
 Open access  Journal Article  DOI:10.1109/TCSVT.2012.2221255

HEVC Complexity and Implementation Analysis — Source link 

Frank Bossen, Benjamin Bross, K. Suhring, D. Flynn

Institutions: NTT DoCoMo, Fraunhofer Society, BlackBerry Limited

Published on: 01 Dec 2012 - IEEE Transactions on Circuits and Systems for Video Technology (IEEE)

Topics: Context-adaptive binary arithmetic coding, Quarter-pixel motion, Macroblock,
Context-adaptive variable-length coding and Scalable Video Coding

Related papers:

 Overview of the High Efficiency Video Coding (HEVC) Standard

 Comparison of the Coding Efficiency of Video Coding Standards—Including High Efficiency Video Coding (HEVC)

 Overview of the H.264/AVC video coding standard

 Common test conditions and software reference configurations

 Calculation of average PSNR differences between RD-curves

Share this paper:    

View more about this paper here: https://typeset.io/papers/hevc-complexity-and-implementation-analysis-
1t56u7d1tf

https://typeset.io/
https://www.doi.org/10.1109/TCSVT.2012.2221255
https://typeset.io/papers/hevc-complexity-and-implementation-analysis-1t56u7d1tf
https://typeset.io/authors/frank-bossen-2qp2ezqkkc
https://typeset.io/authors/benjamin-bross-g2w9f04azd
https://typeset.io/authors/k-suhring-408j4lcv9s
https://typeset.io/authors/d-flynn-26jlaws4xa
https://typeset.io/institutions/ntt-docomo-72ra46nl
https://typeset.io/institutions/fraunhofer-society-17zb9jzp
https://typeset.io/institutions/blackberry-limited-2hgcxyfq
https://typeset.io/journals/ieee-transactions-on-circuits-and-systems-for-video-24qa4y1a
https://typeset.io/topics/context-adaptive-binary-arithmetic-coding-1yy6r6zy
https://typeset.io/topics/quarter-pixel-motion-qdf527xp
https://typeset.io/topics/macroblock-266e3c69
https://typeset.io/topics/context-adaptive-variable-length-coding-1o54rap9
https://typeset.io/topics/scalable-video-coding-38x6seqx
https://typeset.io/papers/overview-of-the-high-efficiency-video-coding-hevc-standard-3nx6k0v703
https://typeset.io/papers/comparison-of-the-coding-efficiency-of-video-coding-1u3kwxvfp6
https://typeset.io/papers/overview-of-the-h-264-avc-video-coding-standard-4wlxplmuzt
https://typeset.io/papers/common-test-conditions-and-software-reference-configurations-3t494qi99d
https://typeset.io/papers/calculation-of-average-psnr-differences-between-rd-curves-1h785u4sn0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hevc-complexity-and-implementation-analysis-1t56u7d1tf
https://twitter.com/intent/tweet?text=HEVC%20Complexity%20and%20Implementation%20Analysis&url=https://typeset.io/papers/hevc-complexity-and-implementation-analysis-1t56u7d1tf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hevc-complexity-and-implementation-analysis-1t56u7d1tf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hevc-complexity-and-implementation-analysis-1t56u7d1tf
https://typeset.io/papers/hevc-complexity-and-implementation-analysis-1t56u7d1tf


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012 1685

HEVC Complexity and Implementation Analysis
Frank Bossen, Member, IEEE, Benjamin Bross, Student Member, IEEE, Karsten Sühring, and David Flynn

Abstract—Advances in video compression technology have
been driven by ever-increasing processing power available in
software and hardware. The emerging High Efficiency Video
Coding (HEVC) standard aims to provide a doubling in coding
efficiency with respect to the H.264/AVC high profile, delivering
the same video quality at half the bit rate. In this paper,
complexity-related aspects that were considered in the standard-
ization process are described. Furthermore, profiling of reference
software and optimized software gives an indication of where
HEVC may be more complex than its predecessors and where it
may be simpler. Overall, the complexity of HEVC decoders does
not appear to be significantly different from that of H.264/AVC
decoders; this makes HEVC decoding in software very practical
on current hardware. HEVC encoders are expected to be several
times more complex than H.264/AVC encoders and will be a
subject of research in years to come.

Index Terms—High Efficiency Video Coding (HEVC), video
coding.

I. Introduction

T
HIS PAPER gives an overview of complexity and im-
plementation issues in the context of the emerging High

Efficiency Video Coding (HEVC) standard. The HEVC project
is conducted by the Joint Collaborative Team on Video Coding
(JCT-VC), and is a joint effort between ITU-T and ISO/IEC.
Reference software, called the HEVC test model (HM), is
being developed along with the draft standard. At the time of
writing, the current version of HM is 8.0, which corresponds
to the HEVC text specification draft 8 [1]. It is assumed that
the reader has some familiarity with the draft HEVC standard,
an overview of which can be found in [2].

Complexity assessment is a complex topic in itself, and one
aim of this paper is to highlight some aspects of the HEVC
design where some notion of complexity was considered. This
is the topic of Section II.

A second aim of this paper is to provide and discuss data
resulting from profiling existing software implementations of
HEVC. Sections III and IV present results obtained with
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the HM encoder and decoder, and Section V discusses an
optimized implementation of a decoder.

II. Design Aspects

A. Quadtree-Based Block Partitioning

HEVC retains the basic hybrid coding architecture of prior
video coding standards, such as H.264/AVC [3]. A significant
difference lies in the use of a more adaptive quadtree structure
based on a coding tree unit (CTU) instead of a macroblock.
In principle, the quadtree coding structure is described by
means of blocks and units. A block defines an array of
samples and sizes thereof, whereas a unit encapsulates one
luma and corresponding chroma blocks together with syntax
needed to code these. Consequently, a CTU includes coding
tree blocks (CTB) and syntax specifying coding data and
further subdivision. This subdivision results in coding unit
(CU) leaves with coding blocks (CB). Each CU incorporates
more entities for the purpose of prediction, so-called prediction
units (PU), and of transform, so-called transform units (TU).
Similarly, each CB is split into prediction blocks (PB) and
transform blocks (TB). This variable-size, adaptive approach
is particularly suited to larger resolutions, such as 4k × 2k,
which is a target resolution for some HEVC applications. An
exemplary CB and TB quadtree structure is given in Fig. 1. All
partitioning modes specifying how to split a CB into PBs are
depicted in Fig. 2. The decoding of the quadtree structures
is not much of an additional burden because the quadtrees
can be easily traversed in a depth-first fashion using in a z-
scan order. Partitioning modes for inter picture coded CUs
feature nonsquare PUs. Support for these nonsquare shapes
requires additional logic in a decoder as multiple conversions
between z-scan and raster scan orders may be required. At the
encoder side, simple tree-pruning algorithms exist to estimate
the optimal partitioning in a rate-distortion sense [4], [5].

Sections below describe various tools of HEVC and review
complexity aspects that were considered in the development
of the HEVC specification, using H.264/AVC as a reference
where appropriate.

B. Intra Picture Prediction

Intra picture prediction in HEVC is quite similar to
H.264/AVC. Samples are predicted from reconstructed sam-
ples of neighboring blocks. The mode categories remain iden-
tical: DC, plane, horizontal/vertical, and directional; although
the nomenclature has somewhat changed with planar and
angular, respectively, corresponding to H.264/AVC’s plane and
directional modes. A significant change comes from the intro-
duction of larger block sizes, where intra picture prediction

1051-8215/$31.00 c© 2012 IEEE
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Fig. 1. Detail of 4k × 2k Traffic sequence showing the coding block (white)
and nested transform block (red) structure resulting from recursive quadtree
partitioning.

Fig. 2. All prediction block partitioning modes. Inter picture coded CUs can
apply all modes, while intra picture coded CUs can apply only the first two.

using one of 35 modes may be performed for blocks of size
up to 32 × 32 samples. The smallest block size is unchanged
from H.264/AVC at 4 × 4 and remains a complexity bottleneck
because of the serial nature of intra picture prediction.

For the DC, horizontal, and vertical modes an additional
postprocess is defined in HEVC wherein a row and/or column
is filtered such as to maintain continuity across block bound-
aries. This addition is not expected to have an impact on the
worst case complexity since these three modes are the simplest
to begin with.

In the case of the planar mode, consider that the generating
equations are probably not adequate to determine complexity,
as it is possible to easily incrementally compute predicted sam-
ple values. For the H.264/AVC plane mode it is expected that
one 16-bit addition, one 16-bit shift, and one clip to the 8-bit
range are required per sample. For the HEVC planar mode,
this becomes three 16-bit additions and one 16-bit shift. These
two modes are thus expected to have similar complexities.

The angular modes of HEVC are more complex than the
directional H.264/AVC modes as multiplication is required.
Each predicted sample is computed as ((32 − w) · xi + w ·

xi+1 + 16) >> 5, where xi are reference samples and w is a
weighting factor. The weighting factor remains constant across
a predicted row or column that facilitates single-instruction
multiple-data (SIMD) implementations. A single function may

be used to cover all 33 prediction angles, thereby reducing the
amount of code needed to implement this feature.

As in H.264/AVC, reference samples may be smoothed prior
to prediction. The smoothing process is the same although it is
applied more selectively, depending upon the prediction mode.

From an encoding perspective, the increased number of
prediction modes (35 in HEVC versus 9 in H.264/AVC)
will require good mode selection heuristics to maintain a
reasonable search complexity.

C. Inter Picture Prediction

Inter picture prediction, or motion compensation, is concep-
tually very simple in HEVC, but comes with some overhead
compared to H.264/AVC. The use of a separable 8-tap filter
for luma sub-pel positions leads to an increase in memory
bandwidth and in the number of multiply-accumulate opera-
tions required for motion compensation. Filter coefficients are
limited to the 7-bit signed range to minimize hardware cost.
In software, motion compensation of an N × N block consists
of 8 + 56/N 8-bit multiply-accumulate operations per sample
and eight 16-bit multiply-accumulate operations per sample.
For chroma sub-pel positions, a separable 4-tap filter with the
same limitations as for the luma filter coefficients is applied.
This also increases the memory bandwidth and the number
of operations compared to H.264/AVC where bilinear inter
polation is used for chroma sub-pel positions.

Another area where the implementation cost is increased is
the intermediate storage buffers, particularly in the bipredictive
case. Indeed, two 16-bit buffers are required to hold data,
whereas in H.264/AVC, one 8-bit buffer and one 16-bit buffer
are sufficient. In an HEVC implementation these buffers do
not necessarily need to be increased to reflect the maximum
PB size of 64 × 64. Motion compensation of larger blocks
may be decomposed into, and processed in, smaller blocks to
achieve a desired trade-off between memory requirements and
a number of operations.

H.264/AVC defines restrictions on motion data that are
aimed at reducing memory bandwidth. For example, the num-
ber of motion vectors used in two consecutive macroblocks
is limited. HEVC adopts a different approach and defines
restrictions that are much simpler for an encoder to conform
to: the smallest motion compensation blocks are of luma
size 4× 8 and 8 × 4, thereby prohibiting 4 × 4 inter picture
prediction, and are constrained to make use of only the first
reference picture list (i.e., no biprediction for 4 × 8 and 8 × 4
luma blocks).

HEVC introduces a so-called merge mode, which sets all
motion parameters of an inter picture predicted block equal
to the parameters of a merge candidate [6]. The merge mode
and the motion vector prediction process optionally allow a
picture to reuse motion vectors of prior pictures for motion
vector coding, in essence similar to the H.264/AVC temporal
direct mode. While H.264/AVC downsamples motion vectors
to the 8 × 8 level, HEVC further reduces memory requirements
by keeping a single motion vector per 16 × 16 block.

HEVC offers more ways to split a picture into motion-
compensated partition patterns. While this does not signifi-
cantly impact a decoder, it leaves an encoder with many more
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choices. This additional freedom is expected to increase the
complexity of encoders that fully leverage the capabilities of
HEVC.

D. Transforms and Quantization

H.264/AVC features 4-point and 8-point transforms that
have a very low implementation cost. This low cost is achieved
by relying on simple sequences of shift and add operations.
This design strategy does not easily extend to larger transform
sizes, such as 16- and 32-point. HEVC thus takes a different
approach and simply defines transforms (of size 4 × 4, 8 × 8,
16 × 16, and 32 × 32) as straightforward fixed-point matrix
multiplications. The matrix multiplications for the vertical and
horizontal component of the inverse transform are shown in
(1) and (2), respectively

Y = s
(

CT
· T

)

(1)

R = YT
· T (2)

where s() is a scaling and saturating function that guarantees
that values of Y can be represented using 16 bit. Each factor
in the transform matrix T is represented using signed 8-bit
numbers. Operations are defined such that 16-bit signed coef-
ficients C are multiplied with the factors and, hence, greater
than 16-bit accumulation is required. As the transforms are
integer approximations of a discrete cosine transform, they
retain the symmetry properties thereof, thereby enabling a
partial butterfly implementation. For the 4-point transform, an
alternative transform approximating a discrete sine transform
is also defined.

Although there has been some concern about the implemen-
tation complexity of the 32-point transform, data given in [7]
indicates 158 cycles for an 8 × 8 inverse transform, 861 cycles
for a 16 × 16 inverse transform, and 4696 cycles for a 32 × 32
inverse transform on an Intel processor. If normalizing these
values by the associated block sizes, respectively, 2.47, 3.36,
and 4.59 cycles are required per sample. The time cost per
sample of a 32 × 32 inverse transform is thus less than twice
that of an 8 × 8 inverse transform. Furthermore, the cycle
count for larger transforms may often be reduced by taking
advantage of the fact that the most high-frequency coefficients
are typically zero. Determining which bounding subblock of
coefficients is nonzero is facilitated by using a 4 × 4 coding
structure for the entropy coding of transform coefficients. The
bounding subblock may thus be determined at a reasonable
granularity (4 × 4) without having to consider the position of
each nonzero coefficient.

It should also be noted that the transform order is changed
with respect to H.264/AVC. HEVC defines a column–row
order for the inverse transform. Due to the regular uniform
structure of the matrix multiplication and partial butterfly
designs, this approach may be preferred in both hardware and
software. In software it is preferable to transform rows, as one
entire row of coefficients may easily be held in registers (a row
of thirty-two 32-bit accumulators requires eight 128-bit regis-
ters, which is implementable on several architectures without
register spilling). This property is not necessarily maintained

with more irregular but fully decomposed transform designs,
which look attractive in terms of primitive operation counts,
but require a greater number of registers and software op-
erations to implement. As can be seen from (1), applying
the transpose to the coefficients C allows implementations to
transforms rows only. Note that the transpose can be integrated
in the inverse scan without adding complexity.

E. Entropy Coding

Unlike the H.264/AVC specification that features CAVLC
and CABAC [8] entropy coders, HEVC defines CABAC as
the single entropy coding method. CABAC incorporates three
stages: binarization of syntax elements, context modeling, and
binary arithmetic coding. While the acronym and the core
arithmetic coding engine remain the same as in H.264/AVC,
there are a number of differences in context modeling and
binarization as described below.

In the development of HEVC, a substantial amount of effort
has been devoted to reduce the number of contexts. While the
version 1.0 of the HM featured in excess of 700 contexts,
version 8.0 has only 154. This number compares favorably to
H.264/AVC, where 299 contexts are used, assuming support
for frame coding in the 4:2:0 color format (progressive high
profile). 237 of these 299 contexts are involved in residual
signal coding whereas HEVC uses 112 of the 154 for this
purpose. When comparing the reduction of 53% in residual
coding with the reduction of 32% for the remaining syntax
elements, it becomes clear that most effort has been put into
reducing the number of contexts associated with the residual
syntax. This reduction in the number of contexts contributes
to lowering the amount of memory required by the entropy
decoder and the cost of initializing the engine. Initialization
values of the states are defined with 8 bit per context, reduced
from 16 in H.264/AVC, thereby further reducing memory
requirements.

One widely used method for determining contexts in
H.264/AVC is to use spatial neighborhood relationships. For
example, using the value above and to the left to derive a con-
text for the current block. In HEVC such spatial dependencies
have been mostly avoided such as to reduce the number of
line buffers.

Substantial effort has also been devoted to enable par-
allel context processing, where a decoder has the abil-
ity to derive multiple context indices in parallel. These
techniques apply mostly to transform coefficient coding,
which becomes the entropy decoding bottleneck at high
bit rates. One example is the modification of the signif-
icance map coding. In H.264/AVC, two interleaved flags
are used to signal whether the current coefficient has a
nonzero value (significant−coeff−flag) and whether it is the
last one in coding order (last−significant−coeff−flag). This
makes it impossible to derive the significant−coeff−flag and
last−significant−coeff−flag contexts in parallel. HEVC breaks
this dependency by explicitly signaling the horizontal and
vertical offset of the last significant coefficient in the current
block before parsing the significant−coeff−flags [9].

The burden of entropy decoding with context modeling
grows with bit rate as more bins need to be processed. There-
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Fig. 3. Alignment of 8 × 8 blocks (dashed lines) to which the deblocking
filter can be applied independently. Solid lines represent CTB boundaries.

fore, the bin strings of large syntax elements are divided into
a prefix and a suffix. All prefix bins are coded in regular mode
(i.e., using context modeling), whereas all suffix bins are coded
in a bypass mode. The cost of decoding a bin in bypass mode
is lower than in regular mode. Furthermore, the ratio of bins
to bits is fixed at 1:1 for bypass mode, whereas it is generally
higher for the regular mode. In H.264/AVC, motion vector
differences and transform coefficient levels are binarized using
this method as their values might become quite large. The
boundary between prefix and suffix in H.264/AVC is quite high
for the transform coefficient levels (15 bins). At the highest bit
rates, level coding becomes the bottleneck as it consumes most
of the bits and bins. It is thus desirable to maximize the use
of bypass mode at high bit rates. Consequently, in HEVC, a
new binarization scheme using Golomb-Rice codes reduces the
theoretical worst case number of regular transform coefficient
bins from 15 to 3 [10]. When processing large coefficients, the
boundary between prefix and suffix can be lowered such that
in the worst case a maximum of approximately 1.6 regular
bins need to be processed per coefficient [11]. This average
holds for any block of 16 transform coefficients.

F. Deblocking Filter

The deblocking filter relies on the same principles as in
H.264/AVC and shares many design aspects with it. However,
it differs in ways that have a significant impact on complexity.
While in H.264/AVC each edge on a 4 × 4 grid may be filtered,
HEVC limits the filtering to the edges lying on an 8 × 8
grid. This immediately reduces by half the number of filter
modes that need to be computed and the number of samples
that may be filtered. The order in which edges are processed
is also modified such as to enable parallel processing. A
picture may be segmented into 8 × 8 blocks that can all be
processed in parallel, as only edges internal to these blocks
need to be filtered. The position of these blocks is depicted
in Fig. 3. Some of these blocks overlap CTB boundaries, and
slice boundaries when multiple slices are present. This feature
makes it possible to filter slice boundaries in any order without
affecting the reconstructed picture.

Note that vertical edges are filtered before horizontal edges.
Consequently, modified samples resulting from filtering verti-
cal edges are used in filtering horizontal edges. This allows for
different parallel implementations. In one, all vertical edges
are filtered in parallel, then horizontal edges are filtered in
parallel. Another implementation would enable simultaneous

parallel processing of vertical and horizontal edges, where the
horizontal edge filtering process is delayed in a way such that
the samples to be filtered have already been processed by the
vertical edge filter.

However, there are also aspects of HEVC that increase the
complexity of the filter, such as the addition of clipping in the
strong filter mode.

G. Sample-Adaptive Offset Filter

Compared to H.264/AVC, where only a deblocking filter
is applied in the decoding loop, the current draft HEVC
specification features an additional sample-adaptive offset
(SAO) filter. This filter represents an additional stage, thereby
increasing complexity.

The SAO filter simply adds offset values to certain sample
values and it can be implemented in a fairly straightforward
way, where the offset to be added to each sample may be
obtained by indexing a small lookup table. The index into
the lookup table may be computed according to one of the
two modes being used. For one of the modes, the so-called
band offset, the sample values are quantized to index the
table. So all samples lying in one band of the value range
are using the same offset. Edge offset, as the other mode,
requires more operations since it calculates the index based on
differences between the current and two neighboring samples.
Although the operations are simple, SAO represents an added
burden as it may require either an additional decoding pass,
or an increase in line buffers. The offsets are transmitted in
the bitstream and thus need to be derived by an encoder. If
considering all SAO modes, the search process in the encoder
can be expected to require about an order of magnitude more
computation than the SAO decoding process.

H. High-Level Parallelism

High-level parallelism refers to the ability to simultaneously
process multiple regions of a single picture. Support for such
parallelism may be advantageous to both encoders and de-
coders where multiple identical processing cores may be used
in parallel. HEVC includes three concepts that enable some
degree of high-level parallelism: slices, tiles, and wavefronts.

Slices follow the same concept as in H.264/AVC and allow
a picture to be partitioned into groups of consecutive CTUs
in raster scan order, each for transmission in a separate
network adaptation layer unit that may be parsed and decoded
independently, except for optional interslice filtering. Slices
break prediction dependences at their boundary, which causes
a loss in coding efficiency and can also create visible artifacts
at these borders. The design of slices is more concerned with
error resilience or maximum transmission unit size matching
than a parallel coding technique, although it has undoubtedly
been exploited for this purpose in the past.

Tiles can be used to split a picture horizontally and vertically
into multiple rectangular regions. Like slices, tiles break
prediction dependences at their boundaries. Within a picture,
consecutive tiles are represented in raster scan order. The
scan order of CTBs remains a raster scan, but is limited to
the confines of each tile boundary. When splitting a picture
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Fig. 4. Example of wavefront processing. Each CTB row can be processed
in parallel. For processing the striped CTB in each row, the processing of the
shaded CTBs in the row above needs to be finished.

horizontally, tiles may be used to reduce line buffer sizes in an
encoder, as it operates on regions narrower than a full picture.
Tiles also permit the composition of a picture from multiple
rectangular sources that are encoded independently.

Wavefronts split a picture into CTU rows, where each CTU
row may be processed in a different thread. Dependences
between rows are maintained except for the CABAC context
state, which is reinitialized at the beginning of each CTU row.
To improve the compression efficiency, rather than performing
a normal CABAC reinitialization, the context state is inherited
from the second CTU of the previous row, permitting a simple
form of 2-D adaptation. Fig. 4 illustrates this process.

To enable a decoder to exploit parallel processing of tiles
and wavefronts, it must be possible to identify the position in
the bitstream where each tile or slice starts. This overhead is
kept to a minimum by providing a table of offsets, describing
the entry point of each tile or slice. While it may seem
excessive to signal every entry point without the option to
omit some, in the case of tiles, their presence allows decoder
designers to choose between decoding each tile individually
following the per tile raster scan, or decoding CTUs in the
picture raster scan order. As for wavefronts, requiring there to
be as many wavefront entry points as CTU rows resolves the
conflict between the optimal number of wavefronts for differ-
ent encoder and decoder architectures, especially in situations
where the encoder has no knowledge of the decoder.

The current draft HEVC standard does not permit the
simultaneous use of tiles and wavefronts when there is more
than one tile per picture. However, neither tiles nor wavefronts
prohibit the use of slices.

It is interesting to examine the implementation burden of
the tile and wavefront tools in the context of a single-core
architecture and that of a multicore architecture. In the case
of a single-core implementation for tiles, the extra overhead
comes in the form of more complicated boundary condition
checking, performing a CABAC reset for each tile and the need
to perform the optional filtering of tile boundaries. There is
also the potential for improved data-locality and cache access
associated with operating on a subregion of the picture. In a
wavefront implementation, additional storage is required to
save the CABAC context state between CTU rows and to
perform a CABAC reset at the start of each row using this
saved state.

In the case of a multicore implementation, the additional
overhead compared to the single-core case relates to memory-

bandwidth. Since each tile is completely independent, each
processing core may decode any tile with little intercore
communication or synchronization. A complication is the man-
agement of performing in-loop filtering across the tile bound-
aries, which can either be delegated to a postprocess, or with
some loose synchronization and some data exchange, may be
performed on the fly. A multicore wavefront implementation
will require a higher degree of communication between cores
and more frequent synchronization operations than a tile-based
alternative, due to the sharing of reconstructed samples and
mode predictors between CTU rows. The maximum parallel
improvement from a wavefront implementation is limited by
the ramp-up time required for all cores to become fully
utilized and a higher susceptibility to dependency related stalls
between CTB rows.

All high-level parallelization tools become more useful
with image sizes growing beyond HD for both encoder and
decoder. At small image sizes where real-time decoding in a
single-threaded manner is possible, the overhead associated
with parallelization might be too high for there to be any
meaningful benefit. For large image sizes it might be useful to
enforce a minimum number of picture partitions to guarantee
a minimum level of parallelism for the decoder. However, the
current draft HEVC standard does not mandate the use of any
high-level parallelism tools. As such, their use in decoders is
only a benefit to architectures that can opportunistically exploit
them.

I. Miscellaneous

The total amount of memory required for HEVC decoding
can be expected to be similar to that for H.264/AVC decoding.
Most of the memory is required for the decoded picture buffer
that holds multiple pictures. The size of this buffer, as defined
by levels, may be larger in HEVC for a given maximum
picture size. Such an increase in memory requirement is not
a fundamental property of the HEVC design, but comes from
the desire to harmonize the size of the buffer in picture units
across all levels.

HEVC may also require more cache memory due to the
larger block sizes that it supports. In H.264/AVC, macroblocks
of size 16 × 16 define the buffer size required for storing
predictions and residuals. In HEVC, intra picture prediction
and transforms may be of size 32 × 32, and the size of the
associated buffers thus quadruples.

It should also be noted that HEVC lacks coding tools
specific to field coding. The absence of such tools, in particular
tools that enable switching between frame and field coding
within a frame (such as MBAFF in H.264/AVC), considerably
simplifies the design.

J. Summary

While the complexity of some key modules such as trans-
forms, intra picture prediction, and motion compensation is
likely higher in HEVC than in H.264/AVC, complexity was
reduced in others such as entropy coding and deblocking.
Complexity differences in motion compensation, entropy cod-
ing, and in-loop filtering are expected to be the most substan-
tial. The implementation cost of an HEVC decoder is thus
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not expected to be much higher than that of an H.264/AVC
decoder, even with the addition of an in-loop filter such as
SAO.

From an encoder perspective, things look different: HEVC
features many more mode combinations as a result of the
added flexibility from the quadtree structures and the increase
of intra picture prediction modes. An encoder fully exploiting
the capabilities of HEVC is thus expected to be several times
more complex than an H.264/AVC encoder. This added com-
plexity does however have a substantial benefit in the expected
significant improvement in rate-distortion performance.

III. HM Encoder

A. Overview

The purpose of the HM encoder is mainly to provide a
common reference implementation of an HEVC encoder that
is useful as a test bed for evaluating technologies and for
independent encoder or decoder development. Written in C++,
the HM is not aimed at providing a real-world example of an
HEVC encoder. The HM encoder is quite slow and using it
generally involves having a large computer cluster available.
Although the HM encoding speed may be less than ideal
in most situations, some encoding time considerations have
been made during the development of the HM. While up
to 100 hours were needed to encode a single 10-second test
case with version 0.7 of the reference software, the time was
reduced to a more manageable 20 hours a few versions later.

Among the contributing factors to the sluggishness of the
HM encoder is a heavy reliance on brute-force rate-distortion
optimization. Such optimization is also applied during the
quantization process.

The JCT-VC common test conditions [12] define a set of
encoder configurations used in experiments. These configura-
tions include the following:

1) All intra (AI), where all pictures are encoded using
I slices.

2) Random access (RA), where picture reordering is used
in a pyramidal structure with a random access picture
about every 1 s. This configuration emulates what may
be used in a broadcasting environment.

3) Low delay with B slices (LB), where no picture reorder-
ing is used and only the first frame is encoded using
I slices. This configuration emulates what may be used
in a videoconferencing environment.

While most of the features of HEVC are exercised in these
configurations, it should be noted that some are not, including
weighted prediction and quantization scaling matrices. High-
level parallelism tools are also disabled. The results presented
in the following sections thus reflect what is achievable using
single-threaded encoders and decoders.

Table II shows the encoding times for the class B and
C sequences (see Table I) from the JCT-VC common test
conditions, each of which is 10 s long. Results are limited
to the two intermediate quantization parameter (QP) values
defined in the test conditions. Times are recorded in tens of
seconds such as to illustrate the ratio to real-time operation.

TABLE I

Test Sequences

Class Sequence Resolution Frame Rate (Hz)
Kimono 24
ParkScene 24

B Cactus 1920 × 1080 50
Basketball Drive 50
BQTerrace 60
Basketball Drill 50

C
BQMall

832 × 480
60

PartyScene 50
RaceHorses 30

TABLE II

Encoding Time of HM 8.0

Time (10 s)
Sequence AI27 AI32 RA27 RA32 LB27 LB32
Kimono 393 357 1283 1123 2016 1739
ParkScene 462 395 1145 1000 1743 1501
Cactus 955 811 2590 2257 3635 3133
Basketball Drive 870 759 3155 2707 4417 3793
BQTerrace 1228 1043 2936 2485 4029 3315
Basketball Drill 194 166 606 515 826 700
BQMall 229 202 642 562 900 779
PartyScene 245 210 614 505 882 724
RaceHorses 120 104 481 396 686 570

AI27 is all-intra configuration with QP set to 27. RA is random access
and LB is low delay using B slices.

Even for intra-only configurations, the encoding time may
exceed 1000 times real time. Encoding times were obtained
on a cluster containing Xeon-based servers (E5670 clocked at
2.93 GHz) and using gcc 4.4.5.

B. Profiling Results

The HM encoder has been profiled to determine which
components are the most time consuming. Table III shows the
time spent in various C++ classes in an example encoding. In
the all-intra configuration a significant amount of time (about
a quarter of the total) is spent in the TComTrQuant class,
where rate-distortion optimized quantization (RDOQ) takes
place. Transforms account for 9% on top of this. Intra picture
prediction further accounts for close to 16% (TComPrediction
and TComPattern classes). On the entropy coding front, the
amount of time spent in core CABAC operations is small:
TEncBinCABAC∗ classes, which include TEncBinCABAC
and TEncBinCABACCounter, account for about 2%. Note
that the TEncBinCABACCounter class is used to estimate
a number of bits generated by a CABAC engine without
deriving the values of those bits. More time is spent on
scanning and context derivation: TEncSbac class at over 8%
and getSigCtxInc in TComTrQuant class at 1.7%.

In the random access configuration it is evident that motion
estimation takes up a significant portion of encoding time.
Computation of the sum of absolute differences (SAD) and
other distortion metrics takes place in the TComRdCost class,
which accounts for about 40% of encoding time. Furthermore,
motion compensation filtering happens in TComInterpolation-
Filter, which accounts for 20% of encoding time. It thus seems
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TABLE III

Encoding Time Distribution by Class

Time (%)
Function AI RA
TEncSearch 11.8 7.4
TComTrQuant 24.4 10.7
TComRdCost 9.8 38.8
TComInterpolationFilter 0.0 19.8
TComYUV 0.1 1.7
partialButterfly∗ 8.7 4.0
TComDataCU 5.8 2.7
TEncSbac 8.4 3.5
TEncEntropy 1.2 0.6
TEncBinCABAC∗ 2.2 0.9
TComPrediction 10.0 1.1
TComPattern 6.6 0.4
memcpy/memset 11.0 7.1

Classes consuming 1% or more of time in the HM 8.0 encoder, contributing
to more than 95% of total time. 1080p sequence: BasketballDrive, QP =
27.

that a significant amount of time may be spent on fractional-
pel search refinement in the motion estimation process. The
fractional-pel search in the HM is not optimized for speed. It
consists of testing nine displacements on a half-pel grid and
another nine displacements on a quarter-pel grid. Furthermore,
the use of the merge mode with a large number of candidates
may also contribute to the time usage of inter polation filtering,
as the 2-D inter polation process has to be repeated for each
merge candidate. The amount of time spent on inter polation
filtering may be reduced by precomputing filtered reference
pictures for each of the 16 fractional displacements on a
quarter-pel grid. This would however contribute to a significant
increase in memory requirements and may not be suited for
all architectures.

As in the all-intra configuration, most of the time spent
in TComTrQuant may be attributed to RDOQ as the actual
transforms are tallied separately (partialButterfly∗ at about
4%).

It is also interesting to note that a significant amount of
time is spent on setting and copying memory areas (memcpy
and memset system functions). In the all-intra case, around
one-third of the time spent in these system functions (3.6% of
total time) comes from initializing arrays to 0 in the RDOQ
function. A similar trend is observed in the random access
case.

Encoding functions related to SAO are absent from
Table III, as the amount of time spent inside them are below
1% of the total encoding time.

C. Alternative Tradeoffs

There are a number of fast encoding methods available in
the HM encoder. Table IV shows an overview of the different
configuration options.

FastSearch, FEN, FDM, and FastTS are already enabled
in the HEVC common coding conditions. Table V shows
encoding time with ASR, ECU, CFM, and ESD enabled in
addition to that. All of these additional modes only influence
the inter picture prediction mode decision. Thus only random
access and low delay configurations are shown. All of these

TABLE IV

Overview of Fast Encoding Modes

Encoder parameter Description
FastSearch TZ search similar to the corresponding search mode

in the reference software for H.264/AVC scalable
video coding (JSVM) [13].

ASR Automatic search range adaptation based on picture
order count difference.

FEN Use subsampled SAD for blocks with more than
eight rows for integer motion estimation and use
one iteration instead of four for bipredictive search.

ECU No further split if skip mode is used [14].
FDM Stop merge search if skip mode (getQtRootCbf()) is

chosen in xCheckRDCostMerge2N × 2N() [15].
CFM Terminate encoding decision if partitioning (PU) has

coded block flag equal to zero [16].
ESD Check inter 2N × 2N first and terminate if motion

vector difference is zero and coded block flag equal
to zero [17].

FastTS For luma transform skip mode is only checked if the
CU size is 8 × 8, the partition mode is IntraNxN,
and the TU size is 4 × 4. For 4 × 4 chroma TU
transform skip mode is not checked, when the 8 × 8
luma TU is not split into four 4 × 4 TUs or when
the 8 × 8 luma TU is split into four 4 × 4 TUs but
none of these TUs uses the transform skip mode.
[18]

TABLE V

Encoding Time and Performance of HM 8.0 with Fast Option

Time (10 s) Time (10 s)
Sequence RA27 RA32 BD rate LB27 LB32 BD rate
Kimono 628 416 1.6% 1251 845 1.2%
ParkScene 478 306 2.2% 953 605 1.6%
Cactus 1237 860 2.8% 2115 1461 2.1%
Basketball Drive 1631 1150 2.2% 2749 1882 1.1%
BQTerrace 1180 617 2.3% 1955 980 1.2%
Basketball Drill 367 253 2.8% 581 402 0.9%
BQMall 334 235 2.3% 553 389 1.5%
PartyScene 371 243 1.8% 640 431 1.2%
RaceHorses 321 225 2.5% 535 381 1.0%
Mean speedup 2.0 × 2.6× 1.6× 2.1×

RA27 is random access configuration with QP set to 27, LB is low delay
using B slices. BD rate is the luma difference in BD rate over four QP
points.

methods reduce the number of searched partitions based on
the skip mode performance. In the rate-distortion decision this
mode is more likely to be chosen for higher QP values. This
explains why we see a greater speedup with higher QPs. In
the QP range illustrated, the encoding time can be reduced by
a factor between two and three. For QP equal to 37 a factor
up to six can be observed in single cases. The Bjøntegaard
Delta (BD) [19] rate values in Table V have been calculated
using the four QP points of the common coding conditions.
As shown, the coding efficiency penalty is below 3% BD rate.

D. Discussion

The HM software does not feature low-level optimizations
such as assembly written functions to compute block differ-
ences or inter polate a block. Doing so would permit speeding
up the encoder by about two to three times. This, however, is a
far cry from the factor of 5000 between the HM encoding time
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TABLE VI

Decoding Time of HM 8.0

Time (s)
Sequence AI27 AI32 RA27 RA32 LB27 LB32
Kimono 34.8 31.2 20.8 18.5 22.5 18.4
ParkScene 49.9 41.1 20.9 18.4 22.1 18.0
Cactus 96.8 83.4 39.8 34.8 40.4 32.7
Basketball Drive 83.9 73.7 45.0 39.0 50.7 41.6
BQTerrace 126.6 107.9 50.1 40.3 54.8 40.4
Basketball Drill 22.5 18.6 9.8 8.3 10.2 8.2
BQMall 25.5 22.5 10.7 9.2 11.2 9.5
PartyScene 28.8 24.7 10.9 8.9 12.5 9.5
RaceHorses 12.5 11.2 7.4 6.0 8.2 6.5

AI27 is all-intra configuration with QP set to 27. RA is random access and
LB is low delay using B slices.

and real-time encoding. Much more significant work will be
required and it is expected that developing encoder heuristics
for HEVC will become a major topic of research in the coming
years. Multithreading may play a significant role in the design
of fast HEVC encoders.

It should be noted that the HM encoder already features
some tricks to speed it up. For example, mode search for
intra picture prediction prunes the search space based on a
simple distortion metric, and bit counting for CABAC uses
table-based estimations rather than trial encodes.

Compared to the H.264/AVC JM reference software [20],
the HM provides far fewer parameters to configure the en-
coder. It is not possible to switch single encoding modes like
partition shapes, sizes, or intra picture prediction modes, or
to completely turn off rate-distortion optimization. The HM
always uses 16-bit data formats to store picture samples, even
when operating in 8-bit coding mode. This requires more
memory and more memory bandwidth compared to the JM,
which can be configured to use only eight bits per sample. Al-
though the fast coding modes of the JM and HM cannot be di-
rectly compared, in some tests with similar configurations the
JM encoder was running at least four times faster than the HM.

IV. HM Decoder

Similar to the HM encoder, the HM decoder is an example
of implementation aimed at correctness, completeness, and
readability. It runs in a single thread and no parallelization
techniques are used.

Table VI shows the decoding times for class B and C
sequences using the common coding conditions. The calcu-
lation of MD5 checksums and writing of decoded pictures
to a file have been disabled to allow a pure decoding time
measurement. Using 10-s sequences, times up to 126.6 s have
been measured (BQTerrace, all-intra, QP 27), which would
require a speedup of nearly a factor of 13 for real-time
decoding in this particular case. If the QP is further lowered
to 22, this factor increases to 17.

The decoding times thus depend strongly on the selected
QP value. At higher bit rates (i.e., lower QP) more coefficients
are coded, which requires more time for the CABAC parsing
process, but also smaller block sizes will be selected, which
can put an additional burden on the decoder. The difference

TABLE VII

Decoding Time Distribution by Class

Time (%)
Function AI RA
TComTrQuant 8.7 4.2
TComInterpolationFilter 0.0 24.8
TComYUV 0.5 8.2
partialButterfly∗ 15.9 7.6
TComDataCU 7.5 7.1
TDecSbac 6.2 2.8
TDecEntropy 1.4 1.0
TDecBinCABAC 5.3 2.3
TDecCU 7.2 2.6
TComPrediction 5.1 2.3
TComPattern 9.4 2.6
TComSampleAdaptiveOffset 3.8 2.4
TComLoopFilter 12.9 12.4
memcpy/memset 6.2 10.1

Classes consuming 1% or more of time in the HM 8.0 decoder, contributing
to more than 90% of total time. 1080p sequence: BasketballDrive, QP =
27.

between random access and low delay is rather small, while
all-intra decoding requires up to twice the time of the random
access case at the same QP.

To further illustrate which decoder functions are time con-
suming, Table VII shows profiling results of the HM decoder
by C++ class. In the all-intra configuration decoding time is
dominated by partialBufferfly∗, TComDataCU, TComPattern,
and TComLoopFilter. partialBufferfly∗ represents the inverse
transform functions and accounts for about 15% of decoding
time. While this amount of time is significant, it is also ex-
pected that it could be significantly reduced by implementing
partial transform techniques. Such partial transform techniques
would be particularly effective on the larger transforms where
high-frequency coefficients are most likely zero. The TCom-
Pattern class deals with reference sample generation for intra
picture prediction. The high amount of time spent in this class
is somewhat surprising and may hint at a poor implementation
that relies on copying reference samples multiple times. The
TComLoopFilter class implements the deblocking filter. The
TComDataCU class deals with managing most data elements
within a CU. Functions for deriving the addresses of neighbor-
ing blocks are among the most time consuming in TComDat-
aCU. This is partly due to the number of conditions that re-
quire checking (slice, CTB, entropy slice, and tile boundaries).

In the random access configuration, decoding time is
dominated by TComInterpolationFilter and TComLoopFilter.
TComInterpolationFilter comprises the functions for inter po-
lation filtering in the motion compensation process.

To achieve real-time performance it is expected that all com-
ponents of the HM decoder would require improvements. The
next section considers a decoder where such improvements
were made.

V. Optimized Software Decoder

A. Introduction

This section discusses the performance of an optimized
implementation of an HEVC software decoder. While this
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TABLE VIII

Decoding Time (ARM): Random Access Configuration

Sequence Frame Bit rate Time Bit rate Time
rate (Mbit/s) (s) (Mbit/s) (s)
(Hz)

BasketballDrill 50 1.66 7.5 0.81 6.2
BQMall 60 1.70 8.4 0.85 7.2
PartyScene 50 3.10 9.4 1.46 7.6
RaceHorses 30 2.03 6.8 0.94 5.5

TABLE IX

Decoding Time Distribution (ARM): Random Access

Configuration

Sequence MC QT PR ED DF SF
(%) (%) (%) (%) (%) (%)

BasketballDrill QP = 27 36 5 7 26 19 5
BasketballDrill QP = 32 44 4 6 19 20 3
BQMall QP = 27 46 4 5 23 16 3
BQMall QP = 32 53 3 4 16 17 2
PartyScene QP = 27 40 5 5 31 13 3
PartyScene QP = 32 49 3 5 22 15 3
RaceHorses QP = 27 35 4 7 30 16 5
RaceHorses QP = 32 43 4 6 22 19 4
Average 43 4 6 24 17 4

MC: motion compensation. QT: inverse quantization and transform.
PR: intra picture prediction and picture construction process. ED: entropy
decoding. DF: deblocking filter. SF: sample-adaptive offset filter.

decoder is significantly faster than the HM decoder, no claims
are made as to its optimality and faster decoders might be
designed. It is an evolution of the decoder previously described
in [7] and [21], which was written in C from scratch.

Code was optimized for two different instruction set archi-
tectures (ISA): x86 and ARM. In both cases SIMD instructions
are heavily used. Intrinsics are inserted in C code to make use
of these instructions. Assembly code is also used on ARM.
Extensions up to SSE4.1 are used on x86, and NEON on
ARM.

B. Profiling Results (ARM)

Class C sequences (832 × 480 luma samples) are used for
profiling on ARM. Experiments are run on a tablet featuring
a 1 GHz Cortex-A9 dual-core processor. Decoded video is
displayed live using OpenGL ES 2.0 in parallel with decoding.
A separate thread is used for the decoding loop. This decoding
loop is not split into additional threads. To account for the
variability in decoding time associated with each frame, the
frame buffer used for decoding and display has 16 entries to
enable smooth playback.

Table VIII shows the decoding time for the random access
configuration using QP values 27 and 32. All test cases are de-
coded in real time. The data suggest that decoding wide 480p
video at 2 Mb/s and 30 f/s is easily achievable on production
tablets available at the time of writing. Although not tested,
this is also likely the case on lower power devices, such as
smartphones. However, the impact on power consumption was
not measured.

Table IX and Fig. 5 show the distribution of decoding time
across various modules. Motion compensation is the most time

Fig. 5. Average decoding time distribution (ARM): random access configu-
ration.

TABLE X

Decoding Time (ARM): All-Intra Configuration

Sequence Frame Bit rate Time Bit rate Time
rate (Mbit/s) (s) (Mbit/s) (s)
(Hz)

BasketballDrill 50 11.31 19.1 6.07 14.7
BQMall 60 13.97 23.3 8.22 19.1
PartyScene 50 27.23 30.4 16.23 23.2
RaceHorses 30 8.99 12.9 5.11 10.5

consuming and takes up close to half the decoding time. The
loop filters (deblocking and SAO) contribute to about a fifth
of decoding time and entropy decoding to about one quarter.
Inverse quantization and transform contribute to only about
4%. It should be noted that this percentage is significantly
lower than reported in Section IV. Two contributing factors
are the exploitation of partial inverse transforms and aggressive
code optimization. The introduction of large transforms does
thus not appear to significantly affect software decoding times.

Table X shows decoding times for all-intra configurations.
Unlike for random access configurations, real-time decoding
is not achieved in any tested case. One reason is the amount of
processing required to perform entropy decoding. In I slices,
most of the bits represent transform coefficients and parsing
is thus one of the bottlenecks. This is confirmed in profiling
results in Table XI and Fig. 6, where parsing of transform
coefficients represents 36% of decoding time on average. In
the worst case among the tested cases, it represents as much as
48%. This is however not the only bottleneck, since after the
deduction of decoding time associated with it, decoding times
remain larger than 10 s in several cases. The next most time-
consuming module is intra picture prediction and the picture
construction process which accounts for a fifth of decoding
time on average.

C. Profiling Results (x86)

Class B sequences were used for profiling on an x86
computer, where bit rates go up to about 7 Mbit/s in random
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TABLE XI

Decoding Time Distribution (ARM): All-Intra Configuration

Sequence CP ED DF QT PR SF
(%) (%) (%) (%) (%) (%)

BasketballDrill QP = 27 32 17 14 8 22 6
BasketballDrill QP = 32 26 16 18 8 22 8
BQMall QP = 27 35 16 13 9 20 6
BQMall QP = 32 28 16 16 10 22 6
PartyScene QP = 27 48 15 8 6 17 4
PartyScene QP = 32 39 17 11 7 19 5
RaceHorses QP = 27 43 12 11 10 16 5
RaceHorses QP = 32 34 14 14 11 19 6
Average 36 15 13 9 20 6

CP: transform coefficient parsing. ED: entropy decoding, excluding
transform coefficient parsing. DF: deblocking filter. QT: inverse quan-
tization and transform. PR: intra picture prediction and picture construc-
tion
process. SF: sample-adaptive offset filter.

Fig. 6. Average decoding time distribution (ARM): all-intra configuration.

TABLE XII

Decoding Time (x86): Random Access Configuration

Sequence Frame Bit rate Time Bit rate Time
rate (Mbit/s) (s) (Mbit/s) (s)
(Hz)

BasketballDrive 50 6.01 4.9 2.80 3.8
BQTerrace 60 7.31 5.6 2.26 3.8
Cactus 50 5.72 4.0 2.67 3.0
Kimono 24 2.18 2.0 1.07 1.7
ParkScene 24 3.33 2.4 1.54 1.8

Decoding as a standalone process.

access configurations. Unlike in the ARM case, measurements
are made using a command-line decoder. The gcc compiler
version 4.7.1 was used. For random access configurations,
real-time decoding is achieved on a 2012-model laptop using
a single core and single thread of an Intel Core i7-3720QM
processor clocked at 2.6 GHz (turbo up to 3.6 GHz), as shown
in Table XII. This real-time performance is also achieved by
a wide margin at 60 fps (BQTerrace sequence): less than 6 s
are needed to decode a 10-s sequence. When comparing these
results with those of Table VI, a speed-up of about 10 × is
observed. However, different environments were used to obtain
the results. When compensating for this difference, the speed-
up is about 6 × .

Table XIII and Fig. 7 further illustrate the distribution of
decoding time across different modules. As observed previ-

TABLE XIII

Decoding Time Distribution (x86): Random Access

Configuration

Sequence MC QT PR ED DF SF
(%) (%) (%) (%) (%) (%)

BasketballDrive QP = 27 42 6 5 24 14 6
BasketballDrive QP = 32 52 5 4 17 15 3
BQTerrace QP = 27 46 3 3 27 13 6
BQTerrace QP = 32 61 2 2 15 13 4
Cactus QP = 27 37 5 5 28 16 7
Cactus QP = 32 45 5 4 20 17 5
Kimono QP = 27 51 5 3 19 14 4
Kimono QP = 32 58 4 2 14 15 2
ParkScene QP = 27 46 3 4 26 13 4
ParkScene QP = 32 55 2 4 18 14 3
Average 49 4 4 21 14 4

MC: motion compensation. QT: inverse quantization and transform.
PR: intra picture prediction and picture construction process. ED: entropy
decoding. DF: deblocking filter. SF: sample-adaptive offset filter.

Fig. 7. Average decoding time distribution (x86): random access
configuration.

ously, motion compensation remains the most time-consuming
module, accounting for half of the time on average.

For all-intra configurations, real-time decoding is not always
achieved on a single core, as shown in Table XIV. In the worst
case (BQTerrace QP = 27) 19.1 s are required to decode 10 s
of video. Profiling of this case indicates that 60% of time is
spent on entropy decoding, 13% on intra picture prediction
and residual addition, 9% on deblocking, 7% on inverse
quantization and transform, and 9% on SAO filtering. Entropy
decoding thus represents a significant bottleneck, which is not
surprising given that the bit rate is about 80 Mbit/s.

When considering the case studied for the HM decoder
(BasketballDrive QP = 27, Table VII), the time proportions
remain roughly similar.

D. Discussion

The profiling results obtained on ARM and x86 are quite
similar even though obtained with different sets of video se-
quences. In both cases the decoding time proportion associated
with each module is similar, as summarized below. Motion
compensation takes up about half of the decoding time. In-
loop filters (deblocking and SAO) take about one fifth and
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TABLE XIV

Decoding Time (x86): All-Intra

Sequence Frame Bit rate Time Bit rate Time
rate (Mbit/s) (s) (Mbit/s) (s)
[Hz]

BasketballDrive 50 29.1 10.2 15.2 7.2
BQTerrace 60 79.3 19.1 40.3 12.8
Cactus 50 48.7 13.6 26.3 9.6
Kimono 24 12.1 3.5 6.8 2.6
ParkScene 24 28.6 7.3 14.8 4.8

Decoding as a standalone process.

entropy decoding about another fifth. The remaining 10% goes
to inverse transform, intra picture prediction, and so on.

These proportions are also similar to those reported on
the basis of other independent implementations [22], [23].
Some differences may be observed for motion compensation
and entropy coding. The time percentages reported herein for
motion compensation tend to be higher (about 50% compared
to 35%–40%), and those for entropy decoding lower (about
20% compared to 25%–30%).

One limiting factor in the motion compensation process
is memory bandwidth and cache misses. In the tested de-
coder, the memory layout of reference frames uses a raster
scan with interleaved chroma components, and limited ex-
plicit prefetching is used. The interleaving of the chroma
components reduces the amount of memory fetch operations
and also guarantees a higher minimum width for inter po-
lation processing. Using a different memory layout or better
prefetching may help reduce the decoding time associated with
motion compensation. Another limiting factor in the motion
compensation process is the number of multiply–accumulate
operations. In the tested decoder, generic 8-tap filter functions
are used for luma, where filter coefficients are stored in a
table. Tuned implementations, for example taking advantage
of the knowledge of certain filter coefficients equal to 0 or
1, may also reduce the decoding time associated with motion
compensation.

Entropy decoding becomes a bottleneck at high bit rates,
and in I slices in particular.

Studies on H.264/AVC decoding complexity have mostly
focused on the Baseline profile [24], [25]. The percentage
time spent in motion compensation in the Baseline profile
tends to be lower than in HEVC for the simple reason that
the Baseline profile does not support B slices. On the other
hand, the percentage time in the deblocking filter tended to be
high in H.264/AVC. This percentage tends to be much lower
in HEVC since the number of filtered edges is lower.

VI. Conclusion

In conclusion, the complexity cost of HEVC to achieve
superior compression performance is not obvious. While cer-
tain aspects of the design require more processing than in
H.264/AVC, other aspects have been simplified.

Real-time software decoding of HEVC bitstreams is very
feasible on current generation devices: 1080p60 decoding on
laptops or desktops, and 480p30 decoding on mobile devices

(both within reasonable bit rate ranges). Such performance
is achievable without having to rely on multiple cores in
the decoding process. This is important as it can provide a
software path for rapid and wide adoption of HEVC.

On the encoder side, substantial additional work is required
to make a real-time encoder that delivers compression effi-
ciency comparable to the HM encoder. This is expected to be
an active area of research in years to come.

Appendix

Downloadable Resources Related to This Paper

All the JCT-VC documents can be found in the JCT-VC
document management system at http://phenix.int-evry.fr/jct/.
All cited VCEG and JVT documents are also publicly available
and can be downloaded at http://wftp3.itu.int/av-arch in the
video-site and jvt-site folders, respectively.
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