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Abstract. In this paper we address the Two-Echelon Vehicle Routing Problem (2E-VRP), 

an extension of the classical Capacitated VRP, where the delivery from a single depot to 

the customers is managed by routing and consolidating the freight through intermediate 

depots called satellites. We present a family of Multi-Start heuristics based on separating 

the depot-to-satellite transfer and the satellite-to-customer delivery by iteratively solving 

the two resulting routing subproblems, while adjusting the satellite workloads that link 

them. The common scheme on which all the heuristics are based consists in, after having 

found an initial solution, applying a local search phase, followed by a diversification; if the 

new obtained solutions are feasible, then local search is applied again, otherwise a 

feasibility search procedure is applied, and if it successful, the local search is applied on 

the newfound solution. Different diversification strategies and feasibility search rules are 

proposed. We present computational results on a wide set of instances up to 50 

customers and 5 satellites and compare them with results from the literature, showing how 

the new methods outperform previous existent methods, both in efficiency and accuracy. 
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1 Introduction

The transportation of goods plays a crucial role for most economic and social activities
taking place in urban areas. For the city inhabitants, it supplies stores and places of
work and leisure, delivers goods at home,and so on. For firms established within city
limits, it forms a vital link with suppliers and customers. In the past decade researchers,
besides the research for developing green vehicles, practitioners and institutions started
to be aware that there was the need of developing new methods and technologies for op-
timizing how we use the resources presently available in order to reduce the impact of the
different sources of nuisance (traffic congestion, pollution, reduction of the quality of life),
avoiding to slow down the economic, social and cultural development of the urban areas.
The implementation of this view is known as City Logistic, which introduces a multidis-
ciplinary approach to urban logistics, as well as all the research projects aiming to build
sustainable logistic systems which takes into account the impact of freight operations
on the environment. [6] Under this context, in this paper, we address the Two-Echelon
Vehicle Routing Problem (2E-VRP), [12] which is characterized by a single depot and a
set of customers. The delivery of the freight to the customers is not managed by direct
shipping from the depot, but by consolidating the freight in intermediate depots, called
satellites. The first level routing problem addresses depot-to-satellites delivery, while the
satellite-to-customer delivery routes are built at the second level. The goal is to ensure
an efficient and low-cost operation of the system, where the demand is delivered on time
and the total cost of the traffic on the overall transportation network is minimized. This
problem is frequently faced in real life applications, both at the strategic level (long term
planning) and the operational one (real-time optimization). Methods which can be ap-
plied at both levels must be accurate and, at the same time, fast. In fact, in long term
planning the 2E-VRP is often part of a larger simulation framework, which means it
must be solved several times during the optimization process. Then, the computational
times should be short, while maintaining a high accuracy. On the other hand, at the
operational level, real-time optimization problems, for which a feasible solution is needed
with a limited computational effort, are also often faced.

Our goal is to introduce new methods able to guarantee good accuracy while main-
taining high efficiency. In this paper we introduce and compare different heuristics for
the 2E-VRP , which are based on separating first and second level routing problems and
applying an iterative procedure in which the two resulting subproblems are sequentially
solved. We also report extensive computational tests on instances of various sizes and
layouts, comparing the newly defined heuristics with the other heuristics available in the
literature.

More in detail, the paper is organized as follows. We define the problem in Section
2, while in Section 3 we give a literature review. The methods are presented in Section
4 and we report the computational results and their analysis in Section 5. Conclusions
and perspectives are presented in Section 6.
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2 Problem Definition

The Two-Echelon Vehicle Routing Problem (2E-VRP) is the Two-Echelon extension of
the Capacitated Vehicle Routing Problem (CVRP), which aims to deliver the freight
from the depot to the customers by consolidating the freight through the satellites while
minimizing the overall transportation cost [12]. In our model we will not consider the
fixed costs of the vehicles, since we suppose they are available in fixed number. Thus,
the travel costs are given by the sum of the cost due to the usage by the vehicles of the
arcs connecting depot, satellites and customers. These costs are of two types:

• costs of the arcs traveled by 1st-level vehicles, i.e. arcs connecting the depot to the
satellites and the satellites between them;

• costs of the arcs traveled by 2nd-level vehicles, i.e. arcs connecting the satellites to
the customers and the customers between them.

Let us denote the depot with v0, the set of satellites with Vs and the set of customers
with Vc. Let ns be the number of satellites and nc the number of customers. The depot
is the starting point of the freight and the satellites are capacitated. Define the arc (i, j)
as the direct route connecting node i to node j and cij its associated traveling cost. If
both nodes are satellites or one is the depot and the other is a satellite, we define the
arc as belonging to the 1st-level network, while if both nodes are customers or one is a
satellite and the other is a customer, the arc belongs to the 2nd-level network.

We define as 1st-level route a route made by a 1st-level vehicle which starts from the
depot, serves one or more satellites and ends at the depot. A 2nd-level route is a route
made by a 2nd-level vehicle which starts from a satellite, serves one or more customers
and ends at the same satellite.

The freight must be delivered from the depot v0 to the customers set Vc. Let di be
the demand of the customer i: the demand of each customer cannot be split among
different vehicles at the 2nd level. For the first level, we consider that each satellite can
be served by more than one 1st-level vehicle, therefore the aggregated freight assigned
to each satellite can be split into two or more vehicles. Each 1st-level vehicle can deliver
the freight of one or several customers, as well as serve more than one satellite in the
same route.

The number of 1st-level vehicles available at the depot is m1. These vehicles have the
same given capacity K1. The total number of 2nd-level vehicles available for the second
level is equal to m2. Moreover, each satellite k has a maximum capacity msk expressed
in terms of number of vehicles. The 2nd-level vehicles have the same given capacity K2.
No additional limitation on the route size, neither in length nor in number of visited
customers is introduced.

2
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3 Literature Review

Literature on Multi-Echelon systems is quite huge, but it is mainly focused on flow
distribution, while routing costs are usually simplified, or not explicitly considered in
all the levels. The problem we address is similar, but different, to the Multi-Echelon
Capacitated Location Distribution Problem, in which location and flow assignment are
handled, while no first-level depot exists and then no first-level routing costs are con-
sidered. For a complete survey of this problem the readers can refer to [15]. For what
concern exact methods, different formulations and relaxation have been presented in [9],
while in [1] a compact model and tight bounds have been provided. A Branch and Cut
method has been proposed in [3]. For heuristic methods reference can be made to [2],
where the authors developed several heuristics based on hierarchical and non hierarchical
clustering algorithms, while, for what concerns metaheuristic methods, we refer to the
following papers. In [13], the authors present a two-phases metaheuristic, in which the
first phase executes a Greedy Randomized Adaptive Search Procedure (GRASP), based
on an extended and randomized version of Clarke and Wright algorithm. This phase is
implemented with a learning process on the choice of depots. In a second phase, new
solutions are generated by a post-optimization using a path relinking, while in [17], the
authors propose a simulated annealing with a special solution encoding scheme that in-
tegrates location and routing decisions in order to enlarge the search space so that better
solutions can be found. In [4] an hybrid heuristic based on a column generation scheme
where the subproblems are solved using a tabu search algorithm, is presented.

4 Heuristics for the 2E-VRP

The customer-to-satellite assignment problem plays a crucial role while solving 2E-VRP ,
as remarked by the results in [12] and [11]. In fact, if we suppose to know the optimal
customer-satellite assignments, 2E-VRP is partitioned in at most ns + 1 Capacitated
VRP (CVRP) instances, one for the 1st-level and one for each satellite with at least
a customer assigned. Thus, as in the math-heuristics in [12], we directly focus on the
customer-satellite assignments by searching the optimal assignments, delegating state-
of-the-art methods for solving the corresponding CVRPs.

Even if the literature on CVRP is quite huge and efficient methods have been de-
veloped to solve this problem, the computational time due to CVRP solving could be
quite large. Thus, methods involving large neighborhood exploration on the assignments
between customers and satellites are not suitable to solve this problem, because of the
computational time needed to analyze each customer-satellite assignment change and
its impact on the routing. For this reason, the core of our heuristic is a Multi-Start
procedure that iteratively perturbs the solution, and a simple local search heuristic able

3

Heuristics for the Two-Echelon Vehicle Routing Problem: A Multi-Start Approach

CIRRELT-2011-16



to improve the initial assignment. Moreover, additional rules to prune not-promising
assignments, and their corresponding CVRPs instances, are taken over. The main steps
of our Multi-start heuristic are the following:

1. First Clustering. An initial solution is computed, by assigning each customer to
a satellite according to a distance-based greedy rule. Thus, a complete solution is
computed by solving the resulting first and second level CVRPs.

2. Clustering Improvement. A local search based on a neighborhood which changes
one customer-satellite assignment each time is applied to the solution found by the
First Clustering.

3. While the maximum number of iterations is not reached

3.1 Multi-Start. Given the best solution found so far, the assignments customer-
satellite are perturbed according to rules taking into account the cost of the
reassignment.

3.1.1 If the new solution is not feasible, we try to reach again the feasibility by
means of the Feasibility Search algorithm.

3.1.2 If the solution is feasible and it is considered promising, i.e. its objective
function is within a given percentage threshold of the best solution, the
Clustering Improvement phase is applied on it.

In the following, we give a detailed description of the different procedures involved.

4.1 First clustering

In order to find an initial solution, we develop a clustering-based heuristic, from now
on called First Clustering (FC). FC is based on a cost greedy criterion. More in detail,
the procedure, after ordering the customers according to non-increasing order of their
demand di, assigns each customer to the satellite with the smallest Euclidean distance.
If the assignment of the customer to a satellite implies to add an additional vehicle,
the procedure checks whether the constraints about the capacity of the satellite or the
overall fleet capacity are violated. If so, the assignment is considered as unfeasible and the
customer is assigned to the second nearest satellite, and so on until a feasible assignment
is found. At the end of this clustering procedure, the customers are assigned to the
satellite and the full solution can be computed by solving the first-level CVRP and the
second-level CVRPs, one for each satellite with at least one customer assigned to it.

4
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4.2 Clustering improvement

Clustering Improvement (CI) aims to improve the customer-satellite assignments by
means of a local search approach. The local search is a first improvement method where
the neighborhood solutions are defined by assigning one customer from its original satel-
lite to another one by a cost-based rule. More in details, the rule consists in moving
customers from current satellite to nearest available. This trivial idea is very reasonable
because it is much more frequent that in the optimal solution a customer is assigned to
the nearest satellite or the second nearest one. Furthermore, this consideration holds for
each customer distribution and does not depend on the satellite location strategy.

Let define the current solution as the solution given as the initial one to CI if we are
at the first iteration or the best solution found at the previous iteration, otherwise. Then,
the neighborhood works as follows.

Given the current solution, the customers are sorted by non-decreasing order of the
reassignment cost, defined as RCi = cij− cik, where i is a customer, j is the satellite to
which i is assigned in the current solution, and k 6= j is the satellite such that, moving i
from satellite j to satellite k, the capacity constraints on the global second-level vehicle
fleet and the satellite k are satisfied and the cost cik is minimum among the satellites
k 6= j. This is equivalent to order the customers according to non-decreasing order
of the estimation of the change in the solution quality due to the assignment of one
customer from the present satellite to its second-best choice. Let be CL the ordered
list of the customers.
repeat

Consider the first customer i in CL;
if k exists then

remove i from CL;
else

terminate the CI algorithm and return the best solution;
end if
Solve the CVRPs of satellites j and k;
Update the demand of each satellite according to the new assignment and solve the
first-level CVRP;
Compute the objective function of the new solution and compare it to the cost of
the current solution;
if the new solution is better then

Keep it as new current solution and exit from the neighborhood;
else

if the new solution has an objective function which is worse than a fixed percentage
threshold γ from the objective function of the current solution then

Terminate the CI algorithm and return the best solution;
else

Consider the next customer in the list
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end if
end if

until CL is empty

Even if the neighborhood has size O(nc), the computational time could grow up due to
the need of recompute the CVRPs after a change in the customer-satellite assignments.
This is the rationale of adding the additional heuristic stopping criterion when the reas-
signment has an objective function which is significantly worst than the current solution.
The worsening of the quality of the solution is measured by the γ parameter. In fact,
being the customers ordered by non-decreasing order of RCi and being RCi related to
the change in the objective function when we assign the customer to another satellite,
if the objective function of a neighbor is deteriorating too much, it is unlikely that the
following neighbors may bring us an improving solution.

4.3 Multi-start heuristic

Search methods based on local optimization that aspire to find global optima usually
require some type of perturbation to overcome local optimality. Without a perturbation
phase, such methods can become localized in a small area of the solution space, with very
limited possibility of finding a global optimum. In recent years many techniques have
been proposed to avoid local optima and a promising way are Multi-Start strategies. They
are able to explore different regions of the search space by means of a re-start mechanism.
Multi-Start strategies are then used to guide the construction of new solutions in a long
term horizon of the search process. The general framework, after generating an initial
solution, uses a perturbation mechanism to iteratively build new solutions, which are
usually improved by a local search approach (but it could be even a more complex
heuristic or metaheuristic). For a complete overview of Multi-Start methods we refer the
reader to [10]. In the following, we present our Multi-Start heuristic. The perturbation
is done in the Perturbed Solution Generation procedure by a cost-driven randomized
rule, which changes the customer-to-satellite assignments. This perturbation method
does not imply the feasibility of the obtained solution, because of satellites capacity or
global fleet size constraints violation. In this case, a Feasibility Search (FS) procedure
is applied for bringing back the solution in the feasibility region. Whether the solution
is feasible, the Clustering Improvement (CI) presented in Section 4.2 is applied to it to
improve the solution quality. In order to limit the computational effort, the local search
phase is applied only on the most promising solutions, i.e. the ones whose objective
value is better of the current best or which objective function is not worse than a fixed
percentage threshold δ from the objective function of the best solution. The procedure
is repeated until a maximum number of iterations has been reached. In the following,
we give more detail about the different rules we tested in Perturbed Solution Generation
and Feasibility Search.

6
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4.3.1 Perturbed solution generation

We present the different rules to generate perturbed solutions. Both are random based,
where the probability of a change is proportional to an estimation of the cost due to
the reassignment of the customer to another satellite. Generally speaking, for each
customer i and satellite j, we define a reassignment probability Pij,

∑
j Pij = 1. Then, the

perturbation is obtained by considering the customers one after the other and computing
the new satellite to which the customer is assigned by a Russian Wheel algorithm, based
on the probabilities Pij. The two different definitions of the probabilities Pij are the
following:

• Linear Randomized (LR). The probability Pij is computed as Pij =
1−

cij∑
l cil

n−1
. The

rule assigns the probabilities of each customer in inverse relation to its distance from
the satellites. The rationale of this rule, in particular when the number of satellites
increases, is to enforce the effect of the random component. In fact when the
number of satellites n grows, the probabilities aim to be similar. This implies that
we find perturbed solutions very far from the initial one, but potentially unfeasible
or with a very high objective function.

• Majority Prize (MP). The idea of MP is to give a prize in terms of assignment
to the best customer-satellite assignments of each customer, while penalizing the
worst ones. For each customer, probabilities P̃ij are computed according to LR and

the satellite are ordered, for each customer, in non-decreasing order of P̃ij. Let ji1
and ji2 the first and the second satellites in the ordered list of customer i. Thus,
given two constants r ∈ (0, 1) and p ∈ (0.5, 1), the assignment probabilities are the
following:
rP̃ij, if j 6= ji1, ji2;

rP̃ij +(1-r)p, if j = ji1;

rP̃ij +(1-r)(1-p), ifj = ji2.

4.3.2 Feasibility search

Let suppose that after the Perturbed Solution Generation phase we obtain a solution
which is infeasible. Aim of the Feasibility Search procedure is to guide the solution
towards the feasibility space. Thus, if the global fleet size constraint has been violated
we try to move customers from the satellite to which belong the less filled vehicle, to
another satellite randomly chosen, in order to free that vehicle. In case of a violation of the
satellite capacity, we remove customers from a satellite whose capacity has been exceeded,
and assign them to another satellite randomly chosen, until the capacity constraint is
again fulfilled. We repeat it for all the satellites in which the constraint has been violated.
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If the new obtained solution is still unfeasible, the solution is discarded. In the following,
we present the six different strategies we developed to choose the customers to be moved
in order to achieve the feasibility:

1. COST. We move first customers with the highest cost from the satellite;

2. MAX DEM. We move first the customer with the highest demand. This allows us
to free a vehicle moving the minimum number of customers;

3. MIN DEM. We move the customers with the lowest demand. The rationale is that
the lower is the demand of the customer we are moving, the easier it is assigned to
another satellite without violating capacity constraints;

4. The following three strategies uses both the cost and demand-based rules, by max-
imizing the expression αscosti + βdi, where α and β are the weights we give to the
criteria, scosti indicate the cost between customer i and the satellite to which it
has been assigned, while di represents the demand of customer i. According to our
tests, the best rules are the following

(a) 25C 75D. The parameters are set α = 0.25 and β = 0.75.

(b) 50C 50D. The parameters are set α = 0.5 and β = 0.5;

(c) 75C 25D. The parameters are set α = 0.75 and β = 0.25;

This strategies are not applied sequentially. Tests for determining the most perform-
ing one among them are presented in Section 5.

5 Computational Experiments

In this section we analyze the behavior of the above proposed heuristics in terms of
solution quality and computational efficiency. Computational tests are based on instances
with different sizes and layout. We compare our heuristics in their best setting with the
other heuristics obtained from the literature, the math-heuristics proposed in [12], as
well as the best lower bounds from the literature [11]. We do not report explicitly a
comparison with MIP solver, because they solve exactly only small instances (up to 32
customers and 2 satellites), while the quality of their solutions becomes very poor when
instances grow up to 50 customers, making them not any more competitive. More details
can be found in [12]. All the methods presented in this paper are implemented in C++
and tested on a 2.5 GHz Intel Centrino Duo, while the CVRP instances built by the
different procedures are heuristically solved by the Branch and Cut method developed
by [14], an exact method based on an implicit solutions enumeration with additional
constraints, with a time limit of 5 seconds.
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The instances we used cover up to 50 customers and 5 satellites and can be grouped
into two sets:

• S1. It contains all the instances of Set 2 in [12]. The set contains 21 instances ob-
tained as extensions of data sets E-n22-k4, E-n33-k4 and E-n51-k5 for the CVRP
problem introduced in [5]. The cost matrix of each instance is given by the cor-
responding CVRP instance. The capacity of the 1st-level vehicles is 2.5 times the
capacity of the 2nd-level vehicles, to represent cases in which the 1st-level is made
by trucks and the 2nd-level is made by smaller vehicles (e.g., vehicles with a maxi-
mum weight less than 3.5 t). The capacity and the number of the 2nd-level vehicles
is equal to the capacity of the vehicles of the corresponding CVRP instance. The
satellites are located at the same position of some randomly chosen customers. The
instances range between 21 and 50 customers and consider 2 or 4 satellites.

• S2. Instances taken from [7]. We consider the instances with 50 customers, com-
bining three customer distributions and three satellites location patterns, with 2,
3, and 5 satellites.

Preliminary computational tests on a small subset of S2 have been effectuated in order
to determine the behavior of the different rules used in the Perturbed Solution Generation
and Feasibility Search procedures. (For the detailed results, see [8]). From the point of
view of the perturbation, a better behavior of the Majority Prize rule while from the
point of view of the Feasibility Search, the best results are given by the rules which
linearly combine cost and demand(25C 75D, 50C 50D, 75C 25D). We also performed
a tuning of the parameters involved in the different procedures. We do not report the
detailed results, but, according to our tests, the best values are the following: δ = 0.1,
γ = 0.1, r = 0.5, p = 0.8, ITER = 100.

5.1 Comparison with state-of-the-art algorithms

In this section, we compare the results of First Clustering, Clustering Improvement and
Multi-Start heuristics with the two math-heuristics by [12], the Diving and the Semi-
Relaxed heuristics, as well as with the best lower bounds taken from the literature ([12],
[11]). Due to the different workstation used, in order to make the computational times
comparable we scale the results for the math-heuristics, as well and the lower bounds to
a 2.5 GHz Intel Centrino Duo by means of the SPECINT benchmarks [16].

The results obtained on sets S1 are reported in Table 1, which is organized as follows:

• Columns 1-3 and 10-12. Instance name (E-nx-ky-sa-b-c-d , where x indicates the
number of customers, y the maximum number of vehicles and letters from a to d,
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the customers at which the satellites is located), number of customers, and number
of satellites.

• Columns 4 and 5. Objective function and computational time in seconds obtained
by the First Clustering.

• Columns 6 and 7. Objective function and computational time in seconds obtained
by the Clustering Improvement.

• Columns 8-9. For the best version of the Multi-Start (50C50D), we give the objec-
tive function and computational time.

• Columns 13-16. We report the results of the state-of-the-art algorithms. More
precisely, DIVING and SEMI columns refer to the Diving and the Semi-Relaxed
heuristics.[12].

• Column 17-18. Objective function and computational time of the composite heuris-
tic obtained by taking the best between Diving and Semi-Relaxed heuristics.

• Column 19. Column BEST LB gives the best lower bound computed for each
instance ([12], [11]).

Values in bold correspond to optimal solutions. For each method we report the single
values for each instance. The last three rows give a summary of the results of each
method, providing the sum of the objective functions, the average computational time,
the percentage improvement with respect to CI and the percentage gap with the results
from the literature. The overall best of each instance is emphasized. If it has been
obtained by two or more methods, we consider as overall best the one obtained within
the lower computational time. As far as set S1 analysis is concerned, it can be noticed that
the different versions of the Multi-Start heuristic perform sensibly better than DIVING
(around 4%) and SEMI (around 2%) with a smaller computational effort. Even CI
outperforms the math-heuristics of 2.97% and 0.75%, respectively, with a reduction of
the computational effort of two order of magnitude. If we compare our results with the
composite heuristic which consider the best of the two math-heuristic, the Multi-Start
heuristics still improve of more than 1%. Furthermore, if we consider the results instance
by instance, we notice how our heuristics reach the overall best in the 59% of the cases,
with an average improvement of the literature of 2.63%.

Tables reporting results obtained on S2 can be found in [8]. All our Multi-Start
methods perform sensibly better than Diving (more than 3%) and Semi-Relaxed (more
than 1%) in quite smaller computational times. If compared with the best solution from
literature, Multi-Start procedures obtain very similar results within a computational time
one order of magnitude lower. The overall best is reached in 53% of the cases and yield
to an averaged improvement of the literature of 3.44%.
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Table 1: Computational results for set S1

                  FC                       CI        MP/50C_50D
INSTANCE Cust Sat OF TIME OF TIME OF TIME

E‐n22‐k4‐s6‐17 21 2 424.89 0.13 424.89 1.590 417.07 16
E‐n22‐k4‐s8‐14 21 2 386.36 0.14 384.96 0.456 384.96 9
E‐n22‐k4‐s9‐19 21 2 485.12 0.48 485.12 0.763 472.23 20
E‐n22‐k4‐s10‐14 21 2 375.91 0.14 375.91 0.703 375.91 7
E‐n22‐k4‐s11‐12 21 2 453.77 0.34 453.77 1.180 444.83 15
E‐n22‐k4‐s12‐16 21 2 425.65 0.16 425.65 0.887 403.79 26

E‐n33‐k4‐s1‐9 32 2 774.54 0.11 774.54 3.420 757.56 20
E‐n33‐k4‐s2‐13 32 2 745.39 0.11 745.39 2.730 733.18 25
E‐n33‐k4‐s3‐17 32 2 810.83 0.25 801.21 3.400 754.65 28
E‐n33‐k4‐s4‐5 32 2 796.50 2.10 796.50 8.830 792.89 19
E‐n33‐k4‐s7‐25 32 2 775.85 0.12 756.88 1.880 756.88 15
E‐n33‐k4‐s14‐22 32 2 833.30 0.17 825.06 2.600 824.60 16

E‐n51‐k5‐s2‐17 50 2 614.17 0.24 614.17 0.566 614.17 12
E‐n51‐k5‐s4‐46 50 2 544.70 2.60 533.83 2.790 533.83 46
E‐n51‐k5‐s6‐12 50 2 562.21 0.27 559.00 0.586 564.92 32
E‐n51‐k5‐s11‐19 50 2 612.14 0.27 597.90 0.567 597.90 19
E‐n51‐k5‐s27‐47 50 2 553.77 0.23 553.77 0.352 553.77 17
E‐n51‐k5‐s32‐37 50 2 558.48 0.15 558.48 0.404 555.05 33
E‐n51‐k5‐s2‐4‐17‐46 50 4 566.60 0.12 565.00 0.138 565.00 5
E‐n51‐k5‐s6‐12‐32‐37 50 4 573.01 0.28 567.00 0.560 567.00 6
E‐n51‐k5‐s11‐19‐27‐47 50 4 618.52 0.20 600.00 0.640 600.00 3

SUM/AVG TIME 12491.71 0.41 12399.03 1.67 12270.19 18.52
IMPROVEMENT (CI) 1.04%
GAP (LIT) 0.62% ‐0.13% ‐1.16%

            DIVING                    SEMI                   LIT
INSTANCE Cust Sat OF TIME OF TIME OF TIME BEST LB

E‐n22‐k4‐s6‐17 21 2 417.07 7 417.07 14 417.07 21 417.07
E‐n22‐k4‐s8‐14 21 2 441.41 9 408.14 7 408.14 16 384.96
E‐n22‐k4‐s9‐19 21 2 472.23 6 470.60 10 470.60 16 470.60
E‐n22‐k4‐s10‐14 21 2 435.92 8 440.85 0.1 435.92 9 371.50
E‐n22‐k4‐s11‐12 21 2 487.45 6 429.39 10 429.39 16 427.22
E‐n22‐k4‐s12‐16 21 2 425.65 7 439.19 8 425.65 15 392.78

E‐n33‐k4‐s1‐9 32 2 772.57 29 736.92 2 736.92 31 730.16
E‐n33‐k4‐s2‐13 32 2 749.94 28 736.37 6 736.37 34 714.63
E‐n33‐k4‐s3‐17 32 2 801.19 68 739.47 5 739.47 73 707.41
E‐n33‐k4‐s4‐5 32 2 838.31 18 816.59 12 816.59 31 778.73
E‐n33‐k4‐s7‐25 32 2 756.88 18 756.88 42 756.88 59 756.84
E‐n33‐k4‐s14‐22 32 2 779.06 13 779.06 4 779.06 17 779.05

E‐n51‐k5‐s2‐17 50 2 666.83 75 628.53 567 628.53 641 576.97
E‐n51‐k5‐s4‐46 50 2 543.24 72 534.04 257 534.04 329 529.34
E‐n51‐k5‐s6‐12 50 2 560.22 69 554.80 60 554.80 130 541.17
E‐n51‐k5‐s11‐19 50 2 584.09 49 592.06 247 584.09 296 558.27
E‐n51‐k5‐s27‐47 50 2 538.20 85 538.20 224 538.20 310 535.04
E‐n51‐k5‐s32‐37 50 2 584.59 84 587.12 557 584.59 640 552.27
E‐n51‐k5‐s2‐4‐17‐46 50 4 590.63 280 542.37 1057 542.37 1338 515.75
E‐n51‐k5‐s6‐12‐32‐37 50 4 571.80 112 584.88 936 571.80 1048 516.02
E‐n51‐k5‐s11‐19‐27‐47 50 4 724.09 118 724.09 555 724.09 673 511.09

SUM/AVG TIME 12741.37 55.30 12456.62 218.16 12414.57 273.46 11766.86
IMPROVEMENT (CI)
GAP (LIT)
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6 Conclusions

In this paper, we presented a family of Multi-Start heuristics for the Two-Echelon Vehicle
Routing Problem, a newly defined Multi-Echelon variant of the classical CVRP. The
experimental results have shown that they all perform well, particularly considering the
very limited computational effort needed by our algorithms, and are more efficient than
the other heuristic methods from the literature. Computational results show also the
very good performances of our local search approach, and a good quality of the initial
solution computation method.

Future developments will address larger instances and meta-heuristic frameworks
working on neighborhoods directly based on the customer positioning inside the routes,
instead of acting on the assignments. For a more detailed discussion of results we refer
to [8].
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