
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1977

Heuristics for Trie Index Minimization Heuristics for Trie Index Minimization

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Report Number:
77-224

Comer, Douglas E., "Heuristics for Trie Index Minimization" (1977). Department of Computer Science
Technical Reports. Paper 164.
https://docs.lib.purdue.edu/cstech/164

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Heuristics For
Trie Index Minimization

Douglas Comer
Computer Sciences Department

Purdue University
W. Lafayette, Indiana ^790?

February, 197?

CSD-TR 224

Abstract

A trie is a particular implementation of a digital search tree
in which leaves correspond to records in a file. Searching proceeds
from the root to a leaf, where the decision at each node is based on

i > 't 1

the value of some attribute i'ri:.the query. Trie implementations have
the advantage of being fast, but the disadvantage of achieving that
speed at great expense in storage space. Of primary concern in
making a trie practical is the problem of minimizing storage. One
method for reducing the space required for a trie is to reorder the
testing of attributes. Unfortunately, the problem of finding an
ordering which guarantees a minimum size trie is NP-complete. In
this paper we investigate several heuristics for reordering attribute
testing, and derive bounds on the sizes of the worst tries produced
by them in terms of the underlying file. Although the analysis is
derived for a binary file, the results are extended to files of
higher degree.

An alternative representation of a trie, called an 0-trie, is
examined and is shown to guarantee minimum storage requirements for
binary files. For files of higher degree, a bound on the size of the
worst O-trie is obtained. For most applications, 0-tries are smaller
than other implementations of tries, even when heuristics for
improving the storage requirements are employed.

1. Introduction:
A trie , described by Fredkin [FRED60], is a tree structure in

which information is stored character-by-character or digit-by-digit.
Figure 1 shows a trie for the words "many", "mane", "map", "mat", and
"me". A query is a word which must be looked up in the trie. To
search for a word, one begins at the root and follows a path with
labels which are the same as the letters of the query. This storage
structure has the advantage that the search is quite fast, taking no
longer than the number of letters in the query, provided that the
time required to decide which path to follow at each node is constant.
Fredkin's implementation has the fixed time decision property because
each choice costs only as much as an array indexing operation.
Sussenguth ̂ SUSS63] proposes an alternative implementation he calls
a "doubly chained tree". In the tree implementation, all sons of a
node are chained together in a linked list. Thus, the decision about
which path to follow cannot be made in constant time but requires
searching. In general, following paths which appear early in the
lists costs less than following those which appear later. Figure 2
demonstrates this implementation by showing a tree corresponding to
the trie shown in Figure 1. While our results are stated in terms of
a trie, they apply equally to either Implementation.

A trie may be thought of as a storage structure for information
from a file. Figure 3 gives a file with r = 5 records and k = k
attributes. In this case, each attribute is a single character.
There is no reason, however, that an attribute could not take on

pronounced "try"

2

values from a larger or smaller set. In practice, the attributes might
be fields in a record like "salary" or "employee number". Since the
trie implementation requires storage at each node proportional to the
size of the set of possible attribute values, it is often convenient to
use the individual characters or digits of natural attributes to create
smaller attributes.

In comparing the trie in Figure 1 to the file shown in Figure 3,
one can see that each node in the trie corresponds to some subset of
the records of the file. Each leaf corresponds to exactly one record
and each nonleaf node corresponds to the subset of records represented
by the leaves of the subtree rooted at that node. We will assume that
the trie has no internal node which corresponds to only one record.
This definition, called a pruned trie, is primarily made to lessen the
amount of storage required "by the trie. Ety "pruning" all chains which
lead to leaves, some information from the file may be lost. In most
instances a trie will be used as an index for a file, perhaps on
secondary storage, and presumably the record of this file will have to
be examined to complete the query. A consequence of the definition,
which will be used later, is that each internal node must correspond
to at least two records in the file (or it would become a leaf).

Since the trie was originally intended for the storage of alpha-
betic character strings, the order of testing attributes was understand-
ably left-to-right as in Figure 1. When a query is viewed as a k-tuple
in which attributes are unrelated, the left-to-right order is no longer
natural or necessary. Rotwitt and deMaine [R0DE?l] note that the
order in which attributes are tested may influence the size of the
resultant trie. Consider, for example, the trie shown in Figure k,

3

constructed from the same file as the trie shown in Figure 1, "but by
testing the letters from right to left. By changing the order of
testing, the size of the trie, measured in internal nodes, decreases
from 4 to 2 nodes. Because the chief disadvantage of a trie is the
large storage space required, reordering attribute testing to reduce
the size is an attractive proposition. We would like to find an
ordering of attributes that yields a minimum size trie. While the
reordering of attributes also affects the time taken to access a given
record, that will not concern us. Others [CASE73, PATT69,STAN70,
SUSS63]] have explored problems of access time minimization.

Unfortunately, the problem of reordering attributes to produce a
minimum size trie is computationally difficult £C0SE?6̂]. In this
paper we consider alternatives to finding a minimum size trie for a
given file. One method employs computationally efficient procedures
which produce tries which, while they may not be minimum, are smaller
than a randomly ordered trie. Often, such procedures are based on
"rule of thumb" practices and will be called heuristics. Rotwitt and
deMaine

[RODE?l] and Yao [YA076] have proposed two heuristics.
Another approach to minimizing tries uses a modified implementation

in which information about the ordering of attributes is contained in
the trie itself. Such tries are called 0-tries (for Order containing)
and are shown to be superior to the heuristics examined.

Definitions of a trie, file, and query are given in [COSE76].
Graph definitions used throughout the paper are standard.

2 the problem was shown to be NP-complete. is a good reference
for NP-complete problems.

4

2. Elimination of Useless Attributes:

We will call a file in which any attribute takes on values from a
set of at most n elements an n-ary file or say that the file has degree
n. Initially, we will consider the performance of heuristics on
binary files. The study of binary files is motivated on two grounds.
First, most computer systems store information in binary, so one could
think of a binary file as the hardware representation of an arbitrary
file. Secondly, examination of the binary case is important for
analysis of files with higher degree.

Consider a trie for some binary file as shown in Figure 5- We
will say that a node is a binary node if it has exactly 2 sons. The
trie in question has some depths at which no binary nodes appear. In
terms of the file, some attribute was tested which did not further
divide the sets of records. An attribute which produces no binary
nodes when tested is said to be useless because its omission would
result in a smaller trie. Note that the property of being useless is
related to the testing of an attribute in a particular trie and cannot
be determined from examination of the attribute values a priori.

The first heuristic for minimizing tries is one which eliminates
useless attributes. Relating this to the reordering of attribute
testing, we may think of the useless attributes as being moved to the
end of the order (where they are never reached during a search).

HEURISTIC 1 (Elimination of Useless Attributes)! When building a trie,
select at each depth an attribute which adds at least one binary
node. []

2
the root of a trie lies at depth 0, and the sons of a node at depth i
lie at depth i+1.

5

The size of tries produced by this heuristic may vary from the size of
an optimal trie for the file. Let S^ denote the size of a trie produced
by some heuristic, and let Sq denote the size of an optimal (smallest)
trie for the same file. Then the cost criterion for the heuristic -will
be

Cost = Sh/SQ
Heuristics with low cost are desirable. For any heuristic, it is
important to know the largest cost that can be incurred.

In order to bound the cost of Heuristic 1, we will define a binary
tree called an (r,k)-WIDE tree and show that it is as large as any trie
for a binary file of r records and k attributes produced by Heuristic 1.
To see how the definition of an (r,k)-WIDE tree arises, consider the
largest trie for a binary file from which all useless attributes have
been removed. For the present, assume that r is even. Recall that
each internal node in the trie must correspond to at least 2 records in
the file. Therefore, there can be no more than r/2 nonleaf nodes at
any depth. Suppose that at some depth, q, r/2 nodes do appear. Since
at least one of these must be a binary node, there can be at most
r/2 - 1 internal nodes at depth q + 1 . Similarly, there can be at
most r/2 - 1 internal nodes at depth q - 1 (because at least one must
have been a binary node and no leaves had appeared by depth q). By
a simple induction argument, there can be at most r/2 - i internal
nodes at depths q + i and q - i . Thus, the trie will display linear
growth until a depth is reached with r/2 internal nodes. After that,
linear shrinkage must follow. An immediate consequence is stated in
Lemma 1.

6

LEMMA 1: If F is a "binary file of r records and k attributes, and T is
a trie for F produced by Heuristic 1, then T cau have no leaf at
depth greater than r - 1 .

PROOF: From the above discussion, no depth can have more than r/2 nodes,
and preceding depths must have one less node each. Let q denote the
depth with r/2 nodes. Since the root lies at depth 0, q - r/2 - 1.
Including the leaves, there can be at most r/2 depths following q, so
the Lemma holds. J]

Of course, it may be that k < r - 1 in which case the trie would
be still shorter.

Since we wish to find the largest trie allowed by Heuristic 1, and
there is a limit on the height, we must include the "widest" parts
possible. Figure 6 shows what happens as k grows smaller. The first
depths of the trie shown there form a complete binary tree with 2^
nodes at depth t. Then the linear growth to r/2 nodes begins as when
k is unbounded. After reaching a depth where there are r/2 internal
nodes, successive depths shrink linearly until the last possible depth
at which all leaves appear. The parameter t is chosen to be the minimum
height binary tree needed to distinguish all nodes.

If h is the height of the trie shown in Figure 6, then there will
be h - t - 1 depths remaining after the complete binary tree, not
including the depth which has r/2 nodes. Thus the number of depths of
linear growth is limited to (h-t-l)/2 . At each one, there is one more
node than at the last, and the sequence terminates in r/2 nodes. Thus,
the first depth in the sequence must have r/2 - (h-t-l)/2 nodes. This
expression is called "p" in the definition, To define t, we must have
that t is at least large enough to guarantee - r/2 - (h-t-l)/2 .

7

With some rearrangement, this yields the following definition.

DEFINITION Is Let r, k "be integers s.t. 1 * Tlogg r] ̂ k, and let t be
t+2

the least nonnegative integer satisfying 2 - (t+2) ̂ r - k .
Let h be the min(k-l,r-2), and let p = [r/2 - (h-t-l)/2] . Then
an (r,k)-WIDE tree is a binary tree s.t.
1. Each node at depth d, 0 - d < t has 2 sons.
2. At depth t, p - nodes have 2 sons and all other nodes have 1

son (i.e. there are p nodes at depth t+1).
3- Exactly one node at depth d, t+1 - d < h has 2 sons, all other

nodes at depth d have 1 son. After a depth with r/2 internal
nodes, the sons of the binary node are both leaves.

4. All nodes at depth h have 2 sons. [j
We can now establish that an (rfk)-WIDE tree is as large as any

trie for a binary file produced by Heuristic 1.

LEMMA 2: Let r, k be integers s.t. 1<[log2 r"| - k, let F be a binary
file of r records and k attributes, and let T be a trie for F
produced by Heuristic i. If W is an (r,k)-WIDE tree, then

M - M
where]wl| denotes the size of ff measured in internal nodes.

PROOF: Suppose that)T|> | w] . From Lemma 1 and the definition of W,
T can have no leaf at depth greater than the depth of a leaf in W.
Therefore, it must hold that T has more nodes than W at some depth.
Let d be the first depth at which T has more nodes than W, and let t
"be as in the definition of W. Then two cases arise.
Case 1 (d ̂ t+l): Since each node at depths 0 to t in tf has 2 sons,

8

T cannot have more nodes at depth d than tf. Therefore, case 2 must hold.
Case 2 (d > t+l): Consider the sequence given by the number of nodes at
depths t+1, t+2, ... in W. We will call this sequence the profile of W.
Beginning at depth t+1 W has, say, p nodes. Thus the profile is:

Pw = p,p+l,...,j,j+l,a+2 r/2-l,r/2,r/2-l,...,p+l,p

Since T has more nodes at depth d, it must have a profile

PT = p,p+l,...j+n,j+n+1,...,r/2-l,r/2,r/2-l,...,p-n-l,p-n

where depth d is shown to have j+1 nodes in W and j+n nodes in T. The
point to note is that by choosing a larger value than j+1, T cannot have
as large values near the end of the profile as W. Comparing the two
profiles we find that

n n
E (j+i) > 2 (p+i)
i=l i=l

so Pw > PT.

Thus, the assumption that |T|>|w] was false and the Lemma holds, j]
From Lemma 2 we know that a bound on the size of an (r,k)-HIDE

tree is also a bound on the worst case trie produced by Heuristic 1.
The size of an (r,k)-WIDE tree can be computed by summing over the
number of nodes at each depth. From the definition, there are several
possible contributions depending on r and k. For depths 0 through t

t+1
there are 2 - 1 nodes because these depths form a complete binary
tree. As shown in the proof of Lemma 2, the number of nodes at depths
t+1,... is given by the profile of ¥, with p as in the definition.
Thus, the size of an (r,k)-WIDE tree is:

t+1 r/2~1 W = (2 - 1) + r/2 + 2 E (i) + f(t) (l)
i=p

9

where t depends on r and k as in the definition. The function f Is
either 0 or p'depending on whether there are an even or odd number of
depths after depth t in the tree. With an even number of depths, the
last one will contain only p nodes.

To see at what values of k this expression is maximized, we need
only make a few observations. Prom the definition of an (r,k)-WIDE

t+2
tree we know that t is the least integer s.t. 2 - (t+2) ̂ r - k .
Thus, t is maximized when r - k is maximized. Since k ̂ tloS2 r " ̂
is at most r - Tlog2 r~|. Thus, ((t-l)+2) < t - [log,, r~| , t+2
from which it follows that 2 = 0(r). So in the worst case, the
first term in (l) is proportional to r.

The second part of (l) Is more interesting. To maximize the sum
from p to r/2-1, it is necessary to minimize p. Recall that p is given
by fr/2 - (h-t-1)/2~] . When fc >r - 1, t = 0 and h achieves its
maximum of r - 2 . Thus, the minimum value for p is 2 and corresponds
to a trie with linear growth and linear shrinkage. The size of the
worst case trie is bounded as follows.

r/2-1
|W| £ i + r/2 + 2 E (i) + 1 = r2 / k (2)

i=2
To see that this bound is the best possible, consider the file

shown in Figure 7- Testing attributes left to right produces a trie Q
with size r / 4 , in which each depth has at least one binary node.
Testing attributes from right to left in the same file produces a trie
of only r - 1 internal nodes. Recall that a binary tree with r leaves
must have r - 1 internal nodes. Thus, we can conclude Theorem 1.

10

THEOREM Is The cost of Heuristic 1 for binary files is

SH1 / So ~ <*ZA)/(r-l)
PROOF: From Lemma 2, an (r ,k)-WIDE tree is as large as any trie for a
binary file produced by Heuristic 1. From the above analysis, the size
of an (r,k)-WIDE tree is bounded by (2). The Theorem follows. []

Note that the ratio r /4(r-l) is not bounded by a constant, but grows
as the number of records in the file.

3- Other Heuristics!

In Heuristic 1 an attempt was made to reduce the space requirements
of a trie by eliminating useless attributes. As an extension to that,
suppose one were to choose an attribute which gave the most nodes at
each depth 2.sons. This would tend to break up the sets of records
very fast, and might yield leaves earlier in the trie. In order to
insure that leaves are distinguished as early as possible, we will
further stipulate that is two or more attributes would add the same
number of nodes at the next depth, then an attribute which distinguishes
the most leaves should be selected from among them. These ideas are
encompassed in the Splitting heuristic.

HEURISTIC 2 (Splitting Heuristic): When building a trie select at each
depth an attribute which adds the most nodes (including leaves).
Among all attributes adding the maximum number of nodes, select
one which adds the most leaves. [J

Note that the Splitting heuristic must choose an attribute which

11

distinguishes at least one node at each depth. Prom Theorem 1, no trie
p produced by the Splitting heuristic can have more than r nodes. We

2
will show that the Splitting heuristic is 0(r) in the worst case.

Consider the file shown in Figure 8. Observe that testing the
attributes in this file from right to left yields a trie of size r - 1 .
We will see that testing left to right produces a trie of 0(r) nodes
and that the Splitting heuristic allows this order. To see how the
Splitting heuristic can make poor choices, observe that no attribute can
produce a leaf on the first selection, and that all attributes will add
2 nodes at depth 1 . Choosing the leftmost attribute divides the records
into sets consisting of records 1-4, and the rest of the file. For
this division we again observe that no attribute will add any leaves and
any attribute will cause 3 nodes to appear at depth 2. Selections can "be
made left to right until there are r/4 nodes at depth r/4 - 1 , correspon-
ding to 4 records each. The remaining choices are made in pairs since
after a choice places two nodes in a set the heuristic causes a leaf to
appear.

We need only consider the first r/4 depths of the trie for the file
shown in Figure 8 to establish a lower bound on the size. Since there
is linear growth, the size of the trie can be bounded from below by

r/4
Size ̂ £ i = (r + 4r)/32

i=l
From this we can conclude the cost of the Splitting heuristic.
THEOREM 2: The cost of Heuristic 2 for binary files is

S H 2 / S o = 0(r)

PROOFi From Theorem 1, Heuristic 2 has SH2 ̂ r . A trie produced 2 by Heuristic 2 for the file shown in Figure 8 hao at li±at;t c«r nodes,

12

where c is a constant. Since the optimal trie for this file has r - 1
nodes, SH2 / Sq = 0(r) . []

We will now turn our attention to two heuristics which extend the
idea of generating leaves used in the Splitting heuristic. One of the
Greedy heuristics simply reverses the criteria used in the Splitting
heuristic and chooses an attribute at each depth which yields the most
leaves, selecting from among all those attributes adding a maximum
number of leaves one which adds the most Internal nodes. Although the
second Greedy heuristic chooses an attribute which adds the most leaves,
as a secondary consideration It will choose an attribute adding the
least internal nodes. The ideas for these heuristics come from the
Splitting heuristic where we attempted to divide the sets of records as
fast as possible to generate leaves early in the trie. On one hand, it
might seem reasonable to try to divide the internal nodes as fast as
possible given two attributes which would both add the same number of
leaves. On the other hand, it might turn out that by generating many
internal nodes the trie would become too "wide".

Unfortunately, neither of these methods has a better worst case
than the Splitting heuristic. We will demonstrate their performance
after giving the definitions.

HEURISTIC 3 (Greedy Heuristic): When building a trie select at each
depth an attribute which adds the most leaves. Among all those
attributes adding the maximum number of leaves, select one which
adds the most internal nodes. {]

HEURISTIC 4 (Leaf Greedy Heuristic)i When building a trie select at
each depth an attribute which adds the most leaves. Among all

13

attributes adding the maximum number of leaves, select one which
adds the least internal nodes. []

Because both of the Greedy heuristics will always force at least one
binary node at each depth, they are each at least as good as Heuristic 1.
We will demonstrate, however, that both Greedy heuristics can produce
tries which require 0(r) space in the worst case by again using the
file shown in Figure 8, To see that Heuristic 3 °an perform badly on
this file, consider the first choice. Since the first choice can add no
leaves, the leftmost attribute can be selected. Continuing to select
attributes left to right until r/4 nodes appear is allowed because after
each selection, no leaves can be generated and any attribute will add
at most one internal node to the next depth. Prom the proof of Theorem 2
we can conclude the following.

COROLLARY 1: The cost of Heuristic 3 for binary files is
Cost = 0(r)

PROOF: Immediate from the above discussion. [j

COROLLARY 2: The cost of Heuristic 4 for binary files is
Cost = 0(r)

PROOF: We need only point out that at each of the first r/4 depths of

a trie for the file shown in Figure 8, the least number of nodes that

can be added is 1. Therefore a left to right ordering of attribute

testing is also allowed by Heuristic 4. The result follows. []

Note that the sample file is used here only to establish an asymptotic
bound. Other files will have costs with larger constants.

4. O-Tries, An Alternative Implementation:

14

In considering heuristics for minimizing the space required by a
trie we have assumed a global ordering of attributes was necessary, and

th
that the i attribute in this ordering would be tested at a node at
depth i in the trie. If we are willing to relax that requirement, then
the size of the trie can be further reduced. At a cost of a small amount
of extra space in each node, information specifying which attribute to
test upon reaching the node could be stored in it. The ordering of
attribute testing being made explicit would allow different orders along
different paths from the root to a leaf. This implementation of a trie
will be called an O-trle or Order-containing trie. Figure 9 shows one
possible O-trie for the strings in the trie of Figure 1. Numbers in the
nodes of the O-trie are the positions of letters which should be tested.
Since there are k possible positions, logg k extra bits would be needed
in each node.

One way to build an O-trie is to start with an arbitrary attribute
order, construct a trie, and then reorder attribute testing within the
various subtrees to reduce the size. For the binary case, an obvious
generalization of Heuristic 1 (Elimination of Useless Attributes) works
well in 0-tries. We can state the procedure as a heuristic.
HEURISTIC 5 (Elimination of Useless Attributes fcf O-Tries): When build-

ing an O-trie select at each node an attribute which causes the
node to have at least 2 sons. j]

This heuristic may be viewed as the elimination of Internal chains. It
was exactly the problem of internal chains which gave us a large worst

15

case for Heuristics 1 - 4 . With the chains removed, we have that

THEOREM 3: Any O-trie for a "binary file produced by Heuristic 5 is
optimal.

PROOF} Since each node in the trie has 2 sons, there are at most r - 1
internal nodes. Since there are r leaves, S ^ / Sq = 1. []

5. The Performance of Heuristics on Files of Degree > 2s

Recall that a file is of degree n if" the maximum of the sizes of the
value sets of its attributes is n. It should be clear that if only one
attribute has a value set with n items and all others are binary, then
the performance of Heuristics 1 - 4 will "be asymptotically the same.
Even if we require every attribute to take on n values, Heuristics 1 - 4
can be "fooled" by relegating the higher values to a set of n records
appended to an otherwise binary file. After distinguishing the n
records, the heuristics will then generate a trie on the remaining
subfile as shown before.

Let us direct our attention now to the performance of Heuristic 5
on files of higher degree. We have already seen that, in the binary
case, It can produce optimal tries. Although it will not hold that
tries for higher degree files remain optimal, the cost of such tries
will be bounded by n and will not grow as the number of records. To
derive this bound, we first observe that an O-trie produced by
Heuristic 5 will have at most r - 1 internal nodes for a file of r
records. Suppose that the file for some O-trie was of degree n, n > 2.
The size of a complete n-ary tree of r leaves gives the size of the
smallest possible trie for F. If there are r leaves in the trie we

16

we will assume that r = np. At depth 1 in.the complete n-ary tree there
are n1 nodes, so the size iss

S = E n1 = (j? - l)/(n - 1) P-l <
1=0

and this gives

S / SQ = (r - i)/((n* - l)/(n - l)

and since r = n^,

S / So = (r - l)(n - l)/(r - l) = n - 1 (3)

We summarize this in the following Theorem.

THEOREM 4 s The cost of Heuristic 5 for files of degree n is at most

A few remarks are in order about this bound. Unlike the other bounds
stated in this paper, this bound is loose in the sense that we have not
shown a set of files on which it is always attainable. Whether such a
set exists is an open question at this point. More important, however,
is the fact that the bound does not depend on the size of the input, r
or k, but only on the maximum value that is stored in the file. Since
in practice, one would expect n to be small;compared to r, the O-trie
can be recommended as a space-efficient implementation.

6. Conclusions;

We have examined several heuristics for space minimization in

n - 1.
PROOFs Given in the analysis above. 0

17

In the worst case, tries produced by four obvious heuristics required
2

space proportional to r , where r is the number of records in the underly-
ing file, The optimal trie for the same files required only r - 1
records, so the cost of the heuristics was proportional to r. In each
case it was demonstrated that the asymptotic bound could be attained,
making these bounds the best possible. Moreover, the worst case example
used a binary file so the results hold for files of any degree d, d> 2 .

Turing to an alternative implementation of a trie, called an O-trie,
it was shown that a simple method of constructing 0-tries for binary
files could produce tries the minimum space In terms of the number of
nodes. The size of each node in an O-trie, however, must be slightly
larger than in other implementations. It was also shown that a bound on
the size of the worst case 0-tries for files of higher degree could be
obtained which depended only on the degree of the file and not on the
number of records. The O-trie implementation is therefore recommended
especially when the number of records in the file is large compared to
the degree of the file.

18

References

[AHU74] Aho, A.; Hopcroft, J.; and. Ullman, J., The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[CASE73] Casey, R. G., "Design of Tree Structures for Efficient
Querying," CACM, vol. 1:9 (Sept 1973), 5^9-536.

[C0SE?6] Comer, D.; and Sethi, R., "Complexity of Trie Index Construction,
JACM, to appear.

[FRED60] Fredkin, E., "Trie Memory," CACM, vol 3:9 (Sept I960), 490-499-

[PATT69] Patt, Y., "Variable Length Tree Structures Having Minimum
Average Search Time," CACM, vol. 12s2 (Feb I969), ?2-?6.

[R0DE71] Rotwitt, T.; and deMaine, P. A. D., "Storage Optimization of
Tree Structured Files Representing Descriptor Sets," Proc 1971
ACM-SIGFIDBT Workshop on Data Description Access and Control,
207-217.

[STAN70] Stanfel, L., "Tree Structures for Optimal Searching," JACM,
vol. 17:2 (July 1970), 508-517.

[SUSS63] Sussenguth, E. H., "Use of Tree Structures for Processing
Files," CACM, vol. 6:5 (May 1963). 272-279-

[YA076] Yao, S. B., "A Model.for Combined Attribute Index Organization,"
Proc Fifth Texas Conference On Computing, Austin, 1976, 127-130.

Figure 1, A trie for the strings "many", "map", "mat",
"mane", and "me".

Figure 2. The Tree Implementation of the strings shown
in Figure 1.

attributes

records

1 m a P t

2 m a t I

3 m a n y

m e t t

5 m a n e

Figure 3* A file of 5 records and k attributes.

Figure h. A trie for the strings in the file of Figure 3
formed by testing attributes right to left.

Kk
• <

jiih-A A
("useless"
Ĵ attributes

Figure 5. An aribtrary trie for a binary file. Some
depths have useless attributes which can be eliminated.

21

1
h=k

1
T t complete binary

tree

linear growth
and shrinkage
region

Figure 6. The shape of a worst case trie for a binary
file produced by Heuristic 1.

1
1

1
0

1
1

1
0

1
1

1
0

•

•

•

4

a

•

1
1

1
0

Figure
badly,
number

?. A file for which Heuristic 1 performs
Note that this file can be extended to any
of records. All values not specified are 0.

<1

22

1
1
0
0

1
1
1
1

Figure 8. A worst case file for Splitting and Greedy
Heuristics. All values not shown are 0. Note that
the same shape file can "be used for any r a multiple of

Other values of r are not needed, "but a suitable
modification can "be made for the odd records.

Figure 9. One possible O-trie for the file shown in
Figure 3.

	Heuristics for Trie Index Minimization
	Report Number:
	

	tmp.1307986960.pdf.OBqbI

