
Hexastore:
Sextuple Indexing for Semantic Web Data Management ∗

Cathrin Weiss
Department of Informatics

University of Zurich
CH-8050 Zurich, Switzerland

lastname@ifi.uzh.ch

Panagiotis Karras
School of Computing
National University of

Singapore
117543, Singapore

lastname@comp.nus.edu.sg

Abraham Bernstein
Department of Informatics

University of Zurich
CH-8050 Zurich, Switzerland

lastname@ifi.uzh.ch

ABSTRACT
Despite the intense interest towards realizing the Semantic
Web vision, most existing RDF data management schemes
are constrained in terms of efficiency and scalability. Still,
the growing popularity of the RDF format arguably calls for
an effort to offset these drawbacks. Viewed from a relational-
database perspective, these constraints are derived from the
very nature of the RDF data model, which is based on a
triple format. Recent research has attempted to address
these constraints using a vertical-partitioning approach, in
which separate two-column tables are constructed for each
property. However, as we show, this approach suffers from
similar scalability drawbacks on queries that are not bound
by RDF property value. In this paper, we propose an RDF
storage scheme that uses the triple nature of RDF as an as-
set. This scheme enhances the vertical partitioning idea and
takes it to its logical conclusion. RDF data is indexed in six
possible ways, one for each possible ordering of the three
RDF elements. Each instance of an RDF element is associ-
ated with two vectors; each such vector gathers elements of
one of the other types, along with lists of the third-type re-
sources attached to each vector element. Hence, a sextuple-
indexing scheme emerges. This format allows for quick and
scalable general-purpose query processing; it confers signifi-
cant advantages (up to five orders of magnitude) compared
to previous approaches for RDF data management, at the
price of a worst-case five-fold increase in index space. We
experimentally document the advantages of our approach on
real-world and synthetic data sets with practical queries.

1. INTRODUCTION
The vision of the Semantic Web [13] is to allow everybody
to publish interlinked machine-processable information with
the ease of publishing a web page. The basis for this vision is
a standardized logical data model called Resource Descrip-
tion Framework (RDF) [18, 37]. RDF data is a collection of

∗In memory of Klaus Dittrich.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

statements, called triples, of the form 〈s, p, o〉, where s is a
subject, p is a predicate, and o is an object; each triple states
the relation between the subject and the object. A collection
of triples can be represented as a directed typed graph, with
nodes representing subjects and objects and edges represent-
ing predicates, connecting subject nodes to object nodes.
The increasing amount of RDF data on the Web calls for
the development of systems customized for the efficient and
effective management of such data. Thus, significant efforts
have been dedicated to the development of architectures for
storing and querying RDF data, called triple stores [8, 9, 11,
17, 25, 26, 46, 19, 45, 39, 44].
Still, most existing triple stores suffer from either a scal-
ability defect or a specialization of their architecture for
special-type queries, or both. Traditional approaches have
either been limited to a memory based storage, or mapped
the triple-based format to a relational data base; therewith,
they have forgone the opportunity to optimize triple storage,
retrieval, and updates to the graph-based format.
In particular, RDF triples were traditionally stored in a gi-
ant triples table, causing serious scalability problems. Other
approaches tried to attenuate these problems by construct-
ing relational-like tables that gathered many properties to-
gether as attributes. Still, this approach did not escape the
scalability defects. The most recent effort towards allevi-
ating these deficiencies [5] focused on taming the scalability
drawback, following a vertical partitioning approach. In this
approach, a triples table (i.e., a relational table with three
columns, one for each RDF resource) is rewritten into n
two-column tables where n is the number of unique prop-
erties in the data. This approach confers a clear advantage
for processing queries in which properties appear as bound
variables. Still, this vertical partitioning model is strictly
property-oriented.
Arguably, property-bound queries are not necessarily the
most representative way of querying RDF data. Hence, the
methodology of [5] becomes suboptimal for general queries,
in which properties may not be bound. Thus, the property
orientation of this model renders it unsuitable for answering
such general queries.
In this paper, we argue that an efficient RDF storage scheme
should offer both scalability in its data management perfor-
mance and generality in its data storage, processing and
representation. To achieve this double goal, we propose a
novel approach to RDF data management. Our framework
is based on the idea of indexing the RDF data in a multiple-
index framework. Two vectors are associated with each

1

1008

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

RDF element (e.g., subject), one for each of the other two
RDF elements (e.g., property and object). Moreover, lists of
the third RDF element are appended to the elements in these
vectors. In total, six distinct indices are used for indexing
the RDF data. These indices materialize all possible orders
of precedence of the three RDF elements. In effect, our ap-
proach adopts the rationale of vertical-partitioning [5] and
multiple-indexing [27, 47] systems, but takes it further, to
its logical conclusion. This scheme allows not only property-
based two-column tables, but a representation based on any
order of significance of RDF resources and properties.
Outline The remainder of this paper is structured as fol-
lows. Section 2 presents related work on RDF storage and
discusses the deficiencies of previous approaches. Section 3
outlines the motivation for our research. In Section 4 we in-
troduce the Hexastore, our solution for Semantic Web data
management. Section 5 presents the experimental results on
the performance of a prototype Hexastore and our represen-
tation of the state-of-the-art RDF storage approach, using a
real-world and a synthetic data set as well as the benchmark
queries used in previous work. Finally, Section 6, discusses
our results and potential future research directions and in
Section 7 we outline our conclusions.

2. BACKGROUND AND RELATED WORK
In this section we present an overview of existing approaches
to RDF data management.

2.1 Conventional Solutions
A variety of architectures for the storage and querying of
large quantities of RDF metadata have been proposed. How-
ever, systems such as the FORTH RDF Suite [8, 9], Redland
[11], Sesame [17], 3store [25, 26], Jena [46, 19, 45], DLDB
[39], KAON [44], RStar [36], Oracle [20], and rdfDB [22]
utilize a traditional relational databases or Berkeley DB as
their underlying persistent data store [38].
In most of these systems, RDF data is decomposed into
a large number of single statements (i.e., triples) that are
directly stored in relational or hash tables. Thus, simple
statement-based queries can be satisfactorily processed by
such systems. A statement-based query lacks one or two
parts of a triple, and the answer is a set of resources that
complement the missing parts. Still, statement-based queries
do not represent the most important way of querying RDF
data. More complex queries, involving multiple filtering
steps, are arguably more important. However, conventional
approaches are not efficient on such queries [38].
Besides, systems such as Jena [46, 19, 45] attempt to create
relational-like property tables out of RDF data; these ta-
bles gather together information about multiple properties
over a list of subjects. Still, these schemes do not perform
well for queries that cannot be answered from a single prop-
erty table, but need to combine data from several tables [5].
Furthermore, such systems impose a relational-like structure
on semi-structured RDF data. However, imposing structure
where it does not naturally exist results into sparse repre-
sentation with many NULL values in the formed property
tables. Handling such sparse tables, as opposed to denser
ones, requires a significant computational overhead [12].
Concurrent work has studied problems such as constructing
scalable publish/subscribe systems for RDF metadata [40]
and performing continuous queries over them [35].

2.2 Alternative RDF Data Storage Schemes
Several other pieces of work have suggested RDF data stor-
age schemes that depart from the conventional solutions.

2.2.1 Storing RDF Data as a Graph
A stream of research has investigated the possibility of stor-
ing RDF data as a graph [16, 28, 10]. Still, these solutions
do not sufficiently address the scalability questions either.
A related approach has proposed a path-based approach
for storing RDF data [34, 38]. However, these path-based
schemes are also ultimately based on a relational database:
they store subgraphs into distinct relational tables. Thus,
these systems do not provide the scalability necessary for
query processing over vast amounts of RDF data. Other
related work has focused on measuring similarity within the
Semantic Web [33] and using selectivity estimation tech-
niques for query optimization with RDF data [41]; still these
techniques, based on main-memory graph implementations,
also face scaling limitations [41].

2.2.2 Multiple-indexing Approaches
Harth and Decker [27] proposed storing RDF data based
on multiple indices, while taking into consideration context
information about the provenance of the data. It constructs
six indexes that cover all 24 = 16 possible access patterns
of quads in the form {s, p, o, c}, where c a is the context of
triple {s, p, o}. This scheme allows for the quick retrieval of
quads conforming to an access pattern where any of s, p, o, c
is either specified or a variable [27]. Thus, it is also oriented
towards simple statement-based queries; it does not allow for
efficient processing of more complex queries.
A similar multiple-indexing approach has been suggested by
Wood et al. in the Kowari system [47]. Kowari also stores
RDF statements as quads, in which the first three items form
a standard RDF triple and a fourth, meta item, describes
which model the statement appears in. Anticipating [27],
Kowari also identifies six different orders in which the four
node types can be arranged such that any collection of one
to four nodes can be used to find any statement or group of
statements that match it [47]. Thus, each of these orderings
acts as a compound index, and independently contains all
the statements of the RDF store. Kowari uses AVL trees to
store and order the elements of these indexes [47].
Still, like [27], the Kowari solution also envisions simple
statement-based queries. The six orders that it takes into
consideration all obey the same cyclic order; they do not
consider the 4! = 24 possible permutations of the four quad
items, neither the 3! = 6 possible permutations of the three
items in a triple. Thus, if the meta nodes are ignored, the
number of required indices is reduced to 3, defined by the
three cyclic orderings {s, p, o}, {p, o, s}, and {o, s, p} [47].
These indices cannot provide, for example, a sorted list of
the subjects defined for a given property. Thus, Kowari does
not allow for efficient processing of more complex queries ei-
ther. However, the multiple-index approach suggested by
these two schemes [27, 47] is, in our opinion, an idea worth
considering for further exploration. We will come back to
this issue when we introduce our solution in Section 4.

2.2.3 The Vertical-Partitioning Solution
Most recently, Abadi et al. [5] suggested a vertical partition-
ing approach. In this scheme, a triples table is rewritten into
n two-column tables, one table per property, where n is the

2

1009

number of unique properties in the data. Each table contains
a subject and an object column [5]. Multi-valued subjects,
i.e. subjects related to multiple objects by the same prop-
erty, are thus represented by multiple rows in the table with
the same subject and different object values. Each table is
sorted by subject, so that particular subjects can be located
quickly, and fast merge-joins can be used to reconstruct in-
formation about multiple properties for subsets of subjects
[5]. In [5], this approach is coupled with a column-oriented
DBMS [14, 15, 42] (i.e., a DBMS designed especially for
the vertically partitioned case, as opposed to a row-oriented
DBMS, gaining benefits of compressibility [4] and perfor-
mance [7]). Then it confers a clear advantage for processing
queries in which properties appear as bound variables. The
study in [5] has established this scheme as the state of the
art for scalable Semantic Web data management.
Furthermore, Abadi et al. [5] suggest that the object columns
of tables in their scheme can also be optionally indexed (e.g.,
using an unclustered B+ tree), or a second copy of the table
can be created clustered on the object column. Hence, [5]
has also suggested a form of multiple indexing for Semantic
Web data management. However, this multiplicity is lim-
ited within a property-oriented architecture. Besides, this
suggestion was not implemented as part of the benchmark
system used in [5].
In effect, this vertical-partitioning model is oriented towards
answering queries in which the property resource is bound,
or, otherwise, the search is limited to only a few properties.
In fact, while Abadi et al. [5] argue convincingly against the
property-table solutions of [46, 19, 45], the property-based
two-column-table approach they introduce shares most of
the disadvantages of those property-table solutions itself.
In fact, the two-column tables used by [5] are themselves a
special variation of property tables too. Specifically, these
two-column tables are akin to the multi-valued property ta-
bles introduced in [45]; namely, the latter also store single
properties with subject and object columns. In this respect,
the most significant novelty of [5] has been to integrate such
two-column property tables into a column-oriented DBMS.
Besides, Wilkinson [45] did observe the deficiency of the
property tables when it comes to unknown-property queries.
Thus, both the general property-table approach of [46, 19,
45] and the specific, column-oriented property-table scheme
of [5] are bound to perform poorly for queries that have un-
known property values, or for which the property is bound
at runtime.
Abadi et al. [5] do repeatedly observe the problem of having
non-property-bound queries, but do not effectively address
it. The drawbacks of other schemes in cases where a query
does not restrict on property value, or the value of the prop-
erty is bound during query execution, do in fact apply to
the scheme of [5] as well: All two-column tables will have
to be queried and the results combined with either complex
union clauses, or through joins. Thus, queries that have
such unspecified property values (or with such values bound
at runtime) are generally problematic for the RDF storage
architecture proposed in [5].
Characteristically, the experimental study in [5] was based
on the assumption that only a set of 28 out of the 221 unique
properties in the studied library catalog data set [2] were
interesting for the study; queries that were not property-
bound were run on this limited set only. Unfortunately,
such an assumption is hard to be realized in a real-world

setting. Thus, there is a need for scalable semantic web data
management that will not depend on assumptions about the
number of properties in the data or the (property-bound)
nature of the executed queries.
As a concrete example, the raw data in table of Figure 1(a)
show an instance of triples of an LUBM-like [23] data set;
the triples in the table store academic information about a
group of four people. Noticeably, not all properties are de-
fined for all subjects in the table. A possible, interesting
query over these data is to ask what kind of relationship,
if any, a certain person has to MIT (upper part of Figure
1b); another interesting query looks for people who have
the same relationship to Stanford as a certain person has
to Yale (lower part of Figure 1b). Furthermore, one may
ask for other universities where people related to a certain
university are involved; or for people who hold a degree, of
any type, from a certain university; or for people who are
anyhow related with both of a pair of universities, and so on.
All these queries are not property-bound; they require gath-
ering information about several properties. Besides, some of
them require complex joins on the lists of subjects related
to a certain object through several properties. Interestingly,
in such queries the binding originates neither from a prop-
erty, nor from a subject, but from an object (e.g., a certain
university).
Subj Property Obj

ID1 type FullProfessor
ID1 teacherOf ‘AI’
ID1 bachelorFrom ‘MIT’
ID1 mastersFrom ‘Cambridge’
ID1 phdFrom ‘Yale’
ID2 type AssocProfessor
ID2 worksFor ‘MIT’
ID2 teacherOf ‘DataBases’
ID2 bachelorsFrom ‘Yale’
ID2 phdFrom ‘Stanford’
ID3 type GradStudent
ID3 advisor ID2
ID3 teachingAssist ‘AI’
ID3 bachelorsFrom ‘Stanford’
ID3 mastersFrom ‘Princeton’
ID4 type GradStudent
ID4 advisor ID1
ID4 takesCourse ‘DataBases’
ID4 bachelorsFrom ‘Columbia’

SELECT A.property

FROM triples AS A

WHERE A.subj = ID2

AND A.obj = ‘MIT’

SELECT B.subj

FROM triples AS A,

triples AS B,

WHERE A.subj = ID1

AND A.obj = ‘Yale’

AND A.property = B.property

AND B.obj = ‘Stanford’

(a) Example RDF triples (b) SQL queries over (a)

Figure 1: Sample RDF data and queries.

3. MOTIVATION
Arguably, queries bound on property value are not necessar-
ily the most interesting or popular type of queries encoun-
tered in real-world Semantic Web applications. In fact, it
is usually the case that specific properties may largely be
the unknown parts of queries; indeed, one may query for
relationships between resources without specifying those re-
lationships (consider, for example, the applications arising
with the proliferation of social networks).
Still, as we have seen, existing RDF data storage schemes
are not designed with such queries in mind. Instead, they
typically center around the idea of gathering together triples
having the same property, or triples having the same sub-
ject (e.g., [46, 19, 45, 5]); alternatively, some may offer an
object-subject hash key for identifying properties [27, 47].
However, no existing scheme can directly provide a function-
ality such as giving a list of subjects or properties related

3

1010

to a given object. We argue that such functionalities are
not only desirable, but also achievable, thanks to the very
triple nature of RDF data. Namely, a set of six indices (i.e.,
3!) covers all possible accessing schemes an RDF query may
require. Thus, while such a multiple indexing would result
into a combinatorial explosion for an ordinary relational ta-
ble, it is quite practical in the case of RDF data. In the
next section we proceed to define the Hexastore, an RDF
indexing scheme that implements this idea.

4. HEXASTORE: SEXTUPLE SEMANTIC
WEB DATA INDEXING

The approach of [5] treats RDF triples as characterized pri-
marily in terms of their property attribute. In this section we
discuss an approach that does not treat property attributes
specially, but pays equal attention to all RDF items.

4.1 Description of a Hexastore
In order to address the aforementioned difficulties, we take
the vertical partitioning idea further, to its full logical con-
clusion. The resulting solution does not discriminate against
any RDF element; it treats subjects, properties and objects
equally. Thus, each RDF element type deserves to have spe-
cial index structures built around it. Moreover, every pos-
sible ordering of the importance or precedence of the three
elements in an indexing scheme is materialized. The result
amounts to a sextuple indexing scheme. We call a store that
maintains six such indices a Hexastore. Each index structure
in a Hexastore centers around one RDF element and defines
a prioritization between the other two elements. Thus, the
Hexastore equivalent of a two-column property table can be
either indexed by subject and allow for a list of multiple
object entries per subject, or vice versa. Hence a particular
header for property p is associated to a vector of subjects
s(p) and to a vector of objects o(p); in the former case, a
list of associated objects os(p) is appended to each subject
entry in the vector; in the latter, a list of associated subjects
so(p) is appended to each object entry.
Besides, a Hexastore does not take any prioritization of the
three triple attributes for granted. RDF triples are not as-
sumed to exist in a property-based universe. Hence, a Hex-
astore creates not only property-headed divisions, but also
subject-headed and object-headed ones. In the former case,
a given subject header s is associated to a property vector
p(s) and to an object vector o(s); a list of associated ob-
jects op(s) is appended to each entry in the property vector;
likewise, lists of associated properties po(s) are appended
to entries in the object vectors. Interestingly, for a given
subject sx and a property py, the object list opy(sx) in this
subject-headed indexing is identical to the object list osx(py)

in the property-headed indexing. Thus, only a single copy
of each such list is needed in the indexing architecture.
Likewise, in the latter, object-headed division, each object o
in the data set is linked, as a header, to a subject vector s(o)
and to an property vector p(o). Now lists of associated prop-
erties ps(o) are appended to subject vector entries; similarly,
lists of associated subjects sp(o) are appended to entries in
the object vectors. Again, a list of properties psy(ox) for
object ox and subject sy in this object-headed indexing is
identical to the property list pox(sy) of the subject-headed
indexing. Similarly, a list of subjects spx(oy) for property px

and object oy in the object-headed indexing is identical to

the subject list soy(px) featured in the property-headed in-
dexing. Hence, such lists do not have to be replicated; only
single copies of them need to be maintained.
Putting it all together, the information for each triple 〈s, p, o〉
in the data is represented in six ways, one for each possible
prioritization of the three elements. We name these 3! = 6
prioritization ways by acronyms made up from the initials
of the three RDF elements in the order of each prioriti-
zation. For example, the indexing that groups data into
subject-headed divisions with property vectors and lists of
objects per vector is the spo indexing. Likewise, the osp in-
dexing groups data into object-headed divisions of subject
vectors with property lists per subject. In this framework,
the column-oriented vertical partitioning scheme of [5], in
which two-column property tables are sorted by subject, can
be seen as a special, simplified variant of our pso indexing.
The six indexing schemes are then called spo, sop, pso, pos,
osp, and ops.
We employ a dictionary encoding similar to that adopted
in [17, 20, 5]. Instead of storing entire strings or URIs, we
use shortened versions or keys. In particular, we map string
URIs to integer identifiers. Thus, apart from the six indices
using identifiers (i.e., keys) for each RDF element value, a
Hexastore also maintains a mapping table that maps these
keys to their corresponding strings. This mapping amounts
to a dictionary encoding of the string data.
According to the preceding discussion, three pairs of indices
in this six-fold scheme share the same terminal lists. Thus,
the spo and pso indices share the same terminal object-lists;
the osp and sop indices share the same terminal lists of prop-
erties; lastly, the pos and ops indices point to the same ter-
minal subject-lists. In effect, the worst-case space occupied
by these six indices in a Hexastore is not six times as large as
the space occupied when storing the keys in a simple triples
table. In the worst case, the space involves a five-fold in-
crease in comparison to a triples table. This is due to the
fact that the key of each of the three resources in a triple
appears in two headers and two vectors, but only in one list.
For instance, each subject appears in the headers of the spo
and sop indices and in the vectors of the pso and osp in-
dices, but only in a single list used by both the pos and ops
indices. In the worst case, assume a triple 〈si, pj , ok〉, such
that each of si, pj , and ok appears only once in the given
RDF data set; then the key of each resource in this triple
requires five new entries in the Hexastore indexing. Hence,
the worst-case space requirement of a Hexastore is quintuple
of the space required for storing the keys in a triples table.
In practice, the requirement can be lower, since most RDF
resources do not appear only once in a given data set.
As an example that illustrates the above discussion, the ops
indexing for the data in Figure 1 includes a property vec-
tor for the object ‘MIT’. This property vector contains two
property entries, namely bachelorFrom and worksFor. Each
of these property entries is appended with a list of related
subjects; in the particular example each list contains one
item only, namely ID1 for the bachelorFrom property and
ID2 for the worksFor property. A similar configuration holds
for the object ‘Stanford’ in the table. Besides, the osp in-
dexing includes a subject vector for the object ‘Stanford’ as
well. There are two subject entries in this vector, namely
ID2 and ID3. Each of those entries holds a list of asso-
ciated properties. These lists contain the single elements
phdFrom and bachelorFrom, respectively. The same pattern

4

1011

is repeated for all other indexing schemes and for all other
resources in the table.
Figure 2 presents a general example of spo indexing in a
Hexastore. A subject key si is associated to a sorted vector
of ni property keys, {pi

1, p
i
2, . . . , p

i
ni
}. Each property key

pi
j is, in its turn, linked to an associated sorted list of ki,j

object keys. These objects lists are accordingly shared with
the pso indices. The same spo pattern is repeated for every
subject in the Hexastore. Moreover, analogous patterns are
materialized in the other five indexing schemes.

is

i i i

is

i
1p i

2p i
ni

pK

1i 2i ini1,
1
io

1,
2
io

2,
1
io

2,
2
io

inio ,
1

inio ,
2

M M
i

ini

ni
ko ,

,

MK

1,

1,

i
ki

o
2,

2

i
ki

o
2,i

Figure 2: spo indexing in a Hexastore

4.2 Argumentation
The main advantages of a Hexastore in relation to earlier
RDF data management schemes [8, 9, 11, 17, 25, 26, 46, 19,
45, 39, 44, 38, 36, 20, 34, 27, 47, 22, 5] can be outlined as
follows:

• Concise and efficient handling of multi-valued
resources. Any resource that would appear as a multi-
valued attribute in a relational rendering of RDF is
naturally accommodated in the Hexastore. Namely,
the lists that appear as the terminal items of any Hex-
astore indexing can contain multiple items. More-
over, this approach is more concise that the one em-
ployed with the two-column, multi-valued property ta-
bles proposed by [46, 19, 45]. In this scheme, if a sub-
ject is related to multiple objects by the same prop-
erty, then each distinct value is listed in a successive
row in the table for that property. This type of a
property table is named multi-valued property table
and is used to store properties that have maximum
cardinality greater than one, or unknown, in [46, 19,
45]. Still, using multiple rows for the same subject is
not the most concise solution. The Hexastore stores
multi-valued resources in the most concise manner. [5]
correctly noted that accommodating multi-valued re-
sources is hard for any relational-based architecture
and provided a solution based on run-length encod-
ing. Given the semi-structured nature of Semantic
Web data, an approach especially customized for the
multi-valued case is needed. The Hexastore provides
such a solution.

• Avoidance of NULLs. Only those RDF elements
that are relevant to a particular other element need to
be stored in a particular index. For example, proper-
ties not defined for a particular object oi do not ap-
pear in the ops indexing for oi. Thus, no storage space

is wasted for NULL values, as it happens with many
relational renderings of RDF data. Again, given the
semi-structured nature of Semantic Web data, and the
related abundance of NULL values and sparsity in a
relational rendering of them, an approach that avoids
this sparsity is called for. The Hexastore sufficiently
addresses this issue too.

• No ad-hoc choices needed. Most other RDF data
storage schemes require several ad-hoc decisions about
their data representation architecture. For example,
a storage scheme may require a decision about which
properties to store together in the same table, as in [46,
19, 45], or which path expressions to represent in a re-
lational scheme, as in [38, 34]. The Hexastore eschews
the need for such ad-hoc decisions. The architecture
of a Hexastore is uniquely and deterministically de-
fined by the RDF data at hand; no ad-hoc decisions
that would variably affect its performance need to be
made.

• Reduced I/O cost. Depending on the bound ele-
ments in a query, a mostly efficient computation strat-
egy can be followed; such a strategy accesses only
those items that are relevant to the query. In contrast,
other RDF storage schemes may need to access multi-
ple tables which are irrelevant to a query; for example,
property-based approaches need to access all property
tables in a store for queries that are not bound by
property; besides, answering a query bound by object
is also problematic with most existing storage schemes.
Thanks to its sextuple indexing, the Hexastore elimi-
nates redundant data accesses.

• All pairwise joins are fast merge-joins. The keys
of resources in all vectors and lists used in a Hexastore
are sorted. Thus a sorted order of all resources associ-
ated to any other single resource, or pair of resources,
is materialized in a Hexastore. In consequence, every
pairwise join that needs to be performed during query
processing in a Hexastore is a fast, linear-time merge-
join. By contrast, other storage schemes necessitate
complex joins over unsorted lists of items extracted
with heavy computation cost.

• Reduction of unions and joins. A conventional
RDF storage scheme would require several union and
join operations in order to derive, for example, a list of
subjects related to two particular objects through any
property (e.g., all people involved in both of two par-
ticular university courses). For instance, the limited
multiple-indexing solutions of [27, 47] do not provide
fast access to such a result; instead, they would need
to separately access all statements defined for each of
the two objects in question and cross-join the resulting
subject lists. Similarly, the property-oriented solutions
of [46, 19, 45] and [5] would need to access all property
tables in order to identify instances of 〈subject, object〉
pairs that match the two desired objects, union the
results for each object, and join them. By contrast,
the Hexastore directly supplies the answer to such a
query by linearly merge-joining two subject vectors in
osp indexing. A similar simplicity of query processing
applies in other cases.

5

1012

The prime drawback of the Hexastore lies in its use of stor-
age space; despite the already mentioned advantages of con-
ciseness, the Hexastore still entails a worst-case five-fold in-
crease in storage space compared to a triples table. This
quintuple increase may appear to be a redundancy at first
sight. However, we argue that the time-efficiency benefits
it confers in query processing are worth the space overhead.
These benefits are shown in our experimental section. Be-
sides, the increase in storage is guaranteed to be at most
quintuple. It does not depend on any parameter, such as
the out-degree of a resource, or any ad-hoc choices made
in the architecture. Thus, a data engineer can count on a
predictable storage requirement for a Hexastore.
Furthermore, in our opinion, this six-fold representation of
RDF data is worthwhile for a more fundamental reason;
namely, it justifies the choice of RDF as a data model in
the first place. In particular, the Hexastore turns the ta-
ble over on a common argument used against RDF from an
RDBMS point of view. That is, it is usually argued that
RDF entails an inherent performance disadvantage, being
intrinsically limited as a data model in itself. Still, ren-
dering RDF data into this sextuple mapping allows for a
boost in performance that a relational database would not
be able to afford. Namely, many of the joins that have to
be executed during query processing in an RDBMS are not
merge-joins. This state of affairs causes a significant perfor-
mance overhead. However, in a hexastore all pairwise joins
are rendered as merge-joins, using the appropriate indices in
each case. Thus, a hexastore not only allows for the efficient
and concise representation of semi-structured data, avoiding
the NULLS and sparsity that any relational-oriented solu-
tion would incur, but may also allow for more efficient query
processing than an RDBMS in certain cases.
Besides, an attempt to render a relational database into a
multitude of representations analogous to the sextuple ren-
dering of RDF would result into an explosion of storage re-
quirements; namely, a table of n attributes would require an
n!-fold rendering. Thus, our exhaustive sextuple-indexing
scheme creates an advantage out of the triple nature of the
RDF data model; this triple nature is is usually seen as a
disadvantage. Thus, a liability of the model is turned into
an asset. The price of a worst-case five-fold increase in stor-
age requirements, is, in our opinion, a price worth paying
for the performance benefits it confers. Besides, this re-
quirement is well within reach given the current trends of
capacity increase in storage technologies.
A particular deficiency of the Hexastore appears when it
comes to handling updates and insertions; such operations
affect all six indices, hence can be slow. However, existing
RDF applications do not involve massive updates.

4.3 Treating the Path Expressions Problem
Abadi et al. [5] have observed that querying path expres-
sions, as common operations on RDF data demand, can be
quite expensive and inefficient. This inefficiency is due to
the fact that path-expression queries require subject-object
joins, as every internal node n in a path serves the subject
of an 〈n, p, o〉 triple but as the object of another, 〈s, p′, n〉
triple. In the vertical-partitioning scheme of [5], the two-
column tables for the properties involved in the path expres-
sion need to be joined together. All these joins are joins be-
tween the subject-column of one two-column property table
and the object-column of another property table. However,

in the implementation used in [5], property-labeled tables
are sorted only by subject (i.e., by their first column). It
is suggested that a second copy of each table can be cre-
ated, sorted on its value-column (i.e., its object-column) [5].
However, this suggestion is not implementated. Hence, the
subject-object joins involved in a path expression query are
not merge-joins, thus they are expensive.
An approach for tackling the path expression query problem
is to store selected path expressions in distinct relational ta-
bles [34, 38] (see Section 2.2.1). Still, this approach is based
on the assumption that certain path expressions have been
pre-selected. Hence, it does not solve the problem in a gen-
eral fashion. Similarly, the solution that Abadi et al. [5]
suggest for this problem is to materialize the results of fol-
lowing selected path expressions as if they were additional
regular properties, with their own two-column property ta-
bles. Thus, expensive joins for those path expressions that
have been materialized are avoided. However, this solution
suffers from the same generality drawbacks as those in [34,
38]. Materializing all possible path expressions is not a gen-
erally viable approach. In a path of length n, there are
(n−1)(n−2)

2
= O

`
n2

´
possible additional properties that need

to be calculated.
Seen from a graph-theoretical point of view, the problem of
computing all possible path expressions is an instance of the
problem of computing a transitive closure, a problem which
has attracted several focused studies but has defied efforts
for a scalable algorithm applicable on large-scale data man-
agement [43, 31, 21]. Still, the Hexastore treats this problem
effectively, without requiring precalculating and materializ-
ing selected path expressions. Thanks to its inclusion of
both pso and pos indices, the first of the n−1 joins in a path
of length n is a linear merge-join, and the rest n−2 ones
are sort-merge joins, i.e. require one sorting operation each.
Thus, the amount of sorting operations during the process-
ing of a path-expression query is significantly reduced.

5. EXPERIMENTAL EVALUATION
In our experimental study, we compare the performance of
our Hexastore approach to our representation of the column-
oriented vertical-partitioning (COVP) method of [5].
We represent the COVP method through our pso indexing.
This indexing provides an enhancement compared to the
purely vertical-partitioning approach of [5]; namely, the pso
indexing groups together multiple objects {o1, o2, . . . , on}
related to the same subject s by a unique property p; on
the other hand, in the vertical partitioning scheme of [5], a
separate 〈s, oi〉 entry is made for each such object oi in the
two-column property table for property p. Moreover, we
heed the suggestion in [5] that a second copy of each two-
column property table can be created, sorted on the object
column. In fact, this suggestion was not followed in [5];
instead, only unclusterd B+ tree indices were built on the
object columns with the vertically-partitioned architecture
implemented in Postgres. However, such tree indices were
not built when the same vertically-partitioned architecture
was implemented in a column-oriented DBMS, which in fact
provides the top performance in [5]. Besides, the object
column is not sorted in any of the approaches examined in
[5]. Still, the suggestion of having a second copy of each
two-column property table, sorted on object, is tantamount
to having both a pso and a pos index in our scheme. Thus,
for the sake of completeness, we also conduct experiments

6

1013

on such a two-index property-oriented store. In order to
distinguish between the two, we call the single-index (i.e.,
pso) property-oriented store COVP1, and the two-index (i.e.,
pso and pos) store COVP2. The latter illustrates both the
benefits of using a second index in comparison to the single-
index COVP1, as well as its limitations in comparison to the
six-index Hexastore.
Besides, as we discussed in Section 2.2.3, the experimental
study in [5] was based on the assumption that only a pre-
selected set of 28 out of the 221 extant properties in the stud-
ied library catalog data set [2] were interesting for the study.
Four out of seven queries in the study of [5] do not actually
bind on property value. The defect of a property-oriented
architecture should appear with such queries. Still, in [5],
these four queries were executed only on the pre-selected
limited set of 28 properties. In our experimental study, we
show the results both with and without this 28-property as-
sumption. In order to distinguish between them, we label
the methods which are limited to the pre-selected 28 prop-
erties with the suffix 28 in their names. Hence, for example,
COVP2 28 is the two-index store limited to processing 28
properties only, while COVP2 is the regular two-index store
which processes all properties available in the given data set.
Our benchmarking system is a 2.8GHz, 2 x Dual Core AMD
Opteron machine with 16GB of main memory running Linux.
We implemented a prototype of our indexing scheme in
Python 2.5, storing the indices and processing queries in
the main memory.

5.1 Description of Data
We have employed two publicly available data sets for our
performance evaluation. The former is a real dataset, while
the latter data set is synthetic.

5.1.1 Barton Data Set
Our first data set, also used in the experimental study in [5],
is taken from the publicly available MIT Barton Libraries
data set [2] (Barton), provided by the Simile project at MIT
[3], a project that seeks to enhance inter-operability among
digital assets, schemata, vocabularies, ontologies, metadata,
and services. The data contains records acquired from a
dump of the MIT Libraries Barton catalog. These records
have been converted from an old library format standard
called MARC (Machine Readable Catalog) to the RDF for-
mat. Due to the multiplicity of the sources the data was
derived from, as well as the diverse nature of the catalogued
data itself, the structure of the data is quite irregular. As
in the study of [5], we have further converted the Barton
data from its native RDF/XML syntax to triples and then
eliminated duplicate triples. After data cleaning, a total of
61,233,949 triples were left in our data set, having a total
of 285 unique properties. The vast majority of properties
appear infrequently. Overall, the Barton data set provides
a good example of the semi-structured nature of RDF data.

5.1.2 LUBM Data Set
Our second data set, the Lehigh University benchmark data
set (LUBM), is a synthetic benchmark data set used in the
comprehensive study of [24]. It models information encoun-
tered in an academic setting, as the RDF data in Figure 1.
The synthetic data generation process is described in [23].
We created a data set featuring ten universities with 18 dif-
ferent predicates resulting in a total of 6,865,225 triples.

5.2 Description of Queries
Our experiments feature seven queries on the Barton data
set and five queries on the LUBM data set. We describe
those queries at a high level, and we offer details on their
implementation with COVP1, COVP2, and Hexastore.

5.2.1 Barton Queries
In our experimentation with the Barton data set we aim to
evaluate the benefits gained by the multiple-indexing schemes
in comparison to the single-index column-oriented scheme
of [5], represented by COVP1. The evaluation is interesting
both with regard to COVP2, which adds a second property-
based index to COVP1, and with regard to the full Hexastore.
In order to conduct a fair comparison, we have employed the
same benchmark query set as in [5]. Accordingly, we have
followed the descriptions in [6]. These queries are based on a
typical browsing session with the Longwell browser for RDF
data exploration [1], hence they are representative of real-
world queries [5]. We describe the intent of these queries (see
also [5, 6]), as well as their implementation details below.
Query 1 (BQ1). This query has to calculate the counts
of each different type of data in the RDF store. It involves
all triples of the property Type and a count of each object
value. Both Hexastore and COVP2 only need to report the
counts of subjects on the pos index of property Type with
respect to object. On the other hand, as COVP1 does not
feature a pos index, it necessitates a self-join aggregation on
object value with its pso index.
Query 2 (BQ2). This query has to display a list of prop-
erties defined for resources of Type: Text, along with the fre-
quency of each property for such resources. Processing this
query with COVP1 requires a selection of all subjects with
object value Text from the pso index of Type; these subjects
are stored in a temporary table t, which is then joined with
each property’s subject vector. During these joins, a count
aggregation on objects is performed, in order to compute
each property’s frequency for subjects in t. The operation is
similar with COVP2, except that the Type: Text selection is
straightforward, thanks to the availability of the pos index.
Hexastore maintains this advantage of COVP2 over COVP1,
but adds to it an advantage in the second processing step
too. Namely, the Hexastore only needs to merge the sorted
property vectors of the subjects in t in spo indexing and
aggregate their frequencies.
Query 3 (BQ3). As BQ2, this query has to display a list
of properties defined for resources of Type: Text. Still, in
this case, the counts of those object values that appear more
than once with a certain property should also be reported
with the respective property value. Query processing starts
out as for BQ2. However, now it has to perform a count
aggregation with respect to predicate-object pairs, and then
select those results that have an object count larger than
one. COVP1 operates as for BQ2, with the addition that
the instances of each object per property are counted sepa-
rately. COVP2 utilizes its pos index in the final processing
step, in order to retrieve the count of each object related
to subjects in t for each property. Hexastore maintains the
advantage derived from its use of the spo index; however,
now it cannot perform an immediate aggregation of object
counts per property on the spo index in the final step; in-
stead, it needs to utilize the pos index in the same way as
COVP2 does for this query.
Query 4 (BQ4). As BQ3, this query reports the proper-

7

1014

ties, and the frequencies of ‘popular’ (i.e., appearing more
than once) object values for each property, defined for par-
ticular subjects. In this case, the desired subjects need not
only be of Type: Text, but also of Language: French. Query
processing works as for BQ3, but differs in the pre-selection
step. Thus, COVP1 jointly selects subjects from the pso in-
dices of Type and Language, so that they satisfy both con-
straints. On the other hand, COVP2 and Hexastore need to
retrieve and merge-join the subject lists for Type: Text and
Language: French using their pos indices.
Query 5 (BQ5). This query has to perform a type of in-
ference. For all subjects that originate in the US Library of
Congress, and have the Records property defined, it has to
report their inferred type, if it is not Type: Text. This in-
ferred type is calculated as the Type of the object that each
of these subjects Records. To process this query, COVP1 first
selects on Origin: DLC. Then it joins the result subject list
s with the subject vector of the Records property in the pso
index, and retrieves an (unsorted) list t of recorded objects.
In its turn, t is sort-merge joined with the (sorted) subject
vector of the Type property, reporting all non-text results. In
contrast to COVP1, both COVP2 and Hexastore process this
query in a more efficient fashion. With them, the subject
list s is derived straightforwardly, thanks to the availability
of the pos index. Moreover, these schemes do not need to
perform an expensive join between the (unsorted) object list
t and the (large) subject vector of the Type property. In-
stead, they first merge-join the (sorted) object vector of the
Records property in the pos index with the (sorted) subject
vector of Type, selecting subjects of non-text inferred type,
and thus derive a (small) table T of such subjects. Then the
(small) list s is sort-merge joined with T , and the desired
results of non-text inferred type are reported.
Query 6 (BQ6). This query combines the inference step
of BQ5 and the property frequency calculation of BQ2.
Its aim is to extract information in aggregate form (as in
BQ2) about all resources that are either known to be, or
can be inferred to be (as in BQ5), of Type: Text. To pro-
cess this query, all methods merge the result sets of BQ2
and BQ5, aggregating property frequencies as in BQ2. The
same advantages of Hexastore and COVP2 as for each indi-
vidual query hold.
Query 7 (BQ7). This is a simple triple selection query. It
aims to retrieve the Encoding and Type information about all
resources whose Point value is ‘end’. The intent of the user
is to learn what this Point value means. The result of the
query reveals to the user that all such resources are of type
Date, hence their ‘end’ value implies that these dates are end
dates (i.e., as opposed to start dates). To process this query,
COVP1 performs a selection on Point: End first, and merge-
joins the derived result with the subject vectors of properties
Encoding and Type. COVP2 and Hexastore retrieve the first
result set straightforwardly with the pos index, and proceed
in the same fashion as COVP1.
The processing of queries BQ2, BQ3, BQ4, and BQ6 in [5]
was constrained on only 28 pre-selected properties. We have
run our evaluation for these four queries both with and with-
out this constraint. Thus, we investigate the effect of limit-
ing the properties on which non-property-bound queries are
processed with the property-oriented scheme of [5]. Further-
more, this detailed evaluation offers us the chance to study
the advantage gained with the Hexastore on unconstrained
queries that do not bind property values.

5.2.2 LUBM Queries
In our evaluation study with the synthetic LUBM data set,
our aim is to compare the multiple-indexing schemes to the
single-index column-oriented scheme of [5], represented by
COVP1, with general-purpose queries. To that end, we have
designed a set of five meaningful benchmark queries. These
queries are not oriented towards a particular storage scheme,
and do not discriminate in favor of, or against, any particular
type of RDF resource.
These queries are based on typical information one may ask
for in the context of the domain that the LUBM data rep-
resent, i.e. the domain of academic personnel and student
enrollment information in higher education. We have de-
signed our queries with this real-world application in mind.
Again, we describe the intent of these queries as well as their
implementation details below.
Query 1 (LQ1). This query aims to find all people that are
somehow related to course1 Course10 (i.e. all lecturers, all
students). To process LQ1, both COVP1 and COVP2 have
to perform multiple selections on object Course10. COVP2
is faster, thanks to its pos indexing. However, Hexastore
retrieves the results straightforwardly using its osp indexing.
Query 2 (LQ2). This query has to find all people that are
somehow related to University0. The processing of this
query works as for LQ1.
Query 3 (LQ3). This query aims to find all immediate
information about AssociateProfessor10 (i.e. what de-
gree she received from which university, or whom she ad-
vises). Although this query looks like a simple statement
retrieval, as LQ1 and LQ2, it needs a bit more elaboration,
as AssociateProfessor10 may appear both as subject and
as object. Thus, COVP1 and COVP2 need to perform selec-
tion on both subject and object in each property table, and
then union them. COVP2 has again the advantage of using
the pos index for object-bound selection. On the other hand,
Hexastore only has to perform two lookups, one in index spo
and one in index ops .
Query 4 (LQ4). This query has to find people who are
related to the courses AssociateProfessor10 is teaching,
and group them by course. To process this query, COVP1
first retrieves a list t of relevant courses using the pso index
for the TeacherOf property. This list is then joined with all
object lists in the pso index to retrieve matching subjects.
COVP2 uses the pos index in the second step, gaining an
advantage. In contrast, Hexastore processes the second step
with a lookup in the osp index for each course object in t.
Query 5 (LQ5). This purpose of this query is to find
people who received any degree (undergraduate, masters,
or doctoral) from at least one of the universities to which
AssociateProfessor10 is related, and group them by uni-
versity. For this query, COVP1 first selects a list of objects
t to which AssociateProfessor10 is related, scanning all
pso property indices. Then it joins t with the subject vector
of the Type property, selecting for Type: University, thus
it refines t to a university list t′. The list t′ is then joined
with the subject vectors of all degreeFrom properties and the
union of the results in returned. With COVP2 , the refine-
ment of t to t′ is straightforward, thanks to a pre-selection
of Type: University items using the pos index. Furthermore,
COVP2 also simplifies the final step, as it performs a lookup

1For the sake of conciseness and readability, we do not de-
note the full URIs of the resources involved in our queries.

8

1015

in the pos index of each degreeFrom property for each uni-
versity in t′. Hexastore confers an additional advantage in
the first step; it straightforwardly retrieves t as the object
vector for subject AssociateProfessor10 in sop indexing.

5.3 Results
In this section, we report the results of our experimental
study with the queries described in Section 5.2 for both the
Barton and the LUBM data sets. We have experimented
with progressively larger prefixes of the working data sets,
measuring response times in each case. In all cases, we use
logarithmic axes for the response time measurements. We
thus show that the Hexastore typically achieves one to three
orders of magnitude (a factor of 1000), and can reach five
orders of magnitude, of performance improvement compared
to COVP1, while it also achieves one to two orders of mag-
nitude better performance than COVP2.

 0.0001

 0.001

 0.01

 0.1

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u

e
ry

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of Triples

Barton Query 1

Hexastore
COVP1
COVP2

Figure 3: Barton data set, Query 1

5.3.1 Barton Queries
Figure 3 shows the results with Barton Query 1. Observ-
ably, the performance of both COVP2 and Hexastore achieves
a significant gap from that of COVP1, due to the utilization
of the pos index by these methods. Moreover, while the re-
sponse time grows with the number of triples in the store for
COVP1, it stays practically constant for COVP2 and Hexa-
store, as any new relevant triples are all added on the pos
index and easily retrieved.

 0.01

 0.1

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u
e
ry

 r
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of Triples

Barton Query 2

Hexastore
COVP1
COVP2

Hexastore 28
COVP1 28
COVP2 28

Figure 4: Barton data set, Query 2
The results for Barton Query 2 are shown in Figure 4, for
both the 28-property version and the general version. In
both variants, the Hexastore gains a distinct performance
advantage (one order of magnitude) in comparison to both
other schemes. This advantage is due to the ability of the

Hexastore to directly merge property vectors, using the spo
indexing. Moreover, the relative advantage of COVP2 to
COVP1 is visible; the difference is due to the use of the pos
index for the original type selection.

 0.1

 1

 10

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u
e
ry

 r
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of Triples

Barton Query 3

Hexastore
COVP1
COVP2

Hexastore 28
COVP1 28
COVP2 28

Figure 5: Barton data set, Query 3

Figure 5 depicts the results for Barton Query 3. The ad-
vantage of the Hexastore is narrower in this case, due to the
more complicated final aggregation step. The increase in the
number of examined properties affects all methods propor-
tionally, as all methods need to use a property-based index
for all relevant properties in the final step.

 0.01

 0.1

 1

 10

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u
e
ry

 r
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of Triples

Barton Query 4

Hexastore
COVP1
COVP2

Hexastore 28
COVP1 28
COVP2 28

Figure 6: Barton data set, Query 4

Figure 6 shows the results with Barton Query 4. The advan-
tage of Hexastore is now more distinct. Again, all methods
are affected proportionally by the increase in the number of
examined properties. The additional selection by language
reduces the number of results with this query, hence the
processing time in the final aggregation step is reduced.

 0.01

 0.1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u

e
ry

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of Triples

Barton Query 5

Hexastore
COVP1
COVP2

Figure 7: Barton data set, Query 5

9

1016

The results for Barton Query 5 are presented in Figure 7.
The advantage of both COVP2 and Hexastore is chiefly due to
their avoidance of an expensive join. This advantage shows
the efficient treatment of inference (see Section 4.3).

 0.1

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u
e
ry

 r
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of Triples

Barton Query 6

Hexastore
COVP1
COVP2

Hexastore 28
COVP1 28
COVP2 28

Figure 8: Barton data set, Query 6

Figure 8 shows the results with Barton Query 6, which com-
bines BQ2 and BQ5. Although the Hexastore maintains its
advantages, these are obscured by the final aggregation step.

 0.001

 0.01

 0.1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u

e
ry

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of Triples

Barton Query 7

Hexastore
COVP1
COVP2

Figure 9: Barton data set, Query 7

Finally, the results for Barton Query 7 are shown in Figure
9. The advantage of both COVP2 and Hexastore, thanks to
the fast retrieval with the pos index, is again clear.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u

e
ry

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of Triples

LUBM Query 1

Hexastore
COVP1
COVP2

Figure 10: LUBM data set, Query 1

5.3.2 LUBM Queries
Figure 10 presents the time measurement results for LUBM
Query 1. The advantage of the Hexastore, thanks to the

direct exploitation of its osp indexing, is clear. COVP2 also
does better than COVP1, but still differs from the Hexastore
by two orders of magnitude.

 0.0001

 0.001

 0.01

 0.1

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
ue

ry
 re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

Number of Triples

LUBM Query 2

Hexastore
COVP1
COVP2

Figure 11: LUBM data set, Query 2

The results with LUBM Query 2 are shown in Figure 11.
In this case the Hexastore exhibits a clear performance ad-
vantage, while a growth trend is more visible. The growth
is due to the fact the more triples associated with the given
university object are entered in the data set as it grows.

 0.0001

 0.001

 0.01

 0.1

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
ue

ry
 re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

Number of Triples

LUBM Query 3

Hexastore
COVP1
COVP2

Figure 12: LUBM data set, Query 3

Figure 12 depicts the results with LUBM Query 3. The
performance advantage of the Hexastore reaches three orders
of magnitude again. COVP2 performs better with this query,
thanks to its exploitation of the pos index. However, it still
does not match the efficiency of the Hexastore.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
ue

ry
 re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

Number of Triples

LUBM Query 4

Hexastore
COVP1
COVP2

Figure 13: LUBM data set, Query 4

Figure 13 shows the performance picture for LUBM Query
4. In this case, the performance of the Hexastore achieves a
difference of four to five orders of magnitude from that of

10

1017

COVP1. This difference is due to the convenient use of the
osp index by the Hexastore, in place of complex joins for all
properties by COVP1. COVP2 performs well, but still does
not match the efficiency of the Hexastore.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Q
u

e
ry

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of Triples

LUBM Query 5

Hexastore
COVP1
COVP2

Figure 14: LUBM data set, Query 5

Last, Figure 14 depicts the results for LUBM Query 5. Hexa-
store gains an advantage of two to three orders of magnitude
in comparison to the other schemes. This result highlights
the benefits gained from the use of the sop index, as opposed
to scanning through all property tables. COVP2 scales bet-
ter than COVP1 , thanks to the double advantages gained by
the use of the pos index, yet it does not match the Hexastore.

5.3.3 Memory Usage
Figure 15 presents the memory usage measurements with
the two employed data sets. In practice, Hexastore requires
a four-fold increase in memory in comparison to COVP1,
which is an affordable cost for the derived advantages.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Number of Triples

Memory Consumption - Barton Dataset

Hexastore
COVP1
COVP2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Number of Triples

Memory Consumption - LUBM Dataset

Hexastore
COVP1
COVP2

Figure 15: Memory Usage

6. DISCUSSION AND LIMITATIONS
Our results on lower query response time of the Hexastore
vis-à-vis our representation of the property-based column-
oriented approach as COVP1 were expected. Apart from
the question of handling updates, a question of the parsi-
moniousness of storage emerges. The Hexastore is concise
in its individual representations, but the replication of these
representations in a five-fold manner may exceed the avail-
able storage capacity. As we have argued, it is worthwhile
to invest in predictable additional storage in order to gain in
efficiency and scalability. Besides, some indices may not con-
tribute to query efficiency based on a given workload. For
example, the ops index has been seldom used in our experi-
ments. A subject for future research concerns the selection
of the most suitable indices for a given RDF data set based
on the query workload at hand. Database cracking has been
suggested as a method to address index maintenance as part
of query processing using continuous physical reorganization
[32, 30, 29]. An interesting question is to examine whether
such an approach can be adapted to Hexastore maintenance.

7. CONCLUSIONS
In this paper we have proposed the Hexastore, an architec-
ture for Semantic Web data management. This architecture
turns the triple nature of RDF from a liability, as it has
conventionally been seen, to an asset. We have shown that,
thanks to the deterministic, triple nature of RDF data, they
can be stored in a sextuple-indexing scheme that features a
worst-case five-fold storage increase in comparison to a con-
ventional triples table. Moreover, our scheme enhances on
previously proposed architectures, such as limited multiple-
indexing schemes, property-table solutions, and the most
recently proposed vertical-partitioning scheme implemented
on a column-oriented system. Still, we have taken the ratio-
nale of those schemes to its full logical conclusion. As our ex-
perimental study has shown, the Hexastore allows for quick
and scalable general-purpose query processing, and confers
advantages of up to five orders of magnitude in comparison
to previous approaches. These benefits derive from the con-
venience that a Hexastore offers. Remarkably, all pairwise
joins in a Hexastore can be rendered as merge joins. In the
future, we intend to examine how cracking techniques can
be applied on a Hexastore. Moreover, we intend to imple-
ment a fully operational disk-based Hexastore and compare
it to other RDF data storage schemes as well as to relational
DBMSs on data management tasks that can be defined on
both an RDF and a relational environment.

Acknowledgments
We thank the Swiss NSF for partially supporting this work,
the anonymous referees for their insightful suggestions, and
Daniel Abadi for our fruitful discussions.

8. REFERENCES
[1] Longwell browser. http://simile.mit.edu/longwell.

[2] MIT Libraries Barton Catalog Data.
http://simile.mit.edu/rdf-test-data/barton/.

[3] The SIMILE Project. http://simile.mit.edu/.

[4] D. J. Abadi, S. R. Madden, and M. Ferreira.
Integrating compression and execution in
column-oriented database systems. In SIGMOD, 2006.

[5] D. J. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach. Scalable Semantic Web Data

11

1018

Management using vertical partitioning. In VLDB,
2007.

[6] D. J. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach. Using the Barton Libraries dataset as
an RDF benchmark. Technical Report
MIT-CSAIL-TR-2007-036, MIT, 2007.

[7] D. J. Abadi, D. S. Myers, D. J. DeWitt, and
S. Madden. Materialization strategies in a
column-oriented DBMS. In ICDE, 2007.

[8] S. Alexaki, V. Christophides, G. Karvounarakis, and
D. Plexousakis. On storing voluminous RDF
descriptions: The case of web portal catalogs. In
WebDB, 2001.

[9] S. Alexaki, V. Christophides, G. Karvounarakis,
D. Plexousakis, and K. Tolle. The ICS-FORTH
RDFSuite: Managing voluminous RDF description
bases. In SemWeb, 2001.

[10] R. Angles and C. Gutiérrez. Querying RDF data from
a graph database perspective. In ESWC, 2005.

[11] D. Beckett. The design and implementation of the
Redland RDF application framework. In WWW, 2001.

[12] J. L. Beckmann, A. Halverson, R. Krishnamurthy, and
J. F. Naughton. Extending RDBMSs to support
sparse datasets using an interpreted attribute storage
format. In ICDE, 2006.

[13] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284(5):34–43,
2001.

[14] P. A. Boncz and M. L. Kersten. MIL primitives for
querying a fragmented world. VLDB Jounral,
8(2):101–119, 1999.

[15] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-pipelining query execution. In
CIDR, 2005.

[16] V. Bönström, A. Hinze, and H. Schweppe. Storing
RDF as a graph. In LA-WEB, 2003.

[17] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A generic architecture for storing and
querying RDF and RDF Schema. In ISWC, 2002.

[18] K. S. Candan, H. Liu, and R. Suvarna. Resource
Description Framework: Metadata and its
applications. SIGKDD Explorations Newsletter,
3(1):6–19, 2001.

[19] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: implementing
the Semantic Web recommendations. In WWW
(Alternate Track Papers & Posters), 2004.

[20] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
efficient SQL-based RDF querying scheme. In VLDB,
2005.

[21] S. Dar and R. Ramakrishnan. A performance study of
transitive closure algorithms. In SIGMOD, 1994.

[22] R. V. Guha. rdfDB : An RDF database.
http://www.guha.com/rdfdb/.

[23] Y. Guo, J. Heflin, and Z. Pan. Benchmarking
DAML+OIL repositories. In ISWC, 2003.

[24] Y. Guo, Z. Pan, and J. Heflin. An evaluation of
knowledge base systems for large OWL datasets. In
ISWC, 2004.

[25] S. Harris and N. Gibbins. 3store: Efficient bulk RDF
storage. In PSSS, 2003.

[26] S. Harris and N. Shadbolt. SPARQL query processing
with conventional relational database systems. In
SSWS, 2005.

[27] A. Harth and S. Decker. Optimized index structures
for querying rdf from the web. In LA-WEB, 2005.

[28] J. Hayes and C. Gutiérrez. Bipartite graphs as
intermediate model for RDF. In ISWC, 2004.

[29] S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. In CIDR, 2007.

[30] S. Idreos, M. L. Kersten, and S. Manegold. Updating
a cracked database. In SIGMOD, 2007.

[31] Y. Ioannidis, R. Ramakrishnan, and L. Winger.
Transitive closure algorithms based on graph
traversal. ACM TODS, 18(3):512–576, 1993.

[32] M. L. Kersten and S. Manegold. Cracking the
database store. In CIDR, 2005.

[33] C. Kiefer, A. Bernstein, and M. Stocker. The
fundamentals of iSPARQL - a virtual triple approach
for similarity-based Semantic Web tasks. In ISWC,
2007.

[34] Y. Kim, B. Kim, J. Lee, and H. Lim. The path index
for query processing on RDF and RDF Schema. In
ICACT, 2005.

[35] E. Liarou, S. Idreos, and M. Koubarakis. Continuous
RDF query processing over DHTs. In ISWC, 2007.

[36] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. RStar:
an RDF storage and query system for enterprise
resource management. In CIKM, 2004.

[37] F. Manola and E. Miller, editors. RDF Primer. W3C
Recommendation. WWW Consortium, 2004.

[38] A. Matono, T. Amagasa, M. Yoshikawa, and
S. Uemura. A path-based relational RDF database. In
ADC, 2005.

[39] Z. Pan and J. Heflin. DLDB: Extending relational
databases to support Semantic Web queries. In PSSS,
2003.

[40] M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS:
Fast filtering of graph-based metadata. In WWW,
2005.

[41] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern
optimization using selectivity estimation. In WWW,
2008.

[42] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. R.
Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran,
and S. B. Zdonik. C-store: a column-oriented DBMS.
In VLDB, 2005.

[43] J. D. Ullman and M. Yannakakis. The input/output
complexity of transitive closure. In SIGMOD, 1990.

[44] R. Volz, D. Oberle, S. Staab, and B. Motik. KAON
SERVER - A Semantic Web Management System. In
WWW (Alternate Paper Tracks), 2003.

[45] K. Wilkinson. Jena property table implementation. In
SSWS, 2006.

[46] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient RDF storage and retrieval in
Jena2. In SWDB, 2003.

[47] D. Wood, P. Gearon, and T. Adams. Kowari: A
platform for Semantic Web storage and analysis. In
XTech, 2005.

12

1019

