
Heyting Algebras and Formal Languages

Werner Kuich
(Technische Universität Wien

kuich@tuwien.ac.at)

Norbert Sauer
(University of Calgary

nsauer@math.ucalgary.ca)

Friedrich Urbanek
(Technische Universität Wien

friedrich.urbanek@tuwien.ac.at)

Abstract: By introducing a new operation, the exponentiation of formal languages,
we can define Heyting algebras of formal languages. It turns out that some well known
families of languages are closed under this exponentiation, e. g., the families of regular
and of context-sensitive languages.

Key Words: Lattices, automata, formal languages.

Category: F.4.3

1 Introduction

Heyting [7] proposed a formalized approach to intuitionistic logic. The struc-
tures thus obtained are distributive lattices with exponentiation, that is Heyting
algebras. Birkhoff [2, 3] further developed the theory of Heyting algebras from a
lattice theoretic point of view. Since then Heyting algebras, also called pseudo-
complemented distributive lattices with 0, have been studied quite extensively.
A good exposition on Heyting algebras can be found in the book by Balbes and
Dwinger [1].

Apart from applications to topology and logic, Heyting algebras appear as
skeletons of topoi. See the book by Goldblatt [5]. More recently graph mor-
phisms, in connection with Hedetniemi’s conjecture, have been studied from this
point of view [9]. It turns out that also formal languages under length preserving
morphisms give rise to Heyting algebras. In the present paper we will describe
this connection and use it to investigate some further aspects of the category
of formal languages under length preserving morphisms. We will concentrate on
the language theoretic point of view transferring results from lattice theory into
our notation as needed.

We define a multiplication, ×, of formal languages, different from concatena-
tion and we define the exponentiation of formal languages as a new operation.
(Those operations coincide with the the operations of × and exponentiation in

Journal of Universal Computer Science, vol. 8, no. 8 (2002), 722-736
submitted: 2/5/02, accepted: 24/7/02, appeared: 28/7/02 J.UCS

the category of formal languages whose morphisms are the length preserving
morphisms of formal languages.) We will not use the categorical definitions but
provide direct constructions for those operations. The length preserving mor-
phisms are used to define equivalence classes of formal languages. Using known
results from lattice theory we will show that the set of those equivalence classes
forms a Heyting algebra. In this way we obtain the Heyting algebras of equiv-
alence classes of some wellknown families of languages like regular languages,
context-sensitive languages, etc. An example shows that the equivalence classes
of context-free languages do not form a Heyting algebra.

The paper consists of this and three more sections. In Section 2 we intro-
duce the basic definitions and obtain from the general theory of Heyting alge-
bras a calculus for equivalence classes of languages, e. g., LL1×L2 = (LL1)L2 and
LL1+L2 = LL1 × LL2 and some more of the usual computation rules.

In Section 3 we prove that some wellknown families of languages are closed
under exponentiation, e. g., the families of regular and of context-sensitive lan-
guages.

In the last section we begin a study of the detailed structure of the Heyting
algebra of regular languages, contextsensitive languages, etc. The basic structural
elements of distributive lattices are their join and meet irreducible elements. We
succeed in determining the join irreducible elements; but only partial results are
obtained for meet irreducibility.

It is assumed that the reader has a basic knowledge of lattice theory (see
Balbes, Dwinger [1]) and formal language and automata theory (see Harrison [6]).

2 Lattices, Morphisms and Formal Languages

Throughout this paper the symbol Σ (possibly provided with indices) denotes
a finite subalphabet of some infinite alphabet Σ∞ of symbols. All morphisms
h : Σ∗

1 → Σ∗
2 in this paper are length preserving, i.e., h(Σ1) ⊆ Σ2.

Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 . Define L1 ≤ L2 if h(L1) ⊆ L2 for some morphism
h : Σ∗

1 → Σ∗
2 and L1 ∼ L2 if L1 ≤ L2 and L2 ≤ L1. Then ∼ is an equivalence

relation. If L1 ∼ L′
1 and L2 ∼ L′

2 then L1 ≤ L2 iff L′
1 ≤ L′

2. It follows that ≤ is
a partial order relation on the ∼-equivalence classes. We denote ∼-equivalence
classes of languages by roman letters L, K, If L, K, . . . are languages we
denote by L, K, . . . the ∼-equivalence classes containing L, K, . . . , respectively.

Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 . Define L1 ×L2 = {[a1, b1] . . . [an, bn] | a1 . . . an ∈
L1, b1 . . . bn ∈ L2} ⊆ (Σ1 × Σ2)∗ and let L1 + L2 be the disjoint union of L1

and L2. That is the language defined as L1 ∪ L2 given that Σ1 ∩ Σ2 = ∅. If
Σ1 ∩Σ2 	= ∅ then create the new alphabet Σ̄ = {ā | a ∈ Σ2} and a copy L̄ ⊆ Σ̄∗

of L2 and take L1 + L2 = L1 ∪ L̄.
It is easy to see that if L1 ∼ L3 and L2 ∼ L4 then L1 + L2 ∼ L3 + L4 and

L1×L2 ∼ L3×L4. It follows that the operations + and × lift consistently to ∼-

723Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

equivalence classes of languages. It is clear that multiplication × and addition +
on ∼-equivalence classes are commutative and associative operations. We denote
the set of ∼-equivalence classes of languages by L. If F is a family of languages
then we denote LF = {L ∩ F | L ∈ F}.

A lattice (P ;≤) is a partially ordered set in which for every two elements
a, b ∈ P there exists a least upper bound, denoted by a+ b, and a greatest lower
bound, denoted by a× b. A lattice (P ;≤) is called distributive if the distribution
law holds:

a × (b + c) = a × b + a × c for all a, b, c ∈ P .

Let
◦
1 ∈ L be the ∼-equivalence class containing the language {a}∗ for some

a ∈ Σ∞ and ∅ ∈ L be ∼-the equivalence class containing the language ∅. The
following properties of (L;≤, +,×) are easy to verify:
1. Let L1, L2 ∈ L then:

(a) L1 + L2 is the least of all L ∈ L with L1 ≤ L and L2 ≤ L.
(b) L1 × L2 is the greatest of all L ∈ L with L ≤ L1 and L ≤ L2.

2. L is a lattice with × as meet and + as join.
3.

◦
1 is the greatest element of the lattice L.

4. ∅ is the least element of the lattice L.
A family F of languages is called lattice family if F is closed under isomor-

phism, plus + and times ×, and contains ∅ and Σ∗ for all finite Σ ⊂ Σ∞.

Theorem 2.1 (L;≤, +,×) is a lattice. If F is a lattice family of languages then
(LF;≤, +,×) is a lattice.

The families of regular languages, context-sensitive languages and recursive
languages are lattice families.

Lemma 2.1 The family of context-free languages is no lattice family.

Proof. L1 = {anb2n | n ≥ 1} and L1 = {a2nbn | n ≥ 1} are context-free, whereas
L1 × L2 = {[a, a]n[b, a]n[b, b]n | n ≥ 1} is not context-free.

Let Σ = {h | h : Σ1 → Σ2}, be the set of all functions h : Σ1 → Σ2 considered
as an alphabet. This alphabet is denoted by ΣΣ1

2 . For f = h1 . . . hn ∈ Σn and
w = a1 . . . am ∈ Σm

1 define

f(w) =
{

h1(a1) . . . hn(an) if n = m

undefined if n 	= m.

(and ε(ε) = ε if n = 0). For L1 ⊆ Σ∗
1 , L2 ⊆ Σ∗

2 define

LL1
2 = {f ∈ Σ∗ | f(w) ∈ L2 for all w ∈ L1 for which f(w) is defined} .

724 Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

Observe that LL1
2 depends on the sets Σ1 and Σ2.

Example 2.1. Let L1 ⊆ Σ∗
1 , L2 ⊆ Σ∗

2 .
(i) L1 = ∅, L2 = ∅: Then LL1

2 ⊆ (ΣΣ1
2)∗. A word f ∈ (ΣΣ1

2)∗ is in LL1
2 iff

the following implication is valid: w ∈ L1 ∧ |f | = |w| → f(w) ∈ L2. Since for no
w ∈ Σ∗

1 , w ∈ L1 this implication is valid. Hence LL1
2 = (ΣΣ1

2)∗.
(ii) L1 = ∅: By the same reasoning L∅

2 = (ΣΣ1
2)∗.

(iii) L2 = ∅: Define S = {n | L1 ∩ Σn
1 	= ∅}. Then LL1

2 =
⋃

n∈ω−S(ΣΣ1
2)n.

(iv) If L1 ≤ L2 and f : Σ∗
1 → Σ∗

2 is a morphism with f(L1) ⊆ L2 then
{f}∗ ⊆ LL1

2 .
We will prove that the notion of exponentiation lifts to ∼-equivalence classes

of languages. Hence for ∼-equivalence classes of languages L1 and L2 the class
LL1

2 is independent of the alphabets.
For the remainder of this section, all considered languages L, L1, L2, L3, L4

are elements of a lattice family F closed under exponentiation.

Lemma 2.2 Let ha : Σ1 → Σ, a ∈ Σ, be defined by ha(x) = a for all x ∈ Σ1

and consider the morphism h : Σ∗ → (ΣΣ1)∗ defined by h(a) = ha for all a ∈ Σ.
Then for L ⊆ Σ∗ and L1 ⊆ Σ∗

1 , h(L) ⊆ LL1, i. e., L ≤ LL1.
Let Σconst = {ha | a ∈ Σ} and Lconst = LL1 ∩ Σ∗

const. If L ∩ Σn 	= ∅ for all
n ∈ ω then Lconst ≤ L.

Proof. Let w = a1a2 . . . an ∈ L. Then h(w) = h(a1) . . . h(an) = ha1 . . . han . We
have to prove that h(w) ∈ LL1 .

Let v = b1b2 . . . bn ∈ L1. We have to prove that h(w)(v) ∈ L. We calculate:

h(w)(v) = ha1(b1)ha2(b2) . . . han(bn) = a1a2 . . . an = w ∈ L.

Let L contain a word of length n for every n ∈ ω and let g : Σconst → Σ be the
morphism defined by g(ha) = a for all a ∈ Σ. Let w = ha1ha2 . . . han ∈ Lconst ⊆
LL1 . Then g(w) = a1a2 . . . an. Hence we have to prove that if ha1ha2 . . . han ∈
Lconst then a1a2 . . . an ∈ L. Choose now a word b1 . . . bn of length n in L1. Then
a1a2 . . . an = ha1(b1)ha2(b2) . . . han(bn) ∈ L.

Let L1 ⊆ Σ∗
1 , L2 ⊆ Σ∗

2 and g : Σ1 → Σ2. Then we say that h is a morphism of
L1 into L2 with h(a) = g(a) for all a ∈ Σ1 if h : Σ∗

1 → Σ∗
2 is a monoid morphism

defined by h(w) = g(a1) . . . g(an) for w = a1 . . . an ∈ Σ∗
1 and h(L1) ⊆ L2.

Lemma 2.3 Let Li ⊆ Σ∗
i for 1 ≤ i ≤ 3. If L1 ≤ L3 then LL1

2 ≥ LL3
2 .

Proof. Let h be a morphism of L1 into L3. Define h′ : (ΣΣ3
2)∗ → (ΣΣ1

2)∗ to be
the morphism given by h′(f) = f ◦ h for all functions f of Σ3 into Σ2.

725Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

Assume now that f = f1 . . . fn ∈ LL3
2 . Then we will show that h′(f) ∈ LL1

2 .
This means that we have to prove that, for w = a1 . . . an ∈ L1, h′(f)(w) ∈ L2.
We calculate

h′(f)(w) = h′(f1 . . . fn)(a1 . . . an) =
h′(f1)(a1) . . . h′(fn)(an) =
f1(h(a1)) . . . fn(h(an)) = f(h(w)) .

Since h(w) ∈ L3 and f ∈ LL3
2 we infer that h′(f)(w) = f(h(w)) ∈ L2.

Lemma 2.4 Let Li ⊆ Σ∗
i for 1 ≤ i ≤ 3. If L2 ≤ L3 then LL1

2 ≤ LL1
3 .

Proof. Let h be a morphism of L2 into L3. Define h′ : (ΣΣ1
2)∗ → (ΣΣ1

3)∗ to be
the morphism given by h′(f) = h◦f for all functions f of Σ1 into Σ2. The proof
that h′(LL1

2) ⊆ LL1
3 is analogous to the proof of Lemma 2.3.

Corollary 2.1 Let Li ⊆ Σ∗
i for 1 ≤ i ≤ 4. Let L1 ∼ L2 and L3 ∼ L4. Then

LL3
1 ∼ LL4

2 .

Proof. Follows from Lemma 2.3 and Lemma 2.4.

Lemma 2.5 Let L ⊆ Σ∗, L1 ⊆ Σ∗
1 , L2 ⊆ Σ∗

2 . Let h be a morphism of L1 × L2

to L. For every a ∈ Σ1 let ha : Σ2 → Σ be the function with ha(b) = h(a, b) and
h′ : Σ∗

1 → (ΣΣ2)∗ be the morphism defined by h′(a) = ha.
Then h′ is a morphism of L1 into LL2 .

Proof. Let w = a1a2 . . . an ∈ L1. Then h′(w) = h′(a1) . . . h′(an) = ha1 . . . han .
We have to prove that h′(w) ∈ LL2.

Let v = b1b2 . . . bn ∈ L2. Then h′(w)(v) = ha1(b1)ha2(b2) . . . han(bn) =
h(a1, b1)h(a2, b2) . . . h(an, bn) ∈ L.

Lemma 2.6 Let L ⊆ Σ∗, L2 ⊆ Σ∗
2 . Then L2 × LL2 ≤ L.

Proof. Let the morphism h : (Σ2 × ΣΣ2)∗ → Σ∗ be given by h(x, f) = f(x)
for all x ∈ Σ2, f ∈ ΣΣ2 . It is easy to verify that h(L2 × LL2) ⊆ L. Hence
L2 × LL2 ≤ L.

Lemma 2.7 Let L ⊆ Σ∗, L1 ⊆ Σ∗
1 , L2 ⊆ Σ∗

2 . Then

L1 × L2 ≤ L if and only if L1 ≤ LL2.

Proof. (i) Let L1 × L2 ≤ L. It follows from Lemma 2.5 that then L1 ≤ LL2.
(ii) Let L1 ≤ LL2 . Then L1 × L2 ≤ LL2 × L2 ≤ L according to Lemma 2.6.

Corollary 2.2 Let F be a lattice family of languages closed under exponenti-
ation, and L2 and L be two elements in LF. Then LL2 is the greatest of all
elements L1 ∈ LF with L1 × L2 ≤ L.

726 Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

A lattice (P,≤) is called Heyting algebra if (i) for all a, b ∈ P there exists a
greatest c ∈ P such that a × c ≤ b. This element c is denoted by ba. (ii) There
exists a least element 0 in P .

It follows from Balbes, Dwinger [1], page 173, Definition 1 and page 174,
Definition 2 that (L;≤, +,×) is a Heyting algebra where the class ∅ is the 0-
element. (We write LL

1 instead of L → L1 in Balbes, Dwinger [1].)

Theorem 2.2 Let F be a lattice family of languages closed under exponentia-
tion. Then (LF;≤, +,×) is a Heyting algebra where the class ∅ is the 0-element.

Corollary 2.3 Let F be a lattice family of languages closed under exponentia-
tion. Then, for all L1, L2, L ∈ LF:

(1) If
∑

S∈S S exists for some subset S of LF then
∑

S∈S(L × S) exists and
L × ∑

S∈S S =
∑

S∈S(L × S).

(2) (LF;≤, +,×) is a distributive lattice with 0-element ∅ and 1-element
◦
1.

(3) L1 + L2 = L2 + L1 and L1 × L2 = L2 × L1.
(4) L × (L1 + L2) = L × L1 + L × L2 and L + L1 × L2 = (L + L1) × (L + L2).
(5) L1 × LL1 ≤ L.
(6) L1 ≤ LL2 if and only if L1 × L2 ≤ L.

(7) L1 ≤ L if and only if LL1 =
◦
1.

(8) L1 ≤ L2 implies LL1 ≥ LL2 and LL
1 ≤ LL

2 .
(9) LL1+L2 = LL1 × LL2 and

(
LL1

)L2 = LL1×L2 and (L1 × L2)L = LL
1 × LL

2 .
(10) L1 × LL1 = L1 × L.
(11) L1 × LL2 = L1 × (L1 × L)L1×L2 .

(12) L × ◦
1 = L and L

◦
1 = L and

◦
1
L

=
◦
1.

(13) L × ∅ = ∅ and L + ∅ = L and L∅ =
◦
1.

(14) L1 ≤ L
(
LL1

)
and if L1 = LL2 then L1 = L

(
LL1

)
for some L2.

Proof. Item (1) follows from Balbes, Dwinger [1], page 174, point (2). Item (2)
follows from item (1) and items (3) and (4) follow from item (2) (see Balbes,
Dwinger [1], page 48, section 5.)

Items (5) to (11) are Theorem 3 of Balbes, Dwinger [1] on page 174.
Items (12) and (13) are obvious.

The relation L1 ≤ L
(
LL1

)
of item (14) follows from items (5) and (6). If

L1 = LL2 then L2 ≤ L
(
LL2

)
implies, according to Lemma 2.3, that L1 = LL2 ≥

L
(
L

(
LL2

))
= L

(
LL1

)
.

3 Exponentiation in some important families of languages

In this section we investigate for some families of languages whether or not
they are closed under exponentiation. First we show that the family of regular

727Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

languages is closed under exponentiation.

Theorem 3.1 Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 be regular languages and Σ = {h | h :
Σ1 → Σ2}. Then LL1

2 ⊆ Σ∗ is again a regular language.

Proof. Let Ai = (Qi, Σi, δi, q
i
0, Fi) be finite automata with ||Ai|| = Li, i = 1, 2.

Consider now the automaton A = (Q, Σ, δ, q0, F) where
(i) Q = P({qq1

2 | q1 ∈ Q1, q2 ∈ Q2}),
(ii) δ(p, h) = {δ2(q2, h(a))δ1(q1,a) | qq1

2 ∈ p, a ∈ Σ1} for p ∈ Q, h ∈ Σ,

(iii) q0 = q2
0

q1
0 , and

(iv) F = {p ∈ Q | q1 ∈ F1 implies q2 ∈ F2 for all qq1
2 ∈ p}.

We will show that the behavior of A is LL1
2 . For that purpose we show first that

for p ∈ Q and f ∈ Σ∗

δ(p, f) = {δ2(q2, f(w))δ1(q1,w) | qq1
2 ∈ p, w ∈ Σ|f |} .

The proof is by induction on |f |: (i) If |f | = 0, i. e., f = ε, we have

δ(p, ε) = p = {qq1
2 | qq1

2 ∈ p} =
{δ2(q2, f(ε))δ1(q1,ε) | qq1

2 ∈ p} =
{δ2(q2, f(w))δ1(q1,w) | qq1

2 ∈ p, w ∈ Σ0} .

(ii) If |f | > 0, i. e., f = hf ′, h ∈ Σ, f ′ ∈ Σ∗, we have

δ(p, f) = δ(p, hf ′) = δ(δ(p, h), f ′)
= {δ2(q′2, f

′(w))δ1(q′
1,w) | q′2

q′
1 ∈ δ(p, h), w ∈ Σ

|f ′|
1 }

= {δ2(δ2(q2, h(a)), f ′(w))δ1(δ1(q1,a),w) | q2
q1 ∈ p, a ∈ Σ1, w ∈ Σ

|f ′|
1 }

= {δ2(q2, hf ′(aw))δ1(q1,aw) | q2
q1 ∈ p, a ∈ Σ1, w ∈ Σ

|f ′|
1 }

= {δ2(q2, f(w))δ1(q1,w) | q2
q1 ∈ p, w ∈ Σ

|f |
1 }

(Here the third equality holds by induction hypothesis, the fourth one by defi-
nition of δ, since q′2

q′
1 ∈ δ(p, h) means that q′2 = δ2(q2, h(a)) and q′1 = δ1(q1, a))

for some q2
q1 ∈ p and a ∈ Σ1.)

Now we are able to show that ||A|| = LL1
2 :

f ∈ ||A|| ⇔ δ(q0, f) = δ({q2
0

q1
0}, f) ∈ F

⇔ {δ2(q2
0 , f(w))δ1(q1

0 ,w) | w ∈ Σ
|f |
1 } ∈ F

⇔ δ1(q1
0 , w) ∈ F1 implies δ2(q2

0 , f(w)) ∈ F2 for all w ∈ Σ
|f |
1

⇔ w ∈ L1 implies f(w) ∈ L2 for all w ∈ Σ
|f |
1

⇔ f ∈ LL1
2

The following example shows that the family of context-free languages is not
closed under exponentiation:

728 Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

Example 3.1. Let Σ1 = Σ2 = {a, b}, L1 = {anb2n | n ≥ 1}, and L2 = {a2nbn |
n ≥ 1}. Let furthermore denote g0, g1, g2, g3 the four possible mappings from Σ1

to Σ2:
g0(a) = a g1(a) = b g2(a) = a g3(a) = b

g0(b) = b g1(b) = a g2(b) = a g3(b) = b

Then f ∈ LL1
2 ∩ Σ3n iff f(anbnbn) = ananbn. (Note that L1 (resp. L2) contains

only one word of length 3n, namely anbnbn (resp. ananbn).) Thus f can be
written as f = f1f2f3, |f1| = |f2| = |f3| = n, where f1(an) = an, f2(an) = bn,
and f1(bn) = bn. Hence f1 ∈ {g0, g2}n, f2 ∈ {g1, g2}n, f3 ∈ {g0, g3}n, i. e.,
f ∈ {g0, g2}n{g1, g2}n{g0, g3}n. Since L1 contains no word of length 3n + 1 or
3n + 2, LL1

2 contains all words in Σ3n+1 ∪ Σ3n+2. So we have

LL1
2 =

⋃
n≥1

({g0, g2}n{g1, g2}n{g0, g3}n ∪ Σ3n+1 ∪ Σ3n+2) .

Since
LL1

2 ∩ ({g0, g1}3)∗ = {gn
0 gn

1 gn
0 | n ≥ 1}

we infer that LL1
2 is not context-free.

Now we turn to context-sensitive languages.

Theorem 3.2 Let T1 and T2 be deterministic linear bounded automata accept-
ing L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2 , respectively. Let Σ = ΣΣ1

2 . Then there exists a
deterministic linear bounded automaton T accepting LL1

2 ⊆ Σ∗.

Proof. Without loss of generality we assume that T1 and T2 hold on every input
word. T works as follows: The tape of T is partitioned in three traces. Trace 1
contains the input word f ∈ Σ∗. On trace 3 the words w ∈ Σ

|f |
1 are generated

in lexicographical order. For each w ∈ Σ
|f |
1 , T checks whether w ∈ L1 implies

f(w) ∈ L2. For that purpose, T copies w from trace 3 to trace 2 and then
simulates T1 on w. If T1 does not accept w, i. e., w /∈ L1, this implication is
true and T generates and checks the next word w ∈ Σ

|f |
1 . If T1 accepts w, i. e.,

w ∈ L1, then f(w) is computed on trace 2 (from f on trace 1 and w on trace
3). Then T2 is simulated on f(w) on trace 2. If T2 does not accept f(w), i. e.,
f(w) /∈ L2, then T stops without accepting f . If T2 accepts f(w), i. e., f(w) ∈ L2,
T generates and checks the next word w ∈ Σ

|f |
1 .

If, in this way, it turns out that w ∈ L1 implies f(w) ∈ L2 for all w ∈ Σ∗
1

then the input word f is accepted.

Theorem 3.3 Let T1 and T2 be nondeterministic linear bounded automata ac-
cepting L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2 , respectively. Let Σ = ΣΣ1

2 Then there exists a
nondeterministic linear bounded automaton T accepting LL1

2 ⊆ Σ∗.

729Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

Proof. The construction of T is similar to the construction of the previous theo-
rem, but some more care is necessary: Due to the nondeterminism, it might hap-
pen that for w ∈ L1 the simulation of T1 on w terminates in a nonaccepting state
making T “believe” that w /∈ L1. To overcome these difficulties, we use the re-
sult of Immermann [8] and Szelepcsényi [10] that the family of context-sensitive
languages is closed under complementation. Let U1 be a nondeterministic linear
bounded automaton accepting Σ∗

1 −L1. As in the proof of the previous theorem
we assume that T1, T2, and U1 hold on every input word.

Now modify the construction of T in the previous theorem as follows: If the
simulation of T1 on w terminates in an nonaccepting state, U1 is simulated on
w. If U1 accepts w, then clearly w /∈ L1 and T can turn to the next word in
Σ|f |. Otherwise T stops without accepting f since, due to the nondeterminism,
a decision whether or not w ∈ L1 cannot be made.

Regarding the simulation of T2 on f(w), no modification is necessary.

Corollary 3.1 Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 be context-sensitive languages and
Σ = ΣΣ1

2 . Then LL1
2 ⊆ Σ∗ is again a context-sensitive language.

The next two theorems can be proven in an analogous manner.

Theorem 3.4 Let S(n) ≥ n be a measurable space function. If L1 and L2 are
accepted by a deterministic (resp. nondeterministic) Turing machine of tape com-
plexity S(n), then LL1

2 is accepted by a deterministic (resp. nondeterministic)
Turing machine of tape complexity S(n).

Proof. Since S(n) is measurable we can assume that T1, T2, and U1 hold for
every input (see Harrison [6]). Furthermore, the result of Immermann [8] and
Szelepcsényi [10] is valid also for S(n) ≥ n.

Theorem 3.5 If L1 and L2 are recursive languages, then so is LL1
2 .

Proof. The Turing machines T1 and T2 are deterministic and hold on every input.

Theorem 3.6 Let F be one of the families of languages considered in Theo-
rems 3.1–3.5. Then (LF;≤, +,×) is a Heyting algebra where the class ∅ is the
0-element. Hence, items (1)–(14) of Corollary 2.3 are valid for L1, L2, L3 ∈ LF.

4 Meet and join irreducible languages

Let L ∈ Σ∗. The language C ⊆ L is a core of L if L ∼ C and L 	∼ L1 for any
proper subset L1 of C; or equivalently, if (i) L ∼ C and (ii) L1 ⊆ C, L1 ∼ L

imply L1 = C.

Lemma 4.1 Every language L has a core.

730 Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

Proof. Let L ⊆ Σ∗ and let Σ1 ⊆ Σ be an alphabet with the least number of
elements so that L ∼ L ∩ Σ∗

1 := C. We will prove that C is a core of L.
Let L1 ∼ L be a subset of C. Then there is a morphism f of C into L1. The

morphism f induces a permutation π of Σ1 because f is length preserving and
because of the minimality of C. It follows that f is a one-to-one map of C into
C. Hence f is an automorphism of C because there are only finitely many words
in C of any given length n which implies C = L1.

Lemma 4.2 Let L ⊆ Σ∗ and C = L ∩ Σ∗
1 be a core of L, where Σ1 ⊆ Σ is

an alphabet given in the proof of Lemma 4.1. Let f : Σ∗ → Σ∗ be a morphism
with f(Σ1) ⊆ Σ1. If f(L) ⊆ L then f : Σ∗

1 → Σ∗
1 is an automorphism such that

f(C) = C.

Proof. Assume that f(Σ1) = Σ2 � Σ1. Then we claim that L ∼ L ∩ Σ∗
2 , a

contradiction to the minimality of |Σ1|.
(i) Since L ∩ Σ∗

2 ⊆ L we obtain L ∩ Σ∗
2 ≤ L. (ii) Since C ∼ L there exists a

morphism g such that g(L) ⊆ C. This implies f(g(L)) ⊆ f(C) ⊆ f(L) ∩ Σ∗
2 ⊆

L ∩ Σ∗
2 . Hence, L ≤ L ∩ Σ∗

2 and our claim is proven.
Since f(C) ⊆ f(L) ∩ Σ∗

1 ⊆ L ∩ Σ∗
1 = C and f is an automorphism, we infer

f(C) = C.

Lemma 4.3 If L1 ∼ L2 and C1 is a core of L1 and C2 is a core of L2 then C1

and C2 are isomorphic. Hence, any two cores of a language are isomorphic.

Proof. Let C1 = L1 ∩ Σ∗
1 and C2 = L2 ∩ Σ∗

2 , where Σ1 and Σ2 have least
numbers of elements as in the proof of Lemma 4.1. Since L1 ∼ L2 there exist
morphisms f and g such that f(L1) ⊆ L2, g(L2) ⊆ L1. Since (g◦f)(L1) ⊆ L1 and
(f◦g)(L2) ⊆ L2, Lemma 4.2 implies that g◦f : Σ∗

1 → Σ∗
1 and f◦g : Σ∗

2 → Σ∗
2 are

automorphisms with (g◦f)(C1) = C1 and (f ◦g)(C2) = C2. Hence, f : Σ∗
1 → Σ∗

2

and g : Σ∗
2 → Σ∗

1 are isomorphisms.

A family F of languages is stable if:

1. F is a lattice family.
2. F is closed under exponentiation.
3. F is closed under intersection with regular languages.

Note that by 3. the core of any element L in F is an element of F. Observe further
that the set of ∼-equivalence classes of every stable family of languages forms a
Heyting algebra.

Theorem 4.1 The following families of languages are stable:
(i) The family of regular languages.
(ii) The family of languages accepted by deterministic linear bounded automata.
(iii) The family of context-sensitive languages.

731Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

(iv) The family of recursive languages.
(v) The family of languages accepted by deterministic Turing machines of tape

complexity S(n), where S(n) ≥ n is measurable.
(vi) The family of languages accepted by nondeterministic Turing machines of

tape complexity S(n), where S(n) ≥ n is measurable.

Proof. All the families of languages (i)–(iv) are lattice families by Theorem 2.1
and are closed under exponentiation by Theorems 3.1, 3.2, 3.3, 3.5. Moreover
they are closed under intersection with regular languages by Ginsburg [4] (see
page 10 for (i), page 13 for (ii) and (iii), page 9 for (iv)).

Clearly, the families of languages (v) and (vi) are lattice families and they are
closed under exponentiation by Theorem 3.4. Moreover, they are clearly closed
under intersection with regular languages.

Lemma 4.4 If F is a stable family of languages and L ∈ F and L = L1 + L2

then L1 ∈ F and L2 ∈ F.

Proof. If L = L1 + L2 with L1 ∈ Σ∗
1 and L2 ∈ Σ∗

2 and Σ1 ∩ Σ2 = ∅ then
L ∩ Σ∗

1 = L1 and L ∩ Σ∗
2 = L2. Hence L1 and L2 are again in F.

In order to investigate the structure of the lattice LF we attempt to determine
the join and meet irreducible elements of LF.

The element L ∈ LF is join irreducible in LF if L = L1 + L2 with L1 ∈ LF

and L2 ∈ LF implies L = L1 or L = L2.
A language L is coherent in F if for all languages L1 ∈ F and L2 ∈ F the

equation L = L1 + L2 implies that L1 = ∅ or L2 = ∅. According to Lemma
4.4, the language L is coherent in F if for all languages L1 and L2 the equation
L = L1 + L2 implies that L1 or L2 is empty, that is if L is coherent in the set of
all languages. In which case we call L coherent.

Let L be a language over the alphabet Σ. For a, b ∈ Σ we write a ≡ b if there
is a sequence a = a1, a2, . . . , an = b of elements of Σ, so that for all 1 ≤ i ≤ n−1
the letters ai and ai+1 are together letters in some word of L. It follows easily
that ≡ is an equivalence relation on Σ.

Let L be a language over the alphabet Σ and let Σ1, Σ2, . . . , Σn be the ≡-
equivalence classes of Σ. Let Li = Σ∗

i ∩ L, 1 ≤ i ≤ n. We write w ≡ v for two
words w, v ∈ L if for some Li both words w and v are in Li. Clearly ≡ is an
equivalence relation on L.

Lemma 4.5 Let L be a language and L1, L2, . . . , Ln be the ≡-equivalence classes
of L. Then L = L1 + L2 + · · · + Ln.

Proof. Obvious.

732 Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

Corollary 4.1 Let F be a stable family of languages. A language L ∈ F is
coherent if and only if L has only one ≡-equivalence class.

Observe that if L is coherent and L1 isomorphic to L then L1 is coherent.
Let F be a stable family of languages. It follows from Lemma 4.2 that if

L ∈ LF and L1 ∈ L and L2 ∈ L then the cores of L1 and L2 are isomorphic.
We define the core of L to be the core of any of its elements. The core of L is
uniquely determined up to isomorphism and is an element of F and hence an
element of L. A language C ∈ F is a core, or a core in F, if it is the core of the
∼-equivalence class of LF containing C. Observe that if C is a core and L is a
proper subset of C then C 	∼ L.

Lemma 4.6 Let F be a stable family of languages and C ∈ F. Let L1, L2, . . . , Ln

be the ≡-equivalence classes of C. Then C is a core if and only if Li is a core
for all 1 ≤ i ≤ n and if Li 	≤ Lj whenever i 	= j.

Proof. (i) Let C be a core and assume for a contradiction that, say L1, is not
a core. Then there is a proper subset L′

1 of L1 with L′
1 ∼ L1. It follows that

C′ := L′
1 + L2 + · · · + Ln is a proper subset of C with C′ ∼ C.

If, say L1 ≤ L2, then C′ := L2 + L3 + · · · + Ln is a proper subset of C with
C′ ∼ C.

(ii) Let, for all 1 ≤ i ≤ n, the language Li be a core and Li 	≤ Lj whenever
i 	= j and let C′ be a subset of C with C ∼ C′. Let L′

i := Li ∩ C′. Then
C′ = L′

1 +L′
2 + · · ·+L′

n. If C′ is a proper subset of C then L′
k is a proper subset

of Lk for some k with 1 ≤ k ≤ n. Because Lk is a core there is no morphism of
Lk to L′

k.
On the other hand there is a morphism f of C into C′ because C ∼ C′.

The morphism f maps Li into Li for every 1 ≤ i ≤ n because if w ≡ v then
f(w) ≡ f(v) and Li 	≤ Lj if i 	= j. We arrive at a contradiction because the
restriction of f to Lj maps Lj into L′

j for 1 ≤ j ≤ n.

Theorem 4.2 Let F be a stable family of languages. Then L ∈ LF is join irre-
ducible if and only if the core of L is coherent.

Proof. (i) Let L ∈ LF be join irreducible and L ∈ L and C be a core of L. Then
C ∈ L because F is stable. Assume for a contradiction that C is not coherent.
Then, according to Lemma 4.4, there are languages L1 ∈ F and L2 ∈ F with
C = L1+L2 and L1 	= ∅ 	= L2. Let L1 be the ∼-equivalence class of LF containing
L1 and L2 be the ∼-equivalence class of LF containing L2. Then L = L1 + L2.

But L = L1 + L2 is a contradiction to L being join irreducible in LF because
if L = L1 then C ∼ L1. Which implies L2 = ∅ because of the minimality of C.

(ii) Let the core C of L be coherent. Assume for a contradiction that L is not
join irreducible. Then there are elements L1 and L2 in LF with L = L1 + L2 and
L1 	= L 	= L2.

733Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

Let C1 be a core of L1 and C2 be a core of L2. We obtain C ∼ C1 + C2. Let
C′ = C1 +C2. Let C1 = L1,1 +L1,2 + · · ·+L1,n and C2 = L2,1 +L2,2 + · · ·+L2,m

be the partitions of C1 and C2 respectively into ≡-equivalence classes. Because
C1 and C2 are cores it follows, according to Lemma 4.6, that all those languages
Li,j are cores and all the languages of the form L1,j are pairwise incomparable
under ≤ and all the languages of the form L2,j are pairwise incomparable under
≤.

Let I be the set of all numbers 1 ≤ i ≤ n for which there is no 1 ≤ j ≤ m so
that L1,i ≤ L2,j. Let J be the set of all numbers 1 ≤ j ≤ m for which there is
no 1 ≤ i ≤ n so that L2,j ≤ L1,i. Observe that I 	= ∅ because otherwise C1 ≤ C2

and hence L1 ≤ L2 and hence L ∼ L2. Similarly J 	= ∅. Let D1 = Σi∈IL1,i and
D2 = Σj∈JL2,j and D = D1 + D2. Then D ∼ C′ and D1 	= ∅ and D2 	= ∅ and
D is not coherent and D is a core according to Lemma 4.6.

There is a morphism g of C into D and a morphism f of D into C. Then
f ◦ g is a morphism of C into C which is by Lemma 4.3 an automorphism of C.
Similarly g ◦ f is an automorphism of D. If follows that C and D are isomorphic
and hence that C is not coherent.

It follows that if F is a stable family of languages then there is an efficient al-
gorithm to determine whether L ∈ LF is join irreducible for some given language
L ∈ F.

Let F be a stable family of languages. The equivalence class L ∈ LF is meet
irreducible in the lattice LF if L = L1 ×L2 with L1 and L2 in LF implies L = L1

or L = L2. Observe that L is meet irreducible if and only if L ∼ L1 × L2 with
L1, L2 ∈ F implies L ∼ L1 or L ∼ L2 for every L ∈ L. In which case we say that
L is meet irreducible in F. It follows that L is meet irreducible in LF if and only
if every language L ∈ L is meet irreducible in F.

Lemma 4.7 A language L ∈ F is meet irreducible in a stable family F of lan-
guages if and only if L1 	≤ L implies LL1 ∼ L for all languages L1 ∈ F.

Proof. (i) Let L be meet irreducible in F and L1 ∈ F with L1 	≤ L. Then

(L + L1) × LL1 ∼ L × LL1 + L1 × LL1 ≤ L + L ∼ L

by Theorem 2.3 item (4). and Lemma 2.6. Because L + L1 	∼ L it follows that
L ∼ LL1 .

(ii) Assume L1 	≤ L implies L ∼ LL1 for all languages L1 ∈ F. Let L1 ×L2 ∼
L. Then L2 ≤ LL1 ∼ L according to Lemma 2.7. It follows that L2 ≤ L. If
L2 < L then L1 × L2 < L, hence L2 ∼ L.

The morphism class
◦
1 is trivially meet irreducible in every stable family F.

Hence a language L is meet irreducible if there is a morphism h of {a}∗ into

734 Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

L. The empty language is not meet irreducible in F if F contains two languages
L1 	= ∅ and L2 	= ∅ so that for every n ∈ ω if L1 contains a word of length n

then L2 does not contain a word of length n. It follows that L1×L2 = ∅. If there
is an n ∈ ω so that every language L ∈ F contains only words of length n then
the language ∅ is meet irreducible in F.

Lemma 4.8 Let F be a stable family of languages and L ∈ F. If there are two
languages L1 and L2 in F so that L1 	≤ L and L2 	≤ L and L1 × L2 ≤ L then L

is not meet irreducible in F.

Proof. Because F is stable, it is closed under + and hence L + L1 and L + L2

are elements of F. We calculate:

(L + L1) × (L + L2) ∼ L × L + L × L2 + L × L1 + L1 × L2 ∼ L.

For a ∈ Σ∞ and n ∈ ω let an be the word aa . . . a of length n. (a0 being the
empty word ε.)

Lemma 4.9 Let F be a stable family of languages and L ∈ F and let n, m ∈ ω

with n 	= m. If there is no a ∈ Σ∞ with an ∈ L and if there is no a ∈ Σ∞ with
am ∈ L then L is not meet irreducible in F.

Proof. Let b ∈ Σ∞. It follows that {bn} 	≤ L and that {bm} 	≤ L. Because F is
stable it contains the languages {bn} and {bm}. The language {bn} × {bm} is
empty which implies {bn}×{bm} ≤ L. The lemma follows now from Lemma 4.8.

Lemma 4.10 Let F be a stable family of languages and L ∈ F and let n1, n2,
m1, m2 be four pairwise different elements of ω.

If there is no a ∈ Σ∞ so that an1 ∈ L and an2 ∈ L and if there is no a ∈ Σ∞
so that am1 ∈ L and am2 ∈ L then L is not meet irreducible in F.

Proof. Let b ∈ Σ∞. It follows that {bn1, bn2} 	≤ L and that {bm1 , bm2} 	≤ L and
that the languages {bn1 , bn2} and {bm1 , bm2} are elements of F. Then {bn1, bn2}×
{bm1 , bm2} = ∅ ≤ L and the lemma follows from Lemma 4.8.

Corollary 4.2 Let F be a stable family of languages and L ∈ F. If L is meet
irreducible in F then there exists n ∈ ω and a ∈ Σ∞ so that am ∈ L for all
m ∈ ω with n 	= m.

Proof. Follows from Lemma 4.9 and Lemma 4.10

Let S ⊆ ω. Then we define the family FS of languages by the following
condition: L ∈ FS iff, for all w ∈ L, |w| ∈ S. Moreover, let L be a language over
Σ. Then we denote

LS := L ∩
⋃
n∈S

Σn .

For m ∈ ω we denote by m the set {0, 1, 2, . . . , m − 1}.

735Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

Lemma 4.11 Let K and L be languages so that Km ≤ L for every m ∈ ω.
Then K ≤ L.

Proof. For every m ∈ ω let Hm be the set of morphisms of Km into L and let
Hω :=

⋃
m∈ω Hm. Let f ≤ h if f ∈ Hl and h ∈ Hm with l ≤ m and f is the

restriction of h to K l.
It follows that (Hω ;≤) is an infinite tree in which every element has finitely

many successors. Hence Königs Tree Lemma applies and we obtain a morphism
of K into L.

Theorem 4.3 Let F be a stable family of languages and L ∈ F. The language L

is meet irreducible in F if and only if there is n ∈ ω and a ∈ Σ∞ so that am ∈ L

for all m 	= n and if the languages Lm are meet irreducible in Fm for all m ∈ ω.

Proof. (i) Let L be meet irreducible and m ∈ ω. Because of Corollary 4.2 the
only thing left to prove is that the language Lm is meet irreducible in Fm.
Assume not. Then there are two languages L1 and L2 in Fm with L1 	≤ Lm

and L2 	≤ Lm so that L1 × L2 ∼ Lm. It follows that L1 	≤ L and L2 	≤ L and
that L1 × L2 ≤ L. Because L1 and L2 are both finite languages, L1 and L2 are
elements of F. Using Lemma 4.8 we arrive at a contradiction to the assumption
that L is meet irreducible.

(ii) Let, for every m ∈ ω the language Lm be meet irreducible in Fm and
a ∈ Σ∞ so that am ∈ L for all m 	= n. Assume for a contradiction that there are
languages L1 and L2 in F and with L1 	≤ L and L2 	≤ L so that L1 × L2 ∼ L.

It follows from Lemma 4.11 that there are k and l in ω so that L
k
1 	≤ L and

L
l
2 	≤ L. Let m be the maximum of k and l. Then L

m
1 	≤ L and L

m
2 	≤ L. It follows

from L1 ×L2 ≤ L that L
m
1 × L

m
2 ≤ Lm in contradiction to the assumption that

for every m ∈ ω the language Lm is meet irreducible in Fm.

References

1. Balbes R., Dwinger P.: Distributive Lattices. University of Missouri Press,
Columbia, Missouri 65201, 1974.

2. Birkhoff G.: Extended arithmetic. Duke Math. J. 3(1937) 311–316.
3. Birkhoff G.: Generalized arithmetic. Duke Math. J. 12(1942) 283–302.
4. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.

North-Holland, 1975.
5. Goldblatt R.: Topoi; The Categorial Analysis of Logic. Studies in Logic and the

Foundations of Mathematics, 98, North-Holland.
6. Harrison, M. A.: Introduction to Formal Language Theory. Addison-Wesley, 1978.
7. Heyting A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der

Preußischen Akademie der Wissenschaften, Phys.-mathem. Klasse (1930) 42–56.
8. Immermann N.: NSPACE is closed under complement. SIAM Journal on Comput-

ing 17(1988) 935–938.
9. Sauer N.: Hedetniemi’s Conjecture—a survey. Combinatorics, graph theory, algo-

rithms and applications. Discrete Math. 229(2001), no. 1-3, 261–292.
10. Szelepcsényi R.: The method of forced enumeration for nondeterministic automata.

Acta Informatica 26(1988) 279–284.

736 Kuich W., Sauer N., Urbanek F.: Heyting Algebras and Formal Languages

