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Abstract 

A trie is a particular implementation of a digital search tree 
in which leaves correspond to records in a file. Searching proceeds 
from the root to a leaf, where the decision at each node is based on 

i > 't 1 

the value of some attribute i'ri:.the query. Trie implementations have 
the advantage of being fast, but the disadvantage of achieving that 
speed at great expense in storage space. Of primary concern in 
making a trie practical is the problem of minimizing storage. One 
method for reducing the space required for a trie is to reorder the 
testing of attributes. Unfortunately, the problem of finding an 
ordering which guarantees a minimum size trie is NP-complete. In 
this paper we investigate several heuristics for reordering attribute 
testing, and derive bounds on the sizes of the worst tries produced 
by them in terms of the underlying file. Although the analysis is 
derived for a binary file, the results are extended to files of 
higher degree. 

An alternative representation of a trie, called an 0-trie, is 
examined and is shown to guarantee minimum storage requirements for 
binary files. For files of higher degree, a bound on the size of the 
worst O-trie is obtained. For most applications, 0-tries are smaller 
than other implementations of tries, even when heuristics for 
improving the storage requirements are employed. 



1. Introduction: 
A trie , described by Fredkin [FRED60], is a tree structure in 

which information is stored character-by-character or digit-by-digit. 
Figure 1 shows a trie for the words "many", "mane", "map", "mat", and 
"me". A query is a word which must be looked up in the trie. To 
search for a word, one begins at the root and follows a path with 
labels which are the same as the letters of the query. This storage 
structure has the advantage that the search is quite fast, taking no 
longer than the number of letters in the query, provided that the 
time required to decide which path to follow at each node is constant. 
Fredkin's implementation has the fixed time decision property because 
each choice costs only as much as an array indexing operation. 
Sussenguth ̂ SUSS63] proposes an alternative implementation he calls 
a "doubly chained tree". In the tree implementation, all sons of a 
node are chained together in a linked list. Thus, the decision about 
which path to follow cannot be made in constant time but requires 
searching. In general, following paths which appear early in the 
lists costs less than following those which appear later. Figure 2 
demonstrates this implementation by showing a tree corresponding to 
the trie shown in Figure 1. While our results are stated in terms of 
a trie, they apply equally to either Implementation. 

A trie may be thought of as a storage structure for information 
from a file. Figure 3 gives a file with r = 5 records and k = k 
attributes. In this case, each attribute is a single character. 
There is no reason, however, that an attribute could not take on 

pronounced "try" 
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values from a larger or smaller set. In practice, the attributes might 
be fields in a record like "salary" or "employee number". Since the 
trie implementation requires storage at each node proportional to the 
size of the set of possible attribute values, it is often convenient to 
use the individual characters or digits of natural attributes to create 
smaller attributes. 

In comparing the trie in Figure 1 to the file shown in Figure 3, 
one can see that each node in the trie corresponds to some subset of 
the records of the file. Each leaf corresponds to exactly one record 
and each nonleaf node corresponds to the subset of records represented 
by the leaves of the subtree rooted at that node. We will assume that 
the trie has no internal node which corresponds to only one record. 
This definition, called a pruned trie, is primarily made to lessen the 
amount of storage required "by the trie. Ety "pruning" all chains which 
lead to leaves, some information from the file may be lost. In most 
instances a trie will be used as an index for a file, perhaps on 
secondary storage, and presumably the record of this file will have to 
be examined to complete the query. A consequence of the definition, 
which will be used later, is that each internal node must correspond 
to at least two records in the file (or it would become a leaf). 

Since the trie was originally intended for the storage of alpha-
betic character strings, the order of testing attributes was understand-
ably left-to-right as in Figure 1. When a query is viewed as a k-tuple 
in which attributes are unrelated, the left-to-right order is no longer 
natural or necessary. Rotwitt and deMaine [R0DE?l] note that the 
order in which attributes are tested may influence the size of the 
resultant trie. Consider, for example, the trie shown in Figure k, 
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constructed from the same file as the trie shown in Figure 1, "but by 
testing the letters from right to left. By changing the order of 
testing, the size of the trie, measured in internal nodes, decreases 
from 4 to 2 nodes. Because the chief disadvantage of a trie is the 
large storage space required, reordering attribute testing to reduce 
the size is an attractive proposition. We would like to find an 
ordering of attributes that yields a minimum size trie. While the 
reordering of attributes also affects the time taken to access a given 
record, that will not concern us. Others [CASE73, PATT69,STAN70, 
SUSS63]] have explored problems of access time minimization. 

Unfortunately, the problem of reordering attributes to produce a 
minimum size trie is computationally difficult £C0SE?6̂ ]. In this 
paper we consider alternatives to finding a minimum size trie for a 
given file. One method employs computationally efficient procedures 
which produce tries which, while they may not be minimum, are smaller 
than a randomly ordered trie. Often, such procedures are based on 
"rule of thumb" practices and will be called heuristics. Rotwitt and 
deMaine 

[RODE?l] and Yao [YA076] have proposed two heuristics. 
Another approach to minimizing tries uses a modified implementation 

in which information about the ordering of attributes is contained in 
the trie itself. Such tries are called 0-tries (for Order containing) 
and are shown to be superior to the heuristics examined. 

Definitions of a trie, file, and query are given in [COSE76]. 
Graph definitions used throughout the paper are standard. 

2 the problem was shown to be NP-complete. is a good reference 
for NP-complete problems. 
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2. Elimination of Useless Attributes: 

We will call a file in which any attribute takes on values from a 
set of at most n elements an n-ary file or say that the file has degree 
n. Initially, we will consider the performance of heuristics on 
binary files. The study of binary files is motivated on two grounds. 
First, most computer systems store information in binary, so one could 
think of a binary file as the hardware representation of an arbitrary 
file. Secondly, examination of the binary case is important for 
analysis of files with higher degree. 

Consider a trie for some binary file as shown in Figure 5- We 
will say that a node is a binary node if it has exactly 2 sons. The 
trie in question has some depths at which no binary nodes appear. In 
terms of the file, some attribute was tested which did not further 
divide the sets of records. An attribute which produces no binary 
nodes when tested is said to be useless because its omission would 
result in a smaller trie. Note that the property of being useless is 
related to the testing of an attribute in a particular trie and cannot 
be determined from examination of the attribute values a priori. 

The first heuristic for minimizing tries is one which eliminates 
useless attributes. Relating this to the reordering of attribute 
testing, we may think of the useless attributes as being moved to the 
end of the order (where they are never reached during a search). 

HEURISTIC 1 (Elimination of Useless Attributes)! When building a trie, 
select at each depth an attribute which adds at least one binary 
node. [] 

2 
the root of a trie lies at depth 0, and the sons of a node at depth i 
lie at depth i+1. 
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The size of tries produced by this heuristic may vary from the size of 
an optimal trie for the file. Let S^ denote the size of a trie produced 
by some heuristic, and let Sq denote the size of an optimal (smallest) 
trie for the same file. Then the cost criterion for the heuristic -will 
be 

Cost = Sh/SQ 
Heuristics with low cost are desirable. For any heuristic, it is 
important to know the largest cost that can be incurred. 

In order to bound the cost of Heuristic 1, we will define a binary 
tree called an (r,k)-WIDE tree and show that it is as large as any trie 
for a binary file of r records and k attributes produced by Heuristic 1. 
To see how the definition of an (r,k)-WIDE tree arises, consider the 
largest trie for a binary file from which all useless attributes have 
been removed. For the present, assume that r is even. Recall that 
each internal node in the trie must correspond to at least 2 records in 
the file. Therefore, there can be no more than r/2 nonleaf nodes at 
any depth. Suppose that at some depth, q, r/2 nodes do appear. Since 
at least one of these must be a binary node, there can be at most 
r/2 - 1 internal nodes at depth q + 1 . Similarly, there can be at 
most r/2 - 1 internal nodes at depth q - 1 (because at least one must 
have been a binary node and no leaves had appeared by depth q). By 
a simple induction argument, there can be at most r/2 - i internal 
nodes at depths q + i and q - i . Thus, the trie will display linear 
growth until a depth is reached with r/2 internal nodes. After that, 
linear shrinkage must follow. An immediate consequence is stated in 
Lemma 1. 
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LEMMA 1: If F is a "binary file of r records and k attributes, and T is 
a trie for F produced by Heuristic 1, then T cau have no leaf at 
depth greater than r - 1 . 

PROOF: From the above discussion, no depth can have more than r/2 nodes, 
and preceding depths must have one less node each. Let q denote the 
depth with r/2 nodes. Since the root lies at depth 0, q - r/2 - 1. 
Including the leaves, there can be at most r/2 depths following q, so 
the Lemma holds. J] 

Of course, it may be that k < r - 1 in which case the trie would 
be still shorter. 

Since we wish to find the largest trie allowed by Heuristic 1, and 
there is a limit on the height, we must include the "widest" parts 
possible. Figure 6 shows what happens as k grows smaller. The first 
depths of the trie shown there form a complete binary tree with 2^ 
nodes at depth t. Then the linear growth to r/2 nodes begins as when 
k is unbounded. After reaching a depth where there are r/2 internal 
nodes, successive depths shrink linearly until the last possible depth 
at which all leaves appear. The parameter t is chosen to be the minimum 
height binary tree needed to distinguish all nodes. 

If h is the height of the trie shown in Figure 6, then there will 
be h - t - 1 depths remaining after the complete binary tree, not 
including the depth which has r/2 nodes. Thus the number of depths of 
linear growth is limited to (h-t-l)/2 . At each one, there is one more 
node than at the last, and the sequence terminates in r/2 nodes. Thus, 
the first depth in the sequence must have r/2 - (h-t-l)/2 nodes. This 
expression is called "p" in the definition, To define t, we must have 
that t is at least large enough to guarantee - r/2 - (h-t-l)/2 . 
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With some rearrangement, this yields the following definition. 

DEFINITION Is Let r, k "be integers s.t. 1 * Tlogg r] ̂  k, and let t be 
t+2 

the least nonnegative integer satisfying 2 - (t+2) ̂  r - k . 
Let h be the min(k-l,r-2), and let p = [r/2 - (h-t-l)/2] . Then 
an (r,k)-WIDE tree is a binary tree s.t. 
1. Each node at depth d, 0 - d < t has 2 sons. 
2. At depth t, p - nodes have 2 sons and all other nodes have 1 

son (i.e. there are p nodes at depth t+1). 
3- Exactly one node at depth d, t+1 - d < h has 2 sons, all other 

nodes at depth d have 1 son. After a depth with r/2 internal 
nodes, the sons of the binary node are both leaves. 

4. All nodes at depth h have 2 sons. [j 
We can now establish that an (rfk)-WIDE tree is as large as any 

trie for a binary file produced by Heuristic 1. 

LEMMA 2: Let r, k be integers s.t. 1<[ log2 r"| - k, let F be a binary 
file of r records and k attributes, and let T be a trie for F 
produced by Heuristic i. If W is an (r,k)-WIDE tree, then 

M - M 
where ]wl| denotes the size of ff measured in internal nodes. 

PROOF: Suppose that )T|> | w ] . From Lemma 1 and the definition of W, 
T can have no leaf at depth greater than the depth of a leaf in W. 
Therefore, it must hold that T has more nodes than W at some depth. 
Let d be the first depth at which T has more nodes than W, and let t 
"be as in the definition of W. Then two cases arise. 
Case 1 (d ̂  t+l): Since each node at depths 0 to t in tf has 2 sons, 
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T cannot have more nodes at depth d than tf. Therefore, case 2 must hold. 
Case 2 (d > t+l): Consider the sequence given by the number of nodes at 
depths t+1, t+2, ... in W. We will call this sequence the profile of W. 
Beginning at depth t+1 W has, say, p nodes. Thus the profile is: 

Pw = p,p+l,...,j,j+l,a+2 r/2-l,r/2,r/2-l,...,p+l,p 

Since T has more nodes at depth d, it must have a profile 

PT = p,p+l,...j+n,j+n+1,...,r/2-l,r/2,r/2-l,...,p-n-l,p-n 

where depth d is shown to have j+1 nodes in W and j+n nodes in T. The 
point to note is that by choosing a larger value than j+1, T cannot have 
as large values near the end of the profile as W. Comparing the two 
profiles we find that 

n n 
E (j+i) > 2 (p+i) 
i=l i=l 

so Pw > PT. 

Thus, the assumption that |T|>|w] was false and the Lemma holds, j] 
From Lemma 2 we know that a bound on the size of an (r,k)-HIDE 

tree is also a bound on the worst case trie produced by Heuristic 1. 
The size of an (r,k)-WIDE tree can be computed by summing over the 
number of nodes at each depth. From the definition, there are several 
possible contributions depending on r and k. For depths 0 through t 

t+1 
there are 2 - 1 nodes because these depths form a complete binary 
tree. As shown in the proof of Lemma 2, the number of nodes at depths 
t+1,... is given by the profile of ¥, with p as in the definition. 
Thus, the size of an (r,k)-WIDE tree is: 

t+1 r/2~1 W = (2 - 1) + r/2 + 2 E (i) + f(t) (l) 
i=p 
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where t depends on r and k as in the definition. The function f Is 
either 0 or p'depending on whether there are an even or odd number of 
depths after depth t in the tree. With an even number of depths, the 
last one will contain only p nodes. 

To see at what values of k this expression is maximized, we need 
only make a few observations. Prom the definition of an (r,k)-WIDE 

t+2 
tree we know that t is the least integer s.t. 2 - (t+2) ̂  r - k . 
Thus, t is maximized when r - k is maximized. Since k ̂  tloS2 r " ̂  
is at most r - Tlog2 r~|. Thus, ((t-l)+2) < t - [log,, r~| , t+2 
from which it follows that 2 = 0(r). So in the worst case, the 
first term in (l) is proportional to r. 

The second part of (l) Is more interesting. To maximize the sum 
from p to r/2-1, it is necessary to minimize p. Recall that p is given 
by fr/2 - (h-t-1 )/2~] . When fc >r - 1, t = 0 and h achieves its 
maximum of r - 2 . Thus, the minimum value for p is 2 and corresponds 
to a trie with linear growth and linear shrinkage. The size of the 
worst case trie is bounded as follows. 

r/2-1 
|W| £ i + r/2 + 2 E (i) + 1 = r2 / k (2) 

i=2 
To see that this bound is the best possible, consider the file 

shown in Figure 7- Testing attributes left to right produces a trie Q 
with size r / 4 , in which each depth has at least one binary node. 
Testing attributes from right to left in the same file produces a trie 
of only r - 1 internal nodes. Recall that a binary tree with r leaves 
must have r - 1 internal nodes. Thus, we can conclude Theorem 1. 
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THEOREM Is The cost of Heuristic 1 for binary files is 

SH1 / So ~ <*ZA)/(r-l) 
PROOF: From Lemma 2, an (r ,k)-WIDE tree is as large as any trie for a 
binary file produced by Heuristic 1. From the above analysis, the size 
of an (r,k)-WIDE tree is bounded by (2). The Theorem follows. [] 

Note that the ratio r /4(r-l) is not bounded by a constant, but grows 
as the number of records in the file. 

3- Other Heuristics! 

In Heuristic 1 an attempt was made to reduce the space requirements 
of a trie by eliminating useless attributes. As an extension to that, 
suppose one were to choose an attribute which gave the most nodes at 
each depth 2.sons. This would tend to break up the sets of records 
very fast, and might yield leaves earlier in the trie. In order to 
insure that leaves are distinguished as early as possible, we will 
further stipulate that is two or more attributes would add the same 
number of nodes at the next depth, then an attribute which distinguishes 
the most leaves should be selected from among them. These ideas are 
encompassed in the Splitting heuristic. 

HEURISTIC 2 (Splitting Heuristic): When building a trie select at each 
depth an attribute which adds the most nodes (including leaves). 
Among all attributes adding the maximum number of nodes, select 
one which adds the most leaves. [J 

Note that the Splitting heuristic must choose an attribute which 
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distinguishes at least one node at each depth. Prom Theorem 1, no trie 
p produced by the Splitting heuristic can have more than r nodes. We 

2 
will show that the Splitting heuristic is 0(r ) in the worst case. 

Consider the file shown in Figure 8. Observe that testing the 
attributes in this file from right to left yields a trie of size r - 1 . 
We will see that testing left to right produces a trie of 0(r ) nodes 
and that the Splitting heuristic allows this order. To see how the 
Splitting heuristic can make poor choices, observe that no attribute can 
produce a leaf on the first selection, and that all attributes will add 
2 nodes at depth 1 . Choosing the leftmost attribute divides the records 
into sets consisting of records 1-4, and the rest of the file. For 
this division we again observe that no attribute will add any leaves and 
any attribute will cause 3 nodes to appear at depth 2. Selections can "be 
made left to right until there are r/4 nodes at depth r/4 - 1 , correspon-
ding to 4 records each. The remaining choices are made in pairs since 
after a choice places two nodes in a set the heuristic causes a leaf to 
appear. 

We need only consider the first r/4 depths of the trie for the file 
shown in Figure 8 to establish a lower bound on the size. Since there 
is linear growth, the size of the trie can be bounded from below by 

r/4 
Size ̂  £ i = (r + 4r)/32 

i=l 
From this we can conclude the cost of the Splitting heuristic. 
THEOREM 2: The cost of Heuristic 2 for binary files is 

S H 2 / S o = 0(r) 

PROOFi From Theorem 1, Heuristic 2 has SH2 ̂  r . A trie produced 2 by Heuristic 2 for the file shown in Figure 8 hao at li±at;t c«r nodes, 



12 

where c is a constant. Since the optimal trie for this file has r - 1 
nodes, SH2 / Sq = 0(r) . [] 

We will now turn our attention to two heuristics which extend the 
idea of generating leaves used in the Splitting heuristic. One of the 
Greedy heuristics simply reverses the criteria used in the Splitting 
heuristic and chooses an attribute at each depth which yields the most 
leaves, selecting from among all those attributes adding a maximum 
number of leaves one which adds the most Internal nodes. Although the 
second Greedy heuristic chooses an attribute which adds the most leaves, 
as a secondary consideration It will choose an attribute adding the 
least internal nodes. The ideas for these heuristics come from the 
Splitting heuristic where we attempted to divide the sets of records as 
fast as possible to generate leaves early in the trie. On one hand, it 
might seem reasonable to try to divide the internal nodes as fast as 
possible given two attributes which would both add the same number of 
leaves. On the other hand, it might turn out that by generating many 
internal nodes the trie would become too "wide". 

Unfortunately, neither of these methods has a better worst case 
than the Splitting heuristic. We will demonstrate their performance 
after giving the definitions. 

HEURISTIC 3 (Greedy Heuristic): When building a trie select at each 
depth an attribute which adds the most leaves. Among all those 
attributes adding the maximum number of leaves, select one which 
adds the most internal nodes. {] 

HEURISTIC 4 ( Leaf Greedy Heuristic)i When building a trie select at 
each depth an attribute which adds the most leaves. Among all 
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attributes adding the maximum number of leaves, select one which 
adds the least internal nodes. [] 

Because both of the Greedy heuristics will always force at least one 
binary node at each depth, they are each at least as good as Heuristic 1. 
We will demonstrate, however, that both Greedy heuristics can produce 
tries which require 0(r ) space in the worst case by again using the 
file shown in Figure 8, To see that Heuristic 3 °an perform badly on 
this file, consider the first choice. Since the first choice can add no 
leaves, the leftmost attribute can be selected. Continuing to select 
attributes left to right until r/4 nodes appear is allowed because after 
each selection, no leaves can be generated and any attribute will add 
at most one internal node to the next depth. Prom the proof of Theorem 2 
we can conclude the following. 

COROLLARY 1: The cost of Heuristic 3 for binary files is 
Cost = 0(r) 

PROOF: Immediate from the above discussion. [j 

COROLLARY 2: The cost of Heuristic 4 for binary files is 
Cost = 0(r) 

PROOF: We need only point out that at each of the first r/4 depths of 

a trie for the file shown in Figure 8, the least number of nodes that 

can be added is 1. Therefore a left to right ordering of attribute 

testing is also allowed by Heuristic 4. The result follows. [] 

Note that the sample file is used here only to establish an asymptotic 
bound. Other files will have costs with larger constants. 
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In considering heuristics for minimizing the space required by a 
trie we have assumed a global ordering of attributes was necessary, and 

th 
that the i attribute in this ordering would be tested at a node at 
depth i in the trie. If we are willing to relax that requirement, then 
the size of the trie can be further reduced. At a cost of a small amount 
of extra space in each node, information specifying which attribute to 
test upon reaching the node could be stored in it. The ordering of 
attribute testing being made explicit would allow different orders along 
different paths from the root to a leaf. This implementation of a trie 
will be called an O-trle or Order-containing trie. Figure 9 shows one 
possible O-trie for the strings in the trie of Figure 1. Numbers in the 
nodes of the O-trie are the positions of letters which should be tested. 
Since there are k possible positions, logg k extra bits would be needed 
in each node. 

One way to build an O-trie is to start with an arbitrary attribute 
order, construct a trie, and then reorder attribute testing within the 
various subtrees to reduce the size. For the binary case, an obvious 
generalization of Heuristic 1 (Elimination of Useless Attributes) works 
well in 0-tries. We can state the procedure as a heuristic. 
HEURISTIC 5 (Elimination of Useless Attributes fcf O-Tries): When build-

ing an O-trie select at each node an attribute which causes the 
node to have at least 2 sons. j] 

This heuristic may be viewed as the elimination of Internal chains. It 
was exactly the problem of internal chains which gave us a large worst 
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case for Heuristics 1 - 4 . With the chains removed, we have that 

THEOREM 3: Any O-trie for a "binary file produced by Heuristic 5 is 
optimal. 

PROOF} Since each node in the trie has 2 sons, there are at most r - 1 
internal nodes. Since there are r leaves, S ^ / Sq = 1. [] 

5. The Performance of Heuristics on Files of Degree > 2s 

Recall that a file is of degree n if" the maximum of the sizes of the 
value sets of its attributes is n. It should be clear that if only one 
attribute has a value set with n items and all others are binary, then 
the performance of Heuristics 1 - 4 will "be asymptotically the same. 
Even if we require every attribute to take on n values, Heuristics 1 - 4 
can be "fooled" by relegating the higher values to a set of n records 
appended to an otherwise binary file. After distinguishing the n 
records, the heuristics will then generate a trie on the remaining 
subfile as shown before. 

Let us direct our attention now to the performance of Heuristic 5 
on files of higher degree. We have already seen that, in the binary 
case, It can produce optimal tries. Although it will not hold that 
tries for higher degree files remain optimal, the cost of such tries 
will be bounded by n and will not grow as the number of records. To 
derive this bound, we first observe that an O-trie produced by 
Heuristic 5 will have at most r - 1 internal nodes for a file of r 
records. Suppose that the file for some O-trie was of degree n, n > 2. 
The size of a complete n-ary tree of r leaves gives the size of the 
smallest possible trie for F. If there are r leaves in the trie we 
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we will assume that r = np. At depth 1 in.the complete n-ary tree there 
are n1 nodes, so the size iss 

S = E n1 = (j? - l)/(n - 1) P-l < 
1=0 

and this gives 

S / SQ = (r - i)/((n* - l)/(n - l) 

and since r = n^, 

S / So = (r - l)(n - l)/(r - l) = n - 1 (3) 

We summarize this in the following Theorem. 

THEOREM 4 s The cost of Heuristic 5 for files of degree n is at most 

A few remarks are in order about this bound. Unlike the other bounds 
stated in this paper, this bound is loose in the sense that we have not 
shown a set of files on which it is always attainable. Whether such a 
set exists is an open question at this point. More important, however, 
is the fact that the bound does not depend on the size of the input, r 
or k, but only on the maximum value that is stored in the file. Since 
in practice, one would expect n to be small;compared to r, the O-trie 
can be recommended as a space-efficient implementation. 

6. Conclusions; 

We have examined several heuristics for space minimization in 

n - 1. 
PROOFs Given in the analysis above. 0 
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In the worst case, tries produced by four obvious heuristics required 
2 

space proportional to r , where r is the number of records in the underly-
ing file, The optimal trie for the same files required only r - 1 
records, so the cost of the heuristics was proportional to r. In each 
case it was demonstrated that the asymptotic bound could be attained, 
making these bounds the best possible. Moreover, the worst case example 
used a binary file so the results hold for files of any degree d, d> 2 . 

Turing to an alternative implementation of a trie, called an O-trie, 
it was shown that a simple method of constructing 0-tries for binary 
files could produce tries the minimum space In terms of the number of 
nodes. The size of each node in an O-trie, however, must be slightly 
larger than in other implementations. It was also shown that a bound on 
the size of the worst case 0-tries for files of higher degree could be 
obtained which depended only on the degree of the file and not on the 
number of records. The O-trie implementation is therefore recommended 
especially when the number of records in the file is large compared to 
the degree of the file. 
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Figure 1, A trie for the strings "many", "map", "mat", 
"mane", and "me". 

Figure 2. The Tree Implementation of the strings shown 
in Figure 1. 



attributes 

records 

1 m a P t 

2 m a t I 

3 m a n y 

m e t t 

5 m a n e 

Figure 3* A file of 5 records and k attributes. 

Figure h. A trie for the strings in the file of Figure 3 
formed by testing attributes right to left. 

Kk 
• < 

jiih-A A 
( "useless" 
Ĵ attributes 

Figure 5. An aribtrary trie for a binary file. Some 
depths have useless attributes which can be eliminated. 
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1 
h=k 

1 
T t complete binary 

tree 

linear growth 
and shrinkage 
region 

Figure 6. The shape of a worst case trie for a binary 
file produced by Heuristic 1. 

1 
1 

1 
0 

1 
1 

1 
0 

1 
1 

1 
0 

• 

• 

• 

4 

a 

• 

1 
1 

1 
0 

Figure 
badly, 
number 

?. A file for which Heuristic 1 performs 
Note that this file can be extended to any 
of records. All values not specified are 0. 
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1 
1 
0 
0 

1 
1 
1 
1 

Figure 8. A worst case file for Splitting and Greedy 
Heuristics. All values not shown are 0. Note that 
the same shape file can "be used for any r a multiple of 

Other values of r are not needed, "but a suitable 
modification can "be made for the odd records. 

Figure 9. One possible O-trie for the file shown in 
Figure 3. 
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