
Heuristics Miner for Time Intervals

Andrea Burattin and Alessandro Sperduti

Department of Pure and Applied Mathematics

University of Padua, Italy

Abstract. Process Mining attempts to reconstruct the workflow of a

business process from logs of activities. This task is quite important in

business scenarios where there is not a well understood and structured

definition of the business process performed by workers. Activities logs

are thus mined in the attempt to reconstruct the actual business process.

In this paper, we propose the generalization of a popular process mining

algorithm, named Heuristics Miner, to time intervals. We show that the

possibility to use, when available, time interval information for the per-

formed activities allows the algorithm to produce better workflow models.

1 Introduction

In the IEEE Glossary [1], one of the definitions for “process” is: “a sequence

of steps performed for a given purpose; for example, the software development

process.” In this paper, we will use the term to refer to the so called “business
processes”. Recently, the number of systems for business processes management
is increased incredibly, thanks to the availability of improved tools and systems
for their support. These systems, however, often are used to support the ac-
tivities performed by single workers, with no explicit blueprint for the whole
workflow. In fact, the actual workflow emerges by the combination of activities
performed by the workers, according to business rules that are owned by the
workers. In these cases, it has been recognized that, in order to optimize the
business process, it is of vital importance to try to identify the actual workflow.
A number of data mining algorithms have been developed, over the years, that
attempt to reconstruct the business process, or related information, from logs
of performed activities. These algorithms constitute a branch of Data Mining
named Process Mining. In this paper, we refer to algorithms for control-flow
discovery, i.e. algorithms that focus on constructing the process model that un-
derlies the observations, expressed with some formalization, such as Petri Net,
Heuristics Net, etc. For example, the Heuristics Miner algorithm [2, 3] produces
a Heuristics Net (a network that can be easily converted into a Petri Net), while
Cook et al. approaches, [4, 5, 6], which actually constitute a collection of three
techniques (one purely statistical, based on recurrent neural networks; one purely
algorithmic and another that is a mix of statistical and algorithmic approach)
produce Finite State Machines. One feature of all process mining algorithms
proposed up to now, is the assumption that each activity is considered instan-
taneous. This is due to the fact that usually a single log for each preformed
activity is recorded, regardless of the duration of the activity. In many practical
cases, however, activities involve a span of time, so they can be described by
time intervals (couples of time points). Of course, not recording the duration

41

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

W =
{

(A, B1, B2, C, D)5 ; (A, B2, B1, C, D)5
}

X ⇒W Y =
|X >W Y | − |Y >W X|

|X >W Y | + |Y >W X| + 1
X ⇒W (Y ∧ Z) =

|Y >W Z| + |Z >W Y |

|X >W Y | + |X >W Z| + 1

A

B1

B2

C D
C ⇒W D =

10 − 0

10 + 0 + 1
= 0.909

A ⇒W (B1 ∧ B2) =
5 + 5

5 + 5 + 1
= 0.909

Fig. 1: Top: example of process log W with 10 process instances (n indicates n

repetitions of the same sequence). Middle: two main Heuristics Miner formulas.
Bottom left: the process sample that generated the log W . Bottom right: values
returned by the shown formulas for some activities.

of activities makes mining quite hard. In some cases, information about dura-
tion of some activities is available, and it is wise to use this information. For
this reason, in this paper we propose to generalize Heuristics Miner, which is a
well known and robust process mining algorithm, to allow the treatment of time
intervals. This way a better (more precise and similar to the real one) process
model can be mined, without modifying the overall complexity of the original
algorithm, and in addition preserving backward compatibility.

2 Heuristics Miner

Heuristics Miner is a process mining algorithm that uses a statistical approach
to mine the dependency relations among activities represented by logs. In Fig. 1,
we have tried to summarize the main concepts underpinning the mining process.
Given the set of activities {A, B1, B2, C, D}, the first row shows an example of log
W with 10 process instances (n indicates n repetitions of the same sequence),
where a process instance is a sequence of performed activities. The second
row shows two of the main formulas used by Heuristics Miner to determine the
presence of dependency between activity X and Y in the log W (left side), and
the presence of an AND-split (right side), i.e. the parallel activities Y and Z

jointly depend on the completion of the X activity.
In these formulas, the notation |X >W Y | refers to the number of times

that, in W , activity Y directly follows activity X . If the ⇒W is greater than a
dependency threshold, a parameter of the algorithm, then the algorithm assumes
the presence of the dependency. After that, in order to mine the relationship
type between activities (if in AND or XOR split) the second formula is used: if
X ⇒W (Y ∧Z) is greater than an AND threshold then Y and Z are considered as

42

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

A

As Ae

B

Bs Be

C

Cs Ce

D

Ds De

Fig. 2: Example of a process model composed by activities with completely
different behaviours if mined as time intervals or instantaneous events.

in AND relation, otherwise they are considered as activities in mutual exclusion
(XOR relation).

3 Activities as time intervals

Heuristics Miner considers each activity as an instantaneous event, either con-
sidering the start or the finish time as log of the activity. In the example shown
in Fig. 2, regardless the starting or the finishing time is used, the algorithm
will mine always a “linear dependency” between all activities (so D depends on
C, C on B and B on A). However, as we can see, there is actually no causal
dependency between activities B and C, since they are partially overlapped in
time.

In order to extend the algorithm to be able to cope with time intervals, it
is necessary to provide a new definition for the direct succession relation in the
time intervals context. With an activity represented as a single event, we have
that X >W Y iff ∃ σ = t1 . . . , tn and i ∈ {1, . . . , n−1} such that σ ∈ W , ti = X

and ti+1 = Y . This definition has to be modified so to cope with activities
represented by time intervals. First of all, given an event e let define with
activityName[e] the activity name the event belongs to, and with typeOf [e] the
type of the event (either start or end). The new succession relationship X>W Y

between two activities is defined as follow:

Definition 1 (Direct succession relation, >). Let X and Y be two interval
activities (not instantaneous) in a log W , then

X>W Y iff ∃ σ = t1, . . . , tn and i ∈ {2, . . . , n − 2}, j ∈ {3, . . . , n − 1}

such that σ ∈ W , ti = Xend and tj = Ystart and

∀k such that i < k < j we have that typeOf [tk] 6= start

Less formally, we can say that two activities, to be in a direct succession
relation, must meet the condition for which the termination of the first occurs

43

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

before the start of the second and, between the two, no other activity should
start.

There is also a new concept to be introduced: the parallelism between two
activities. With the instantaneous activities we have X and Y considered as
parallel when they are observed in no specific order (sometimes X before Y and
other times Y before X), so (X >W Y) ∧ (Y >W X). Actually, this definition
may seem odd, but without the notion of duration, it’s complex to express
parallelism. In the new context, this definition is easier and more intuitive:

Definition 2 (Parallelism relation, ‖). Let X and Y be two interval activities
(not instantaneous) in a log W , then

X‖W Y iff ∃ σ = t1, . . . , tn and i, j, u, v ∈ {1, . . . , n}

with ti = Xstart, tj = Xend and tu = Ystart, tv = Yand

such that u < i < v ∨ i < u < j

More intuitively, this definition indicates two activities as parallel if they are
overlapped or if one contains the other. Referring to the notion of “intervals
algebra” as introduced by Allen [7] and the macro-algebra A3 = {≺,∩,≻} as
Golumbic and Shamir described in [8], we can think the direct succession re-
lation as the “preceedings” (X ≺ Y) one and the parallelism relation as the
“intersection” (X ∩ Y) one.

We not only modified the notions of relations between two activities, we
improved the algorithm performance modifying the formulas for the statisti-
cal dependency and to determine the relation type (AND or XOR). The new
formulas are:

X ⇒W Y =
|X>W Y | − |Y >W X|

|X>W Y | + |Y >W X| + 2|X‖W Y | + 1

X ⇒W (Y ∧ Z) =
|Y >W Z| + |Z>W Y | + 2|X‖W Y |

|X>W Y | + |X>W Z| + 1

where the notation |X‖WY | refers to the number of times that, in W , activity
X and Y are in parallel relation. In the first formula, in addition to the usage of
the new direct succession relation, we introduced the parallel relation in order
to reduce the likelihood to see, in the mined model, the activities in succession
relation if in the log they were overlapped. In the second formula, we inserted
the parallelism counter in order to prefer the selection of an AND relation if the
two activities were overlapped in the log. In both cases, because of the symmetry
of the ‖ relation, a factor 2 was introduced for parallel relations. With the new
formulas, we obtain “backward compatibility” with the original Heuristics Miner
algorithm: if we use special intervals, where for each activity its start and finish
points coincide, we’ll obtain the same behaviour. This happens because any
two activities X and Y will never be in parallel relation, i.e. |X‖W Y | = 0.
We can use this feature to tackle logs with a mixture of activities expressed as
time intervals and instantaneous, improving the performances without losing the
Heuristics Miner benefits, as suggested in Fig. 2.

44

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

A

B

C

D

E

F

(a) 0% as int.

A

B

C

D
E

F

(b) 16% as int.

A

B

C
D

E

F

(c) 33% as int.

A

B

C
D

E

F

(d) 50% as int.

Fig. 3: In this figure the first 4 networks mined from the algorithm are shown:
from left to right we have the network mined with (a) 0, (b) 1, (c) 2 and (d) 3
activities as time intervals. The last network presented here is already the correct
one, so adding more interval does not improve the algorithm performance.

4 Experimental Results

We implemented the new algorithm as a plugin for the ProM framework [9] and
we built a process log generator for testing purposes. Actually, we produced
100 processes and, for each, 10 logs (with 500 instances each): in the first one,
no activity is expressed as time interval, in the second one only one activity
(randomly different) is expressed as time interval, in the third two of those are
intervals and so on, until the last where all activities are expressed as intervals.

We executed our algorithm in the log observing an improvement of the output
network proportional to the number of activities as time intervals. In Fig. 3 we
present one particular process mined with different logs (with increasing number
of activities expressed as intervals); and, in Fig. 4, we present results of the
mining expressed as the average of the F1 measure; the minimum and maximum
average values of F1 are reported as well. It can be observed that already
with a small percentage of activities expressed as intervals, the performances are
improved.

5 Conclusion and future works

In this paper we presented a generalization of the Heuristics Miner algorithm
that uses the activity expressed as time intervals instead of single events. We
introduced this notion into the previous algorithm paying attention to the back-
ward compatibility. Future works may involve the autonomous identification of
the best algorithm parameters with, for example, a Minimum Description Length
approach that minimize the cost of the network definition and the number of log

45

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

0 10 20 30 40 50 60 70 80 90 100

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Percentage of activities as intervals

F
1

 m
e

a
su

re
 a

ve
ra

g
e

, m
in

 a
n

d
 m

a
x

Fig. 4: Plot of the F1 measure averaged over 100 processes logs (true positives
are the correctly mined dependences; false positives are dependences present in
the original model but not in the mined one; and false negatives are dependences
present in mined model but not in the original one). Minimum and maximum
average values are reported as well. Already with a small number of activities
expressed as intervals the performances are improved.

observations that can’t be explained by the model.

References

[1] IEEE standard computer dictionary : a compilation of IEEE standard computer glossaries.
IEEE Computer Society Press, New York, NY, USA, January 1991.

[2] A. Weijters and W. M. P. van der Aalst. Rediscovering workflow models from event-based
data using Little Thumb. Integrated Computer-Aided Engineering, 10(2):151–162, 2003.

[3] W. M. P. van der Aalst and A. J. M. M. Weijters. Process-Aware Information Systems:

Bridging People and Software through Process Technology, chapter 10: Process Mining,
pages 235–255. John Wiley & Sons Inc, 2004.

[4] Jonathan E. Cook, Zhidian Du, Chongbing Liu, and Alexander L. Wolf. Discovering models
of behavior for concurrent workflows. Computers in Industry, 53(3):297 – 319, 2004.

[5] Jonathan E. Cook, Alexander L. Wolf, and Er L. Wolf. Automating process discovery
through event-data analysis. In In Proceedings of the 17th International Conference on

Software Engineering, pages 73–82. ACM Press, 1995.

[6] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes from
event-based data. Technical Report 3, University of Colorado, November 1996.

[7] James F. Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832–843, 1983.

[8] Martin Charles Golumbic and Ron Shamir. Complexity and algorithms for reasoning about
time: a graph-theoretic approach. J. ACM, 40(5):1108–1133, 1993.

[9] B. F. van Dongen, A. K. A. de Medeiros, H.M.W. Verbeek, A. J. M. M. Weijters, and
W. M. P. van der Aalst. The ProM framework: A new era in process mining tool support.
Application and Theory of Petri Nets, 3536:444–454, 2005.

46

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

