

0.8 0.68 0.00 0.00 0.00 0.96 0.13 0.06 0.04

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01

4 Conclusion

This paper considered the single machine scheduling problem with linear earliness and

quadratic tardiness costs, and no machine idle time. Several dispatching heuristics were

proposed, and their performance was analysed on a wide range of instances. The heuristics

included simple scheduling rules, as well as a procedure that takes advantage of the

strengths of these rules. Linear early/quadratic tardy dispatching rules were also considered,

as well as a greedy-type procedure. Extensive computational experiments were performed

to determine adequate values for the parameters required by some of the heuristics.

Dispatching heuristics are widely used in practice and, in fact, most real scheduling

systems are either based on dispatching rules, or at least use them to some degree. Also,

dispatching rules are often the only heuristic approach capable of generating solutions,

within reasonable computation times, for large instances. Additionally, dispatching rules

Heuristics for the single machine scheduling problem 447

are used by other heuristic procedures, for example, they are often used to generate the

initial sequence required by local search or metaheuristic algorithms.

The best results were given by the EQTP_EXP dispatching rule. This heuristic provided

the lowest average objective function values, and also obtained the best results for a large

percentage of the instances. The performance of the EQTP_EXP procedure was quite good

for instances with a low processing time range, since it provided results that are about

1–2% above the optimum. For instances with a high range, however, the deviation from the

optimum exceeded 10%, though it decreased as the instance size increased.

The Greedy_v1 heuristic is computationally demanding, and therefore can only be used

for small and medium size instances. The other heuristic procedures, however, were quite

fast, and are capable of solving even very large instances in less than one second on a

personal computer. The EQTP_EXP dispatching rule is then the heuristic procedure of

choice, since it not only provided the best results, but is also computationally efficient.

The best of the proposed heuristics perform quite adequately for the problem with no

idle time. These heuristics, however, might also be useful for the problem with inserted idle

time. Indeed, the procedure developed by Schaller (2004) can be applied to optimally insert

idle time in the sequences generated by the proposed heuristics. Therefore, investigating

the performance of these heuristics for the problem with inserted idle time certainly seems

an interesting possibility for future research.

Acknowledgements

The author would like to thank the anonymous referees for several, and most useful,

comments and suggestions that have been used to improve this paper.

References

Baker, K.R. and Scudder, G.D. (1990) ‘Sequencing with earliness and tardiness penalties: a review’,

Operations Research, Vol. 38, pp.22–36.

Fadlalla, A., Evans, J.R. and Levy, M.S. (1994) ‘A greedy heuristic for the mean tardiness sequencing

problem’, Computers and Operations Research, Vol. 21, pp.329–336.

Garey, M.R., Tarjan, R.E. and Wilfong, G.T. (1988) ‘One-processor scheduling with symmetric

earliness and tardiness penalties’, Mathematics of Operations Research, Vol. 13, pp.330–348.

Gupta, S.K. and Sen, T. (1983) ‘Minimizing a quadratic function of job lateness on a single machine’,

Engineering Costs and Production Economics, Vol. 7, pp.187–194.

Hoogeveen, H. (2005) ‘Multicriteria scheduling’, European Journal of Operational Research,

Vol. 167, pp.592–623.

Kanet, J.J. and Sridharan, V. (2000) ‘Scheduling with inserted idle time: problem taxonomy and

literature review’, Operations Research, Vol. 48, pp.99–110.

Kim, Y.D. and Yano, C.A. (1994) ‘Minimizing mean tardiness and earliness in single-machine

scheduling problems with unequal due dates’, Naval Research Logistics, Vol. 41, pp.913–933.

Korman, K. (1994) ‘A pressing matter’, Video, pp.46–50.

Landis, K. (1993) Group Technology and Cellular Manufacturing in the Westvaco Los Angeles VH

Department, Project report in IOM 581, School of Business, University of Southern California.

Ow, P.S. and Morton, T.E. (1989) ‘The single machine early/tardy problem’, Management Science,

Vol. 35, pp.177–191.

448 J.M.S. Valente

Schaller, J. (2002) ‘Minimizing the sum of squares lateness on a single machine’, European Journal

of Operational Research, Vol. 143, pp.64–79.

Schaller, J. (2004) ‘Single machine scheduling with early and quadratic tardy penalties’, Computers

and Industrial Engineering, Vol. 46, pp.511–532.

Schaller, J. (2007) ‘A comparison of lower bounds for the single-machine early/tardy problem’,

Computers and Operations Research, Vol. 34, pp.2279–2292.

Sen, T., Dileepan, P. and Lind, M.R. (1995) ‘Minimizing a weighted quadratic function of job

lateness in the single machine system’, International Journal of Production Economics, Vol. 42,

pp.237–243.

Su, L-H. and Chang, P-C. (1998) ‘A heuristic to minimize a quadratic function of job lateness on a

single machine’, International Journal of Production Economics, Vol. 55, pp.169–175.

Sun, X., Noble, J.S. and Klein, C.M. (1999) ‘Single-machine scheduling with sequence dependent

setup to minimize total weighted squared tardiness’, IIE Transactions, Vol. 31, pp.113–124.

Taguchi, G. (1986) Introduction to Quality Engineering, Asian Productivity Organization, Tokyo,

Japan.

Valente, J.M.S. (to appear) ‘An exact approach for the single machine scheduling problem with linear

early and quadratic tardy penalties’, Asia-Pacific Journal of Operational Research.

Valente, J.M.S. andAlves, R.A.F.S. (2005) ‘Improved heuristics for the early/tardy scheduling problem

with no idle time’, Computers and Operations Research, Vol. 32, pp.557–569.

Valente, J.M.S. and Alves, R.A.F.S. (to appear) ‘Heuristics for the single machine scheduling problem

with quadratic earliness and tardiness penalties’, Computers and Operations Research.

Volgenant, A. and Teerhuis, E. (1999) ‘Improved heuristics for the n-job single-machine weighted

tardiness problem’, Computers and Operations Research, Vol. 26, pp.35–44.

Wagner, B.J., Davis, D.J. and Kher, H. (2002) ‘The production of several items in a single facility

with linearly changing demand rates’, Decision Sciences, Vol. 33, pp.317–346.

