
HexDom: Polycube-Based
Hexahedral-Dominant Mesh Generation

Yuxuan Yu, Jialei Ginny Liu and Yongjie Jessica Zhang

Abstract In this paper, we extend our earlier polycube-based all-hexahedral mesh
generation method to hexahedral-dominant mesh generation, and present the Hex-
Dom software package. Given the boundary representation of a solid model, Hex-
Dom creates a hex-dominant mesh by using a semi-automated polycube-based mesh
generation method. The resulting hexahedral dominant mesh includes hexahedra,
tetrahedra, and triangular prisms. By adding non-hexahedral elements, we are able
to generate better quality hexahedral elements than in all-hexahedral meshes. We
explain the underlying algorithms in four modules including segmentation, polycube
construction, hex-dominant mesh generation and quality improvement, and use a
rockerarm model to explain how to run the software. We also apply our software to a
number of other complex models to test their robustness. The software package and
all tested models are availabe in github (https://github.com/CMU-CBML/HexDom).

1 Introduction

In finite element analysis (FEA), a 3D domain can be discretized into tetrahedral or
hexahedral (hex) meshes. For tetrahedral mesh generation, various strategies have
been proposed in the literature [54, 15, 19, 33], such as octree-based [38, 56],
delaunay triangulation [4], and advancing front methods [8, 23, 37]. Because tetra-

Y. Yu
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: yuxuany1@andrew.cmu.edu

J. G. Liu
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: jialeil@andrew.cmu.edu

Y. J. Zhang (B)
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: jessicaz@andrew.cmu.edu

1

ar
X

iv
:2

10
3.

04
18

3v
2 

 [
cs

.G
R

] 
 2

2 
M

ar
 2

02
1

yuxuany1@andrew.cmu.edu
jialeil@andrew.cmu.edu
jessicaz@andrew.cmu.edu


2 Y. Yu, J. G. Liu, and Y. J. Zhang

hedral meshes can be created automatically, it has been widely used in industry.
However, to achieve the same precision in FEA, a tetrahedral mesh requires more
elements than an all-hex mesh does. As a result, many techniques have been de-
veloped to generate all-hex meshes [48, 47, 61, 32, 34] or converting imaging data
to all-hex meshes [54, 53, 55]. Also, hex meshes can serve as multiple-material
domains [59, 62] or input control meshes for IGA [16, 46, 45, 17, 29, 64, 44, 43].
Some applications of hex mesh generation in new engineering applications can also
be found in [52, 50, 18, 60, 58]. Several literatures develop methods for unstructured
hex mesh generation, such as grid-based or octree-based [35, 36], medial surface
[31, 30], plastering [2, 39], whisker weaving [7], and vector field-based methods
[26]. These methods have been used to create hex meshes for certain geometries, but
are not robust and reliable for arbitrary geometries. On the other hand, although an
all-hex mesh provides a more accurate solution, a high-quality all-hex mesh is more
difficult to create automatically.

Compared with all-hex mesh generation, a hex-dominant mesh generation, which
combines advantages of both tetrahedral and hex elements, is more automatic and ro-
bust for complex solid models. In the literature, several strategies have been proposed
to generate hex-dominant meshes. An indirect method was suggested by [49], the do-
main is first meshed into tetrahedral elements and then merged into a hex-dominant
mesh with the packing technology. Several other hex-dominant meshing techniques
were also presented in [28, 25, 24]. Such indirect methods create hex-dominant
meshes with too many singularities, and the tetrahedral mesh directly influences
the quality of the hex-dominant mesh. Similar to unstructured all-hex mesh gener-
ation, the direct method is also more preferable for hex-dominant meshes [41, 27].
The polycube-based method [40, 9] is an attractive direct approach to obtain hex-
dominant meshes by using degenerated cubes. The polycube-based method was
mainly used for all-hex meshing. A smooth harmonic field [42] was used to generate
polycubes for arbitrary genus geometry. Boolean operations [21] were introduced
to deal with arbitrary genus geometry. In [22], a polycube structure was generated
based on the skeletal branches of a geometric model. Using these methods, the
structure of the polycube and the mapping distortion greatly influence the quality of
the hex mesh. The calculation of the polycube structure with a low mapping distor-
tion remains an open problem for complex geometry. It is important to improve the
quality of the mesh for analysis by using methods such as pillowing, smoothing, and
optimization [34, 57, 63, 32]. Pillowing is an insert-sheet technique that eliminates
situations where two adjacent hex elements share more than one face. Smoothing
and optimizing are used to further improve the quality of the mesh by moving the
vertices. In our software, we implement all of the above methods to improve the
quality of hex elements.

In this paper, we extend our earlier semi-automatic polycube-based all-hex gener-
ation to hex-dominant meshing. The software package includes: 1) polycube based
geometric decomposition of a surface triangle mesh; 2) generation of the polycube
consisting of non-degenerated and degenerated cubes; 3) creation of a parametric
domain for different types of degenerated unit cubes including prisms and tetrahedra;
and 4) creation of a hex-dominant mesh. We first go through the entire pipeline and



HexDom 3

explain the algorithm behind each module of the pipeline. Then, we use a specific
example to follow all the steps and run the software. In particular, when user inter-
vention is required, the details of manual work are explained. The paper is organized
as follows. In Section 2 we provide an overview of the pipeline. In Section 3 we
present the HexDom software package, with a semi-automatic polycube-based hex-
dominant mesh generateion of a CAD file. Finally, in Section 4 we show various
complex models with our software package.

2 Pipeline design

Fig. 1: The HexDom software package. For each process, the black texts describe
the object and the red texts show the operation needed to go to the next process.
Manual work is involved in further segmentation and introducing interior vertices.
Regions A, B and C (green circles) in (d, f) contain a hex, prism and tetrahedral
shaped structure, respectively.

Our pipeline uses polycube-based method to create a hex-dominant mesh from
an input CAD model. As shown in Fig. 1, we first generate a triangle mesh from the
CAD model by using the free software LS-PrePost. Then we use centroidal Voronoi
tessellation (CVT) segmentation [13, 14, 12] to create a polycube structure [40].



4 Y. Yu, J. G. Liu, and Y. J. Zhang

The polycube structure consists of multiple non-degenerated cubes and degenerated
cubes. The non-degenerated cubes will yield hex elements via parametric map-
ping [6] and octree subdivision [63]. The degenerated cubes will yield degenerated
elements such as prisms and tetrahedra in the final mesh . Here, we implement the
subdivision algorithm separately for prism-shape regions and tetrahedral-shape re-
gions. The quality of the hex dominant mesh is evaluated to ensure that the resulting
mesh can be used in FEA. In case that a poor quality hex element is generated in
hex-dominant meshes, the program has various quality improvement functions, in-
cluding pillowing [57], smoothing, and optimization [32]. Each quality improvement
function can be performed independently and one can use these functions to improve
the mesh quality. Currently, our software only has a command-line interface (CLI).
Users need to provide the required options on the command line to run the software.
In Section 3, we will explain in detail the algorithms implemented in the software as
well as how to run the software.

3 HexDom: Polycube-based hex-dominant mesh generation

Surface segmentation, polycube construction, parametric mapping, and subdivision
are used together in the HexDom software package to generate a hex-dominant mesh
from the boundary representation of the input CAD model. Given a triangle mesh
generated from the CAD model, we first use surface segmentation to divide the mesh
into several surface patches that meet the restrictions of the polycube structure, which
will be discussed in Section 3.1. The corner vertices, edges, and faces of each surface
patch are then extracted from the surface segmentation result to construct a polycube
structure. Each component of the polycube structure is topologically equivalent to
a cube or a degenerated cube. Finally, we generate the hex-dominant mesh through
parametric mapping and subdivision. Quality improvement techniques can be used
to further improve the mesh quality.

In this section, we will introduce the main algorithm for each module of the
HexDom software package, namely surface segmentation, polycube construction,
parametric mapping and subdivision, and quality improvement. We will use a rock-
erarm model (see Fig. 1) to explain how to run CLI for each module. We will
also discuss the user intervention involved in the semi-automatic polycube-based
hex-dominant mesh generation.

3.1 Surface segmentation

The surface segmentation in the pipeline framework is implemented based on CVT
segmentation [13, 14, 12]. CVT segmentation is used to classify vertices by minimiz-
ing an energy function. Each group is called a Voronoi region and has a corresponding
center called a generator. The Voronoi region and its corresponding generator are



HexDom 5

updated iteratively in the minimization process. In [13], each element of the surface
triangle mesh is assigned to one of the six Voronoi regions based on the normal
vector of the surface. The initial generators of the Voronoi regions are the three
principal normal vectors and their opposite normals vectors (±𝑋 , ±𝑌 , ±𝑍). Two en-
ergy functions and their corresponding distance functions are used together in [13].
The classical energy function and its corresponding distance function provide ini-
tial Voronoi regions and generators. Then, the harmonic boundary-enhanced (HBE)
energy function and its corresponding distance function are applied to eliminate
non-monotone boundaries. The detailed definitions of the energy functions and their
corresponding distance functions are described in [13]. The surface segmentation
process was also summarized in the Surface Segmentation Algorithm in [51].

Once we get the initial segmentation result, we need to further segment each
Voronoi region into several patches to satisfy the topological constraints for poly-
cube construction (see Fig. 1(d)). We use two types of patches. The first type of seg-
mented surface patch corresponds to one boundary surface of the non-degenerated
cubes and quadrilateral surface of the prism-shape degenerated cubes. The second
type of segmented surface patch corresponds to one triangular boundary surface
of the degenerated cubes. The choice of types of patches depends on the follow-
ing three criteria: 1) geometric features such as sharp corners with small angles and
prism/tetrahedral-like features; 2) critical regions based on finite element simulation,
such as regions with the maximum stress/strain and regions with a high load; and
3) requirements from user applications which enhance the capability of user inter-
action. For the first type of segmented surface patch, the following three conditions
should be satisfied during the further segmentation: 1) two patches with opposite
orientations (e.g., +X and -X) cannot share a boundary; 2) each corner vertex must
be shared by more than two patches; and 3) each patch must have four boundaries.
For the second type of segmented surface patch, we modified the third conditions to
that each patch must have three boundaries.

Note that we define the corner vertex as a vertex locating at the corner of the cubic
region or degenerated cubic region in the model. The further segmentation is done
manually by using the patch ID reassigning function in LS-PrePost. The detailed
operation was shown in [51].

3.2 Polycube construction

In this section, we discuss the detailed algorithm of polycube construction based on
the segmented triangle mesh. Several automatic polycube construction algorithms
have been proposed in the literature [11, 20, 13], but it is challenging to apply these
methods to complex CAD models. The polycube structure does not contain degen-
erated cubes either. Differently, the polycube in this paper consists of cubes and de-
generated cubes and is topologically equivalent to the original geometry. To achieve
versatility for real industrial applications, we develop a semi-automatic polycube



6 Y. Yu, J. G. Liu, and Y. J. Zhang

construction software based on the segmented surface. However, for some complex
geometries, the process may be slower due to potentially heavy user intervention.

The most important information we need for a polycube is its corners and the con-
nectivity relationship among them. For the surface of polycube, we can automatically
get the corner points and build their connectivity based on the segmentation result
by using the algorithm similar to the Polycube Boundary Surface Construction
Algorithm in [51]. The difference is that we need to adjust the implementation based
on different patch types: finding its three corners for a triangular patch and finding
its four corners for a quadrilateral patch. It is difficult to obtain inner vertices and
their connectivity because we only have a surface input with no information about
the interior volume. In fact, this is where users need to intervene. We use LS-PrePost
to manually build the interior connectivity. You can find the detailed operation in
Appendix A3 in [51]. As the auxiliary information for this user intervention, the
Polycube Boundary Surface Construction Algorithm will output corners and
connectivity of the segmented surface patches into .k file. Finally, the generated
polycube structure is the combination of non-degenerated cubes and degenerated
cubes splitting the volumetric domain of the geometry.

3.3 Parametric mapping and subdivision

After the polycube is constructed, we need to build a bĳective mapping between
the input triangle mesh and the boundary surface of the polycube structure. In our
software, we implement the same idea as in [22]: using a non-degenerated unit cube
or a degenerated unit cube as the parametric domain for the polycube structure. As
a result, we can construct a generalized polycube structure that can better align with
the given geometry and generate a high quality hex-dominant mesh.

There are three types of elements in the hex-dominant mesh: hex, prism, and
tetrahedral. The hex elements form non-degenerated cubic regions. Prism and tetra-
hedral elements form degenerated cubic regions. We will use octree subdivision to
generate hex elements for non-degenerated cubic regions, while using subdivision
to generate prism and tetrahedral elements for degenerated cubic regions. Through
the pseudocode in the Parametric Mapping Algorithm in [51], we describe how
to combine the segmented surface mesh, the polycube structure, and the unit cube
to create an all-hex mesh. We use this algorithm to create the hex elements in non-
degenerated cubic regions. Each non-degenerated cube in the polycube structure
represents one volumetric region of the geometry and has a non-degenerated unit
cube as its parametric domain. Region A in Fig. 1(d, f) shows an example of a non-
degenerated cube and its corresponding volume domain of the geometry marked in
the green circle. For degenerated cubes, there are two types of interface, a triangular
face and a quadrilateral face. Region B in Fig. 1(d, f) shows a prism case, it contains
two triangular faces and three quadrilateral faces. For the tetrahedral case shown in
Region C in Fig. 1(d, f), it contains four triangular faces.



HexDom 7

(a) (b)

Fig. 2: The polycube construction and the parametric mapping process for prism-
shape degenerated cubic regions (see the black boxes) and tetrahedral-shape degen-
erated cubic regions (see the dashed black boxes). (a) The boundary surface of the
polycube generated by Polycube Boundary Surface Construction Algorithm; (b)
𝑆0, �̄�0 and �̄�0 are used for parametric mapping to create boundary vertices of the
prism-shape degenerated cubic regions. 𝐼1 and �̄�1 are used for linear interpolation
to create interior vertices of the prism-shape degenerated cubic regions. 𝑆0, 𝑃0 and
𝑈0 are used for parametric mapping to create boundary vertices of the tetrahedral-
shape degenerated cubic regions. 𝐼1 and𝑈1 are used for linear interpolation to create
interior vertices of the tetrahedral-shape degenerated cubic regions.

Through the pseudocode in the Prism Parametric Mapping Algorithm, we
describe how the segmented surface mesh, the polycube structure and the prism-
shape degenerated unit cube are combined to generate prism elements. Let {𝑆𝑖}𝑁𝑖=1
be the segmented surface patches coming from the segmentation result (see Fig. 2(a)).
Each segmented surface patch corresponds to one boundary surface of the polycube
�̄�𝑖 (1 ≤ 𝑖 ≤ 𝑁) (see Fig. 2(b)), where 𝑁 is the number of the boundary surfaces.
There are also interior surfaces, denoted by 𝐼 𝑗 (1 ≤ 𝑗 ≤ 𝑀), where 𝑀 is the number
of the interior surfaces. The union of {�̄�𝑖}𝑁𝑖=1 and {𝐼 𝑗 }𝑀𝑗=1 is the set of surfaces of the
polycube structure. For the parametric domain, let {�̄�𝑘 }5

𝑘=1 denote the five surface
patches of the prism-shape degenerated unit cube (see Fig. 2(b)).

Each prism-shape degenerated cube in the polycube structure represents one
volumetric region of the geometry and has a prism-shape degenerated unit cube
as its parametric domain. Fig. 2(b) shows an example of prism-shape degenerated
cube and its corresponding volume domain of the geometry marked in the black



8 Y. Yu, J. G. Liu, and Y. J. Zhang

boxes. Therefore, for each prism-shape degenerated cube in the polycube structure,
we can find its boundary surface �̄�𝑖 and map the segmented surface patch 𝑆𝑖 to its
corresponding parametric surface �̄�𝑘 of the prism-shape degenerated unit cube. To
map 𝑆𝑖 to �̄�𝑘 , we first map its corresponding boundary edges of 𝑆𝑖 to the boundary
edges of �̄�𝑘 . Then we get the parameterization of 𝑆𝑖 by using the cotangent Laplace
operator to compute the harmonic function [63, 5]. Compared to non-degenerated
cubic regions algorithm, we introduce three parametric variables in mapping since
one face is not axis-aligned. Note that for an interior surface 𝐼 𝑗 of the polycube
structure, we skip the parametric mapping step.

The prism elements can then be obtained from the above surface parameterization
combined with subdivision. We generate the prism elements for each prism-shape
region in the following process. To obtain vertex coordinates on the segmented
patch 𝑆𝑖 , we first subdivide the prism-shape degenerated unit cube (see Fig. 3(a))
recursively in order to get their parametric coordinates. The vertex coordinates
of triangular faces of the prism-shape degenerated cube are obtained by linear
subdivison, while the quadrilateral faces are also obtained by linear subdivision.
The physical coordinates can be obtained by using parametric mapping, which has
a one-to-one correspondence between the parametric domain �̄�𝑘 and the physical
domain 𝑆𝑖 . To obtain vertices on the interior surface of the prism region, we skip
the parametric mapping step and directly use linear interpolation to calculate the
physical coordinates. Finally, vertices inside the cubic region are calculated by linear
interpolation. The entire prism elements are built by going through all the prism-
shape regions.

(a) (b) (c)

Fig. 3: The subdivision of prism-shape degenerated unit cube (top row) and
tetrahedral-shape degenerated unit cube (bottom row). (a) Subdivision level 0; (b)
subdivision level 1; and (c) subdivision level 2.



HexDom 9

Prism Parametric Mapping Algorithm
Input: Segmented triangle mesh {�̄�𝑖 }𝑁𝑖=1, polycube structure
Output: Prism elements in prism-shape degenerated cubic regions
1: Find boundary surfaces {�̄�𝑖 }𝑁𝑖=1 and interior surfaces {𝐼 𝑗 }𝑀𝑗=1 in the polycube structure

Surface parameterization step:
2: for each prism-shape degenerated cube in the polycube structure do
3: Create a prism-shape degenerated cube region {�̄�𝑘 }5

𝑘=1 as the parametric domain
4: for each surface in the prism-shape degenerated cube do
5: if it is a boundary surface �̄�𝑖 then
6: if the surface is not axis-aligned then
7: Get the surface parameterization 𝑓 : �̄�𝑖 → �̄�𝑘 ⊂ R3

8: else
9: Get the surface parameterization 𝑓 : �̄�𝑖 → �̄�𝑘 ⊂ R2

10: end if
11: end if
12: end for
13: end for
Parametric mapping and subdivision step:
14: for each prism-shape degenerated cube in the polycube structure do
15: Subdivide the prism-shape degenerated unit cube recursively to get parametric coordinates

𝑣
𝑝𝑎𝑟𝑎

16: for each surface in the prism-shape degenerated cube do
17: if it is a boundary surface �̄�𝑖 then
18: Obtain physical coordinates using 𝑓 −1 (𝑣

𝑝𝑎𝑟𝑎
)

19: else if it is an interior surface 𝐼 𝑗 then
20: Obtain physical coordinates using linear interpolation
21: end if
22: end for
23: Obtain interior vertices in the prism-shape degenerated cubic region using linear interpo-

lation
24: end for

We perform the similar procedure for the tetrahedra-shape degenerated cubes in
the polycube structure. Through the pseudocode in the Tetrahedral Parametric
Mapping Algorithm, we describe how the segmented surface mesh, the polycube
structure and the tetrahedral-shape degenerated unit cube are combined to generate
tetrahedral elements. Fig. 2(b) shows an example of tetrahedral-shape degenerated
cube and its corresponding volume domain of the geometry marked in the dashed
black boxes. The difference is that we use {𝑈𝑘 }4

𝑘=1 to denote those four surface
patches of the tetrahedra-shape degenerated unit cube for the parametric domain.
We also introduce three parametric variables in mapping when one of the surfaces
is not axis aligned. Then, the tetrahedral elements can be obtained from this sur-
face parameterization combined with linear subdivision. We generate tetrahedral
elements for each tetrahedral-shape region in the following process. To obtain ver-
tex coordinates on the segmented patch 𝑆𝑖 , we first subdivide the tetrahedral-shape
degenerated unit cube (see Fig. 3(bottow row)) recursively in order to get their para-
metric coordinates by applying linear subdivison. The physical coordinates can be
obtained by using the parametric mapping between the parametric domain 𝑈𝑘 and



10 Y. Yu, J. G. Liu, and Y. J. Zhang

the physical domain 𝑆𝑖 . 𝐼1 and 𝑈1 are combined for linear interpolation to obtain
vertices on the interior surface of the tetrahedra-shape degenerated cubic region.
Finally, vertices inside the tetrahedra-shape degenerated cube region are calculated
by linear interpolation. The entire tetrahedral elements are built by going through all
the tetrahedral regions.

Tetrahedral Parametric Mapping Algorithm
Input: Segmented triangle mesh {𝑆𝑖 }𝑁𝑖=1, polycube structure
Output: Tetrahedral elements in tetrahedral-shape degenerated cubic regions
1: Find boundary surfaces {𝑃𝑖 }𝑁𝑖=1 and interior surfaces {𝐼 𝑗 }𝑀𝑗=1 in the polycube structure

Surface parameterization step:
2: for each tetrahedral-shape degenerated cube in the polycube structure do
3: Create a tetrahedral-shape degenerated cube region {𝑈𝑘 }4

𝑘=1 as the parametric domain
4: for each surface in the tetrahedral-shape degenerated cube do
5: if it is a boundary surface 𝑃𝑖 then
6: if the surface is not axis-aligned then
7: Get the surface parameterization 𝑓 : 𝑆𝑖 →𝑈𝑘 ⊂ R3

8: else
9: Get the surface parameterization 𝑓 : 𝑆𝑖 →𝑈𝑘 ⊂ R2

10: end if
11: end if
12: end for
13: end for
Parametric mapping and subdivision step:
14: for each tetrahedral-shape degenerated cube in the polycube structure do
15: Subdivide the tetrahedral-shape degenerated unit cube recursively to get parametric coor-

dinates 𝑣
𝑝𝑎𝑟𝑎

16: for each surface in the tetrahedral-shape degenerated cube do
17: if it is a boundary surface 𝑃𝑖 then
18: Obtain physical coordinates using 𝑓 −1 (𝑣

𝑝𝑎𝑟𝑎
)

19: else if it is an interior surface 𝐼 𝑗 then
20: Obtain physical coordinates using linear interpolation
21: end if
22: end for
23: Obtain interior vertices in the tetrahedral-shape degenerated cubic region using linear

interpolation
24: end for

Based on the Prism Parametric Mapping Algorithm, we implemented and
organized the code into a CLI program (PrismGen.exe) that can generate prism
elements by combining parametric mapping with subdivision. Here, we run the
following command to generate the prism elements for the rockerarm model:

1 PrismGen.exe -i rockerarm_indexpatch_read.k -p
2 rockerarm_polycube_structure.k -o rockerarm_prism.vtk -s 2

There are four options used in the command:

• -i: Surface triangle mesh of the input geometry with segmentation information
(rockerarm_indexpatch_read.k);



HexDom 11

• -o: Prism mesh (rockerarm_prism.vtk);
• -p: Polycube structure (rockerarm_polycube_structure.k); and
• -s: Subdivision level.

We use -i to input the segmentation file generated in Section 3.1 and use -p to input
the polycube structure created in Section 3.2. Option -s is used to set the level of
recursive subdivision. There is no subdivision if we set -s to be 0. In the rockerarm
model, we set -s to be 2 to create a level-2 prism elements in the final mesh. The
output prism elements are stored in the vtk format (see Fig. 4(a)) and they can be
visualized in Paraview [1].

Based on Tetrahedral Parametric Mapping Algorithm, we implemented and
organized the code into a CLI program (TetGen.exe) that can generate tetrahedral
elements by combining parametric mapping with linear subdivision. Here, we run
the following command to generate tetrahedral elements for the rockerarm model:

1 TetGen.exe -i rockerarm_indexPatch_read.k -p
2 rockerarm_polycube_structure.k -o rockerarm_tet.vtk -s 2

There are five options used in the command:

• -i: Surface triangle mesh of the input geometry with segmentation information
(rockerarm_indexPatch_read.k);

• -o: Tet mesh (rockerarm_tet.vtk);
• -p: Polycube structure (rockerarm_polycube_structure.k); and
• -s: Subdivision level.

We use -i to input the segmentation file generated in Section 3.1 and use -p to input
the polycube structure created in Section 3.2. Option -s is used to set the level of
recursive subdivision. There is no subdivision if we set -s to be 0. In the rockerarm
model, we set -s to be 2 to create a level-2 tetrahedral mesh. The output tetrahedral
elements are stored in the vtk format (see Fig. 4(b)) and they can be visualized in
Paraview.

3.4 Quality improvement

We integrate three quality improvement techniques in the software package, namely
pillowing, smoothing and optimization. Users can improve mesh quality through
the command line options. We first use pillowing to insert one layer of elements
around the boundary [63] of the hex elements. By using the pillowing technique,
we ensure that each hex element has at most one face on the boundary, which can
help improve the mesh quality around the boundary. After pillowing, smoothing
and optimization [63] are used to further improve the quality of hex elements.
For smoothing, different relocation methods are applied to three types of vertices:
vertices on sharp edges of the boundary, vertices on the boundary surface, and interior
vertices. For each sharp-edge vertex, we first detect its two neighboring vertices on the
curve, and then calculate their middle point. For each vertex on the boundary surface,



12 Y. Yu, J. G. Liu, and Y. J. Zhang

(a) (b)

Fig. 4: Prism elements and tetrahedral elements of the rockerarm model (some
elements are removed to show the interior of Fig. 1(h). (a) Prism elements in a
prism-shape region; and (b) tetrahedral elements in a tetrahedral-shape region.

we calculate the area center of its neighboring boundary quadrilaterals (quads). For
each interior vertex, we calculate the weighted volume center of its neighboring hex
elements as the new position. We relocate the vertex iteratively. Each time the vertex
moves only a small step towards the new position and this movement is done only if
the new location results in an improved local Jacobian. If there are still poor quality
hex elements after smoothing, we run the optimization whose objective function is
the Jacobian. Each vertex is then moved toward an optimal position that maximizes
the worst Jacobian. We presented the Quality Improvement Algorithm in [51] for
quality improvement.

4 HexDom Software and Applications

The algorithms discussed in Sections 3 were implemented in C++. The Eigen li-
brary [10] is used for matrix and vector operations. We used a compiler-independent
building system (CMake) and a version-control system (Git) to support software de-
velopment. We have compiled the source code into the following software package:

• HexDom software package:

– Segmentation module (Segmentation.exe);
– Polycube construction module (Polycube.exe);



HexDom 13

– Hex-dominant mesh generation module (HexGen.exe, PrismGen.exe, Tet-
Gen); and

– Quality improvement module (Quality.exe).

The software is open-source and can be found in the following Github link
(https://github.com/CMU-CBML/HexDom).

We have applied the software package to several models and generated hex-
dominant meshes with good quality. For each model, we show the segmentation
result, the corresponding polycube structure, and the hex-dominant mesh. These
models include: rockerarm (Fig. 1); two types of mount, hepta and a base with
four holes (Fig. 5); fertility, ant, bust, igea, and bunny (Fig. 6). Table 1 shows the
statistics of all tested models. We use the scaled Jacobian to evaluate the quality of
hex elements. The aspect ratio is used as the mesh quality metric for prism and tet
elements which is the ratio between the longest and shortest edges of an element.
The aspect ratio is computed with the LS-PrePost, which is a pre and post-processor
for LS-DYNA [3]. From Table 1, we can observe that the generated hex-dominant
meshes have good quality (minimal Jacobian of hex elements > 0.1). Figs. 5-6(a)
show the segmentation results of the testing models. Then, we generate polycubes
(Figs. 5-6(b)) based on the surface segmentation. Finally, we generate hex-dominant
meshes (Figs. 5-6(c)).

Table 1: Statistics of all the tested models.

Model Input triangle mesh Number of elements Jacobian (worst) Aspect ratio (min, max)
(vertices, elements) Hex Prism Tet Hex Prism Tet

rockerarm (Fig. 1) (11,705, 23,410) 3,840 704 128 0.20 (1.32, 4.93) (1.62, 2.98)
mount1 (Fig. 5) (929, 1,868) 4,224 640 128 0.20 (1,91, 19.57) (1.67, 3.69)
mount2 (Fig. 5) (1,042, 2,096) 6,720 1,024 128 0.28 (2.63, 9.54) (2.30, 4.03)
hepta (Fig. 5) (692, 1,380) 3,776 1,280 128 0.50 (1.51, 4.48) (1.63, 3.14)
base (Fig. 5) (5,342, 10,700) 3,712 384 128 0.34 (1.28, 2.33) (1.70, 8.31)

fertility (Fig. 6) (6,644, 13,300) 2,752 320 128 0.20 (2.96, 11.40) (1.69, 2.69)
ant (Fig. 6) (7,309, 14,614) 4,480 1,536 128 0.21 (1.16, 6.52) (1.60, 2.79)
bust (Fig. 6) (12,683, 25,362) 118,272 20,480 8,192 0.10 (1.35, 48.66) (1.56, 4.96)
igea (Fig. 6) (4,532, 9,060) 6,016 3,584 1,024 0.21 (1.61, 12.25) (1.58, 4.69)

bunny (Fig. 6) (14,131, 28,258) 2,752 1,472 128 0.20 (1.44, 10.08) (1.98, 4.18)

5 Conclusion and future work

In this paper, we present a new HexDom software package to generate hex-dominant
meshes. The main goal of HexDom is to extend the polycube-based method to
hex-dominant mesh generation. The compiled software package makes our pipeline
accessible to industrial and academic communities for real-world engineering ap-
plications. It consists of six executable files, namely segmentation module (Seg-
mentation.exe), polycube construction module (Polycube.exe), hex-dominant mesh
generation module (HexGen.exe, PrismGen.exe, TetGen.exe) and quality improve-
ment module (Quality.exe). These executable files can be easily run in the Command
Prompt platform. The rockerarm model was used to explain how to run these pro-
grams in detail. We also tested our software package using several other models.



14 Y. Yu, J. G. Liu, and Y. J. Zhang

(a) (b) (c)

Fig. 5: Results of two types of mount, hepta and a base with four holes. (a) Surface
triangle meshes and segmentation results; (b) polycube structures; and (c) hex-
dominant meshes.



HexDom 15

(a) (b) (c)

Fig. 6: Results of fertility, ant, bust, igea, and bunny models. (a) Surface triangle
meshes and segmentation results; (b) polycube structures; and (c) hex-dominant
meshes.



16 Y. Yu, J. G. Liu, and Y. J. Zhang

Our software has limitations which we will address in our future work. First,
the hex-dominant mesh generation module is semi-automatic and needs user in-
tervention to create polycube structure. Second, the degenerated cubic regions and
non-degenerated cubic regions need to be handled separately. We will improve the
underneath algorithm and make polycube construction more automatic. In addition,
we will also develop spline basis functions for tetrahedral and prism elements to
support isogeometric analysis for hybrid meshes.

Acknowledgment

Y. Yu, J. Liu and Y. Zhang were supported in part by Honda funds. We also acknowl-
edge the open source scientific library Eigen and its developers.

References

1. Ahrens, J., Geveci, B., Law, C.: Paraview: An end-user tool for large data visualization. The
Visualization Handbook 717 (2005)

2. Blacker, T.D., Stephenson, M.B.: Paving: A new approach to automated quadrilateral mesh
generation. International Journal for Numerical Methods in Engineering 32(4), 811–847 (1991)

3. Corporation, L.S.T.: Ls-dyna keyword user’s manual (2007)
4. Delaunay, B.N.: Sur la sphere vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematich-

eskikh I Estestvennykh Nauk 7(793-800), 1–2 (1934)
5. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution

analysis of arbitrary meshes. In: Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques, pp. 173–182 (1995)

6. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer
Aided Geometric Design 14(3), 231–250 (1997)

7. Folwell, N., Mitchell, S.: Reliable whisker weaving via curve contraction. Engineering with
Computers 15(3), 292–302 (1999)

8. Frey, P.J., Borouchaki, H., George, P.L.: Delaunay tetrahedralization using an advancing-front
approach. In: 5th International Meshing Roundtable, pp. 31–48. Citeseer (1996)

9. Gregson, J., Sheffer, A., Zhang, E.: All-Hex mesh generation via volumetric polycube defor-
mation. Computer Graphics Forum 30(5), 1407–1416 (2011)

10. Guennebaud, G., Jacob, B.: Eigen v3 (2010). http://eigen.tuxfamily.org
11. He, Y., Wang, H., Fu, C., Qin, H.: A divide-and-conquer approach for automatic polycube map

construction. Computers & Graphics 33(3), 369–380 (2009)
12. Hu, K., Zhang, Y., Liao, T.: Surface segmentation for polycube construction based on general-

ized centroidal Voronoi tessellation. Computer Methods in Applied Mechanics and Engineer-
ing 316, 280–296 (2017)

13. Hu, K., Zhang, Y.J.: Centroidal Voronoi tessellation based polycube construction for adaptive
all-hexahedral mesh generation. Computer Methods in Applied Mechanics and Engineering
305, 405–421 (2016)

14. Hu, K., Zhang, Y.J., Xu, G.: CVT-based 3D image segmentation and quality improvement of
tetrahedral/hexahedral meshes using anisotropic Giaquinta-Hildebrandt operator. Computer
Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 6(3), 331–
342 (2018)

15. Khan, D., Plopski, A., Fujimoto, Y., Kanbara, M., Jabeen, G., Zhang, Y., Zhang, X., Kato, H.:
Surface remeshing: A systematic literature review of methods and research directions. IEEE
Transactions on Visualization and Computer Graphics (2020). DOI 10.1109/TVCG.2020.
3016645

http://eigen.tuxfamily.org


HexDom 17

16. Lai, Y., Liu, L., Zhang, Y.J., Chen, J., Fang, E., Lua, J.: Rhino 3D to Abaqus: A T-spline based
isogeometric analysis software framework. In: Advances in Computational Fluid-Structure
Interaction and Flow Simulation, pp. 271–281 (2016)

17. Lai, Y., Zhang, Y.J., Liu, L., Wei, X., Fang, E., Lua, J.: Integrating CAD with Abaqus: A
practical isogeometric analysis software platform for industrial applications. Computers and
Mathematics with Applications 74(7), 1648–1660 (2017)

18. Li, A., Chai, X., Yang, G., Zhang, Y.J.: An isogeometric analysis computational platform for
material transport simulation in complex neurite networks. Molecular & Cellular Biomechanics
16(2), 123 (2019)

19. Liang, X., Zhang, Y.: An octree-based dual contouring method for triangular and tetrahedral
mesh generation with guaranteed angle range. Engineering with Computers 30(2), 211–222
(2014)

20. Lin, J., Jin, X., Fan, Z., Wang, C.: Automatic polycube-maps. In: Advances in Geometric
Modeling and Processing, Lecture Notes in Computer Science, vol. 4975, pp. 3–16. Springer
Berlin / Heidelberg (2008)

21. Liu, L., Zhang, Y., Hughes, T.J., Scott, M.A., Sederberg, T.W.: Volumetric T-spline construction
using Boolean operations. Engineering with Computers 30(4), 425–439 (2014)

22. Liu, L., Zhang, Y., Liu, Y., Wang, W.: Feature-preserving T-mesh construction using skeleton-
based polycubes. Computer Aided Design 58, 162–172 (2015)

23. Lohner, R., Parikh, P.: Three-dimensional grid generation by the advancing front method.
International Journal for Numerical Methods in Fluids 8, 1135–1149 (1988)

24. Meshkat, S., Talmor, D.: Generating a mixed mesh of hexahedra, pentahedra and tetrahe-
dra from an underlying tetrahedral mesh. International Journal for Numerical Methods in
Engineering 49(1-2), 17–30 (2000)

25. Meyers, R.J., Tautges, T.J., Tuchinsky, P.M.: The "hex-tet" hex-dominant meshing algorithm
as implemented in cubit. In: International Meshing Roundtable, pp. 151–158. Citeseer (1998)

26. Nieser, M., Reitebuch, U., Polthier, K.: Cubecover - parameterization of 3D volumes. Computer
Graphics Forum 30(5), 1397–1406 (2011)

27. Owen, S.J.: A Survey of Unstructured Mesh Generation Technology. In: International Meshing
Roundtable, Dearborn, MI, vol. 194, pp. 4135–4195 (1998)

28. Owen, S.J., Saigal, S.: H-morph: An indirect approach to advancing front hex meshing. Inter-
national Journal for Numerical Methods in Engineering 49(1-2), 289–312 (2000)

29. Pan, Q., Xu, G., Zhang, Y.: A unified method for hybrid subdivision surface design using
geometric partial differential equations. A Special Issue of Solid and Physical Modeling 2013
in Computer Aided Design 46, 110–119 (2014)

30. Price, M.A., Armstrong, C.G.: Hexahedral mesh generation by medial surface subdivision:
Part II. Solids with flat and concave edges. International Journal for Numerical Methods in
Engineering 40(1), 111–136 (1997)

31. Price, M.A., Armstrong, C.G., Sabin, M.A.: Hexahedral mesh generation by medial surface
subdivision: Part I. Solids with convex edges. International Journal for Numerical Methods in
Engineering 38(19), 3335–3359 (1995)

32. Qian, J., Zhang, Y.: Automatic unstructured all-hexahedral mesh generation from B-Reps for
non-manifold CAD assemblies. Engineering with Computers 28(4), 345–359 (2012)

33. Qian, J., Zhang, Y., O’Connor, D.T., Greene, M.S., Liu, W.K.: Intersection-free tetrahedral
meshing from volumetric images. Computer Methods in Biomechanics and Biomedical Engi-
neering: Imaging & Visualization 1(2), 100–110 (2013)

34. Qian, J., Zhang, Y., Wang, W., Lewis, A.C., Qidwai, M.A.S., Geltmacher, A.B.: Quality
improvement of non-manifold hexahedral meshes for critical feature determination of mi-
crostructure materials. International Journal for Numerical Methods in Engineering 82(11),
1406–1423 (2010)

35. Schneiders, R.: A grid-based algorithm for the generation of hexahedral element meshes.
Engineering with Computers 12(3-4), 168–177 (1996)

36. Schneiders, R.: An algorithm for the generation of hexahedral element meshes based on an
octree technique. 6th International Meshing Roundtable pp. 195–196 (1997)



18 Y. Yu, J. G. Liu, and Y. J. Zhang

37. Seveno, E., et al.: Towards an adaptive advancing front method. In: 6th International Meshing
Roundtable, pp. 349–362 (1997)

38. Shephard, M.S., Georges, M.K.: Automatic three-dimensional mesh generation by the finite
octree technique. International Journal for Numerical methods in engineering 32(4), 709–749
(1991)

39. Staten, M., Kerr, R., Owen, S., Blacker, T.: Unconstrained paving and plastering: Progress
update. Proceedings of 15th International Meshing Roundtable pp. 469–486 (2006)

40. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Transactions on
Graphics 23(3), 853–860 (2004)

41. Teng, S.H., Wong, C.W.: Unstructured mesh generation: Theory, practice, and perspectives.
International Journal of Computational Geometry & Applications 10(3), 227–266 (2000)

42. Wang, W., Zhang, Y., Liu, L., Hughes, T.J.R.: Trivariate solid T-spline construction from
boundary triangulations with arbitrary genus topology. Computer Aided Design 45(2), 351–
360 (2013)

43. Wang, W., Zhang, Y., Scott, M.A., Hughes, T.J.R.: Converting an unstructured quadrilateral
mesh to a standard T-spline surface. Computational Mechanics 48(4), 477–498 (2011)

44. Wang, W., Zhang, Y., Xu, G., Hughes, T.J.R.: Converting an unstructured quadrilateral/hexa-
hedral mesh to a rational T-spline. Computational Mechanics 50(1), 65–84 (2012)

45. Wei, X., Zhang, Y., Hughes, T.J.R.: Truncated hierarchical tricubic C0 spline construction
on unstructured hexahedral meshes for isogeometric analysis applications. Computers and
Mathematics with Applications 74(9), 2203–2220 (2017)

46. Wei, X., Zhang, Y.J., Toshniwal, D., Speleers, H., Li, X., Manni, C., Evans, J.A., Hughes,
T.J.: Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with
optimal convergence rates in isogeometric analysis. Computer Methods in Applied Mechanics
and Engineering 341, 609–639 (2018)

47. Xie, J., Xu, J., Dong, Z., Xu, G., Deng, C., Mourrain, B., Zhang, Y.J.: Interpolatory Catmull-
Clark volumetric subdivision over unstructured hexahedral meshes for modeling and simulation
applications. Computer Aided Geometric Design 80, 101867 (2020)

48. Xu, G., Ling, R., Zhang, Y.J., Xiao, Z., Ji, Z., Rabczuk, T.: Singularity structure simplification
of hexahedral meshes via weighted ranking. Computer-Aided Design 130, 102946 (2021)

49. Yamakawa, S., Shimada, K.: Fully-automated hex-dominant mesh generation with direction-
ality control via packing rectangular solid cells. International Journal for Numerical Methods
in Engineering 57(15), 2099–2129 (2003)

50. Yu, Y., Liu, H., Qian, K., Yang, H., McGehee, M., Gu, J., Luo, D., Yao, L., Zhang, Y.J.:
Material characterization and precise finite element analysis of fiber reinforced thermoplastic
composites for 4D printing. Computer-Aided Design 122, 102817 (2020)

51. Yu, Y., Wei, X., Li, A., Liu, J., He, J., Zhang, Y.J.: HexGen and Hex2Spline: Polycube-based
hexahedral mesh generation and spline modeling for isogeometric analysis applications in LS-
DYNA. Springer INdAM Series: Proceedings of INdAM Workshop "Geometric Challenges
in Isogeometric Analysis." (2021)

52. Yu, Y., Zhang, Y.J., Takizawa, K., Tezduyar, T.E., Sasaki, T.: Anatomically realistic lumen
motion representation in patient-specific space–time isogeometric flow analysis of coronary
arteries with time-dependent medical-image data. Computational Mechanics 65(2), 395–404
(2020)

53. Zhang, Y.: Challenges and advances in image-based geometric modeling and mesh generation.
In: Image-Based Geometric Modeling and Mesh Generation, pp. 1–10. Springer (2013)

54. Zhang, Y.: Geometric Modeling and Mesh Generation from Scanned Images. Chapman and
Hall/CRC (2016)

55. Zhang, Y., Bajaj, C.L.: Adaptive and quality quadrilateral/hexahedral meshing from volumetric
data. Computer Methods in Applied Mechanics and Engineering 195(9-12), 942–960 (2006)

56. Zhang, Y., Bajaj, C.L., Sohn, B.S.: 3D Finite Element Meshing from Imaging Data. Computer
Methods in Applied Mechanics and Engineering 194(48-49), 5083–5106 (2005)

57. Zhang, Y., Bajaj, C.L., Xu, G.: Surface smoothing and quality improvement of quadrilat-
eral/hexahedral meshes with geometric flow. Communications in Numerical Methods in
Engineering 25(1), 1–18 (2009)



HexDom 19

58. Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C.L., Hughes, T.J.R.: Patient-specific vascular
NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied
Mechanics and Engineering 196(29-30), 2943–2959 (2007)

59. Zhang, Y., Hughes, T.J.R., Bajaj, C.L.: An automatic 3D mesh generation method for domains
with multiple materials. Computer Methods in Applied Mechanics and Engineering 199(5-8),
405–415 (2010)

60. Zhang, Y., Liang, X., Ma, J., Jing, Y., Gonzales, M.J., Villongco, C., Krishnamurthy, A., Frank,
L.R., Nigam, V., Stark, P., Others: An atlas-based geometry pipeline for cardiac Hermite model
construction and diffusion tensor reorientation. Medical Image Analysis 16(6), 1130–1141
(2012)

61. Zhang, Y., Liang, X., Xu, G.: A robust 2-refinement algorithm in octree and rhombic dodeca-
hedral tree based all-hexahedral mesh generation. Computer Methods in Applied Mechanics
and Engineering 256, 562–576 (2013)

62. Zhang, Y., Qian, J.: Resolving topology ambiguity for multiple-material domains. Computer
Methods in Applied Mechanics and Engineering 247, 166–178 (2012)

63. Zhang, Y., Wang, W., Hughes, T.J.R.: Solid T-spline construction from boundary represen-
tations for genus-zero geometry. Computer Methods in Applied Mechanics and Engineering
249, 185–197 (2012)

64. Zhang, Y., Wang, W., Hughes, T.J.R.: Conformal solid T-spline construction from boundary
T-spline representations. Computational Mechanics 51(6), 1051–1059 (2013)


	HexDom: Polycube-Based Hexahedral-Dominant Mesh Generation
	Yuxuan Yu, Jialei Ginny Liu and Yongjie Jessica Zhang
	1 Introduction
	2 Pipeline design
	3 HexDom: Polycube-based hex-dominant mesh generation
	3.1 Surface segmentation
	3.2 Polycube construction
	3.3 Parametric mapping and subdivision
	3.4 Quality improvement

	4 HexDom Software and Applications 
	5 Conclusion and future work
	Acknowledgment
	References
	References



