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Introduction

In this chapter we shall lay bare the theory and implementation details of hexagonal

sampling systems and hexagonal quadrature mirror �lters (HQMF). Hexagonal sampling

systems are of particular interest because they exhibit the tightest packing of all regular

two-dimensional sampling systems and for a circularly band-limited waveform, hexagonal

sampling requires 13.4 percent fewer samples than rectangular sampling [1]. In addition,

hexagonal sampling systems also lead to nonseparable quadrature mirror �lters in which all

basis functions are localized in space, spatial frequency and orientation [2]. This chapter is

organized in two sections. Section I describes the theoretical aspects of hexagonal sampling

systems while Section II covers important implementation details.

I. Hexagonal sampling system

This section presents the theoretical foundation of hexagonal sampling systems and

hexagonal quadrature mirror �lters. Most of this material has appeared elsewhere in [1],

[3], [4], [5], [2], [6] but is described here under a uni�ed notation for completeness. In

addition, it will provide continuity and a foundation for the original material that follows

in Section II. The rest of the section is organized as follows. Section I-A covers the

general formulation of a hexagonal sampling system. Section I-B introduces up-sampling

and down-sampling in hexagonal sampling systems. Section I-C reviews the theory of

hexagonal quadrature mirror �lters. Section I-D describes redundant analysis/synthesis

�lter banks in hexagonal systems. Finally, Section I-E covers the formulation of the discrete

Fourier transform in hexagonal sampling systems.
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A. Hexagonal systems

Let xa(t) = xa(t1; t2) be a 2-D analog waveform, then a sampling operation in 2-D can

be represented by a lattice formed by taking all integer linear combinations of a set of two

linearly independent vectors v1 = [v11 v21]
T
and v2 = [v12 v22]

T
. Using vector notation we

can represent the lattice as the set of all vectors t = [t1 t2]
T
generated by

t = Vn; (1)

where n = [n1 n2]
T
is an integer-valued vector and V = [v1 v2] is a 2 � 2 matrix, known

as the sampling matrix. Because v1 and v2 are chosen to be linearly independent, the

determinant of V is nonzero. Note that V is not unique for a given sampling pattern

and that two matrices representing the same sampling process are related by a linear

transformation represented by a unimodular matrix [7].

Sampling an analog signal xa(t) on the lattice de�ned by (1) produces the discrete signal

x(n) = xa(Vn):

Figure 1(a) shows a hexagonal sampling lattice de�ned by the pair of sampling vectors

v1 =

2
64 2T1

0

3
75 and v2 =

2
64 �T1

T2

3
75 ; (2)

where T1 =
1
2
and T2 =

p
3
2
. The lattice is hexagonal since each sample location has exactly

six nearest neighbors when T2 = T1

p
3.

Let the Fourier transform of xa(t) be de�ned by

Xa(
) =
Z +1

�1
xa(t) exp(�j
Tt)dt;

where 
 = [
1 
2]
T
. Similarly, let the Fourier transform of the sequence x(n) be de�ned

as

X(!) =
X
n

x(n) exp(�j!Tn); (3)

where ! = [!1 !2]
T. Mersereau [4] showed that the spectrum of the sequence x(n) and

the spectrum of the signal xa(t) are related by

X(!) =
1

jdetVj
X
k

Xa(V
�T(! � 2�k)); (4)
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Fig. 1. (a) A hexagonal sampling lattice in the spatial domain. (b) Hexagonal sampling lattice in the

frequency domain.

where k is an integer-valued vector and V�T denotes (V�1)T.

Alternatively, we can de�ne the Fourier transform of the sequence x(n) as

XV(
) =
X
n

x(n) exp(�j
TVn)

= X(VT
); (5)

then Equation (4) may be written as

XV(
) =
1

jdetVj
X
k

Xa(
 �Uk); (6)

where

U = 2�V�T
: (7)

Thus, Equation (6) can be interpreted as a periodic extension of Xa(
) with periodicity

vectors u1 = [u11 u21]
T and u2 = [u12 u22]

T, where U = [u1 u2]. The set of all vectors 


generated by
 = Un de�nes a lattice in the frequency domain known as the modulation or

reciprocal lattice. Thus, the spectrum of a sequence x(n) can be viewed as the convolution

of the spectrum of xa(t) with a modulation lattice de�ned by U.

Figure 1(b) shows the reciprocal lattice corresponding to the sampling vectors de�ned

in Equation (2), that is the lattice de�ned by the pair of modulation vectors

u1 =

2
64 �

T1

�

T2

3
75 and u2 =

2
64 0

2�
T2

3
75 :
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Fig. 2. (a) Integer sampling lattice. (b) Sampling sublattice.

B. Up-sampling and down-sampling in hexagonal systems

Let � denote the integer lattice de�ned by the set of integer vectors n, and let �K

denote the sampling sublattice generated by the subsampling matrix K, that is the set of

integer vectors m such that m = Kn. Note that in order to properly de�ne a sublattice

of �, a subsampling matrix must be nonsingular with integer-valued entries. In general,

a sublattice of � is called separable if it can be represented by a diagonal matrix K,

otherwise it is called nonseparable. Figure 2 shows an integer sampling lattice � and a

sampling sublattice �K, for the separable subsampling matrix

K =

2
64 2 0

0 2

3
75 : (8)

With � and �K de�ned in this way, we can view the operations of up-sampling and

down-sampling as described below.

The process of up-sampling maps a signal on � to a new signal that is nonzero only at

points on the sampling sublattice �K. The output of an up-sampler is related to the input

by

y(n) =

8><
>:

x(K�1n); if K�1n 2 �,

0; otherwise.

It is easy to show [5] that the Fourier transform relates the output and input of an

up-sampler by

Y (!) = X(KT
!);
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Fig. 3. (a) Up-sample operator. (b) Mapping of samples under up-sampling: (left) input signal, (right)

output signal.

whereX(!) is de�ned by Equation (3). Figure 3 shows the block diagram of an up-sampler

and the process of up-sampling for the subsampling matrix de�ned by Equation (8).

The process of down-sampling maps points on the sublattice �K to � according to

y(n) = x(Kn); (9)

and discards all other points.

The Fourier transform relation between the output and input of a down-sampler can

be derived by introducing the concept of a sampling function sK(n) associated with the

sampling matrix K [5], that is,

sK(n) =

8><
>:

1; if n 2 �K,

0; otherwise.

Since sK(n) can be interpreted as a periodic sequence, with periodicity matrix K, i.e.

sK(n) = sK(n+Km), it may be expressed as a Fourier series

sK(n) =
1

jdetKj

jdetKj�1X
l=0

exp(�j2�kT
l
K�1n); (10)

where each of the jdetKj vectors kl = [kl1 kl2]
T is associated with one of the cosets of KT.

Notice that a coset of a sublattice �K is de�ned as the set of points obtained by shifting

the entire sublattice by an integer shift vector k. There are exactly jdetKj distinct cosets
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of �K, and their union is the integer lattice �. Each shift vector kl associated with a

certain coset is known as a coset vector. For example, one choice for the kl given the

sampling sublattice de�ned by Equation (8) is

k0 =

2
64 0

0

3
75 ; k1 =

2
64 1

0

3
75 ; k2 =

2
64 0

1

3
75 ; and k3 =

2
64 1

1

3
75 : (11)

Let

w(n) = x(n)sK(n); (12)

then it is easy to see from (9) that a down-sampled signal y(n) can be written as

y(n) = w(Kn);

since w(n) equals x(n) on �K. Therefore, the Fourier transform of the sequence y(n) may

be written as

Y (!) =
X
n

w(Kn) exp(�j!Tn): (13)

Since w(n) is zero for n not in �K we may write (13) as

Y (!) =
X
n

w(n) exp(�j!TK�1n)

= W (K�T
!);

where W (!) is the Fourier transform of the sequence w(n). From (10) and (12) it is easy

to show that

W (!) =
1

jdetKj

jdetKj�1X
l=0

X(! + 2�K�Tkl);

therefore, the Fourier transform relation between the output and input of a down-sampler

is given by

Y (!) =
1

jdetKj

jdetKj�1X
l=0

X(K�T(! + 2�kl)):

Figure 4 shows the block diagram of a down-sampler and the process of down-sampling

for the subsampling matrix de�ned on (8).

Note that the relations derived above are based on the Fourier transform de�ned in

Equation (3). However, a more general de�nition is described in Equation (5). This

formulation takes into account the lattice structure used to sample the original 2-D analog
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Fig. 4. (a) Down-sample operator. (b) Mapping of samples under down-sampling: (left) input signal,

(right) output signal.

waveform and allows the Fourier transform relation between the input and output of an

up-sampler and a down-sampler to be written as

YV(
) = X(KTVT
); (14)

and

YV(
) =
1

jdetKj

jdetKj�1X
l=0

X(K�T(VT
+ 2�kl)): (15)

Therefore, if we assume K as de�ned in (8) we may write Equations (14) and (15) as

YV(
) = XV(K
T
); (16)

and

YV(
) =
1

jdetKj

jdetKj�1X
l=0

XV(K
�T
 + ~kl); (17)

respectively, where

~kl = UK�Tkl: (18)

C. Analysis/synthesis �lter banks in hexagonal systems

This section focuses on perfect reconstruction �lter banks in hexagonal sampling systems

and wavelets that can be obtained by iterating such �lter banks. Parts of this material

are described in Simoncelli [2], but are reviewed here for completeness of presentation.
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Fig. 5. A two-dimensional 4-channel analysis/synthesis �lter bank.

There are a wide variety of analysis/synthesis (A/S) �lter banks for two dimensional

systems. We restrict our focus to analysis/synthesis �lter banks in which each channel

shares the same subsampling matrixK and the number of channels equals jdetKj. Figure
5 shows a 4-channel analysis/synthesis �lter bank. We further restrict our study to the

separable sublattice de�ned in Equation (8) since this choice will enable us to apply the

A/S �lter bank recursively to each of the subband signals yi(n) shown in Figure 5 as

described in [2].

Consider a 4-channel analysis/synthesis �lter bank withK de�ned by Equation (8), then

using (17) we can show that the Fourier transform of yi(n) may be written as

Yi(
) =
1

jdetKj

jdetKj�1X
l=0

Fi(K
�T
+ ~kl)X(K�T
+ ~kl); (19)

where the subindex V has been suppressed for simplicity. Similarly, using (16) we have

that the Fourier transform of x̂(n) is given by

X̂(
) =
jdetKj�1X

i=0

Gi(
)Yi(K
T
): (20)

Therefore, combining Equations (19) and (20) we obtain an overall �lter bank response of

X̂(
) =
1

jdetKj

jdetKj�1X
i=0

Gi(
)
jdetKj�1X

l=0

Fi(
+ ~kl)X(
 + ~kl)

=
1

jdetKj

jdetKj�1X
l=0

X(
 + ~kl)

2
4jdetKj�1X

i=0

Gi(
)Fi(
+ ~kl)

3
5 : (21)
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Combining Equations (7), (11) and (18) for the values of T1 and T2 in Equation (2) yields

the following set of vectors ~kl , that is,

~k0 =

2
64 0

0

3
75 ; ~k1 =

2
64 �

�p
3

3
75 ; ~k2 =

2
64 0

2�p
3

3
75 ; and ~k3 =

2
64 �

3�p
3

3
75 : (22)

From Equation (22) it is clear that one term of the sum in Equation (21) corresponds

to the linear shift invariant (LSI) system response, and the remaining terms correspond to

the system alias. The analysis/synthesis �lter bank for which the system aliasing terms in

Equation (21) are canceled is generally known as a quadrature mirror �lter (QMF) bank.

We can choose the �lters to eliminate the aliasing terms in Equation (21) as follows

F0(
) = G0(�
) = H(
) = H(�
);
F1(
) = G1(�
) = exp(j
Ts1)H(
 + ~k1);

F2(
) = G2(�
) = exp(j
Ts2)H(
 + ~k2);

F3(
) = G3(�
) = exp(j
Ts3)H(
 + ~k3);

(23)

where s1, s2 and s3 must satisfy the following equations

1 + e
j~k

T

1
s1 = 0; e

j~k
T

1
s2 + e

j~k
T

1
s3 = 0;

1 + e
j~kT

2
s2 = 0; e

j~kT
2
s1 + e

j~kT
2
s3 = 0;

1 + e
j~k

T

3
s3 = 0; e

j~k
T

3
s1 + e

j~k
T

3
s2 = 0:

Therefore, a suitable choice for the vectors sl given the vectors ~kl in Equation (22) is

s1 =

2
64 1

0

3
75 ; s2 =

2
64 1=2
p
3=2

3
75 ; and s3 =

2
64 1=2

�
p
3=2

3
75 : (24)

After canceling all of the aliasing terms in Equation (21) the remaining LSI system

response becomes

X̂(
) =
1

4
X(
)

3X
i=0

Gi(
)Fi(
)

=
1

4
X(
)

3X
i=0

H(
 + ~ki)H(�
 + ~ki)

=
1

4
X(
)

3X
i=0

jH(
+ ~ki)j2:
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Fig. 6. Region of support of a 5-ring hexagonally symmetric �lter. The parameters a through l refer to

the low-pass �lter coe�cients h(n).

Note that the aliasing cancellation is exact, and independent of the choice of H(
), and

the design problem is reduced to �nding a �lter satisfying the constraint

3X
i=0

jH(
 + ~ki)j2 = 4: (25)

A low-pass solution for H(
) in the above equation results in a band-splitting system

which may be cascaded hierarchically through the low-pass band of the QMF bank to

produce a multiresolution decomposition in two dimensions. Simoncelli [2] describes a

simple frequency-sampling design method that produces hexagonally symmetric QMFs

with small regions of support for which perfect reconstruction was well approximated.

Figure 6 shows the region of support of a 5-ring hexagonally symmetric �lter. Notice that

the size of the �lter is measured in terms of the number of hexagonal rings it contains. The

parameters a through l in Figure 6 refer to the �lter coe�cients of the low-pass solution

h(n) computed in [2]. Figure 7(a) shows an idealized diagram of the partition of the

frequency domain resulting from a 2-level hexagonal multiresolution decomposition.
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Fig. 7. (a) Partitions of the frequency domain resulting from a 2-level multiresolution decomposition of

hexagonal �lters. The upper left frequency diagram represents the spectrum of the original image.

(b) A two-stage 4-channel analysis/synthesis �lter bank.

D. Redundant analysis/synthesis �lter banks in hexagonal systems

In this section we discuss the mathematical formulation of redundant analysis/synthesis

�lter banks in hexagonal systems. In particular, we would like to �nd equivalent �lters for

the ith stage of the traditional A/S system shown in Figure 7(b).

It can be easily shown that subsampling byK followed by �ltering with F0(
) is equiva-

lent to �ltering by F0(K
) followed by subsampling. Hence, the �rst two steps of low-pass

�ltering in Figure 7(b) can be replaced by a �lter with Fourier transform F0(
)F0(K
),

followed by subsampling by K2.

In general, equivalent �lters for the ith stage (i � 1) of a cascade of analysis �lters are

given by

F
i

0(
) = F0(K
i�1
)

i�2Y
l=0

F0(K
l
);

F
i

1(
) = F1(K
i�1
)

i�2Y
l=0

F0(K
l
);

F
i

2(
) = F2(K
i�1
)

i�2Y
l=0

F0(K
l
);

F
i

3(
) = F3(K
i�1
)

i�2Y
l=0

F0(K
l
);

(26)

followed by subsampling by Ki. The synthesis �lters are obtained in a similar way.
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Fig. 8. Analyzing �lters F i
j for levels 1 and 2.

By removing the operations of down-sampling and up-sampling from the resulting equiv-

alent A/S system we obtain an overcomplete hexagonal multiresolution representation.

From Equation (25), perfect reconstruction is also accomplished in this case. Figure 8

shows the magnitude of the equivalent hexagonal �lters F i for levels 1 and 2 for the 4-ring

�lter coe�cients computed in [2].

E. The discrete Fourier transform in hexagonal systems

Let ~x(n) be a periodic sequence with periodicity matrixN, that is ~x(n) = ~x(n+Nr) for

any integer vector r. Then it is easy to verify [4] that the following Fourier series relations

hold,

~x(n) =
1

jdetNj
X
k2J

~X(k) exp(jkT(2�N�1)n); (27)

and,

~X(k) =
X
n2I

~x(n) exp(�jkT(2�N�1)n); (28)

where, I and J denote �nite-extent regions (consisting of jdetNj samples) in the n-domain

and k-domain, respectively.
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Let x(n) be any �nite-extent sequence con�ned to a region I containing S samples. We

say that the sequence x(n) admits a periodic extension ~x(n) with periodicity matrix N if

~x(n) = ~x(n+Nr);

~x(n) = x(n); forn 2 I;

and S = jdetNj.
If x(n) admits a periodic extension with periodicity matrix N then the Fourier series

relation in Equation (28) can be used to de�ne its discrete Fourier transform (DFT) as

follows,

X̂(k) = ~X(k); k 2 J;

=
X
n2I

x(n) exp(�jkT(2�N�1)n); k 2 J:
(29)

Similarly, the Fourier series relation in Equation (27) can be used to recover the sequence

x(n) from its DFT as follows,

x(n) = ~x(n); n 2 I;

=
1

jdetNj
X
k2J

X̂(k) exp(jkT(2�N�1)n); n 2 I:
(30)

Suppose x(n) is a hexagonally sampled signal with support con�ned to a region I con-

taining (2N1+N2)N2 samples. In addition suppose that x(n) admits a periodic extension

with periodicity matrix

N =

2
64 N1 +N2 N2

N2 2N2

3
75 : (31)

Then, we say that x(n) admits a hexagonally periodic extension. Notice that x(n) may

admit more than one periodic extension and that each periodic extension de�nes a di�erent

DFT. It is easy to show that the DFT of each admissible periodic extension of x(n)

corresponds to a sampled version of its Fourier transform, and that the sampling lattice is

controlled through the periodicity matrix N. This result is a consequence of the following

relation between the Fourier transform (3) and the discrete Fourier transform (29) of x(n),

X̂(k) = X(!)j
!=2�N�T

k
:

Using the more general de�nition of the Fourier transform (5) that accounts for the

sampling lattice used to sample the original 2-D analog signal we can write

X̂(k) = XV(
)j
=2�(VN)
�T
k
: (32)
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It then follows from Equations (31) and (32) that for N1 = N2 = N , that is, for

N =

2
64 2N N

N 2N

3
75 ; (33)

the DFT of x(n) corresponds to a hexagonal sampled version of its Fourier transform. In

this case Equation (29) is referred to as the hexagonal discrete Fourier transform (HDFT)

of x(n). It is easy to verify from (29) and (33) that the HDFT of x(n) is given by

X̂(k1; k2) =
X

(n1;n2)2I

x(n1; n2) exp

�
�j 2�

3N
((2n1 � n2)k1 + (2n2 � n1)k2)

�
;

=
X

(n1;n2)2I

x(n1; n2) exp
�
�j

�
�

3N
(2n1 � n2)(2k1 � k2) +

�

N
n2k2

��
:

(34)

Mersereau [4] showed that e�cient algorithms for the implementation of the discrete

Fourier transform (29) exist if the periodicity matrix N is composite (i.e., if N can be

factored into a nontrivial product of integer matrices.) For N = 2l; l � 0 we observe that

the periodicity matrix N in (33) can be factored as,

N =

2
64 2 1

1 2

3
75
2
64 2 0

0 2

3
75
l

: (35)

This factorization leads to an e�cient implementation of (34) known as the hexagonal fast

Fourier transform (HFFT). Implementation details of the HFFT can be found in [1].

II. Implementation

Next, we present implementation details of hexagonal multiresolution representations.

Section II-A describes the selection of image support for e�cient signal processing with

hexagonal systems. Section II-B describes �ltering in hexagonal sampling systems using a

HFFT based strategy and the computation of hexagonal multiresolution representations.

Finally, Section II-C describes the computation of overcomplete hexagonal multiresolution

representations. A listing of Matlab functions implementing hexagonal multiresolution

representations is available at http://www.iprg.cise.ufl.edu/.

A. Image support in hexagonal systems

E�cient discrete signal processing in hexagonal sampling systems can be achieved by

using the hexagonal fast Fourier transform but at the cost of restricting sequences to
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those that admit a hexagonally periodic extension with N1 = N2 = N and N = 2l; l � 0.

Systematic application of the HFFT to image processing further restricts sequences to

rectangular regions. It is easy to verify that for any N = 2l; l � 1 it is possible to

�nd a rectangular region Il such that any sequence with support con�ned to Il admits a

hexagonally periodic extension. Figure 9 shows such a sequence con�ned to region I1 and

its hexagonally periodic extension. For any l � 1, region Il+1 may be obtained from Il by

doubling the number of rows and the number of samples per rows in Il. Notice that given

the periodic sequence shown in Figure 9 there exists more than one fundamental period

such that when extended periodically in a hexagonal fashion results in the same periodic

sequence. In particular, Figure 9 shows a parallelogram P1 containing an alternative set

of samples that could be used to de�ne the same periodic sequence but greatly simpli�es

the HFFT computation. The simpli�cation comes from the fact that samples contained in

the parallelogram can be stored in an array of size N � 3N where the indices of the array

directly correspond to the coordinates (n1; n2) of the samples. It is straight forward to

verify that for any sequence con�ned to Il; l � 1 there exists a parallelogram Pl containing

an alternative set of samples that de�nes the same periodic sequence. For any l � 1, Pl+1

is obtained from Pl in the same way Il+1 was obtained from Il. It follows that computation

of the HFFT for a sequence con�ned to Il can be accomplished by using Equation (34)

where I corresponds to a region de�ned by Pl.

Although there are certain image processing applications in which image samples are

acquired in a hexagonal fashion, most digital detectors (e.g., CCDs) sample images rect-

angularly with the same sampling rate along both directions. Processing a rectangularly

sampled image with a hexagonal sampling system requires that the rectangularly sampled

image be mapped into a hexagonal sampling lattice [3], [2]. For square images whose size is

a power of two we describe a strategy that maps a rectangularly sampled image con�ned to

a square region consisting of 2N �2N samples (N = 2l; l � 1) into a hexagonally sampled

image con�ned to a rectangular region for which it is possible to compute its HFFT. This

mapping may be accomplished in two distinct ways. If the original image is oversampled,

we �rst interpolate horizontally by a factor of 3 and then mask the result with the masking

functionM1(nh; nv) =
1
4
(1+(�1)nh)(1+(�1)nh=2+nv) as shown in Figure 10. The resulting
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n1 t1,

n2  t2

x10 x20
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x22
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x33 x43

N2

N1

x00

I1

P1

Fig. 9. Hexagonally sampled sequence con�ned to a rectangular region I1 and its hexagonally periodic

extension. Parallelogram P1 contains an alternative set of samples that de�nes the same periodic

sequence.
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0

1

2

3

6 8

(a) (b) (c)

Fig. 10. Mapping a rectangularly sampled image into a hexagonal sampling lattice. (a) Rectangular

lattice, (b) Intermediate lattice with interpolated samples, (c) Sampling function.

(a) (b) (c)

Fig. 11. (a) A 512 � 512 rectangularly sampled radiograph of the breast, (b) Image with interpolated

samples, (c) Hexagonally sampled image con�ned to P9 { Axes n1 and n2 are shown at 90 degrees.

image is con�ned to region Il and consists of 3N2 samples (25% fewer samples than the

original). In this case, it is assumed that oversampling of the original image accounts for

the reduction of the number of samples in the resulting image. Alternatively, if the original

image is critically sampled, we interpolate horizontally by a factor of 3 and vertically by a

factor of 2 and mask the result with the masking function M2(nh; nv) =
1
2
(1+ (�1)nh+nv).

In this case the resulting image is con�ned to region Il+1 and consists of 3(2N)2 samples.

In each case the resulting sampling lattice gives a reasonable geometric approximation to

a hexagonal sampling lattice. Note that the oversampled method or the critically sampled

method, together with the equivalence between Il and Pl can be used to map a 2N � 2N

rectangularly sampled image into Pl or Pl+1, respectively. Figure 11 shows a 512 � 512

rectangularly sampled image and its mapping into P9 using the critically sampled strategy

described above.
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Mapping from Rectangular

to Hexagonal lattice

Input Image -
Interpolate

by 3 horizontally

and by 2 vertically

- Masking by

M2(nh; nv)

-Mapping from

Il+1 to Pl+1

- HFFT

?i
�

Filter - HFFT

6

�IHFFT�Mapping from

Pl+1 to Il+1

�
Mapping from

Hexagonal to

Rectangular lattice

�Output Image

Fig. 12. Filtering a rectangularly sampled image of size 2N � 2N; N = 2l with a hexagonally sampled

system by means of the HFFT. Critically sampled case shown.

B. Multiresolution representations in hexagonal systems

Filtering an image with a hexagonal �lter may be accomplished by computing the prod-

uct of the HFFTs of the image and the �lter kernel and taking the inverse hexagonal fast

Fourier transform (IHFFT) of the result. This approach requires that both the image and

the �lter kernel be supported in the same region Il. Again, computation of the HFFT can

be accomplished using Pl instead of Il due to periodicity. Figure 12 shows a block diagram

of the �ltering process described above for a rectangularly sampled signal con�ned to a

square region of size 2N � 2N; N = 2l.

Here, we are interested in �ltering an image with the quadrature mirror �lters in equation

(23) given the low-pass solution h(n1; n2) computed in [2]. Replacing equations (22) and

(24) in (23) and using relations (5) and (32) we obtain the following HDFT relations for
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the �lters,

F̂0(k) = Ĝ0(�k) =
X
n2I

h0(n) exp(�jkT(2�N�1)n);

F̂1(k) = Ĝ1(�k) = exp

�
j
2�

3N
(2k1 � k2)

�X
n2I

h1(n) exp(�jkT(2�N�1)n);

F̂2(k) = Ĝ2(�k) = exp

�
j
2�

3N
(k1 + k2)

�X
n2I

h2(n) exp(�jkT(2�N�1)n);

F̂3(k) = Ĝ3(�k) = exp

�
j
2�

3N
(k1 � 2k2)

�X
n2I

h3(n) exp(�jkT(2�N�1)n);

(36)

where h0(n) = h(n1; n2), h1(n) = (�1)n1h(n1; n2), h2(n) = (�1)n2h(n1; n2), h3(n) =

(�1)n1+n2h(n1; n2), and I is the region of support of the �lter kernels. It follows from the

equations above that the HFFT of �lters fk(n) can be obtained by modulating the HFFTs

of the kernels hk(n) with complex exponentials. Notice that �ltering an image con�ned to

a region Il with an r-ring �lter kernel fk(n) using the HFFT-�ltering strategy described

above requires that the region of support of the kernel be con�ned to Il (or equivalently

to Pl). Indeed, this requirement is satis�ed as long as l � dlog2(2r + 1)e � 1.

A one-level multiresolution decomposition of an image can be obtained by �ltering the

image with the �lters kernels fk(n) followed by down-sampling (as shown in Figure 5.)

This can be accomplished using the HFFT-�ltering strategy described above if the image

is con�ned to Il or Pl. Notice that if we work with sequences con�ned to Pl then the down-

sampling operation is equivalent to taking every other row and every other column of the

array storing the sequence. An (L + 1)-level multiresolution decomposition can then be

obtained recursively by cascading an analysis section through the low-pass branch of an L-

level multiresolution decomposition. Notice that the maximum number of levels is limited

by the smallest Pl supporting the �lter kernels. Figure 13 shows a two-level hexagonal

multiresolution decomposition and reconstruction using the 3-ring low-pass solution to

(23) computed in [2]. An algorithm for the multiresolution reconstruction follows directly

from its decomposition.

C. Overcomplete multiresolution representations in hexagonal systems

An overcomplete hexagonal multiresolution representation is computed by �ltering an

image with the equivalent �lters introduced in Section I-D. Using the HFFT-�ltering

strategy described previously it follows that the equivalent �lters F i

k
can be computed
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(a) (b)

Fig. 13. Two-level hexagonal multiresolution representation. (a) Decomposition. (b) Reconstruction.

Both images are displayed on their original sampling lattice.

taking the product of the HFFTs of �lter kernels fk;l(n) where Fk;l(
) = Fk(K
l
). It is

easy to show that the following HDFT relation holds for fk;l(n),

F̂k;l(k) = F̂k(K
lk):

This result combined with equation (36) leads to the following HDFT relations for the

�lters,

F̂0;l(k) = Ĝ0;l(�k) =
X
n2I

h0;l(n) exp(�jkT(2�N�1)n);

F̂1;l(k) = Ĝ1;l(�k) = exp

 
j
2l+1�

3N
(2k1 � k2)

!X
n2I

h1;l(n) exp(�jkT(2�N�1)n);

F̂2;l(k) = Ĝ2;l(�k) = exp

 
j
2l+1�

3N
(k1 + k2)

!X
n2I

h2;l(n) exp(�jkT(2�N�1)n);

F̂3;l(k) = Ĝ3;l(�k) = exp

 
j
2l+1�

3N
(k1 � 2k2)

!X
n2I

h3;l(n) exp(�jkT(2�N�1)n);

(37)

where

hk;l(n) =

8><
>:

h

�
(Kl)�1n

�
; if (Kl)�1n is an integer vector,

0; otherwise.
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Note that in the above derivation we used the fact that K de�ned a separable subsam-

pling matrix. It follows from the equation above that the HFFT of the �lter kernels fk;l(n)

can be obtained by modulating the HFFTs of the kernels hk;l(n) with complex exponen-

tials. The �lters hk;l(n) can be constructed by up-sampling hk(n) with sampling matrix

Kl. The �lters F i

k
can then be computed following equation (26) with the �lters given in

(37). Notice that it is possible to discard the complex exponentials and still obtain perfect

reconstruction. However, this will de�ne a di�erent set of �lters. A hexagonal overcom-

plete multiresolution representation of an image can be obtained by �ltering the image

with the �lters f i

k
derived above. Figure 14 shows an example of hexagonal overcomplete

multiresolution representations applied to a digitized radiograph of the breast. Contrast

enhancement was accomplished adaptively based on the location of multiscale edges de-

rived from the hexagonal overcomplete multiresolution representation. Figure 15 shows

another example of this technique applied to a region of interest of a digitized radiograph

of the chest. Please refer to [8] for a complete description of this enhancement algorithm

and other possible methods of enhancement.

Acknowledgments

Original digitized mammogram shown in Figure 11 was provided courtesy of the Center

for Engineering and Medical Image Analysis and the H. Lee Mo�tt Cancer Center and

Research Institute at the University of South Florida, Tampa.

Original digitized radiograph shown in Figure 15 was provided courtesy of the Depart-

ment of Radiology and the J. Hillis Miller Health Science Center at the University of

Florida, Gainesville.



23

(a) (b)

(c) (d)

Fig. 14. (a) Mathematical phantom. (b) Mammogramblended with phantom. (c) Combined orientations

of hexagonal edges obtained from level 3 coe�cients. (d) Contrast enhancement by multiscale edges

obtained from a hexagonal overcomplete multiresolution representation.
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(a)

(b) (c)

Fig. 15. (a) Original image. (b) Region of interest. (c) Enhanced region of interest via multiscale analysis.
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