
IEICE Electronics Express, Vol.19, No.8, 1–6

LETTER

HFOD: A hardware-friendly quantization method for object detection on
embedded FPGAs
Fei Zhang1, Ziyang Gao2, Jiaming Huang2, Peining Zhen2, Hai-Bao Chen2, a), and Jie Yan1

Abstract There are two research hotspots for improving performance and
energy efficiency of the inference phase of Convolutional neural networks
(CNNs). The first one is model compression techniques while the second
is hardware accelerator implementation. To overcome the incompatibil-
ity of algorithm optimization and hardware design, this paper proposes
HFOD, a hardware-friendly quantization method for object detection on
embedded FPGAs. We adopt a channel-wise, uniform quantization method
to compress YOLOv3-Tiny model. Weights are quantized to 2-bit while
activations are quantized to 8-bit for all convolutional layers. To achieve
highly-efficient implementations on FPGA, we add batch normalization
(BN) layer fusion in quantization process. A flexible, efficient convolu-
tional unit structure is designed to utilize hardware-friendly quantization,
and the accelerator is developed based on an automatic synthesis template.
Experimental results show that the resources of FPGA in the proposed ac-
celerator design contribute more computing performance compared with
regular 8-bit/16-bit fixed point quantization. The model size and the acti-
vation size of the proposed network with 2-bit weights and 8-bit activations
can be effectively reduced by 16× and 4× with a small amount of accuracy
loss, respectively. Our HFOD method can achieve 90.6 GOPS on PYNQ-
Z2 at 150MHz, which is 1.4× faster and 2× better in power efficiency than
peer FPGA implementation on the same platform.
Keywords: convolutional neural networks, quantization, highly-efficient
implementation
Classification: Integrated circuits

1. Introduction

Convolution neural networks have been widely adopted to
address challenging tasks in computer vision like object de-
tection. Among them, many CNN models have been pro-
posed, such as faster R-convolution neural network (Faster
R-CNN) [1], single-shot-multibox-detection (SSD) [2], and
you-only-look-once (YOLO) [3, 4]. As a single neural net-
work predicting bounding boxes and class probabilities si-
multaneously, YOLO performs a better tradeoff between the
accuracy and speed when deployed on GPU [5].
Considering the development cycle of FPGA implemen-

tation, there has been a steady improvement in FPGA design
automation tools over past years [6]. High-level synthesis
(HLS) tools like LegUp [7] and Xilinx Vivado HLS [8] en-
able designers to implement hardware design using a high-
level programming language, then automatically compile the

1 Institute of Aeronautics and Astronautics, Northwestern Poly-
technic University, Xi’an, 710129, China.

2 Department of Electrical and Computer Engineering, Shanghai
Jiao Tong University, Shanghai, 200240, China.

a) haibaochen@sjtu.edu.cn

DOI: 10.1587/elex.19.20220067
Received February 3, 2022
Accepted March 15, 2022
Publicized March 24, 2022
Copyedited April 25, 2022

code into register-transfer level (RTL) design. Recent tools
such as Xilinx SDSoC [9] and Intel FPGA SDK for OpenCL
[10] can generate the hardware-software interface automat-
ically so the cost and effort of software-hardware co-design
can be relatively reduced. These tools and functions make it
possible that time-to-market and aforementioned innovation
gap on new accelerator designs can be reduced [11, 12].
In this paper, we propose a hardware-friendly quanti-

zation method for object detection on embedded FPGAs,
named HFOD. YOLOv3-Tiny network is used to evaluate
the performance of the proposed HFOD accelerator both
in hardware performance and detection accuracy. The net-
work is quantized and retrained using 2-bit weight, 8-bit
bias and 8-bit activation. A HLS design methodology is
adopted for efficient development of our FPGA-basedYOLO
accelerator. Previous HLS research has fully used loop re-
ordering, unrolling, and local double buffering for CNNs
[13]. Our FPGA implementation utilizes these optimiza-
tions,and uses a low-precision convolutional unit to achieve
high throughput across different convolutional layers. The
proposed accelerator is implemented on an embedded FPGA
development board (PYNQ-Z2) and promising promotion is
presented compared with other existing FPGA accelerators.

2. Hardware-friendly low bit quantizaiton

2.1 Batch norm transformation
A YOLO CNN is usually composed of several basic layers:
convolution, max-pooling, up-sampling normalization and
route [14]. Convolutional (conv) layer is used to extract
higher features from input images [15]. The input images,
comprising N channels, is convolved with M N-channel
K × K weight filters. Max-Pooling layer maps every input
fmap to an output fmap whose every pixel is the max value
of a K × K window of input pixels. Up-sampling layer is
introduced in YOLOv3 [16] to improve the detection accu-
racy on objects of different size. The original purpose of
up-sampling is to enlarge the input image so that it can be
displayed on a higher resolution view. Batch normalization
(BN) [17] has been widely used in training modern CNN.
After batch normalization, the output of the previous con-

volutional layer is normalized to reduce the internal covariate
shift, and its distribution has zero mean and unit variance
[18]. The BN transformation is given as follows:

y = γ(i)
x − µ(i)√
[σ(i)]2 + ε

+ β(i) (1)

where x and y are input and output, respectively, µ(i) and

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers
1

mailto:haibaochen@sjtu.edu.cn


IEICE Electronics Express, Vol.19, No.8, 1–6

Fig. 1 Dataflow of YOLOv3-Tiny.

[ε(i)]2 are the channel-wise mean and variance of input x
over a mini-batch, respectively. γ(i) and β(i) are channel-
wise trainable parameters, and ε is to avoid round-off prob-
lems. In inference stage, all parameters are fixed, and these
operations will cause significant computing cost and extra
access to off-chip memory when directly implemented on
FPGA without further optimization [19, 20].

Algorithm 1: Transformed Convolutional Layer
Input: In[N ][(R − 1) ∗ S + K][(C − 1) ∗ S + K] // in fmaps,

W [M][N ][K][K] // weights,
Inbu f [Tn][(Tr − 1) ∗ S + K][(Tc − 1) ∗ S + K],
Outbu f [Tm][Tr][Tc]Wbu f [Tm][Tn][K][K]

Output: Out[M][R][C] // out fmaps
1 for(r = 0; r < R; r+ = Tr)
2 for(c = 0; c < C; c+ = Tc)
3 for(m = 0;m < M ;m+ = Tm){
4 for(n = 0; n < N ; n+ = Tn){
5 Inbu f =In[n][r∗S : (r+Tr-1)∗S+K][c∗S : (c+Tc-1)∗S+K]
6 Wbu f =W[m : m+Tm][n : n+Tn][0 : K][0 : K]
7 for(i = 0; i < K ; i + +)
8 for(j = 0; j < K ; j + +)
9 for(tr = 0; tr < min(Tr , R − r); tr + +)

10 for(tc = 0; tc < min(Tc,C − c); tc + +)
11 #PIPELINE
12 for(tm = 0; tm < min(Tm, M −m); tm + +) #UNROLL
13 for(tn = 0; tn < min(Tn, N − n); tn + +) #UNROLL
14 Outbu f +=Wbu f ∗ Inbu f }
15 Out[m : m +Tm][r : r +Tr][c : c +Tc] = Outbu f

16 }

YOLOv3-Tiny is a simplified version of YOLOv3, which
has a much smaller number of conv layers compared to
YOLOv3 [21]. It requires less storage space and computing
overheads, which is suitable to be deployed on resource-
constraint devices [22]. Figure 1 shows the dataflow of
YOLOv3-Tiny including the number of operations required
for convolution.

2.2 Low bit quantizaiton
Asmentioned above, the BN layers into previous conv layers
can significantly reduce the latency of network inference by
removing extra computation overhead, and further reduce
the power consumption by decreasing the access to off-chip

memory. Since the parameters in BN layer are fixed during
inference, then the BN layer is performed as a 1 × 1 conv
layer. Equation (1) is reformulated as follows:

y = γ(i)BN o + β(i)BN (2)

where o is the output of previous conv layer, and

γ
(i)
BN =

γ(i)√
[σ(i)]2 + ε

, β
(i)
BN = −

γ(i)µ(i)√
[σ(i)]2 + ε

+ β(i)

The output operator of quantized conv layer can be ex-
pressed as o = αaqaαwqw where αaqa, αwqw donate the
quantized activations and weights. The bias is not used in
the convolution layer and β(i) in the adjacent BN layer needs
to be calculated. Obviously, we can merge BN layers and
update the parameters as α̂w = γ

(i)
BNαw, β̂ = β

(i)
BN where

α̂w and β̂ are tensors over channels. It should be noted
that re-training is processing twice before and after the BN
fusion. The BN layer fusion method can help the training
to converge faster and effectively while reducing the amount
of FPGA calculations.

2.3 Transformed convolutional layer
Though YOLOv3-tiny is chosen and compressed as our tar-
get small neural network for object detection running on em-
bedded FPGA, whose parameters and fmaps can not fully
implemented using on-chip memory. We base our analy-
sis on the design in [13]. To increase utilization rate of
weights and input fmaps, this design employs loop transfor-
mations, like loop reordering, tiling, and unrolling to reduce
storage memory and increase throughput [23]. The trans-
formed loop is widely used as a basic template to construct
the FPGA-based accelerator.
Using the optimization in [13], the nested loops are trans-

formed into Algorithm 1. The Inbu f , Outbu f , and Wbu f

which store in block RAM (BRAM), which represent on-
chip buffers for input, output, and weights respectively.
Since the on-chip memory can not store all parameters and
fmaps, transferring data between the on-chip buffers and
off-chip memory is necessary. Double-buffering is adopted
to overlap data transfer with computation, requiring each
memory with twice the capacity. The loops R, C, M , and N
are tiled with factors Tr , Tc , Tm, and Tn, respectively. These
loop tiling factors decide the size of each on-chip buffer, and
the loop order will control how data are transferred. Tm and
Tn control how the compute modules are constructed.

3. Accelerator design

3.1 Modeling analysis
Given a specific hardware devicewith resources budget (e.g.,
a number of DSP slices and limited bandwidth), one can find
the optimal 〈Tm,Tn,Tr ,Tc〉 for a given conv layer but not for
the whole model, based on the modeling analysis in [13].
An alternative method is to use unified tailed factors for all
layers. The analysis about Total Execution Cycles (TEC),
Computational Throughput (CT), and Required Bandwidth
(RB) is calculated as follows:

2



IEICE Electronics Express, Vol.19, No.8, 1–6

TEC ≈
⌈

M
Tm

⌉
×

⌈
N
Tn

⌉
×

⌈
R
Tr

⌉
×

⌈
C
Tc

⌉
× Tr × Tc × K2

≈

⌈
M
Tm

⌉
×

⌈
N
Tn

⌉
× R × C × K2

CT =
2 × M × N × R × C × K2

TEC
≈ 2 × Tm × Tn

RB ≈
αin × Bin + αw × Bw + αout × Bout

TEC

(3)

where Bin = Tn[(Tr−1)S+K][(Tc−1)S+K], Bw = TmTnK2,
Bout = TmTrTc , αin = αw =

M
Tm
× N

Tn
× R

Tr
× C

Tc
, αout =

M
Tm
× R

Tr
× C

Tc
. It should be noted that αin, αw, αout and

Bin,Bw,Bout denote the trip counts and buffer sizes which
have mentioned before, respectively. To simplify the for-
mula, we assume the stride S = 1 and omit the K in Bin,
which reduces from Tn[(Tr − 1)S + K][(Tc − 1)S + K] to
TnTrTc .

Given a fixed clock frequency and a conv layer structure
factor tuple 〈M,N,R,C,K〉, we can estimate the computa-
tional throughput and required bandwidth using Equation
(3). Without further optimization, the only way to improve
performance is increasingTm andTn, which leads high band-
width demand. And it needs more on-chip memory for
Inbu f , Outbu f and Wbu f . The number of BRAMs and re-
quired bandwidth may exceed the maximum value before
the DSP slices are fully utilized [24]. Also one DSP slice is
used to perform only one MAC in this transferred loop, even
for low bit operations, which means the potential comput-
ing power is not exploited. Parallelism in other dimensions
is required to implement better performance with accepted
hardware resources and bandwidth [25].

3.2 Convolution unit architecture
To utilize our hardware-friendly quantization and exploit
better performance, we reorder the loops 〈K,K〉 to the inner-
most, and unroll the loops 〈M,N,K,K〉 concurrently. In this
way, K ×K read requests to the Inbu f are required per cycle,
while the Inbu f is stored at BRAM which not support more
than one request to different addresses per cycle.
The line buffer andwindowbuffermemories implemented

are shown in Figure 2(b). Each time through the loop, the
window is shifted and filled with one pixel coming from
the Inbu f and K − 1 pixels coming from the line buffer.
Additionally, the input pixel is shifted into the line buffer
in preparation to repeat the process on the next line. In
the K × K conv computation, the spatial shift introduced
above is undesirable and needs to be eliminated during a few
cycles. A common way is extending the iteration domain.
In this technique, the loop bounds are increased by a small
amount so that the first input pixel is read on the first loop
iteration, but the conv operation is not started until later in
the iteration space. In YOLOv3-Tiny model, there are only
3 × 3 and 1 × 1 two kinds of convolvers to be implemented,
so Tn window buffers are required, where each array will
be partitioned completely as 9 independent registers. While
the size of line buffers is fixed to Tc + 2. When performing
1 × 1 conv operations, the line buffer will be bypassed, and
the window buffer will only store one input pixel.The Loops
〈Tr ,Tc〉 is extended to 〈Tr + K − 1,Tc + K − 1〉, while the

Loops 〈Tm,Tn,K,K〉 are all unrolled. The performance and
required bandwidth are re-calculated as follows:

TEC ≈

⌈
M

Tm

⌉
×

⌈
N

Tn

⌉
×

⌈
R

Tr

⌉
×

⌈
C

Tc

⌉
× (Tr + K − 1)(Tc + K − 1) (4)

CT ≈ 2 ×Tm ×Tn ×
Tr ×Tc × K2

(Tc + K − 1)(Tr + K − 1)

RB ≈ Tn +
TmTnK

2

TrTc
+
TmTn

N

(5)

Compared with the former transferred loop, the modi-
fied loop has Tr×Tc×K

2

(Tc+K−1)(Tr+K−1) speed-up ratio, introducing
K2 more required bandwidth. To achieve the same speed-
up ratio only unrolling the loop 〈Tm,Tn〉, 2(k2 − 1)Tn more
BRAMs are needed, while (K − 1)Tn more BRAMs are re-
quired when using the modified loops. Besides, this make
one DSP slice perform more than one multiply accumu-
late calculation in a transferred loop for low bit operations.
Therefore DSP slices can provide more performance den-
sity using the modified loop. Our method can improve the
performance using less BRAMs, especially for the resource-
constrained embedded FPGA.

3.3 System architecture
In this work, we propose a CPU+FPGA heterogeneous ar-
chitecture to accelerate YOLOv3-Tiny. Figure 2(a) shows
an overview of the overall architecture. The whole archi-
tecture consists of three compute units, input, output and
parameter buffers, an AXI bus for off-chip memory transfer,
and a controller to schedule the on-chip memory access and
computation. The three compute units work on different
configurations of layers: the Conv unit for all conv layers,
the Pooling unit for max-pooling layers and up-sampling
layers. The Non-Linearity (NL) unit for all the conv layer
except two output conv layers. Each PE has Tn×K×K low-
bit multipliers and Tn add trees working concurrently. Thus
2×Tm×Tn×K×KMACs can be done each cycle for the con-
volutional computing unit. Since weights and feature maps
of Tiny-YOLOv3 model are too large for embedded FPGA,
we store each conv layer’s weights and output fmaps in the
off-chip RAM. The conv layer starts to run until previous
conv layer processing is done on the proposed accelerator.
As for max-pooling layers and the up-sampling layer, there
are also plenty of data transfers between on-chip and off-
chip memory. Since the write back operation of output
fmaps occurs every N

Tn
conv computing cycles, the pooling

and up-sampling operations can be done fully on chip, us-
ing extra 8-bit pool buffers Poolbu f whose size is the same
as Outbu f without writing and loading back again. This
schedule only increases the required bandwidth for writing
back output fmaps, and the required bandwidth is showed as
follows:

RB ≈ Tn +
TmTnK2

TrTc
+

TmTn

N − Tn
(6)

There are also 2×Tm increased BRAMs for this schedule.
Using the modified extended conv loops can achieve high
throughput with introducing much more BRAM demands,
so we can still achieve good hardware utilization.

3



IEICE Electronics Express, Vol.19, No.8, 1–6

Fig. 2 Architectural diagrams of the proposed HFOD accelerator: (a) the overall architecture; (b) architecture of the
Conv unit with line buffer and window buffer. The unit can perform Tm ×Tn × K2 MACs per cycle.

Table I Accuracy of quantized Tiny-YOLOv3.

Quantization Accuracy
(mAP)

Weight
size
(MB)

Activation
size
(MB)

Baseline
(32-b W, 32-b A) 61.82 33.22 7.83

w/o BN-fused
(2-b W, 8-b A) 59.83 2.08 1.96

w/ BN-fused
(2-b W, 8-b A) 56.02 2.08 1.96

4. Experimental results

4.1 Low-bit quantization implementation
The hardware-friendly, low-bit quantization is implemented
using Pytorch [26]. The YOLOv3-Tiny is trained on PAS-
CAL VOC 2007+2012 dataset and tested on PSCAL VOC
2007. First, we train the network from scratch using full pre-
cision, then quantize the conv layer and retrain with full pre-
cision BN layer. Finally, fuse the BN layer and re-quantize
the merged conv layer and finetune using smaller learning
rates. Table I shows the accuracy of the quantized YOLOv3-
Tiny. The quantized network with 2-bit weights and 8-bit
activations (i.e. 2-b W and 8-b A) incurs an accuracy loss
of approximately 5.3mAP compared with the full-precision
network. The model size is reduced by 16×, and the acti-
vation size is reduced by 4×. For further showing the ef-
fectiveness of the proposed method, we test the application
of our model on the infrared aerial dataset. Experimental
results on the infrared aerial dataset also show that the pro-
posed channel-wise quantization can significantly improve
the performance of the low-bit quantized model and the re-
training strategy contributes a lot to the range optimization
of parameter quantization.

4.2 Results
We evaluate our design on PYNQ-Z2, which uses a low-
cost Xilinx Zynq-7000 SoC containing an XC7Z020 FPGA
alongside an ARM Cortex-A9 embedded processor. This
board can provide 3.2GB/s of DRAM bandwidth. Its work-
ing frequency is 150MHz. We adopt Vivado HLS 2018.2
as the primary design tool to develop our accelerator using
C/C++ language and export the RTL as a Vivado’s IP. The

Table II FPGA resource utilization.

Resource BRAM DSP FF LUT
Used 128 205 36007 49751
Available 280 220 106400 53200
Utilization(%) 45 93 33 93

Fig. 3 Throughput and overhead for each conv layer implemented on our
proposed accelerator.

exported RTL is synthesized and implemented in Vivado
2018.2. The placement and routing is completed with Vi-
vado tool set. Based on modeling analysis in Section 4, we
choose the tile parameters 〈Tm,Tn,Tr ,Tc〉 which achieve the
highest throughput under the hardware resources constrained
and limited bandwidth. The tile parameters 〈Tm,Tn,Tr ,Tc〉 is
fixed to 〈10,4,26,26〉. After that, the resource utilization of
our implementation is reported out, as shown in Table II. We
can tell that our accelerator design has fully utilized FPGA’s
computing performance because the DSPs are almost used
up.
Since layers of the network must be run one after the other

on the same accelerator, each conv layer’s throughput can
be separately measured. The throughput and overhead for
each conv layer are showed in Figure 3. The conv layer
8, 10, 11, and 13, have the least overhead since they all
perform 1× 1 conv operations, and these overheads account
for less than 2%of thewhole network’s overhead. Therefore,
our accelerator focus on the optimization for 3 × 3 conv
operations to improve overall performance. We can tell that
peak performance is achieved when running conv Layer 12,
which is 90.6 GOPS.
Table III compares our implementation against the pre-

vious FPGA accelerators for YOLO CNN [27, 28, 29, 30,
31, 32] where all numbers are retrieved from the respec-

4



IEICE Electronics Express, Vol.19, No.8, 1–6

Table III Comparison of our work with the previous works for YOLO CNN hardware.
Yu, et al. [27] Angel Eye [28] Zynq YOLO [29] Ma, et al. [30] Tincy YOLO [31] Afzal, et al. [32] Ours

Platform Zynq
7Z020

Zynq
7Z020

Zynq
7Z020

Virtex7
485t

Zynq Ultrascale+
XCZU3EG

Virtex7
VC707

Zynq
7Z020

Clock (MHz) 100 214 150 143 150 200 150
Precision(Weight, Activation) (16,16) (8,8) (8,8) (16,16) (1,3) (18,18) (2,8)

Throughput(GOPS) 10.5 62.9 86.4 48 72 460.8 90.6
Look-Up-Table(LUT) 25900 29867 27761 163944 N/A 48583 49751

Flip-Flop(FF) 46700 35489 26600 69014 N/A 93225 36007
DSPs 160 N/A 220 112 N/A 2304 205

Perf. Density(GOPS/DSP) 0.06 N/A 0.39 0.43 N/A 0.2 0.44
Power (W) 3.36 3.5 N/A N/A 6 4.81 2.5

Power efficiency(GOPS/W) 3.15 17.9 N/A N/A 12 95.6 36.4
Design Methodology Vivado HLS RTL RTL Vivado HLS Vivado HLS Vivado HLS Vivado HLS

tive papers. It should be noted that the comparisons with
[27, 28, 29] are against the same device while the others are
against larger FPGAs [30, 31, 32]. Yu, et al. [27] implements
the YOLOv3-Tiny on the same board and Afzal, et al. [32]
implements the YOLOv3-Tiny on Virtex7 VC707, while the
other designs are based on YOLO or YOLO-Tiny. Through-
put is shown in giga-operations-per-second (GOPS). The
power efficiency is defined as giga-operations-per-second-
per-watt (GOPS/W). The accelerators designed using RTL
typically have the higher throughput than high level syn-
thesis tools. It can be seen from Table III that our HFOD
accelerator outperforms other FPGA accelerators designed
with RTL for YOLO in pure throughput.
Compared to [29], since the algorithm deployed in [29] is

YOLO-tiny while YOLOv3-Tiny is adopted in our method,
we need to focus on the unit resource consumption not over-
all consumption which will be influenced by network struc-
ture. As shown in Table III, our method both demonstrates
the superiority with [29] in terms of both power efficiency
and throughput. Compared with most accelerators designed
with HLS, our design achieves the best throughput while
consuming almost the same FPGA resources. Although
Afzal’s work [32] has better throughout performance, they
consume more resources. Compared to [32], a more light-
weight quantization method is adopted in our design, which
achieves 2-bit weights and 8-bit activations compression; a
novel multiply-add operation unit structure is proposed in
our met; and our design is applicable to a wider range of ap-
plication scenarios. As we known that the multiply-add op-
eration in convolution mainly consumes DSP resources and
the construction of logic gates mainly consumes other logic
slices such as LUT and FF. As a result, Afzal’s work [32]
consumes more logic slices to achieve a higher throughtput.
By analyzing the throughput of unit logic slice, our accelera-
tor can achieve the best resource utilization and is also much
more power efficient. Besides, the quantization method pro-
posed in this paper introduces the BN-fused optimization
and avoids extra access to off-chip memory. Owning to the
low-bit quantization, when compared with different types
of FPGA devices, we further normalize the performance
by the number of logic slices used. For our accelerator
design, logic slices of FPGA contribute more computing
performance compared with regular 8-bit/16-bit fixed point
quantization.

5. Conclusion

In this work, we propose HFOD, a hardware-friendly quan-

tization method for object detection, optimizing from both
algorithm and hardware. We adopt a channel-wise, uniform
quantization method to compress YOLOv3-Tiny model.
Weights are quantized to 2-bit while activations are quan-
tized to 8-bit for all convolutional layers. The experimental
results show that, our proposed method can significantly
compress the YOLO model without introducing large ac-
curacy degradation. The detection accuracy of quantized
YOLOv3-Tiny has 5.8 mAP degradation compared with full
precision network. As for the hardware design, a flexible,
efficient conv unit structure is designed to utilize hardware-
friendly quantization. The comparisons with other FPGA-
based accelerator designed with HLS for YOLO CNN show
that our accelerator presents high throughput and low power
consumption and has better resources utilization, which is
suitable for embedded FPGAs.

References

[1] S. Ren, et al.: “Faster R-CNN: towards real-time object detection with
region proposal networks,” Advances in Neural Information Process-
ing Systems (2015) 91.

[2] W. Liu, et al.: “SSD: single shot multibox detector,” European Con-
ference on Computer Vision (2016) 21 (DOI: 10.1007/978-3-319-
46448-0_2).

[3] J. Redmon and A. Farhadi: “YOLO9000: better, faster, stronger,”
The IEEE Conference on Computer Vision and Pattern Recognition
(2017) 7263 (DOI: 10.1109/cvpr.2017.690).

[4] M.J. Shafiee, et al.: “Fast YOLO: a fast you only look once system for
real-time embedded object detection in video,” arXiv preprint (2017)
arXiv:1709.05943 (DOI: 10.48550/arXiv.1709.05943).

[5] B. Veytsman: “acmart—Class for typesetting publications of ACM,”
http://www.ctan.org/pkg/acmart

[6] G. Zhou, et al.: Body Sensor Networks (MIT Press, Cambridge, MA,
2008).

[7] A. Canis, et al.: “LegUp: an open-source high-level synthesis tool for
FPGA-based processor/accelerator systems,” ACM Transactions on
EmbeddedComputing Systems 13 (2013) 1 (DOI: 10.1145/2514740).

[8] J. Cong, et al.: “High-level synthesis for FPGAs: from prototyping
to deployment,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 30 (2011) 473 (DOI: 10.1109/tcad.2011.2110592).

[9] V. Kathail, et al.: “SDSoC: a higher-level programming environment
for Zynq SoC and Ultrascale+ MPSoC,” Proceedings of the 2016
ACM/SIGDA International Symposium on Field-ProgrammableGate
Arrays (2016) 4 (DOI: 10.1145/2847263.2847284).

[10] T.S. Czajkowski, et al.: “From OpenCL to high-performance hard-
ware on FPGAs,” 22nd International Conference on Field Pro-
grammable Logic and Applications (2012) 531 (DOI: 10.1109/
fpl.2012.6339272).

[11] M. Saeedi, et al.: “Synthesis of reversible circuit using cycle-based
approach,” J. Emerg. Technol. Comput. Syst. 6 (2010) 1 (DOI:
10.1145/1877745.1877747).

[12] S. Cohen, et al.: “Deciding equivalences among conjunctive aggre-
gate queries,” J. ACM 54 (2007) 5 (DOI: 10.1145/1219092.1219093).

[13] C. Zhang, et al.: “Optimizing FPGA-based accelerator design

5

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/cvpr.2017.690
https://doi.org/10.48550/arXiv.1709.05943
http://www.ctan.org/pkg/acmart
https://doi.org/10.1145/2514740
https://doi.org/10.1109/tcad.2011.2110592
https://doi.org/10.1145/2847263.2847284
https://doi.org/10.1109/fpl.2012.6339272
https://doi.org/10.1109/fpl.2012.6339272
https://doi.org/10.1145/1877745.1877747
https://doi.org/10.1145/1877745.1877747
https://doi.org/10.1145/1219092.1219093


IEICE Electronics Express, Vol.19, No.8, 1–6

for deep convolutional neural networks,” Proceedings of the 2015
ACM/SIGDA International Symposium on Field-ProgrammableGate
Arrays (FPGA) (2015) 161 (DOI: 10.1145/2684746.2689060).

[14] H. Ozaku, et al.: “Acceleration of database query processing using
FPGA,” IEICE Technical Report 120 (2021) 90.

[15] S. Albawi, et al.: “Understanding of a convolutional neural network,”
International Conference on Engineering and Technology (2017) 1
(DOI: 10.1109/icengtechnol.2017.8308186).

[16] J. Redmon and A. Farhadi: “YOLOv3: an incremental improve-
ment,” arXiv preprint (2018) arXiv:1804.02767 (DOI: 10.48550/
arXiv.1804.02767).

[17] S. Ioffe and C. Szegedy: “Batch normalization: accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
(2015) arXiv:1502.03167 (DOI: 10.48550/arXiv.1502.03167).

[18] G. Zhou, et al.: “A multifrequency MAC specially designed for wire-
less sensor network applications,” ACMTrans. Embed. Comput. Syst.
9 (2010) 39:1 (DOI: 10.1145/1721695.1721705).

[19] S.W. Smith, “An experiment in bibliographic mark-up: parsing meta-
data for XML export,” Proceedings of the 3rd. Annual Workshop on
Librarians and Computers 3 (2010) 422.

[20] T. Utsunomiya, et al.: “FPGA accelerator of cnn using power of 2
approximation and pruning weights,” IEICE Technical Report 117
(2018) 119.

[21] J. Qiu, et al.: “Going deeper with embedded FPGA platform for con-
volutional neural network,” Proceedings of the International Sympo-
sium on Field-Programmable Gate Arrays (2016) 26 (DOI: 10.1145/
2847263.2847265).

[22] A. Natarajan, et al.: “Investigating network architectures for body
sensor networks,” Network Architectures (Keleuven Press, Dayton,
OH, 2007) 322.

[23] M. Yamazaki, et al.: “Side channel security of an FPGA pairing
implementation with pipelined modular multiplier,” IEICE Technical
Report 119 (2019) 151.

[24] M. Clark: “Post congress tristesse,” TeX90 Conference Proceedings
(1991) 84.

[25] J. Qiu, et al.: “Going deeper with embedded FPGA platform for con-
volutional neural network,” Proceedings of the International Sympo-
sium on Field-Programmable Gate Arrays (2016) 26 (DOI: 10.1145/
2847263.2847265).

[26] A. Paszke, et al.: “PyTorch: an imperative style, high-performance
deep learning library,” Advances in Neural Information Processing
Systems (2019) 8024.

[27] Z. Yu and C.-S. Bouganis: “A parameterisable fpga-tailored architec-
ture for YOLOv3-tiny,” International Symposium on Applied Recon-
figurable Computing (2020) 330 (DOI: 10.1007/978-3-030-44534-
8_25).

[28] K. Guo, et al.: “Angel-eye: a complete design flow for mapping CNN
onto embedded FPGA,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst. 37 (2018) 35 (DOI: 10.1109/tcad.2017.2705069).

[29] K. Guo, et al.: “From model to FPGA: software-hardware co-design
for efficient neural network acceleration,” 2016 IEEE Hot Chips 28
Symposium (2016) 1 (DOI: 10.1109/hotchips.2016.7936208).

[30] J. Ma, et al.: “Hardware implementation and optimization of tiny-
YOLO network,” Digital TV and Wireless Multimedia Communica-
tion (2018) 224 (DOI: 10.1007/978-981-10-8108-8_21).

[31] T.B. Preußer, et al.: “Inference of quantized neural networks on het-
erogeneous all-programmable devices,” 2018 Design, Automation &
Test in Europe Conference & Exhibition (2018) 833 (DOI: 10.23919/
date.2018.8342121).

[32] A. Ahmad, et al.: “Accelerating tiny YOLOv3 using FPGA-based
hardware/software co-design,” 2020 IEEE International Symposium
on Circuits and Systems (2020) 1 (DOI: 10.1109/iscas45731.2020.
9180843).

6

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/icengtechnol.2017.8308186
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.1145/1721695.1721705
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1007/978-3-030-44534-8_25
https://doi.org/10.1007/978-3-030-44534-8_25
https://doi.org/10.1109/tcad.2017.2705069
https://doi.org/10.1109/hotchips.2016.7936208
https://doi.org/10.1007/978-981-10-8108-8_21
https://doi.org/10.23919/date.2018.8342121
https://doi.org/10.23919/date.2018.8342121
https://doi.org/10.1109/iscas45731.2020.9180843
https://doi.org/10.1109/iscas45731.2020.9180843

