Heuristics on Class Groups

by

H. Cchen and H.W. Lenstra, Jr.

81 Experimental facts.

This work was motivated by the desire to understand some experi-
mental observations about class groups of quadratic fields; these ob-
servations were made long ago, and confirmed by the most extensive
tables known to us, i.e. Buell {l] for imaginary quadratic fields, and
Shanks and Williams [5) for real quadratic fields. They are as
followss

(A) If p 4is a small odd prime, the proportion of imaginary

quadratic fields whose class number h(p} is divisible by p is

significantly greater than 1/p. For example for p = 3 it is

around 434 instead of the expected 33.3¢, for p = 5 around 23,54

instead of 204 etc.

(B) If one looks only at the odd part of the class group, cyclic

groups seem to form the overwhelming majority. 1In fact, it is

quite difficult to find class groups with, say 3-rank greater
than or egual to 3, and no examples are known of 3-rank greater

than 5.

(C) For real gquadratic fields m(JE) with p = 1 mod 4 prime, it

is conjectured than an infinite number of them have class number 1,

and in fact experimental evidence seems to show that there is a

definite nonzero proportion p of fields ©{Jp) of class number 1.

A rough extrapolation of known data seems to give p u 764.

The work we are about to describe gives quantitative heuristic explana-
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tions of all these observations and of many more, including for
higher degree fields. For example, for imaginary quadratic fields we
predict that p]h(D) with approximate probability 43.987¢ for p = 3,
23.9674 for p = 5. For real quadratic fields the proportion p Of
class number 1 should be approximately 75.4464.

A more detailed version of this paper including complete proofs

and extra material will be published elsewhere.

82 Heuristic assumptions

The basic clue comes from experimental fact (B), Let us consider
a specific example: assume that the 3-part of the class group of an
imaginary quadratic field has cardinality 9. Then up to isomorphism,
only the two groupa Z/9%Z and (z/3z)2 can occur., However, tables show
that (z/3z)2 occurs much more rarely, Wwhy?

One answer is that the automorphism group of a cyclic group is

smaller than the automorphism group of any other abelian group of the
same cardinality. In our example, sAut Z/9%Z = 6 while
#Aut(z/:iz)2 = 48, The basic heuristic assumption is thus that isomor-
phism classes of abelian groups G have a "welight" proportional to
1/¢put G. This is similar to many “mass formulas“ in other parts of
mathematics where the proper weight is indeed the inverse of the number
of automorphisms,

For our example this agrees quite well with the tables aince the
ratio of occurrence of Z/9% versus (z/3z)2 is close to 8 to 1.

Another way of stating our assumption is as follows: 1let E be
an abstract set with n elements, It can easily be shown that the

number of abelian group structures on E which are isomorphic to @G
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is equal to n!/sAut G. Hence for a given order n, weighting isomorphism
classes of abelian groups with weight proportional to 1/gAut G is equi-
valent to giving equal weight to each abelian group structure.

We are thus led to the following assumption. Let f be a function
defined on the isomorphism classes of finite abelian groups of odd

order., We define the average of f by

T £(H_. (D))
M(f) = lim z!D!(x gdd if the limit exists,

¥+ “ID|<x

where D goes through the sequence of negative fundamental discrimi-
nants, (D) is the class group of m(JB), and for every abelian group

G, G denotes the odd part of G. If £ is the characteristic func-

odd
tion of a property ¢, we call M(f) the probability that ¢ holds,

The assumption is then as follows:

Heuristic assumption 13

(Godd)/{d\ut G
1/4Aut G

b3 £
M(£) = lim HOSX
x>w T 4GCK
where the sums are to be taken over isomorphism classes of abelian

groups G of cardinality less than or equal to x.

Remarks 1) We restrict to the odd part of the class groups since the
even part is certainly not random because of genus theory and the theory
of ambiguous classes,

2) It could very well be argued that one could replace the
weighting factor 1/4hut G by a factor of the form *(#G)/Jhut G, where

v is a smooth function., However it can be shown that for a very wide
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class of functions ¢ including for instance the nonzero polynomials,

the limit of

( Gogql ¥ (#G)/#aut G)/(ziGSX ¥ {#G)/sAut G)

Eocxt

is independent of §, so there is not much losa in generality in

assuming § = 1.

83 Some algebraic and analytic results

To be able to use our heuristic assumption 1 above, we need to have

a number of algebrailc and analytic results,

The key algebraic result which we need is the following:
Theorem 3.1: Let K and C be finite abelian groups. Then

T }[G1 subgroup of Gi G1 = K and G/Gl = C}]/¢ Aut G
G up to isomorphism

= 1/(gAut K 4Aut C)

We now set

w(n) = ¢ 1/¢Aut G

G up to isomorphism
#G=n

We can obtain from theorem 3,1'the following properties of the func-

tion w(n):

Theorem 3,23

(1) zd‘n w({d) = nw(n)

(ii) 2n21 w(n)n_a = ¢{s+l)(8+2)...
(i) wim) =1, ta-d ... o)
P 2 [+
pln P p
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(This last formula is due to Hall, 1938.)

(Uv) Z , win) =c, logx+ D+ o¢19$«¥)

where c, = r(2)g(3)... = 2,294856589.,, and D is an explicit constant,

It follows from this theorem that there exist positive constants

A and B such that

A/g(n) < win) < B/w(n).

Remark: The constant C. is well known to be the average number of
abelian groups of a given order. However it occurs in that context
as the residue at 8 = 1 of the function ¢(s)¢(28)¢(38)..., which i=s

quite a different function from the function ¢l(a+l)g(s+2)... .

84 sample averages for imaginary quadratic fields

It is now a fairly straightforward matter to obtain averages of

interesting functions for imaginary quadratic fields. We give here a

few sample results (holding of course only with our heuristic assump-
tion 1).

a) The probability that the odd part of the class group is cyclic
is

C2)(3)/(gl6) €, 3 (1-3) (1—5)...) = 97,7574
2

approximately. This seema very large, but agrees with table counts.
b) If p 1is an odd prime, the probability that p divides the

clags number is

3 L r,r 2 1 1
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This gives 43.987¢ for p = 3, 23,9674 for p = 5 etc.

c) If e 1is a fixed odd integer, the average number of elements
of order exactly e in the class group is 1.

d) Write rp(G) for the p-rank of an abelian group G. Then if
p 1s an odd prime, the probability that the p-rank of the class group

be equal to a given integer r is

2
T a-h ot sahiodi oty
P P r
P P P

This decreases very rapidly as r increases, and helps to explain why
no examples of p-rank greater than 5 have been found.

r_ (D)) 2r_((D))
e) The average of p p ig 2. The average of p p

is
P+ 3.
The first of these results is particularly significant, because
by a2 theorem of Davenport and Heilbronn [2], it is known that the average

r, (D))

of 3 ias 2,

f) If one is interested in results concerning nonfundamental dia-

criminants, one can use the well known formula
hoe?) = nm£ (1 - Ri/p)
p|£ p

where D 1s a negative fundamental discriminant, to obtain heuristic
results about class numbers, For example the probability that p di-
vides the class number is approximately 52.46644 for p = 3; 24,1304

for p = 5.

85 Real quadratic fields,

Since the class groups of real guadratic fields behave quite dif-

ferently from the class groups of imaginary quadratic fields, it is
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clear that a new heuristic assumption is necessary. In plain English,
it is as follows: if we assume isomorphism classes of groups G
weighted'by 1/¢dut G, our first heuristic assumption was that the odd
part of the class group of imaginary quadratic fields was “random“.

For real quadratic fields, we will assume that the odd part of the

class group is of the form G/<g> where G is "random" as above, and
g 1s a "random" element in G (<g> is the cyclic subgroup generated by

g). With a similar definition of M(f), the assumption is as follows:

Heuristic assumption 2:

L
M(E) = Lim E#qu 3G Eges f((G/<g>)°dd)/#A“t G.
Xk z*qu 1/48ut G

It is not very easy to give good justifications for this assumption.
We will give two. The first one has been suggested to us by B. Gross.
Let OD be the ring of integers of @(/D), where D is a negative funda-
mental discriminant, and let p be a fixed prime which splits in 0D
{p) = B.B. Then the class group aof OD[1/p] is easily seen to be equal
to M{(D)/<B>. Now, as for real quadratic fields the unit rank of
oD[l/p] is equal to 1, and a table of such class groups reveals a
ptriking resemblance to tables of class groups of real quadratic fields,
The second justification can be considered essentially as due to
Gauss, but with deeper insight by D. Shanks [4]. It is well known that
there is a multiplication on quadratic forms of equal discriminant
called composition, This law is not quite a group law on the set of
reduced forms since first of all the product of two reduced forms ias not
reduced, and second the law is not associative. However in a certain

sense which we cannot make precise here it is "almost" a group law
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[3] [4]. On the other hand the set of reduced forms divides itself
under the reduction operation into cycles, and the number of such cy~
cles is the class number. Furthermore these cycles can have different
number of forms, but they have the same "length" (essentially the regu-~
lator) if an appropriate notion of distance is defined [3], [4].
Finally, in [4) Shanks shows that the principal cycle, although not a
group, displays a cyclic-group-like structure. Thuas, although it does
not quite make much sense, it is tempting to interpret the equation
h = hR/R by saying that the class group of a real quadratic field is
the quotient of the "group" of reduced forms by the "cyclic subgroup"
formed by the principal cycle.

Anyway, if we assume heuristic assumption 2, essentially all the
necessary algebraic and analytic results have already been obtained in
the imaginary quadratic case. This allows us to obtain the following

sample results:
a) The probability that the odd part of the class group is iso-

morphic to ]; (where L1 is a given group of odd order) is

(#L4AUL L cm(1~—12-) (1-—13. Lot
2 2

In particular the probability that it is of order 4 (4 odd) ia

1 1
wig)/(e C_ (1) (1350 .. )
o 22 23

This gives approximately 75.4464 for g = 1, 12.5744 for 4 = 3, 3.7724
for 4 = 5 etc.

b) The probability that p divides the clasa number (p odd prime)

is



1 1 I D S T T
1- (1*"5)(1d“5)... =5 +3+73 5 g e o

c) If e 1is a fixed odd integer the average number of elements
of order exactly e in the class group is l/e.
d) If p is an odd prime, the probability that the p~rank of

the class group is equal to a given integer r is

- 1 2 1 1.2 1
pr Y o oty a-h? oD .
p p P P
r M)
e} The average of p p is 1 + 1/p. The average of
2r_(H(D)) 2
p P is 2 + 1/p + 1/p°.

As in the imaginary case, the first of these results is particu-

larly significant because by a theorem of Davenport and Heilbronn [2],

r3 (H(D))

it is known that the average of 3 is 4/3.

86 Higher deqree flelds.

We consider only the case of cyclic extensions of @ of prime
degree p. Let I' = <g> be the Galois group. It is clear that the class
group is a Z[r]-module, and even a z[r]/(1+a+..,+cp_1)~modula, since
the norm of an ideal is principal. But this last ring is isomorphic
to z[cp] vhere cp is a primitive p-th root of unity, and this is a
Dedekind domain, and even a principal ideal domain if p ¢ 19, It can
then be shown that all the theory above can be generalized to this case,
the Riemann zeta function being simply replaced by the pedekind zeta
function of the field m(cp).

The heuristic assumption is that the prime to p part of the
class group behaves like G/<g>, where G is a "random" finite z[cp]~

module (weighted with l/fhutrG) and <g> is the cyclic z(cp]—module

/
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generated by a random element in @G, Note that although the unit rank
of a typical field is p - 1 if p > 3, as a z[cp]-module the unit rank
is still equal to 1, (If the unit rank is equal to u it seems rea- )
sonable to consider G/<g1,...,gu>).

We give two examples for cyclic cubic fields:

a) The probability that the prime to 3 part of the class group
is equal to 1 is approximately 85,040

b) The probability that 4 divides the class number is approxi-
mately B8.195¢. (Remark: it is easy to show that if 2 divides the

class number, then 4 also divides it.)

87 cConcluding remarks.

All the above heuristics agree very closely with available tables,
and furthermore they agree exactly with the theorems of Davenport and
Heilbronn. This seems to give strong support for the validity of our
heuristic assumptions,

Extensions of this work in several different directions are under
way. Also it would be interesting to know if similar heuristic esti-~
mates can be made in different contexts, for example for Tate-Shafarevitch
groups of a given elliptic curve twisted by quadratic characters.

Finally it is a pleasure to thank our friends and colleagues B.

Grose, D. Shanks and L. Washington for interesting discussions on this

subject.
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