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Abstract: 
Using hexagonal grids to represent digital images has 
been studied for more than 40 years. Increased processing 
capabilities of graphic devices and recent improvements in 
CCD technology have made hexagonal sampling 
attractive for practical applications and brought new 
interests on this topic. The hexagonal structure is 
considered to be preferable to the rectangular structure 
due to its higher sampling efficiency, consistent 
connectivity and higher angular resolution and is even 
proved to be superior to square structure in many 
applications. Since there is no mature hardware for 
hexagonal-based image capture and display, square to 
hexagonal image conversion has to be done before 
hexagonal-based image processing. Although hexagonal 
image representation and storage has not yet come to a 
standard, experiments based on existing hexagonal 
coordinate systems have never ceased. In this paper, we 
firstly introduced general reasons that hexagonally 
sampled images are chosen for research. Then, typical 
hexagonal coordinates and addressing schemes, as well as 
hexagonal based image processing and applications, are 
fully reviewed. 
 
I. Introduction 
Since Golay [1], the possibility of using a hexagonal 
structure to represent digital images and graphics has been 
studied by many researchers. Hexagonal grid is an 
alternative pixel tessellation scheme besides the 
conventional square grid for sampling and representing 
discretized images. Sampling on a hexagonal lattice is a 
promising solution which has been proved to have better 
efficiency and less aliasing [2]. The importance of the 
hexagonal representation is that it possesses special 
computational features that are pertinent to the vision 
process. Its computational power for intelligent vision 
pushes forward the image processing field. Dozens of 
reports describing the advantages of using such a grid type 
are found in the literature. Among these advantages are 
higher degree of circular symmetry, uniform connectivity, 

greater angular resolution, and a reduced need of storage 
and computation in image processing operations. 
In spite of its numerous advantages, hexagonal grid has so 
far not yet been widely used in computer vision and 
graphics field. The main problem that limits the use of 
hexagonal image structure is believed due to lack of 
hardware for capturing and displaying hexagonal-based 
images. In the past years, there have been various attempts 
to simulate a hexagonal grid on a regular rectangular grid 
device. The simulation schemes include those using 
rectangular pixels, pseudohexagonal pixels, mimic 
hexagonal pixels and virtual hexagonal pixels. Although 
none of these simulation schemes can represent the 
hexagonal structure without depressing the advantages 
that a real hexagonal structure possesses, the use of these 
techniques provides us the practical tools for image 
processing on hexagonal grids and makes it possible to 
carry on theoretical study of using hexagonal structure in 
existing computer vision and graphics systems. 
The use of hexagonal grid is also fettered by its pixel 
arrangement. In the hexagonal structure, the pixels are no 
longer arranged in rows and columns. In order to take the 
advantages of the special structure of hexagonal grid, 
several addressing schemes and coordinate systems have 
been proposed. There exist a 2-axis oblique coordinate 
system, a 3-axis oblique coordinate system, and a single 
dimensional addressing scheme. 
This paper is organized as follows. In Section II, we list 
the major reasons to be based on hexagonal structure for 
intelligent vision system. In Section III, we introduce 
several typical hexagonal simulation schemes. In Section 
IV, three addressing schemes on hexagonal structure are 
demonstrated. Image processing algorithms using 
hexagonal grid are discussed in Section V. 
 
II. Why Hexagonal? 
Since the introduction of computer graphics, one of the 
biggest problems that scientists have to face is the fact that 



 

 

the physical screen is a discrete set of points, i.e., a 
countable set of isolated points, and the real world is in a 
continuous environment. Moreover, in order to store, 
process, display and transfer images by digital devices, the 
image plane must be quantized into spatial elements of 
finite dimension, generally referred to as pixels. 
Digitization, which is to convert real images into discrete 
sets of points, has been therefore one of the earliest 
subjects of study for computer scientists involved in 
vision and graphics research. Each point which forms an 
image on the screen must be properly addressed in order 
to be indexed. The disposition of the points on the plane, 
called digitization scheme, however, can take different 
choices. Considering technical implementation, these 
points must be placed as regularly as possible on the plane 
and they must be disposed so that the coverage of the 
plane is as efficient as possible.  
 
Three Possible Regular Tessellation Schemes 
There exist only three possible regular tessellation 
schemes to tile a plane without overlapping among the 
samples and gaps between them, namely the tessellation 
with hexagons, with squares, and with regular triangles [3, 
pages 61-64] (see Fig. 1). Any other types of spatial 
tessellation will result in either unequal distance between 
neighboring pixels, or introduce gaps or overlaps among 
samples. A simple explanation is given below. For more 
detailed proof, please refer [3, page 61-64]. 
 

 
Fig. 1. Three schemes of regular tessellation 

 
We use the symbol },{ qp to denote the tessellation of 
regular p-gons, of which each has q pixels (p-gond) 
surrounding each vertex. It is easy to see that the {p,q}’s 
are }4,4{ , }3,6{ and }6,3{ for the three tessellation 
schemes as illustrated in Fig. 1, where in each case the 
polygon drawn in bold lines is the vertex figure, i.e., the 
q -gon whose vertices are the midpoints of the q edges 
connected to a vertex. A tessellation is said to be regular 
if it has regular faces and a regular vertex figure at each 
vertex. 
On the left is the square case }4,4{ , which is familiar and 
usual because it is aligned with the standard Cartesian 
axes, which helps to make operations simple and intuitive. 
The far right illustrates the triangular case }6,3{ , which 
yields a denser packing than the square case. This means 
that more information is contained in the same area of the 

image. The tessellation in the middle figure, hexagonal 
case }3,6{ , is often used for tiled floors and it can be seen 
in any beehive. It is believed to be the most efficient 
tessellation scheme among them.  
 
More Efficient Sampling Schemes 
No matter which sampling scheme is chosen, an 
insufficient sampling rate can always introduce unwanted 
effects in the reconstructed signal, referred as aliasing. 
Peterson and Middleton [5] investigated sampling and 
reconstructing wave-number-limited multi-dimensional 
functions and concluded that the most efficient sampling 
lattice, i.e., which uses a minimum number of sampling 
points to achieve exact reproduction of a wave-number-
limited function1, is not in general rectangular. Specially, 
when a two-dimensional isotropic function2 is considered, 
the optimum sampling lattice is the °120 rhombic 

(hexagonal) with spacing of sample points equal to ( ) 1
3

−
B  

if the spectrum of a function is bounded by a circle of 
radius Bπ2 in the wave-number plane (see Fig. 2). The 
sampling efficiency is 90.8%, compared with 78.5% for 
the largest possible square lattice. 
 

 
Fig. 2. Optimum sampling lattice for two-dimensional isotropic 

function 
 
A similar conclusion was obtained by Mersereau [2], who 
developed a hexagonal discrete Fourier transform and 
hexagonal finite impulse response filters. Mersereau 
showed that for signals which are band-limited over a 
circular region in Fourier space, 13.4% fewer sampling 
points are required with the hexagonal grid to maintain 
equal high frequency image information with the 
rectangular grid, thus less storage and less computation 
time are required. An example is that in image coding 
application, one may expect that the coding efficiency can 
be increased by using the hexagonal sampling scheme. 

                                                 
1  We call a function wave-number-limited if the Fourier 
transform of the function lie within a bounded region of 
spectrum space of the function [5]. 
2  An isotropic function is defined in the broad sense as 
describing a spectrum which cuts off at the same wave-number 
magnitude in all directions [5]. 



 

 

Recently, Vitulli, Armbruster and Santurri [6], after 
investigating the sampling efficiency of hexagonal 
sampling, also concluded that using hexagonal sampling, 
about 13% less number of pixels are needed to obtain the 
same performance as obtained using square sampling 
when sampling the same signal. 
These conclusions are briefly illustrated below. Fig. 3((a) 
is a generic hexagonal sampling lattice. Goodman [6,7] 
showed that the Fourier transform (FT) of a hexagonal 
lattice is still a hexagonal lattice. In [7, page 12], however, 
it is said that the Fourier transform of a circularly 
symmetric function is itself circularly symmetric, where 
the function f can be said to be circularly symmetric if it 
can be written as a function of r alone, that 
is, )(),( rgrg R=θ  [7, page 11]. In hexagonal lattices, the 
inverse of the sampling steps that corresponds with the 
distances between two “aligned” rows and columns in FT 
domain are twice the corresponding steps in spatial 
domain, as shown in Fig. 3(b). Similar to square case, the 
FT of the hexagonally sampled image is also composed of 
infinite replicas of the spectrum ),( ηξG , the FT of the 
image ),( yxg . These replicas are centred in the points of 
the hexagonal lattice, which is the FT of the hexagonal 
sampling lattice. 
 

 
     (a)    (b) 
Fig. 3. Hexagonal sampling lattice and its Fourier transform [6] 

 
Vitulli etc. compared the Nyquist constraints, i.e., the 
minimum sampling densities without aliasing, between 
rectangular and hexagonal cases. The bigger the minimum 
sampling density required is, the better the sampling 
performance will be. The maximum densities to tile 
spectra in spectrum space are illustrated in Fig. 4, for 
rectangular grid (left) and for hexagonal grid (right). The 
pixel density with hexagonal sampling that avoids aliasing 
is 23  and thus is lower than rectangular one. 
As a result, using hexagonal grid, wider spectra can be 
sampled without aliasing with the same number of pixels, 
or less pixel than using square grid. 
 
Smaller Quantization Error 
As mentioned earlier, in order to process an image by a 
digital computer, the continuous image in real world must 
be quantized into spatial elements of finite dimensions, 
generally referred as pixels. Due to the limited resolution 
capabilities of image sensors, this array is usually too 
small to adequately represent the scene in real world. 
Quantization error, thus, is inevitable. In computer vision, 

quantization error is a very important measurement to 
investigate the merits of different types of sensory 
configurations in order to find which spatial sampling 
would introduce less quantization error into computations. 
Kamgar-Parsi [8-11] developed formal expressions for 
estimating quantization error in hexagonal spatial 
sampling and found that, for a given resolution capability 
of the sensor, hexagonal spatial sampling yields smaller 
quantization errors than square sampling. 
 

 
Fig. 4. Spetral packaging for best rectangular and hexagonal 

sampling [6] 
 
Consistent Connectivity Definition 
Connectivity between pixels is a fundamental concept that 
simplifies the definition of numerous digital image 
concepts, such as regions and boundaries. To decide if two 
pixels are connected, it must be determined if they are 
neighbors and if they satisfy a specified criterion of 
similarity [12, pages 66-67]. 
On a square grid, there are two possible ways to define 
neighbors of a pixel. We can either regard pixels as 
neighbors when they have a common edge or when they 
have at least one common corner, so that four and eight 
neighbors exist (referred as a 4-neighborhood and an 8-
neighborhood). Accordingly, on a square grid, object 
connectivity can be defined as 4-way to any of the four 
nearest neighbours, or 8-way if connectivity to diagonal 
neighbours is permitted. This is illustrated in Fig. 5.  
 

 
Fig. 5. Neighbourhood relationship on the square grids and 

hexagonal grids 
 
Correspondingly, background connectivity must be 8-way 
if object connectivity is four-way or 4-way if object 
connectivity is 8-way [13]. Verification of this statement is 
presented below. 
Consider the pattern shown in Fig. 6(a). Assuming 4-way 
connectivity for both the object and the background, the 
number of vertices V in the pattern is 16, the number of 
edges E is 16, and the number of faces F is 4. 
Application of the Euler formula FEV +− to the pattern 
should give its genus. Thus, by the above formula the genus 



 

 

is 441616 =+− . However, the pattern has four objects and 
the background has two, so that the genus (the number of 
object components minus the number of background 
components 1+ ) is 3124 =+− . A similar disagreement in 
the value of the genus arises when 8-way connectivity is 
assumed. For then the number of vertices V in Fig. 6(a) is 12, 
the number of edges E is 16, and the number of faces F is 4. 
Thus, by Euler's formula, the genus is 0, whereas in fact it 
should be 1. 
 

 
   (a)    (b) 

Fig. 6. Square grid and hexagonal grid 
 
However, if 4-way connectivity is assumed for the object and 
8-way connectivity for the background then, according to 
Euler's formula, the genus is 4. Since the number of 
background components is now 1 (not 2), the value of the 
genus obtained by counting the number of components is also 
4. Similarly, when we assume the pattern to be 8-neighbor 
connected and the background to be 4-neighbor connected, 
both methods of calculating the value of the genus, which is 
0, agree. 
The hexagonal grid, however, offers no connectivity 
choice. We can only define a 6-neighborhood. 
Neighboring pixels have always one common edge and 
two common corners (see Fig. 6(b)). The absence of such 
choice in hexagonal grid results in easier and more efficient 
algorithms, such as thinning algorithm [13][14][15], since 
fewer connectivity situations have to be accounted for. 
Accordingly, connectivity in hexagonal objects is 
consistent as it is six-way to either of the nearest 
neighbours for both the object and the background image 
components [16, 17]. 
Assuming 6-neighbor connectivity, the number of verticesV  
in Fig. 6(b) is 24, the number of edges E is 30 and the 
number of faces F is 6. Using the Euler formula, the genus is 
equal to 0. Since the number of components of the pattern is 
1 and the number of components of the background is 2, the 
genus has the value 0121 =+− . Thus, both values of the 
genus agree. 
 
Equidistance 
With the introduction of neighbourhood relation, distance 
function can be easily measured. In square grid we have 
two types of distances, where the distance between 
adjacent pixels in the diagonal direction is 2 times of 
that in the horizontal (or vertical) direction (see Fig. 7(a)). 

The difference in the distance between the neighbors 
introduces inconsistency when a weighting function which 
depends on the distance between a given position and the 
centre of the pixel [18]. 
 

 
 (a)    (b) 

Fig. 7. Distance in a square grid and hexagonal grid 
 
While in hexagonal case, each hexagonal pixel has and 
only has six neighboring pixels and each pixel is 
equidistantly adjacent to their six neighbors along the six 
sides of the pixels. The centroid of the middle pixel is at 
the same distance from the centroids of the six adjacent 
pixels (see Fig. 7(b)). 
 
Greater Angular Resolution 
Image processing on a hexagonal lattice is advantageous 
is also believed due to its greater angular resolution to 
represent curved objects. It has been noted that hexagons 
offer greater angular resolution as the nearest neighbors of 
the same type are separated by °60  instead of °90 [1]. An 
example showing a familiar curved figure and a 
representation on square and hexagonal lattices is shown 
in Fig. 8.  
 

 
Fig. 8. Curved figure represented in hexagonal grid and 

hexagonal grid 
 
Notice that the hexagonal case, on the left of Fig. 8, 
appears to have smoother curves than the square case. 
There are several reasons for this. The first is due to the 
consistent connectivity in the hexagonal lattice. This 
means that all neighbours are uniform distances away 
from each other and leads to the smoother curvature. 
Another reason is what is known as the oblique effect in 
human vision (see web link 
http://www.ecs.soton.ac.uk/~ljm/hip.php). This means that 
we have a visual preference for lines at oblique angles. 
This also helps to make the hexagonal curves look 



 

 

smoother. 
As a matter of fact, the theory developed and the 
simulation done on a physical screen in [4] showed that 
hexagonal grids represent a reasonable alternative to 
conventional square grid display techniques not only for 
circle drawing, which was somehow predictable, but also 
for straight lines.  
On the hexagonal grid, digitizations display a better 
connectivity and are perceived as being approximated by 
small polylines, whereas on the square grid, digitizations 
are still perceived as being approximated by pixels. Such a 
perception of single pixels disturbs the impression of 
continuity of the discretized line. This is due to the fact 
that in the square grid a pixel’s neighbors are not placed 
all at the same distance. Moreover, two diagonal 
neighbors in the square grid have only one point in 
common, whereas two horizontal or vertical neighbors of 
the square grid, and all the neighbors of a pixel in the 
hexagonal grid, have one segment in common with their 
neighbor. This fact produces thickness variations in square 
digitizations, leading to greater edge busyness and to a 
thinner average width in a line’s digitization. 
 
Higher Symmetry 
Serra [19] has developed many of morphological 
operators that were currently used for image processing. 
He prefers the hexagonal grid to the rectangular because 
of the connectivity definition and the higher symmetry, 
which lead to simpler processing algorithms. It can be 
seen in Fig. 6 that the cluster of hexagonal pixels 
possesses the same symmetry about the three different 
lines connecting pairs of two pixels and the central pixel. 
This symmetry degree is one higher than that of square 
grid. This symmetric feature makes image processing 
more accurate. For example, when an image on a 
hexagonal grid is rotated, more image information will be 
retained compared to the same rotation is performed on 
square grid. 
 
Other Features of Hexagonal Grid 
The research done in the biological domain of animal 
vision clearly demonstrates that in animal vision systems 
the arrangement of rods and cones in the fovea more 
nearly approximate a hexagonal tessellation than a 
rectangular one. Specifically the research by Hubel [20] 
shows that the fovea can nearly be described by a regular 
hexagonal tessellation. Another compelling reason to 
investigate other tessellations of the plane is the well 
known paradox concerning the definition of the nearest 
neighbor network such that edges are continuous and that 
the inside of an object not be connected to the outside of 
the same object. [21] 
 
III. Hexagonal Image Representation 

In spite of the many advantages of hexagonal structure, 
the hexagonal based image processing has not been used 
widely in intelligent vision area. The main reason is that 
currently there is no hexagonal-based device available to 
capture and display digital images on hexagonal grids. So 
how to simulate hexagonally sampled images on common 
square display equipments has once become a serious 
problem that affects the advanced research on hexagonal 
architecture in the field of computer vision and graphics. 
Fortunately, there have been several ways to simulate a 
hexagonal grid on a regular rectangular grid. We list three 
most common simulations as follows. The use of these 
techniques allows us to take the advantages of hexagonal 
grids for computer vision and computer graphics. 
 
Mimic Hexagonal Pixels Using Square Pixels 
Horn [22] has described how a practical hexagonal data 
may be captured by delaying sampling by half a pixel 
width on alternate TV scan lines in horizontal direction 
(see Fig. 9). In his scheme, the pixel shape is square. In 
other words, the sampling intervals in horizontal and 
vertical directions are identical. This scheme simplifies 
the hardware design by setting identical sampling intervals 
in both horizontal direction and vertical direction. 
However, the equidistance property of hexagonal pixels is 
not preserved. A shown in Fig.9, if we denote the distance 
between any two neighbors in horizontal and vertical 
direction as 1 unit, the distance between any two 

neighboring pixels in diagonal direction will be 2
3 . 

 
Fig. 9. Using half-pixel shifted square pixels represent hexagonal 

structure 
 
Later on, Staunton [23] described a hexagonal data 
structure with a rectangular shape, where the sampling 
points of the central pixel’s six neighbors all lie on a circle 
with the centre of the circle being at the sampling point of 
the central pixel, as illustrated in Fig.10. The major 
advantages with this structure are that, all sampling points 
are equidistant from their nearest neighbors, the angle 
subtended by two nearest neighboring points is °60 , and 



 

 

the horizontal sampling distance is 32 . The pixel size is 

one by 32  and thus for systems employing an equal 
number of pixels horizontally and vertically, the image 
aspect ratio would be 1:32 . 

 
Fig. 10. Rectangular pixels on a hexagonal sampling grid 

 
 
Pseudo Hexagonal Pixel 
Wüthrich [4] proposed a pseudo hexagonal pel (see Fig. 
11) in order to evaluate the visual effect of hexagonal 
pixel and square pixel. A comparative simulation of two 
screens based on the square and the hexagonal lattices has 
been made. A hexagonal pixel, called a hyperpel, is 
simulated using a set of many square pels and the 
simulated square grid had to be adapted in order to make 
its density comparable with the hexagonal grid. This 
results in a great loss in the screen resolution and to an 
inexact simulation of the square grid, reducing it to a 
rectangular grid. In order to approximate the square and 
the hexagonal grids, two “ideal” lattices has been selected, 
that is ( ) ( )( )1,0,21,236 Λ=Λ  and 

( ) ( )( )1,0,0,23Λ=Λ  as an approximation of 4Λ . Λ has 
been chosen such that the points of the two lattices have 
the same density, i.e., the same number of points per unit 
of surface. As there is no way to display exactly the point 
( )21,23 on the square grid, in the practical simulator 
the lattices hat have been actually drawn on the simulator 
are thus 

( ) ( )( )1,0,0,874 Λ=Λ  
and 

( ) ( )( )1,0,21,876 Λ=Λ  
respectively for the square and the hexagonal lattices. The 
resulting hyperpels, which are illustrated in Fig. 11 were 
displayed at a resolution of 6060× pels. 
This idea has been adopted by Yabushita in [18] who 
designed a similar pseudo hexagonal picture (hex-
element), which is also composed of small square pixels 

and which aspect ratio is 12:14. 
 

 
(a) Square 

 
(b) Hexagon 

Fig. 11. Simulated hyper pixel 
 

Middleton and Sivaswamy [24, 25] proposed a framework 
for practical hexagonal-image processing, where a process 
known as image re-sampling is employed to generate a 
hexagonally sampled image from normal square image. 
 
Mimic Hexagonal Structure 
He [26] proposed a mimic hexagonal structure, called 
mimic Spiral Architecture, where one hexagonal pixel 
consists of four traditional square pixels and its grey level 
value is the average of the involved four pixels (see Fig. 
12). This mimic scheme preserves the important property 
of hexagonal architecture that each pixel has exactly six 
surrounding neighbours. However, because the grey-level 
value of the mimic hexagonal pixel is taken from the 
average of the four corresponding square pixels, this 
mimic scheme introduces loss of resolution. In addition, 
we know that according to hexagonal structure theory the 
distance between each of the six surrounding pixels and 
the central pixel is the same. However, this property is lost 
in the mimic Spiral Architecture. 
 

 
Fig. 12. A cluster of 7 mimic hexagons 



 

 

 
Virtual Hexagonal Structure 
Later, Wu [27] constructed a virtual hexagonal structure 
which is an important milestone for the theoretical 
research and the practical application exploration of this 
architecture. Using virtual Spiral Architecture, images on 
rectangular structure (or called square grid as indicated in 
Fig. 13) can be smoothly converted to Spiral Architecture. 
Such virtual Spiral Architecture only exists during the 
procedure of image processing. It builds up a virtual 
hexagonal grid system on memory space on computer. 
Then, processing algorithms can be implemented on such 
virtual spiral space. Finally, resulted data can be mapped 
back to rectangular architecture for display (see Fig. 13). 
Unlike the previously proposed mimicking methods, this 
mimicking operation nearly does not introduce distortion 
or reduce image resolution, which is the most remarkable 
advantage over other mimicking methods, while keeping 
the isotropic property of the hexagonal architecture. 
 

 
Fig. 13. Image processing on virtual Spiral Architecture 

 
IV. Hexagonal Structure Addressing 
Obviously, no matter which kind of simulating scheme is 
chosen, there exists another big problem that the 
hexagonal pixels cannot be labeled in normal column-row 
order as in rectangular grid. In order to properly address 
and store hexagonal images data, different coordinate 
systems have been proposed. In this section, typical 
coordinate systems are reviewed. 
 
2-Axes Oblique Coordinate Addressing Scheme 
Using two oblique axes (see Fig. 14) to address hexagonal 
structure is firstly suggested by Luczak and Rosenfeld 
[28], also referred as skewed coordinate system in [4], and 
h2 system in [29], where two basis vectors are not 
orthogonal. With such an oblique coordinate system, each 
hexagonal pixel can be addressed by an ordered pair of 
unit vectors, u  and v , as illustrated in Fig. 14, which 
indicate a horizontal deflection and an upright deflection 

respectively. The system has been shown to have the 
following properties: 

1. Complete – Be sufficient to represent any point 
in a 2-dimensional space; 

2. Unique – Any ordered pair corresponds to 
exactly one point; 

3. Convertible – It can be easily converted to and 
from Cartesian coordinate; and 

4. Efficient – It is a convenient and efficient 
representation. 

 

 
Fig. 14. 2-axis oblique coordinate system for hexagonal structure. 

Unit vectors u and v describe this coordinate system 
 
Three-Coordinate Symmetrical Coordinate Frame 
In [30,31], Her developed a symmetrical hexagonal 
coordinate frame, denoted as *R3, for hexagonal grid, 
which uses three coordinates x, y, z, instead of two, to 
represent each pixel on the grid plane, as shown in Fig. 15. 
The three coordinates at any pixel has a relationship 
among them: 

0=++ zyx . 
Here the distance between two neighboring grid points is 
defined as one unit.  

 
Fig. 15. Symmetrical hexagonal frame *R3 

 
The major advantage of this coordinate system is that 
there is a one-to-one mapping between *R3 and the 3-
dimensional Cartesian frame R3, as illustrated in Fig.16, 
where, x, y and z are the three orthogonal axes of R3. Due 
to this reason, many geometrical properties of R3 can be 
readily transferable to *R3. Moreover, since the x and y 
coordinates of a point of this symmetrical hexagonal 



 

 

coordinate frame*R3 are actually the two coordinates used 
in the oblique coordinate frame (see Fig. 14), theories and 
equations previously developed for the oblique coordinate 
frame can directly be used in*R3. Moreover, in [32], the 
use of this symmetrical hexagonal coordinate frame is 
demonstrated to derive various affine transformations. 
Due to the physical relationships between the symmetrical 
hexagonal coordinate frame and the 3-dimensional 
Cartesian frame R3, geometric transformations on the 
hexagonal grid are conveniently simplified and the 
beautiful symmetry property of the hexagonal grid is 
successfully preserved. 
 

 
Fig. 16. Relation between frames *R3 and R3 

 
This three-axis coordinate system is used in [33] for 
mathematically handling the hexagonal structure, for 
example, numerically calculating the distance of two 
objects. This three-axis coordinate system reflects the 
geometrical symmetry of the grid. 
 
Single Indexing System 
Sheridan [34] proposed a one-dimensional addressing 
system, as well as two operations based on this addressing 
system, for hexagonal structure. This system is called 
Spiral Architecture (see Fig. 17). Spiral Architecture (SA) 
is inspired from anatomical consideration of the primate's 
vision system. 
 

 
Fig. 17. Spiral addressing 

Sheridan [34] presented a one dimensional indexing 
scheme, called Spiral Addressing, to address each 
hexagon on the image. This address grows from the centre 
of image in powers of seven along a spiral like curve. This 
addressing scheme combined with two later proposed 
mathematic operations, spiral addition and spiral 
multiplication is the basic of Spiral Architecture [26,34]. 
The spiral addition and spiral multiplication correspond to 
image translation and image rotation respectively. 
Middleton and Sivaswamy [24,25] also proposed a similar 
single-index system for pixel addressing by modifying the 
Generalized Balanced Ternary system, as shown in Fig. 
18. 
 

 
Fig. 18 (a) The hexagonal image structure with indices; (b) 

Balanced ternary addition 
 
Neighbourhood operations are often used in image 
processing. Finding the neighbour in a hexagonal image 
makes use of the spiral addition operation, of which 
details can be found in [34]. In a seven-pixel cluster, the 
neighbourhood relation can be determined by spiral 
addition as follows. 
 

 
Fig. 19.  Neighbourhood relationship within Spiral Architecture. 

(a) Neighbourhood Relationship; (b) An example of  
neighbourhood 

 
Let the spiral address of the central pixel, as shown in Fig. 
19(a), be denoted by sa . Then the spiral address of its 
neighbour pixel can be described by spiral addition 
denoted by s+  with a certain number of displacements, as 
shown in Fig. 19 (a). An example is given in Fig. 19(b). 



 

 

For the whole image, following the spiral rotation 
direction, as shown in Fig. 20, one can find out the spiral 
address of any hexagonal pixel with centre on a certain 
hexagonal pixel whose spiral address is known. 
 

 
Fig. 20. Spiral rotating direction 

 
The Spiral Architecture has some distinguishing features 
compared to the square image processing. First, the one 
dimensional addressing scheme leads to an efficient 
storage and the placement of the origin at the centre of the 
image simplifies geometric transformations of a given 
image. Finally, the hexagonally sampled image allows 
non-traditional neighbourhoods with consistent boundary 
connectivity, which is useful for many computer vision 
applications.  
 
V. Hexagonal Image Processing 
Although hexagonal image representation and storage has 
never yet come to any standard, theoretical studies on 
hexagonal image processing have never ceased. 
 
Hexagonal Image Transformation 
For the purpose of efficient and fast processing and 
analysing, digital images that are originally defined in 
spatial domain usually need to be transformed into another 
domain with certain transformation and take use of some 
unique characters of the transformed domain to process 
the transformed image in the domain. Image 
transformation is the basis of many image processing and 
analysing techniques. After transformation, processing in 
spatial domain can be converted into the corresponding 
processing in transformed domain, which has many 
advantages. Among them, the most important ones are the 
computation will be greatly reduced and various image 
filtering techniques can be applied for image processing. 
For example, convolution operation becomes more 
computationally efficient when computed in frequency 
domain. Further examples include transform coding for 
image compression purpose and filter design. 

Among various image transformations, one of the most 
widely used is Fourier transformation, which transforms 
images from spatial domain to spectrum domain. Standard 
fast Fourier transform (FFT) algorithms, however, are not 
applicable to non-rectangularly sampled data. 
Mersereau [35] developed a two-dimensional fast Fourier 
transform (2-D FFT) for use with hexagonally sampled 
data. Nel [21] followed his derivation and corrected a 
number of algebraic errors in his derivation and derived 
the 2-D Walsh transformation. They were all derived in 
non-orthogonal axes. Later, Ehrhardt [36] claimed that 
Mersereau’s 2-D FFT algorithm would require an 
additional interpolation step, which might introduce 
artifacts. He presented a separable fast discrete Fourier 
transform algorithm where the data space is sampled with 
hexagonal grids and transform space is sampled with 
rectangular grids. In [37], Middleton derived a Fast 
Fourier Transform (FFT) for the hexagonal lattice based 
upon the Cooley-Tukey approach [38]and the radix-7 
decimation in space algorithm. 
In [39], a hexagonal discrete cosine transform which can 
be used in the applications of image coding is described 
and showed that the proposed HDCT is more efficient in 
energy compaction than the HDFT. 
 
Edge Detection on Hexagonal Structure 
When a scene is observed by a human, the human visual 
system first segments the scene. Edge detection is an 
important approach for image segmentation in computer 
vision systems. This approach measures the rate of change 
and decides the existence of an edge at each point. The 
basic assumption used in most edge detection algorithms 
is that the edges are characterised by large (step) changes 
in intensity (or color in color images case). Hence, at the 
location of an edge, the first derivative of the intensity 
function should be a maximum or the second derivative 
should have a zero-crossing. 
Middleton [24] investigated the performance of using a 
hexagonally sampled structure for implementing classical 
edge detectors, including Prewitt, Laplacian of Gaussian 
(LoG) and the Canny edge detector. Images that contain 
curves and straight lines along with a variation in contrast 
are used for test. Equivalent edge detection masks have 
been designed for hexagonal images, where the horizontal 
mask for the hexagonal case is equivalent to the square 
case, the vertical direction gradient mask is approximated 
by a combination of two masks oriented at °60  and °120  
to the horizontal. Fig. 21 and Fig. 22 give different masks 
used in the Prewitt edge detector implementation. 
Cho [40] applied the edge relaxation to the hexagonal 
grids. His experiments showed that hexagonal edge 
relaxation can detect better edges than conventional edge 
relaxation. This comes from the advantages of hexagonal 
sampling and unambiguous classification of edge types. 
Furthermore, if a closed boundary is reached, then it is 



 

 

unchanged permanently and the open boundary is 
weakened as the iteration proceeds from the tail of the 
boundary. Therefore the overall results are reliable in 
finding the edges in the given edges. 
 

 
Fig. 21. Prewitt masks used to compute the gradient at 
the central shadowed point in (a) x -direction, and (b) 

y -direction on square architecture 
 

 
Fig. 22. Prewitt masks used to compute the gradient at the 

central shadowed point in 3 directions on hexagonal architecture 
 
Several papers on edge detection based on Spiral 
Architecture have been proposed since 1996. In [41], an 
overview on edge detection within Spiral Architecture was 
given. In [42], edge detection using edge focusing 
technique was proposed. The second edge detection 
method proposed by Zhou et al [43] applied a bilateral 
filter which combines a domain filter with a range filter to 
suppress image noise for edge detection. Another method 
for edge detection on Spiral Architecture, as shown in [44], 
was based on triple-diagonal gradient. The gradient of 
grey-level function was defined as a combination of three 
vectors in three diagonal directions of hexagonal image 
structure. This method is a more accurate detection 
mechanism where the gradient is implemented in a more 
accurate way in the discrete image space.  
Results of edge detection on hexagonal images show that 
an edge map with better fidelity for curved objects is 
obtained than with square images. In the case of straight 
edged objects the edge-maps are of similar quality. This is 
due mainly to the connectivity of the individual hexagonal 
pixels generating more consistent contours. Furthermore, 
using Spiral Architecture for edge detection has 
computational advantages in order to achieve similar 
detection results. In particular, convolution operations 
which are routinely used in edge detection can be 
implemented with great efficiency. The two together make 

a strong case for hexagonal based edge detection and seem 
to reinforce the point that hexagonal image processing can 
be a viable alternative to conventional square image 
processing. 
 
Hexagonal Thinning 
Thinning is the process which is used to reduce the 
amount of data of an object to obtain its skeleton, which 
contains single pixel wide lines and can represent the 
shape of the object. Thinning has been applied to a great 
variety of patterns in the field of machine recognition 
[45].Wide range of applications show the usefulness of 
reducing patterns to thin-line representations, which can 
be attributed to the need to process a reduced amount of 
data, as well as to the fact that shape analysis can be more 
easily made on line-like patterns. The thin-line 
representation of certain elongated patterns, for example, 
characters, would be closer to the human conception of 
these patters; therefore, they permit a simpler structural 
analysis and more intuitive design of recognition 
algorithms. A skeleton should have the following 
properties [14, 15]: 

1. It contains a number of single pixel lines; 
2. Each element is connected to at least one other 

with no gaps in its structure; 
3. Skeletal legs are preserved; 
4. It is accurately positioned; 
5. Noise induced perimeter pixels are ignored and 

limbs are not formed towards them. 
Thinning algorithms for use with rectangular, hexagonal, 
and triangular arrays has been investigated by Deutsch 
[13]. He used the same approach to develop each 
algorithm, where unnecessary pixels were iteratively 
deleted until no more pixels can be removed. 
Experimental results on handwritten character recognition 
showed that the algorithm operating in the hexagonal grid 
was the most computationally efficient. The resulting 
thinned images which are obtained using the triangular 
array contain the least number of points per image, since 
on this array the neighbors span the largest distance. The 
ratio of the maximum distances of any neighbor on the 
rectangular, hexagonal, and triangular arrays 
is 23:2:1 . However, the increased size of the basic 
window renders the processing on a triangular array – and 
thus the resulting image – very sensitive to edge 
irregularities and, more important, to noise. From this 
point of view, the hexagonal array is preferential, since all 
its neighbors – theoretically at least – are equidistant. 
Moreover, if the thinned image is to be chain encoded the 
number of direction vectors, in the triangular array is 12, 
which means that the maximum number of bits required to 
represent a single direction vector is four; this compares 
with the three bits required for the other two arrays. So for 
storage or transmission of a complete resulting line 



 

 

drawing, the triangular array will only be useful if the 
number of points of the image thereon is less than three-
quarters the number of points in the image on the 
hexagonal array. 
Staunton [14] presented an analysis of the thinning 
operation from hexagonally sampled images and 
compared the algorithm experimentally to a similar 
parallel algorithm designed for a rectangular grid. He 
defined a set of structuring masks in order to decide 
whether a pixel could be deleted from the object’s border. 
The hexagonal thinning algorithm requires only six masks 
containing seven elements each, while the rectangular 
algorithm requires eight masks containing nine elements 
each. This greatly reduced the processing time for 55% of 
that required to process the rectangular scheme skeleton. 
Experimental results also showed that the hexagonal 
skeleton exhibited more accurate corner representation, 
noise immunity. 
 
Hexagonal Interpolation: Hex-splines 
Van De Ville etc. [46,47] constructed a new family of 
hex-splines which are specifically designed for hexagonal 
lattices and make use of these splines to derive the least-
square reconstruction function. Hex-splines are a new type 
of bivariate splines that are especially designed for 
hexagonal lattices. Inspired by the indicator function of 
the Voronoi cell, they are able to preserve the isotropy of 
the hexagonal lattice (as opposed to their B-spline 
counterparts). They can be constructed for any order and 
are piecewise-polynomial (on a triangular mesh). 
Analytical formula have been worked out in both spatial 
and Fourier domains. For orthogonal lattices, the hex-
splines revert to the classical tensor-product B-splines. 
While the standard approach to represent two-dimensional 
data uses orthogonal lattices, hexagonal lattices provide 
several advantages, including a higher degree of 
symmetry and a better packing density. They discussed 
how to advantageously apply them for image processing. 
We show examples of interpolation and least-squares re-
sampling. 
Yabushita [18] investigated the performance of image 
reconstruction on hexagonal grid. Conventional image 
reconstruction methods are implemented on square 
structure. However, on a square grid, the distance between 
adjacent pixels is different in the horizontal (or vertical) 
direction from that in the diagonal direction. This 
difference introduces inconsistency when neighboring 
pixel values are interpolated with a spherically symmetric 
weighting function which weight depends on the distance 
between a given position and the central pixel. Yabushita 
compared the accuracy of the reconstructed images and 
compared the results with those obtained on square grid. 
His experimental results on disc-shaped images showed a 
better reconstruction quality on hexagonal grid than that 
on rectangular grid. 
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