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Intracellular concentrations of the glucocorticoids cortisol
and corticosterone are modulated by the enzymes 11�-hydrox-
ysteroid dehydrogenase (11�-HSD) 1 and 2. 11�-HSD1 is a re-
duced nicotinamide adenine dinucleotide phosphate
(NADPH)-dependent microsomal reductase that converts the
inactive glucocorticoids cortisone and 11-dehydrocorticoster-
one to their active forms, cortisol and corticosterone. Hexose-
6-phosphate dehydrogenase (H6PDH) is an enzyme that gen-
erates NADPH from oxidized NADP (NADP�) within the
endoplasmic reticulum. In the absence of NADPH or H6PDH
to regenerate NADPH, 11�-HSD1 acts as a dehydrogenase and
inactivates glucocorticoids, as does 11�-HSD2. A monoclonal
antibody against H6PDH was produced to study the possibil-
ity that 11�-HSD1 in the absence of H6PDH may be respon-
sible for hydroxysteroid dehydrogenase activity in tissues
that do not express significant amounts of 11�-HSD2. H6PDH

and 11�-HSD1 expression was surveyed in a variety of rat
tissues by real-time RT-PCR, Western blot analysis, and im-
munohistochemistry. H6PDH was found in a wide variety of
tissues, with the greatest concentrations in the liver, kidney,
and Leydig cells. Although the brain as a whole did not express
significant amounts of H6PDH, some neurons were clearly
immunoreactive by immunohistochemistry. H6PDH was am-
ply expressed in most tissues examined in which 11�-HSD1
was also expressed, with the notable exception of the renal
interstitial cells, in which dehydrogenase activity by 11�-
HSD1 probably moderates activation of the glucocorticoid
receptor because rat renal interstitial cells do not have sig-
nificant amounts of mineralocorticoid receptors. This anti-
body against the H6PDH should prove useful for further stud-
ies of enzyme activity requiring NADPH generation within
the endoplasmic reticulum. (Endocrinology 149: 525–533, 2008)

BINDING OF CORTISOL and corticosterone to the min-
eralocorticoid receptor (MR) and glucocorticoid recep-

tor (GR) is modulated by the presence of the 11�-hydrox-
ysteroid dehydrogenase (11�-HSD) type 1 and 2 enzymes.

11�-HSD1 can act as a dehydrogenase (oxidase) or a re-
ductase, however, it is primarily a reductase in vivo and in
intact cells, and converts the inactive metabolites cortisone
and 11-dehydrocorticosterone to the glucocorticoids cortisol
and corticosterone. 11�-HSD1 is expressed in many rat tis-
sues, most prominently in the liver, lung, proximal tubules
of the renal cortex and interstitial cells of the renal medulla
and papilla (in the rat, but not human kidney), gastric pa-
rietal cells, and testis (1–5). 11�-HSD1 does not colocalize
with the MR in the kidney (6).

11�-HSD1 is thought to be anchored in the membrane of the
endoplasmic reticulum (ER) with its catalytic site within the ER

lumen (7–9). Its reductase activity requires reduced nicotin-
amide adenine dinucleotide phosphate (NADPH) (10). Most
NADPH is produced by the oxidation of phosphorylated hex-
oses by the cytosolic enzyme, glucose-6-phosphate dehydro-
genase that catalyzes the first step in the pentose phosphate
pathway. However, NADPH does not freely cross the micro-
somal membrane. Hexose-6-phosphate dehydrogenase
(H6PDH) is a microsomal enzyme that catalyzes the first two
steps of the pentose phosphate pathway to generate NADPH
from oxidized NADP (NADP�) within the ER (10, 11). H6PDH
has been found in a wide variety of tissues, particularly those
involved in detoxification and steroid metabolism, most prom-
inently the liver, testes, and placenta (10, 12). The direction of
11�-HSD1 activity is dependent upon the coexpression H6PDH
to generate the cofactor NADPH; without H6PDH, 11�-HSD1
acts as a dehydrogenase and inactivates glucocorticoids, as does
11�-HSD2 (5, 10, 13). H6PDH knockout mice have no 11�-
HSD1 reductase activity (14)

11�-HSD2 is an oxidized nicotinamide adenine dinucle-
otide dependent dehydrogenase with Michaelis-Menten
constants (kMs) for cortisol and corticosterone low enough
to be relevant to circulating levels of free glucocorticoids (15,
16). It has been cloned for several species and demonstrated
in both epithelial and nonepithelial tissues (17–19). Impor-
tant exceptions are the adult heart and most areas of the brain
(20). Its expression in the central nervous system is very
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limited (21–23), but the ready conversion of corticosterone to
11-dehydrocorticosterone has been documented in the brain
(24). Despite the fact that 11�-HSD2 has not been demon-
strated in the adult heart, aldosterone activates MR in the
heart, both in hyperaldosteronism and congestive heart fail-
ure (25–28).

It is not certain how the MR can be occupied and activated
by aldosterone in cells in which the 11�-HSD2 is not coex-
pressed with the receptor. Several mechanisms for which
there is circumstantial but inconclusive evidence have been
proposed, including the existence of an as yet uncharacter-
ized steroid dehydrogenase (29–32), paracrine or autocrine
action of locally synthesized aldosterone (33, 34), and local
synthesis of a more potent metabolite of aldosterone (35, 36).
However, another potential mechanism for 11�-HSD activity
in the absence of the 11�-HSD2 is hydroxysteroid dehydro-
genase activity by the 11�-HSD1 in the absence of sufficient
H6PDH activity (10). In this study we have measured the
expression of the mRNA and protein of 11�-HSD1 and
H6PDH in a variety of tissues by real-time PCR, Western blot
analysis, and immunohistochemistry (ihc).

Materials and Methods

Tissues were harvested from normal 3-month-old female and male
Sprague Dawley rats consuming a standard rat diet (maintenance rodent

chow; Harlan Teklad, Indianapolis, IN) and tap water ad libitum. Hus-
bandry and all procedures followed the National Research Council
Guide for the Care and Use of Laboratory Animals and were performed
in Association for Assessment and Accreditation of Laboratory Animal
Care accredited facilities. The animal care and use protocol for the
current studies was approved by the Jackson Veterans Affairs Medical
Center Institutional Animal Care and Use Committee. The rats were
anesthetized with isoflurane in oxygen, and a variety of tissues (Figs. 1
and 2) were either quickly removed and frozen in liquid nitrogen for
RNA and protein isolation, or the animals were perfused first with
heparinized saline, then Streck’s Tissue Fixative (STF) (Streck Labora-
tories, La Vista, NE) before tissue harvest.

Real-time RT-PCR

Total RNA was extracted with Tri-Reagent (Molecular Research Cen-
ter, Cincinnati, OH), resuspended in diethyl pyrocarbonate-H2O, DNase
treated with Turbo DNAfree kit (Ambion, Austin, TX), and quantified
by spectrophotometry. Five micrograms of RNA were reverse tran-
scribed with 0.5 �g T12VN primer and Superscript III (Invitrogen, Carls-
bad, CA) in a final volume of 20 �l. The reaction was performed for 60
min at 50 C and terminated by incubation at 75 C for 15 min. Primers
for H6PDH (sense: 5�-TTTCTGCAGCTGAGCCAGTA-3�; antisense: 5�-CT-
GGGTCTCGATGTCCTTGT-3�, product size: 78 bp), 11�-HSD1 (sense: 5�-
GCAGACCGATTTGTTGTTGA-3�; antisense: 5�-GTGGATATCATCGTG-
GAAGAGAG-3�, product size: 108 bp), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (sense: 5�-AAGATGGTGAAGGTCGGTGT-3�; an-
tisense: 5�-GTTGATGGCAACAATGTCCACT-3�, product size: 99 bp) were
designed with Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/
primer3_www.cgi) and checked for the absence of cross-reactivity by BLAST
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FIG. 1. A, The ratio of mRNA for H6PDH and GAPDH
for a variety of tissues for male and female rats. B, The
ratio of mRNA for 11�-HSD1 and GAPDH for a variety
of tissues for male and female rats. C, The ratio of mRNA
for 11�-HSD1 and H6PDH on a log scale.
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search. Real-time PCR contained 1 �l reverse transcribed product, 0.1 �m each
of primer, 0.2 mm deoxyribonucleotide triphosphates, SYBR green I (1:20,000
final concentration; Molecular Probes, Eugene, OR), and 1 �l titanium Taq
DNA polymerase (Clontech, Palo Alto, CA). Cycling conditions were 1 min at
95 C, followed by 50 cycles of 15 sec at 95 C, 15 sec at 60 C, and 1 min at 72 C.
The PCR was performed in an i-Cycler thermal cycler (Bio-Rad Laboratories,
Hercules, CA), and real-time data were collected during the extension phase
of the PCR cycle. After PCR amplification, the specificity of the PCR was
confirmed by melting temperature determination of the PCR product and
electrophoretic analysis in 2% agarose gels. For the standard curve, PCR prod-
ucts were cloned in the pCR2.1 TOPO vector (Invitrogen Life Technologies,
Inc.) and were diluted to add 10–108 molecules per PCR. Results are expressed
as molecules of gene of interest standardized by molecules of GAPDH.

Antibodies. Polyclonal antibodies were raised in sheep against a portion
of the human H6PDH comprising amino acids (aa) 757–770 (C-LVS-
RVGHEPKKWPI) and 215–229 (C-LPFRDQNRKALDGL), regions that
are identical to the rat sequence. The peptides were conjugated to key-
hole limpet hemocyanin using iodoacetamido-caproyl-N-hydroxysuc-
cinimide as described previously (37). The antibodies were purified by
affinity purification using the peptide conjugated to a Sulfolink column
(Pierce, Rockford, IL). Results were similar for both H6PDH antibodies;
the antibody against 757–770 aa was used for the figures except where
noted (Fig. 3). The antibody against 11�-HSD1 was a rabbit polyclonal
antibody designated RAH113 (2).

Western blot for 11�-HSD1 and H6PDH. Rat kidney microsomes were
isolated by differential centrifugation as described before (38). Micro-
somes were solubilized using Laemmli buffer (39) and run in a 12%
PAGE (11�-HSD) or 7.5% PAGE (H6PD), transferred by semidry blot to
a polyvinylidene difluoride membrane, dried, blocked with 5% nonfat
milk, and incubated with the anti-11�-HSD1 or sheep anti-H6PDH an-
tibodies. The blots were then incubated with peroxidase-labeled donkey
antirabbit or antisheep second antibodies and developed using West
Pico Chemiluminescence substrate from Pierce.

ihc. After removal from the perfused animal, tissues were further fixed
for 18–24 h in STF, then paraffin blocked for sectioning into 6-mm slices.
Sodium dodecyl sulfate (SDS) 0.2% was used both in the blocking so-
lution and primary antibody buffer to ensure antibody permeability and
to unmask antigens. Immunocytochemistry was performed using sheep
anti-H6PDH and rabbit anti-11�-HSD1 antibodies, followed by donkey
antirabbit or antisheep biotin-labeled antibodies, and detected using
streptavidin-peroxidase system (Zymed Laboratories, San Francisco,
CA) and 3,3�-diaminobenzidine HCl (Sigma-Aldrich, St. Louis, MO.),
then counterstained with Gil hematoxylin. Controls were done for every
tissue using the two different secondary antibodies, without the primary
antibodies.

Statistical analysis

Differences in the measured variables between control-treated sam-
ples were evaluated by ANOVA and expressed as the mean � sem
where appropriate.

Results

Figure 1A is a plot of the amount of H6PDH mRNA rel-
ative to that of GAPDH from female and male Sprague Daw-
ley rats. H6PDH mRNA was detected in all tissues. Its ex-
pression was greatest in liver, kidney, lung, spleen, parotid
gland, adipose tissue (both white and brown), uterus, and
seminal vesicle. There were no significant gender differences
in H6PDH mRNA expression in common tissues. Figure 1B
is a plot of amounts of 11�-HSD1 mRNA relative to that of
GAPDH. 11�-HSD1 mRNA was also detected in all tissues
assayed. Males expressed more 11�-HSD1 relative to
GAPDH mRNA than females in the liver, kidney, and mes-
enteric fat; females expressed more in the adrenal and blad-
der. Expression of 11�-HSD1 in the liver of male rats was
over 20 times that of females, as has been reported previously
(2). Although GAPDH is considered to be among the best of
the commonly used housekeeping genes for the rat (40),
Barber et al. (41) reported up to a 15-fold difference in the
expression of mRNA for GAPDH between some human tis-
sue GAPDH. Greater GAPDH expression in skeletal muscle
would explain the relatively low values of H6PDH in this
tissue (Fig. 1A), compared with protein expression by West-
ern blot (Fig. 2). Therefore, the ratio of 11-HSD1 to H6PDH
has been used to compare the gene expression of the two
enzymes in each tissue (Fig. 1C).

Results of multiple Western blots for H6PDH protein in
tissue homogenates and microsomes were similar with both
H6PDH antibodies and concordant with those of the mRNA
measurements for H6PDH. Figure 2 is a representative West-
ern blot using different amounts of protein for different tis-
sues and demonstrates relative levels of protein expression
detected by the antibody against aa 757–770. The H6PDH
antibody detected a band in the expected molecular mass
range of approximately 98 kDa in most tissues analyzed, with
the largest amount consistently detected in the liver. The
band at approximately 98 kDa for 5 �g liver protein was of
similar or greater intensity than the bands for 20 �g kidney,
25 �g pancreas, 50 �g lung, testes, ovary, duodenum, thy-

A

B

FIG. 3. A composite of Western blot gels using 20-�g microsomes for
several tissues. A, The same gel was probed first with H6PDH aa
757–770 (portion right of the molecular mass marks), stripped, and
reprobed with the H6PDH aa 215–229. Exposure times as labeled. B,
11�-HSD1.
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FIG. 2. Representative Western blots using varying amounts of total
cellular protein of different tissues detected by the antibody against
H6PDH at approximately 96 kDa.
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mus, adrenal, skeletal muscle, colon, and aorta, and 100 �g
spleen and stomach. The protein sample for the aorta com-
prised adhering tissue as well as vascular smooth muscle, an
important consideration in interpreting these data, as dis-
cussed in the description of the ihc of the aorta. As expected
from the relatively limited quantities of mRNA detected,
bands at approximately 98 kDa for heart and brain were very
faint or absent in multiple Western blots (Figs. 2 and 3, A and
B; data not shown). Although no band at this molecular mass
was detected in 100 �g whole brain in the gel (Fig. 3A), 50
�g cerebellum did produce a distinct, if faint, band at this
molecular mass. Only a very faint band at approximately 98
kDa was detected in multiple heart samples, though the
antibody consistently detected a very strong band at approx-
imately 64 kDa and a fainter one at approximately 55 kDa in
microsomal protein samples with both H6PDH antibodies
(Fig. 3) and in other gels not shown. Similarly, prominent
bands of lower molecular mass representing an unknown
protein were detected in brain samples.

Figure 3 is a composite of Western blot gels using 20 �g
microsomes for several tissues. The gel in Fig. 3A was probed
first with the H6PDH antibody against aa 757–770 (portion
to the right of the molecular mass marks), then stripped and
reprobed with the H6PDH antibody against aa 215–229. Ex-
posure time for the aa 215–229 H6PDH antibody was 45 sec;
that for the same gel using the aa 757–770 H6PDH antibody,
comprising the liver, heart, and kidney samples, was 5 min,
and that for aa 757–770 for testes, spleen, brain, lung, and
stomach was 10 min, allowing the detection of the smaller
quantities of H6PDH protein in the testes, stomach, and lung.
The gel in Fig. 3B represents protein detected by the anti-
11�-HSD1 antibody. A very faint approximate 98-kDa band
was detected for brain microsomal protein, but not for the
heart. Bands of smaller molecular mass of about 64 and 50
kDa were detected consistently in heart and brain sample.
Although these may be degradation products of the H6PDH,
we do not know the nature of these proteins.

11�-HSD1 protein was clearly detected at the expected
molecular mass of about 36 kDa by Western blot in 20 �g
microsomes from liver, kidney, testes, and lung (Fig. 3B). As
expected from the literature, analysis of a larger amount of
whole brain, cerebellum and brainstem protein, and extend-
ing the development time for the gel demonstrated bands at
the appropriate molecular mass for 11�-HSD1, at roughly
half the intensity of the band for 5 �g liver protein (Western
blot gels not shown). Faint bands of 36 kDa were seen in
samples of heart, spleen, thymus, stomach, skeletal muscle,
aorta, and adrenal gland when gels were exposed for longer
times (data not shown). The 11�-HSD1 antibody detected
prominent bands of 36 kDa for protein extracted from sc,
omental, and brown fat (gels not shown).

Figures 4 and 5 are composites of photomicrographs of ihc
for H6PDH and 11�-HSD1 in multiple tissues. The control
immunostaining procedures omitting the primary antibod-
ies, but using antisheep antibodies for the H6PDH and an-
tirabbit for the 11�-HSD1, were unequivocally negative for
every tissue, though not all are shown due to space consid-
erations. Staining for both H6PDH and 11�-HSD1 was gran-
ular or punctuate as expected from their location within the
ER. Both enzymes were highly and fairly uniformly ex-

pressed in the liver (Fig. 4, a–d) when 0.2% SDS was added
to the blocking buffer to unmask antigenic sites. Cells com-
prising the walls of the vessels and bile ducts were not
significantly stained by either antibody. Occasional macro-
phages were stained by both. If SDS was not added to the
blocking and primary antigen buffers, staining for both en-
zymes was more intense in cells closest to the central veins
and portal triads in a pattern reported previously (2, 42).

Figure 4, e–m, is representative photomicrographs of ihc
staining for H6PDH and 11�-HSD1 pairs in adjacent sections
of the same kidney. The distribution of immunoreactivity for
the two enzymes was quite different. Light to moderate
H6PDH immunoreactivity (Fig. 4, e, g, j, and l) was present
in most cells of the kidney, except those of the papillary
interstitium, and was most intense in epithelial cells of con-
voluted proximal tubular cells in the juxtamedullary cortex,
with only a few convoluted and straight descending proxi-
mal tubules of superficial nephrons staining darkly. Staining
within these cells was granular, with the highest concentra-
tion in the brush border. Podocytes in the glomeruli were
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FIG. 4. Photomicrographs of rat tissues using antibodies against the
H6PDH and 11�-HSD1 for ihc. a–d, Liver permeabilized with SDS.
a, Control. b and c, H6PDH. d, 11�-HSD1. e–m, Kidney. e, H6PDH.
f, 11�-HSD1. g, Outer medulla H6PDH. h, Outer medulla 11�-HSD1.
i, Control. j, Glomerular H6PDH. k, Glomerulosa 11�-HSD1. l, Inner
medulla H6PDH. m, Inner medulla 11�-HSD1. n–q, White and brown
adipose tissue. n and o, Control. p, H6PDH. q, 11�-HSD1. r–u, Ad-
renal gland. r, control. s and t, H6PDH. t, Cortex with medulla inset
H6PDH. u, 11�-HSD1. ZF, Zonas fasciculata; ZG, zonas glomerulosa;
ZR, zonas reticularis.
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moderately stained by the H6PDH antibody. Macula densa
cells were not darkly stained, but the epithelial cells in inner
cortical nephrons across the tubule from the macula densa
often were. Staining was less intense in cells of the descend-
ing loop of Henle, connecting tubes, and collecting ducts than
in those of the proximal tubules. Staining of collecting duct
epithelia was uneven, with one to two cells seen on a trans-
verse cut being markedly more stained than the others (Fig.
4l). Epithelial cells of the calyx were also quite immunore-
active to the H6PDH antibodies (data not shown).

11�-HSD1 immunoreactivity in the kidney (Fig. 4, f, h, k,
and m) was present in almost all proximal tubules of the
superficial cortical nephrons and most of the distal convo-
luted tubules. 11�-HSD1 immunoreactivity of proximal tu-
bular epithelial cells was of variable intensity within the
same cross-section of a tubule but was particularly intense in
the brush borders of those cells that were immunoreactive.
Podocytes of the glomeruli were lightly stained, as were the
macula densa cells. Collecting duct epithelial cells were com-

pletely negative, however, most, if not all medullary inter-
stitial cells were very intensely stained (Fig. 4m).

Figure 4, n–q, is of interscapular white and brown adipose
tissue; white and brown fat are controls (Fig. 4, n and o). The
cytoplasm of white and brown adipocytes were intensely
and similarly stained by both the H6PDH (Fig.4p) and 11�-
HSD1 (Fig. 4q) antibodies. The cell that was highly immu-
noreactive for both enzymes may be a fibrocyte, macrophage,
or plasma cell because the latter are interspersed throughout
adipose tissue and are detected by antibodies against both
enzymes, as can be appreciated in the spleen and lymph
nodes (Fig. 5, a–d).

Figure 4, r–u, is of the adrenal gland. The H6PDH antibody
produced a moderate granular straining of the cytoplasm of
adrenal cortical cells (Fig. 4, s and t), with the zona glomeru-
losa cells staining least intensely, whereas the chromaffin
cells were much more intensely stained (inset). There was
moderate 11�-HSD1 staining of the cells of the adrenal cor-
tex, but not chromaffin cells (Fig. 4u). There was very intense
11�-HSD1 immunoreactivity outside of the chromaffin and
zona glomerulosa cells with occasional spots or short streaks
radiating through the zona fasciculata/reticularis that may
be neuronal processes or fibrocytes.

The pattern of staining in the spleen, lymph nodes (Fig. 5,
a–d), and thymus (data not shown) was very similar for both
H6PDH and 11�-HSD1 antibodies. Plasma cells of the red
pulp were intensely stained, as were macrophages in non-
lymphoid tissues. Cells forming the stroma, trabeculae, and
capsule were less immunoreactive. The lymphoid cells of the
periarteriolar lymphoid sheaths and germinal centers of the
white pulp were not stained. Similarly, thymocytes in the
germinal centers of the thymus were not appreciably stained,
whereas larger cells were.

Photomicrographs of the lung are seen in Fig. 5, e–i, Fig.
5, f and g, being representative of H6PDH staining, and Fig.
5, h and i, of 11�-HSD1 staining. Airway epithelial cells and
alveolar and interstitial macrophages were intensely immu-
noreactive, whereas alveolar cells and type 1 pneumocytes
were not stained appreciably with the H6PDH antibody.
11�-HSD1 staining was also seen in alveolar interstitial cells
and macrophages, but not in bronchiolar epithelia.

Figure 5, k–n, is representative ihc of the testes and vas
deferens. Leydig cells were intensely immunoreactive for
H6PDH (Fig. 5k) and 11�-HSD1 (Fig. 5n), whereas the ger-
minal cells were not. However, the maturing and mature
spermatozoa, including their tails, were stained by the an-
tibody against H6PDH (Fig. 5, k–m), but not that against
11�-HSD1 (Fig. 5n). The distributions of H6PDH and 11�-
HSD1 immunoreactivities in the rat ovary (data not shown)
were similar, with the most intense staining in corporal lutea
and theca cells, and light or no staining in the granulosa cells
and oocytes. Uterine epithelia cells were intensely stained by
the H6PDH antibody; that of the endometrial glands slightly
less so. Elastic fibers of the myometrium, like those of the
aorta, and muscularis layers of the stomach, duodenum, and
colon were lightly and nonspecifically immunoreactive.

Figure 5, o–w, is representative micrographs of the cere-
bral cortex, dentate area of the hippocampus, cerebellum,
and choroid plexus of the dorsal third ventricle. Some neu-
rons and the epithelial cells of the pia and choroid plexus
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FIG. 5. Photomicrographs of rat tissues using antibodies against the
H6PDH and 11�-HSD1 for ihc. a–d, Spleen and lymph node. a, Con-
trol spleen. b, Spleen H6PDH. c, Lymph node H6PDH. d, Spleen
11�-HSD1. e–i, Lung. e, Control. f and g, H6PDH. h and i, 11�-HSD1.
j–n, Testes and vas deferens. j, Control. k, Seminiferous tubules and
Leydig cells H6PDH. l, Seminiferous tubules and sperm H6PDH. m,
Epididymis H6PDH. n, Seminiferous tubules and Leydig cells, 11�-
HSD1. o–w, Brain: o, Frontal cortex H6PDH. p, Frontal cortex-11�-
HSD1. q, Hippocampus H6PDH. r, Hippocampus-11�-HSD. s, Con-
trol, cerebellum. t, Cerebellum H6PDH. u, Cerebellum 11�-HSD1. v,
Choroid plexus H6PDH. w, Choroid plexus 11�-HSD1.
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stained with antibodies against both enzymes. Although
similar in some areas and cells, e.g. magnocellular neurons
and large neurons of the nuclei of the seventh cranial nerve
(data not shown), the immunoreactivity for H6PDH anti-
bodies clearly differed from that of 11�-HSD1 in others. Most
notably, the cytoplasm of the Purkinje cells bodies was
stained intensely by the H6PDH antibody (Fig. 5t), but not
by the 11�-HSD1 antibody (Fig. 5u), which stained the
smaller cells adjacent to the Purkinje cells more strongly.

In the heart (data not shown), there was light ihc staining
in a Z-band-like pattern, and clear darker staining of fibro-
cytes and macrophages. Significant H6PDH and 11�-HSD1
staining of the section of the aorta (data not shown) was
confined to adherent fat, fibrocytes, and macrophages. There
was no granular staining within the vascular smooth muscle,
as would be expected for enzymes within the ER, but wavy
elastin in vessels and the heart was lightly stained. Similarly,
the elastin in the muscularis layers of the stomach and in-
testines (data not shown) was lightly stained in a wavy
pattern. Epithelial cells of the villi and crypts of Lieberkühn
of the duodenum and colon were not immunoreactive, but
macrophages between the crypts were intensely stained.
Uterine epithelia cells were intensely stained by the H6PDH
antibody; that of the endometrial glands slightly less so.
Light wavy staining in the myometrium appears to be of the
elastic fibers, and, like the elastic fibers of the aorta, mus-
cularis layers of the stomach, duodenal and colon, and heart,
are probably nonspecific staining.

Discussion

The significance of H6PDH in the production of NADPH
for microsomal metabolism of steroids and drugs was rec-
ognized over 30 yr ago by Hori and Takahashi (43). The
obligate relationship between reductase activity of the 11�-
HSD1 enzyme and H6PDH for reductase activity by the
11�-HSD1 was suggested by a study of cortisol reductase
deficiency in humans (44) and confirmed by elegant exper-
iments using differentiating adipocytes (45), as well as a
H6PDH knockout mouse (14). Although expression of 11�-
HSD1 does not change significantly as preadipocytes become
adipocytes, there is a very significant increase in H6PDH
expression, resulting in a change in the net 11�-HSD activity
from dehydrogenase and inactivation of cortisol in preadi-
pocytes, to reductase, production of cortisol from cortisone,
in mature adipocytes (45). As in liver microsomes (13), 11�-
HSD1 in adipocytes forms a functional unit with H6PDH and
glucose-6-phosphate transporter, required for the transport
of substrate into the ER, within the ER (46). As expected, both
real time RT-PCR and Western blot indicated that H6PDH
and 11�-HSD1 were highly expressed in adipose tissue, and
staining of attached fat cells served as a consistent positive
control for both enzymes in ihc sections from other tissues.

Use of the ratio of mRNA for 11�-HSD1 to H6PDH (Fig.
1C) controls for variations in GAPDH mRNA in the various
tissues. A ratio less than or nearly 1, such as seen in fat,
spleen, and thymus, would suggest more than enough
NADPH generating capacity to drive 11�-HSD1 reductase
activity, though NADPH generation in the ER may serve the
cofactor requirement for more than this one enzyme (43, 47).

A relatively larger 11�-HSD1 to H6PDH mRNA ratio does
not necessarily indicate a decrease in net reductase activity
of the 11�-HSD1 in a given tissue. Despite the relative excess
of mRNA for 11�-HSD1 to H6PDH in the liver, 11�-HSD1
reductase activity is responsible for the conversion of corti-
sone and 11-dehydrocorticosterone to cortisol and cortico-
sterone in this organ.

When no permeabilization or antigen retrieval methods
were used, the most intense H6PDH and 11�-HSD1 immu-
noreactivity occurred in hepatocytes closest to the central
vein, with staining fading centrifugally, a pattern described
previously (2, 12, 42). However, use of a retrieval step de-
scribed for the ihc detection of syntaxin 3 in renal epithelia
(48) produced stronger and more homogeneous immuno-
staining of hepatocytes for both enzymes and eliminated the
pattern of darkest staining around central veins.

The immunohistochemical patterns produced by the
H6PDH and 11�-HSD1 antibodies in the kidney were similar
to those described by others (2, 12) and quite different from
each other. The limited coexpression of H6PDH with 11�-
HSD1 in some parts of the kidney suggests that in the healthy
rat on a standard rodent diet of 0.3% NaCl, a net 11�-HSD1
dehydrogenase activity converting corticosterone to inactive
metabolites may predominate, particularly in the renal med-
ullary interstitial cells, in which staining by the 11�-HSD1
antibody was particularly intense, whereas that by the
H6PDH antibodies in the renal medulla was limited to light
staining of a few tubular epithelial cells. However, because
MR expression in the rat kidney resembles that of H6PDH
more than that of 11�-HSD1 (6, 37), it is unlikely that 11�-
HSD1 dehydrogenase activity protects the MR from binding
by corticosterone in the kidney but regulates occupancy of
the GR in these cells. Both GR and MR immunoreactivity
were described in rabbit renal medullary interstitial cells (49),
in which case dehydrogenase activity of 11�-HSD1 would be
expected to protect both from excessive activation by circu-
lating levels of glucocorticoids. The various enzymes for
prostaglandin synthesis, particularly the cyclooxygenases,
are amply and differentially expressed in the different cells
comprising the renal medulla, including the medullary in-
terstitial cells (50), and are modulated by glucocorticoids as
well as the renin-angiotensin-aldosterone system, therefore
subject to regulation by the 11�-HSD1 and 11�-HSD2 en-
zymes (51–54). Prostaglandin E2 synthesis by cyclooxygen-
ase 2 in the renal interstitial cell is particularly important in
mitigating the effects of antidiuretic hormone during water
deprivation. The extent that 11�-HSD1 activity modulates
activation of the corticoid receptors in the renal medulla and
prostaglandin generation is a topic for consideration for fu-
ture studies (55). Renal medullary interstitial cells have been
the source of medullipin I, the precursor of medullipin II, and
angiolysin, both putative potent vasodepressor agents (56–
58). Whether these agents are modulated by glucocorticoids,
therefore by 11�-HSD1, is not known.

Limitations of the ihc methods in a previous study allowed
detection of H6PDH only in airway epithelium of the lung
(12). We have also demonstrated in alveolar macrophages
and interstitial fibrocytes, along with 11�-HSD1. The stain-
ing in the macrophages and plasma cells but not monocytes
by both H6PDH and 11�-HSD1 in ihc of the spleen and
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thymus is concordant with the demonstration that 11�-HSD1
is induced in human monocytes upon differentiation to mac-
rophages (59) and suggests that reductase activity of the
11�-HSD1 may be important in modulating the regulation of
these cells by glucocorticoids. Similarly, cortisol and corti-
costerone suppress testosterone synthesis by Leydig cells,
and our demonstration of expression of both H6PDH and
11�-HSD1 supports the suggestion that 11�-HSD1 modu-
lates glucocorticoid levels in these cells (60–62).

Our antibody was able to demonstrate H6PDH immuno-
reactivity in chromaffin cells, which could not be ascertained
in a previous study due to nonspecific staining by the sec-
ondary antibody (12). In our experience the RAH113 anti-
body against 11�-HSD1 consistently produced light staining
in all adrenal cortical cells, as was reported in ihc of the
human adrenal using a different antibody (42). The discrep-
ancy between our results in the adrenal gland and those of
others using the same antibody (2) may be due to our use of
SDS to enhance antigen retrieval, as well as STF, a noncross-
linking fixative, instead of paraformaldehyde and glutaraldehyde.

This study did not support our hypothesis that 11�-HSD1
might act in normal heart and vessels as a dehydrogenase
due to the absence of H6PDH. Despite abundant evidence
that the heart exhibits significant NADP-dependent 11-de-
hydrocorticosterone reductase activity (63, 64), expression of
both enzymes as assessed by Western blot analysis of heart
microsomal protein was low, consistent with previous re-
ports (2). The specificity of the light H6PDH staining within
the cardiomyocyte by ihc is suspect because two antibodies
against different nonoverlapping portions of the H6PDH
molecule detected bands of the same smaller molecular
masses (Fig. 3A). Whether these bands were a degradation
product, splice variant of the H6PDH, or active posttrans-
lationally cleaved protein is not certain. A recent report of a
H6PDH null mouse does not mention a change in cardio-
vascular phenotype (14). Fibroblasts and macrophages in the
heart were immunoreactive in this study and that of Brereton
et al. (2) and increase greatly in injury. The MR and GR are
suspected of interacting at the molecular level, as well as
indirectly through synergistic and opposing functions (64,
65), therefore, a change in the rate of generation of cortico-
sterone from circulating 11-dehydrocorticosterone could al-
ter glucocorticoid activation of either or both the MR and GR,
and impinge upon homeostasis. The MR in the heart is
thought to be inappropriately activated by aldosterone dur-
ing failure, and it has been reported that 11�-HSD1, but not
11�-HSD2, along with a concomitant increase in the conver-
sion of cortisone to cortisol, is increased in vascular smooth
muscle by inflammation (66). Our studies did not address
H6PDH levels in the heart or vessels under pathological
conditions, however, massive inflammatory cell infiltration
occurs early in myocardial infarction and models in which
the renin-angiotensin-aldosterone system is increased, and
the inflammation and necrosis are mitigated by MR antag-
onists (67–69).

Studies of the 11�-HSD1 knockout mouse confirmed that
the 11�-HSD oxoreductase activity in the brain (70) is due to
11�-HSD1 (71). Low levels of 11�-HSD1 and H6PDH in the
whole brain RNA and protein samples are a reflection of their
selective expression in specific cells. H6PDH immunoreac-

tivity by ihc in the brain was clearly limited to a small number
of neurons in a pattern similar to that of the 11�-HSD1 ihc
in some areas, but clearly different in others. Studies dem-
onstrating cellular colocalization, or the lack thereof, are
required to determine expression in the same neurons before
one can propose that dehydrogenase activity by 11�-HSD1
protects the MR from glucocorticoid occupation, allowing
aldosterone to activate the receptor.

Aldosterone modulates cerebrospinal fluid production,
presumably through the MR of choroid plexus epithelia
(72, 73). We were intrigued by the possibility that hydrox-
ysteroid dehydrogenase activity of 1�-HSD1 might protect
the MR of the choroid plexus because we had demon-
strated intense MR expression in these cells (37), as well
as ihc staining for the �, �, and �-subunits of the epithelial
sodium channel, but not for 11�-HSD2 (unpublished data).
Because both 11�-HSD1 and H6PDH are clearly expressed
in the choroid plexus, it is unlikely that this is a mechanism
conferring aldosterone selectivity to the MR in choroid
plexus epithelium. However, in addition to regulating
levels of active glucocorticoid, 11�-HSD1 also modulates
the equilibrium of 7-keto- and 7-hydroxy-neurosteroids,
an activity that also requires coexpression of 11�-HSD1
with H6PDH (47).

In conclusion, we have disproved our hypothesis that hy-
droxysteroid dehydrogenase activity of 11�-HSD1 expressed
without H6PDH confers extrinsic selectivity of the MR for
aldosterone in the normal heart or choroid plexus; neither
enzyme is expressed in significant amounts in normal car-
diomyocyte and vascular smooth muscle cells, and both are
expressed in large amounts in the choroid plexus epithelia.
11�-HSD1 was coexpressed with H6PDH in the tissues ex-
amined with the notable exception of kidney medullary in-
terstitial cells, in which 11�-HSD1 was expressed without
significant H6PDH. Further studies using concomitant la-
beling techniques are necessary to determine if the two en-
zymes are expressed in the same neurons with the MR.
Although our interest in the H6PDH enzyme was as the
determinant of the enzymatic activity of 11�-HSD1 and its
possible effects on the modulation of local concentrations of
active glucocorticoid, H6PDH activity is crucial to many
other ER-based enzymatic activities. The antibody against
H6PDH described here should be useful for the study of the
role of H6PDH in a wide variety of metabolic functions.
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