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Abstract: Nowadays WiFi based human activity recognition (WiFi-HAR) has gained much attraction
in an indoor environment due to its various benefits, including privacy and security, device free
sensing, and cost-effectiveness. Recognition of human-human interactions (HHIs) using channel state
information (CSI) signals is still challenging. Although some deep learning (DL) based architectures
have been proposed in this regard, most of them suffer from limited recognition accuracy and
are unable to support low computation resource devices due to having a large number of model
parameters. To address these issues, we propose a dynamic method using a lightweight DL model
(HHI-AttentionNet) to automatically recognize HHIs, which significantly reduces the parameters
with increased recognition accuracy. In addition, we present an Antenna-Frame-Subcarrier Attention
Mechanism (AFSAM) in our model that enhances the representational capability to recognize HHIs
correctly. As a result, the HHI-AttentionNet model focuses on the most significant features, ignoring
the irrelevant features, and reduces the impact of the complexity on the CSI signal. We evaluated the
performance of the proposed HHI-AttentionNet model on a publicly available CSI-based HHI dataset
collected from 40 individual pairs of subjects who performed 13 different HHIs. Its performance is
also compared with other existing methods. These proved that the HHI-AttentionNet is the best
model providing an average accuracy, F1 score, Cohen’s Kappa, and Matthews correlation coefficient
of 95.47%, 95.45%, 0.951%, and 0.950%, respectively, for recognition of 13 HHIs. It outperforms the
best existing model’s accuracy by more than 4%.

Keywords: human activity recognition (HAR); human-human interactions (HHIs); channel state
information (CSI); deep learning (DL); antenna-frame-subcarrier attention mechanism (AFSAM)

1. Introduction

Human activity recognition (HAR) aims to determine the current behaviors and
intentions of human movement based on a sequence of observations made regarding human
activities and their surrounding circumstances using Artificial Intelligence (AI). HAR is
currently a vital and popular research area due to its numerous applications in various
fields such as health monitoring, analysis of sports events [1], entertainment events [2],
home care for the aging person [3], etc. The literature reveals [4–6] that computer vision
and inertial sensor-based techniques are commonly employed for HAR. However, both of
these methods have their own limitations. Computer vision-based HAR methods are high
cost due to expensive cameras, privacy violations, object occlusion, etc. [7]. Furthermore,
the camera needs to be set up in advance, and its performance is affected by the ambient
lighting; humans also need to be within the camera’s visual range, and it is unable to
distinguish actions when there are walls or other impediments present. The main problem
with wearable inertial sensors are user inconvenience, obtrusiveness, and maintenance
costs. Wearable or inertial sensor-based techniques always force the users to wear a variety
of tracking devices, which are bothersome and inconvenient for the user [7].
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WiFi-HAR methods [4,8] have emerged as a solution because of their ability to over-
come the aforementioned limitations. Advantages include (i) low cost, (ii) no privacy
violation, (iii) compact size, (iv) contactless, and (v) hardware facilities are universal. In
addition, with the widespread installation of commodity WiFi devices in homes, HAR
methods based on WiFi have attracted more interest. Though WiFi-HAR has tremendous
advantages in an indoor environment, it has several drawbacks such as short range of
coverage and limitations in the case of multi-user scenarios. In a WiFi-HAR system, re-
ceived signal strength indicator (RSSI), specialized radio hardware-based signals, and
channel state information (CSI) are the three types of WiFi signals used to detect human
activity. The RSSI signal has been employed in various sensing applications, including
indoor location [9], tracking [10], and radio tomographic imaging (RTM) [11]. However,
it is difficult to achieve high accuracy on fine-grained HAR from RSSI signals because of
its limited range accuracy, inconsistent readings, and low resolution. Furthermore, the
specialized radio hardware is not a commercially available product and as a result, it is
more costly to set up.

CSI contains information on how WiFi signals are propagated between the transmit-
ting and receiving antenna at a particular carrier frequency. CSI works with Orthogonal
Frequency-Division Multiplexing based on multiple input multiple output schemes that
provide more information about the phase and amplitude of each sub-carrier [12]. The
primary idea behind HAR through the CSI signal is that when things or humans move
between the transmitting and receiving antennas, the moving body affects the multipath
propagation. Various moves have different consequences depending on how the body
moves between the antennas. CSI can easily detect the information of different movements
in the surroundings. In addition, the literature reveals that CSI-based HAR shows con-
siderably better performance than RSSI [13]. This is because CSI is a fine-grained signal
and the phase and amplitude of the CSI signal easily differentiate static and non-static
objects between transmitter and receiver. Researchers have used WiFi based CSI signals
for several applications, such as detecting micro-movement to hear words [14], gesture
recognition [15], user identification and localization [16], driver activity recognition [17],
handwriting recognition [18], pose estimation [19], and fall detection [20].

DL-based models such as convolutional neural networks (CNNs) and long short-term
memory (LSTM) have been shown to perform better than the traditional feature-based clas-
sifiers for HAR from CSI signals (e.g., [4,13,21] vs. [22–25]). Despite the amazing results that
have been obtained with the current CSI-based human activity identification systems, their
main focus has been on identifying single human activities (SHA) that are performed by a
single person [4,13,26]. Because of this, the applicability of these methods may be limited
in situations that occur in the real world and involve multiple individuals. In this regard,
previous studies [27,28] have indicated that detecting/recognizing human-human interac-
tions (HHIs), in which two people interact with one another (for example, handshakes and
hugs), is considered more challenging than recognizing SHA (e.g., running and standing
activities) due to the following reasons. First, HHIs are based on the interdependencies and
causal linkages between the moving body parts of the two individuals involved. Second,
HHIs include a wide range of differences between individuals and how interaction are
performed between them. Third, distinct HHIs may entail similar movements by the two
interacting humans.

In this study, we proposed a lightweight deep learning model (HHI-AttentionNet)
to automatically recognize HHIs and reduce model parameters without sacrificing recog-
nition accuracy. The HHI-AttentionNet composed of a depthwise separable convolution
(DS-Conv) block for feature extraction and added antenna-frame-subcarrier attention mech-
anism (AFSAM) to focus on the most significant features, aims to reduce the impact of
the complexity on the CSI signal as well as to improve the model’s capability to recognize
HHIs. Thus the main contributions of the paper are as follows:

• A lightweight DL model (HHI-AttentionNet) has been proposed to improve the
recognition accuracy of HHIs;
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• An AFSAM that combines the antenna attention module (AAM) and frame-subcarrier
attention module (FSAM) is designed in the HHI-AttentionNet model to improve the
representative capability of the proposed model for recognizing HHIs correctly;

• A comparative study of different methods for HHI recognition and comparison of
their performance;

• The proposed method could be the best-suited sophisticated method for recognizing
both HHIs and single human activity because of its high-level activity recognition
ability with a limited number of parameters.

2. Related Work

WiFi based human activity recognition (WiFi-HAR) has recently gained immense
attention in an indoor environment among the existing techniques due to its tremendous
advantages, including ubiquitous availability, non-light of sight communication and con-
tactless sensing, etc. Current research on human activity recognition (HAR) using WiFi can
be classified into RSSI-based and CSI-based methods.

2.1. RSSI-Based Methods

RSSI-based HAR approaches utilize the power of signal changes caused by human
activities [23]. The RSSI measures the variance in received signal strength over time.
The authors [29] proposed a device-free system for detecting human activity in indoor
circumstances. They collected RSSI data from multiple mobile phones through multiple
access points and stored data to train different ML models. They used five ML models
to validate their data and achieved 95% accuracy in real-time. Sigg et al. [30] proposed a
passive and device-free HAR system based on RSSI signals obtained from mobile phones.
They extracted 18 different features and selected only 9 features using feature selection.
Those selected features were then fed to the k-nearest neighbor (KNN) algorithm and
achieved 52% accuracy when detecting 11 gestures and 72% accuracy when detecting
4 gestures. Jing et al. [31] designed a low-cost HAR system based on an RSSI coarse-to-
fine hierarchical DL framework. They used the ESP8266 sensor to reduce the installation
cost and collect RSSI data from two scenarios: an empty room and a bedroom. They
used SVM and gated recurrent unit (GRU) to validate their dataset and claimed better
results from GRU than the traditional methods. Wang et al. [32] extracted the wavelet
feature from RSSI to build a HAR system. They showed that wavelet features can provide
reliable identification features for HAR and generate high performance of the proposed
system. The experiments’ findings demonstrated that the accuracy level was greater than
90%. Huang et al. [33] designed a deep CNN to detect a person using a WiFi-based RSSI
signal. They mixed the raw RSSI values with the wavelet coefficients as the CNN’s input to
differentiate changes in the signal induced by human movement. Their proposed system
recognised walking behavior with a 95.5% accuracy rate. To accurately characterize RSSI
measurements, Gu et al. [34] proposed a fusion technique based on a classification tree to
detect human activity. Their proposed method achieved an average accuracy of 72.47%.
RSSI is mainly used in short-distance ranging and indoor positioning. However, the RSSI
signal does not work well when the signal is variegated and in a complex environment.

2.2. CSI-Based Methods

Recently, CSI has been utilized for indoor localization and classification of human
activity as compared to RSSI because it offers a finer-grained representation of the wireless
link. Wang et al. [19] proposed a system to detect human activity and indoor localization.
They developed a dataset for six distinct activities and designed a multi-task 1D CNN
where basic architecture is based on ResNet. The proposed architecture attained an ac-
curacy of 88.13% and 95.68% on average for activity recognition and indoor localization,
respectively. Yang et al. [35] created a framework for HAR using a WiFi CSI signal with
three modules. Firstly, they proposed an antenna selection algorithm that automatically
chose the antenna based on its sensitivity to different activities. After that, they presented
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two signal enhancement algorithms to improve active signals besides weakening inactive
ones. Finally, they proposed a segmentation algorithm to find an activity’s starting and
finishing point. Damodaran et al. [36] presented a HAR system that can classify five classes
from the CSI signal. They collected data from two scenarios: a Line of Sight (LOS) and a
Non-Line of Sight (N-LOS) scenario in an indoor environment. They evaluated the perfor-
mance of two different algorithms, SVM and LSTM, on the same data set and observed
that LSTM requires less preprocessing and achieved 97.33% average accuracy on the LOS
scenario. Yousefi et al. [37] developed a dataset for HAR from WiFi named StanWiFi,
which contains seven different activities. They extracted different statistical features and
employed three different models (hidden Markov model, LSTM, and a random forest)
to classify the activities and reported an average accuracy of 64.6%, 73.3%, and 90.5%,
respectively. Heju et al. [8] proposed an indoor HAR system based on a WiFi signal named
Wi-motion. They extracted features from both amplitude and phase. They used a posterior
probability vector-based strategy rather than a single classifier and reported an average
accuracy of 96.6% in LOS scenarios. Santosh et al. [13] proposed a modified Inception
Time network architecture called CSITime for HAR based on WiFi CSI signal. They used
three datasets, namely ARIL, StanWiFi, and SignFi datasets, to evaluate their system and
achieved an accuracy of 98.20%, 98%, and 95.42% respectively. A CSI-based CARM theory
was introduced by Wang et al. [38] based on two methodologies: the CSI-speed model and
the CSI-activity model. They claim that the CARM is resistant to environmental changes
and has a recognition accuracy of 96%. Huan et al. [39] presented a CSI-based HAR system
that used the relationship between body movement and amplitude to identify different
activities. They developed an Adaptive Activity Cutting Algorithm (AACA) and gained
an average accuracy of 94.20%. Muaaz et al. [40] proposed an environment-independent
approach to recognize four different human activities. They generated spectrogram im-
ages using STFT as an input of CNN and achieved a 97.78% result. Alazrai et al. [41]
proposed an end-to-end DL framework named E2EDLF consisting of three-block CNN.
They converted the raw signal into two-dimensional images and then fed those images to
E2EDLF to classify HHIs. They achieved an accuracy of 86.3%. Kabir et al. [42] developed
a deep-learning-based CSI-IANet for recognizing HHIs. As the conversion of CSI signal to
gray-scale image reduces the available features, so they directly fed CSI signals to recognize
HHIs after denoising. They also claimed an average accuracy of 91.30% and an F1 score of
93.0% with high computational complexity.

From the above discussion, we can see that most of the researchers have worked on
single user HAR and achieved sufficient accuracy, whereas very few works have been
done with multi-user HHI recognition. Multi-user HHI recognition has suffered from
low recognition accuracy, the number of parameters, and recognition time. However,
we proposed a lightweight DL model comprised of the depthwise separable convolution
(DS-Conv) and attention mechanism to recognize HHIs. Therefore, our model showed
better performance for recognizing HHIs in terms of accuracy, number of parameters, and
recognition time than the existing solutions.

3. Dataset

In our work, we have used a publicly available CSI-based HHI [43] dataset to evaluate
the performance of our proposed model. This dataset has 12 different interactions. The
dataset includes 40 individual pairs made from 66 healthy people who voluntarily agreed
to participate in this experiment. Each of the 40 pairs was told to do ten different trials of
the 12 distinct HHIs in an indoor position. The total number of trials recorded on their
dataset stands at 4800. Each of the 12 interactions consists of two intervals, one being the
steady-state and the other being the interaction interval. The two participants stand in
front of each other without doing any action at a steady state. On the other hand, each pair
takes part in one of 12 different HHI actions during the interaction period. As a result, the
CSI dataset has thirteen HHIs classes, including the steady-state interaction and the twelve
HHIs. They used Sagemcom 2704 as an access point and a desktop computer provided
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with an Intel 5300 NIC as a receiver. The WiFi signals were recorded using the online
Linux 802.11n CSI tool [44]. The access point was set up to run at 2.4 GHz with wireless
channel number 6, a channel bandwidth of 20 MHz, and an index eight modulation coding
scheme. The NIC has three external receiver antennas (Nrx = 3), while the access point
has two internal transmission antennas (Ntx = 2). Thus, the system comprises 2 × 3 WiFi
streams. The CSI tool can capture the CSI for 30 subcarriers (i.e., Nsc = 30). Therefore,
for the MIMO-OFDM system, each packet contains 180 CSI values. The overall dataset
statistics are given in Table 1.

Table 1. Details of the CSI-based HHI dataset.

Interaction Label No. of Samples Interaction Label No. of Samples

Approaching I1 3359 Pointing with the left hand I8 4067

Departing I2 3115 Pointing with the right hand I9 4081

Handshaking I3 3606 Punching with the left hand I10 2497

High five I4 3643 Punching with the right hand I11 2500

Hugging I5 2480 Pushing I12 3610

Kicking with the left leg I6 2471 Steady state I13 22,792

Kicking with the right leg I7 2489

4. Background of CSI

CSI contains the channel properties of any wireless communication system. In the
communication system, when a transmitting signal comes into contact with an obstacle
like a wall, furniture, ceiling, or person, it is scattered, deflected, and reflected before
going to the receiver. CSI can describe how a signal changes (i.e., time delay, amplitude
attenuation, and phase shift) between the transmitter and receiver [20]. Wireless technology
communication systems are advancing with adoption of Multiple Input Multiple Output
(MIMO), consisting of multiple pairs of transmitting-receiving antennas. A MIMO chan-
nel’s available bandwidth is divided by the Orthogonal Frequency Division Multiplexing
(OFDM) into several orthogonal subcarrier frequencies that are simultaneously transmitted.
In particular, the following mathematical statements can be used to characterize the Multi-
ple Input Multiple Output-Orthogonal Frequency-Division Multiplexing (MIMO-OFDM)
communication system [8,20]:

yi = Hixi + v, i = 1, 2, 3, . . . , N (1)

where Hi represents the complex matrix of the ith OFDM subcarrier, v represents noise, N
represents the number of OFDM subcarriers. yi ∈ RNRa and xi ∈ RNTa are the transmitted
and received signal where NTa and NRa denotes the number of transmitting and receiving
antennas. The basic structure of Hi is given bellow

Hi =


h

T a1 Ra1
i · · · h

T aj Ra1
i

...
. . .

...

h
T aj Ra1
i · · · h

T aj Rak
i

 (2)

Here, h
T aj Rak
i represents the complex matrix of CSI of ith OFDM subcarrier between

jth transmitted antenna and kth receiving antenna. h
T aj Rak
i can be expressed as:

h
T aj Rak
i =

∣∣∣∣ h
T aj Rak
i

∣∣∣∣ e∠h
T aj Rak
i
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where |h
T aj Rak
i | and ∠h

T aj Rak
i represents amplitude and phase value of CSI, respectively.

Although CSI contains amplitude and phase information, amplitude information is
more stable than phase information [44] (where the carrier frequency offset (CFO) intro-
duces unpredictable phase problems over several packets [38]). Hence, in this study, we
consider only amplitude information of CSI to classify HHIs.

5. Proposed Methodology

The block diagram of the proposed HHI-AttentionNet model is depicted in Figure 1.
It contains a summary of the main steps involved in the recognition of HHIs. It is divided
into four major parts: i. Load dataset; ii. Preprocessing of the raw CSI data; iii. Splitting of
datasets into 10 fold; iv. HHI-AttentionNet model training, validation and evaluation.
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5.1. Data Preprocessing

The data preprocessing section consists of two parts: (i) signal filtering and (ii) seg-
mentation. The CSI-based HHI dataset [43] has a four-dimensional (4D) tensor, including
the time-domain (i.e., packet index), frequency-domain (i.e., OFDM subcarrier frequen-
cies), and spatial domain in the CRF values that are found for a WiFi system (i.e., pairs
of transmitting-receiving antennas). The raw WiFi CSI data must be preprocessed before
feeding any classifier or model because it contains high-frequency noise, outliers, and
artifacts [23]. We used a Butterworth bandpass filter for denoising to remove noises from
the CSI data. A bandpass filter is formed by merging a high-pass and low-pass filter. The
low-pass and high-pass Butterworth filter is defined by Equations (3) and (4):∣∣∣Hlp(jω)

∣∣∣ , 1√
1 + ω

ωo
2n

(3)
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∣∣∣Hhp(jω)
∣∣∣ , 1√

1 + ω
ωo
−2n

(4)

where ωo is the cut-off frequency in angular form, and n is the order of the filter.
To smooth the filtered signal, we used a Gaussian smoothing function which helps to

suppress the short peaks; it is defined by Equation (5):

g(x) =
1√
2πσ

e−
x2

2σ2 (5)

where σ is the standard deviation of the distribution.
The raw and denoising CSI signals of some interaction of the first subcarrier out of

30 subcarriers for the first transmitting and receiving antenna pairs are displayed in Figure 2.
Following the process of denoising, the filtered CSI data in four dimensions are transformed
into a two-dimensional matrix with the shape, S = M × N where, M = NRa× NTa and
N = number of OFDM subcarriers.
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Segmentation: Segmentation is the way of splitting a signal into smaller parts or
windows. We perform segmentation in our study for two reasons. The first reason is that
the recorded signals are different subjects and their lengths are different; which limits the
recognition process. Another issue is that processing a large length of data takes more
time and requires more computing power. Therefore, a fixed-size window is used to split
the processed CSI signal into several small signals. Every small signal is treated as an
individual instance to train the HHI-AttentionNet model. Instances are generated from
each record by selecting a window size of 512 and a stride of 128 (25% of 512 with an
overlap of 75%).

5.2. HHI-AttentionNet

Although several DL-based architectures have been proposed and achieved high per-
formance in many fields, most of them require many parameters during their evaluation
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phase which does not fully satisfy the requirements of modern low-resource devices. To
avoid this, we have utilized a convolutional neural network (CNN) algorithm where DS-
Conv is implemented to reduce the number of parameters. Nowadays, some researchers
have shown that using attention mechanisms improves CNNs’ overall performance. Moti-
vated by them, we also proposed AFSAM, which is able to progressively determine the
information that ought to be stressed or repressed, as well as identify the significance of var-
ious portions within the feature maps. As a result, our proposed HHI-AttentionNet model
synergistically integrates DS-Conv and AFSAM to learn powerful feature representations
while significantly reducing the number of parameters without sacrificing the accuracy
of HHI recognition. Figure 3 shows the architecture of the HHI-AttentionNet, and a brief
description of our proposed model is given below:
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5.2.1. Depthwise Separable Convolutional Block and Dense Block

We have designed two blocks: the depthwise separable convolution (DS-Conv) block
and the dense block. Each block comprises of several layers. DS-Conv [45] is a factorized
form of the standard or classic convolution (S-CNN). S-CNN combines both filter and input
in one step to set output, whereas DS-Conv splits the whole S-CNN procedure into two
parts. First, it learns the spatial domain utilizing depthwise convolution (D-Conv). Second,
it combines the outputs of the D-Conv, called pointwise convolution (P-Conv).

Consider, a S-CNN taken as input IH × IW × M and that produces an output as
OH × OW × N, where IH, IW, and OH, OW indicate the height and width of the input and
output data, and M, N represent the input and output channel or depth. Any S-CNN
layer is parameterized by the kernel or filter K of shape KH × KW × M × N, where KH,
KW indicates the size of kernel or filter height and width. The following mathematical
equation expresses the output and computational cost for any S-CNN:

O(S− CNN)k,l,n = ∑
i,j,m

K(S− CNN)i,j,m,n. Ik+i−1,l+j−1,m (6)

CS−CNN = KH ·Kw·M·N·OH ·OW . (7)

D-Conv uses a single convolution filter/kernel for each input channel or depth and
P-Conv then applies 1 × 1 convolution to combine the outputs of the D-Conv and finally
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produce the same output as S-CNN. The following mathematical equation expresses the
output and computational cost for D-Conv:

O(D− Conv)k,l,m = ∑
i,j

K(D− Conv)i,j,m. Ik+i−1,l+j−1,m (8)

CD−Conv = KH · Kw ·M ·OH ·OW (9)

The computational cost, CP-Conv of P-Conv can be expressed by

CP−Conv = M · N ·OH ·OW (10)

So the total computational cost of DS-Conv, CDS-Conv is

CDS−Conv = KH ·Kw·M·OH ·OW + M·N·OH ·OW (11)

Thus, the comparison of the reduction rate between DS-Conv and S-CNN can be
calculated as follows:

CDS−Conv
CS−CNN

=
KH ·Kw·M·OH ·OW + M·N·OH ·OW

KH ·Kw·M·N·OH ·OW
=

1
N

+
1

KHKW
(12)

Each DS-Conv block comprises a D-Conv layer with kernels of the size of 3 × 3, and
rectified linear unit (ReLU) transfer function, batch normalization (BN) layer, and P-Conv
layer with kernels of the size of 1 × 1. Every D-Conv and P-Conv is followed by BN and
ReLU. The dense block is formed as a trio of operations: dense layer, BN layer, and ReLU
activation. The dense layer is a global layer where every layer is involved and connected
in the following layers to all other nodes. It also allows the model to establish a global
relationship among features, thereby avoiding more complex data patterns. A dropout layer
is placed between dense blocks and Global Average Pooling (GAP) to prevent overfitting.
The summary of the proposed HHI-AttentionNet model is presented in Table 2.

Table 2. Summary of the HHI-AttentionNet model.

Section Layer Type Output Shape Parameters

Feature extractor, fϕ

Conv 2D 256 × 15 × 32 1760

BN and ReLU 256 × 15 × 32 128

DS-Conv block 128 × 8 × 64 2816

AFSAM 128 × 8 × 64 4145

DS-Conv block 64 × 4 × 128 9728

DS-Conv block 32 × 2 × 128 18,816

AFSAM 32 × 2 × 128 16,433

DS-Conv block 16 × 1 × 256 35,840

DS-Conv block 8 × 1 × 256 70,400

Recognition

GAP 1 × 256 0

Dropout (0.20) 1 × 256 0

Dense 1 × 64 16,448

Softmax 1 × 13 845

5.2.2. Antenna-Frame-Subcarrier Attention Mechanism (AFSAM)

When objects or humans move between the transmitting and receiving antennas,
the moving body affects the multipath propagation, and different moves have dissimilar
effects. Therefore, CSI can easily detect the information of different movements in the
surrounding environment. In addition, because of the impact of multipath propagation,
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each subcarrier contains different information associated with human activities and the
surrounding environment. Moreover, some subcarriers might be more affected by human
activity, while others might be sensitive to the environment and vice versa. Furthermore,
the difficulty of capturing the differences and correlations among different subcarriers
concerning different frames/times makes it even more challenging to identify actual human
activity data. Accordingly, the inter-antenna, inter-frame, and inter-subcarrier relationships
should be used to yield different weight distributions. As a result, we proposed an antenna–
frame–subcarrier attention mechanism (AFSAM) to get suitable discriminative features for
various activities regardless of the surrounding environment.

Antenna Attention Module (AAM)

We designed an antenna attention module (AAM) that works based on different
features’ inter transmitting-receiving antenna relationship. It mainly focuses on what are
essential features and eliminates unnecessary features by refining the feature map among
the transmitters-receivers. To compute the AAM, first we perform global average pooling
to the input features F ε RF × S × A, where A is the total number of antennas, F and S
indicate the frame and subcarrier, respectively, and generate output FR

gap.We reshape the
FR

gap into Fr ε R 1 × 1 × A. After that, we perform the convolution operation and apply the
sigmoid activation function to get the inter-receiver attention feature map AAM(F). Then,
an element-wise multiplication is performed between AAM output and F. Mathematically
AAM can be expressed as:

AAM(F) = f 1×1([Fr])
= σ

(
f 1×1([Fr])

) (13)

The pseudocode for the AAM is given in Algorithm 1.

Algorithm 1: The Pseudocode for the Antenna Attention Module (AAM)

Input: The input feature map, F ε R F × S × A

1: Begin
2: Fgap ← ∅
3: Fgap ←Globalaveragepooling (F)
4: Fr←reshape(Fgap)
//After reshape operation, the input feature map, Fr ε R 1 × 1 × A

5: Initialize the filter: filter1, filrer2, . . . , filtern

6: antenna_feature← ∅
7: for f FilterSize do
8: i← 0
9: temp←∅
10: while i 6= filtern

11: convi ←Convolute(Fr, FilterSize, padding = ‘same’)
12: append(temp, convi)
13: i←i + 1
14: end while
15: append (antenna_feature,temp)
16: end for
17: AAM← Apply (antenna_feature, sigmoid)
18: return (F⊗ AAM)
19: end

Frame-Subcarrier Attention Module

We designed a frame-subcarrier attention module (FSAM) that produces spatial fea-
tures by utilizing the relationship of different features between frame and subcarrier. In
contrast to the AAM, the FSAM emphasizes “where”, the location of the most informative
features in the spatial domain. To compute the FSAM, we first apply average pooling to
the input features F ε R F

AAM
×S

AAM
×A

AAM, where A is the total number of antennas, F
and S indicate the frame and subcarrier, respectively, and generate output FFAAM×SAAM×1

avg .
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After that, we perform a single convolution with a filter size of 5 × 5. Finally, we obtain a
final FSAM features map by applying the sigmoid activation function on the convolution
operation. Again, an element-wise multiplication is performed between the FSAM output
and F. Mathematically, FSAM can be expressed as:

FSAM(X) = σ( f 5×5([AvgPool(X)])
= σ

(
f 5×5([Favg

])) (14)

The pseudocode for the FSAM is given in Algorithm 2.

Algorithm 2: The Pseudocode Frame-Subcarrier Attention Module (FSAM).

Input: The input feature map, F ε R F
AAM

× S
AAM

× A
AAM

Output: The frame-subcarrier attention features map
1: Begin
2: Favg ←AveragePooling (F)
3: frame_sub_feature← ∅
4: for f FilterSize do
5: i← 0
6: temp←∅
7: while i 6= filter
8: convi ←Convolute(Favg, FilterSize, padding = ‘same’)
9: append(temp, convi)
10: i←i + 1
11: end while
12: append (frame_sub_feature, temp)
13: end for
14: FSAM←apply(frame_sub_feature, sigmoid)
15: return (F⊗ FSAM)
16: end

5.3. Hyper-Parameters and Training

Any statistical classification model comprises three steps: (i) model development
phase, which requires the selection of hyperparameters, (ii) model training and validation,
and (iii) model evaluation. How well a model is built and trained relies on the quantity
of data with an adequate variation and selection of the proper hyperparameters such as
the number of iterations, batch size, activation function, learning rate, etc. The training
set is used for hyperparameter selection of the model, whereas the validation set is used
for performance evaluation. The following hyperparameters were adopted for training:
learning rate = 1 × 10−3, epochs = 100, batch size = 128. Additionally, a callback monitor
was employed to update the learning rate. The learning rate is updated by 75% of its prior
values if no improvement is seen for ten consecutive epochs. Data shuffling was allowed
for training that involved shuffling the data before each epoch. The values of these hyper-
parameters were selected on a trial and error basis, which provided maximum accuracy.

Our work uses the publicly available CSI-based HHI [43] dataset to evaluate our
proposed model’s performance. This dataset has no separate training and testing set.
Therefore, instead of using a specific train-test split, we used the 10-fold cross-validation
(CV) [46] technique to evaluate the performance of our proposed model. The 10-fold CV
technique randomly partitions the entire dataset into ten non-overlapping sub-sets of equal
size. It fits the models by employing an iterative procedure with nine folds, with the
remaining fold being excluded for performance measurement (test and train transfer on
each iteration). The overall performance in terms of recognition was determined by taking
the average of the results from each iteration.

We used the Adam optimizer [47] to update weights and the cross-entropy loss
function [48,49] to calculate the error/loss. The detailed procedure of class prediction and
training loss computation is described in Algorithm 3.
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Algorithm 3: Pseudocode of class Prediction and Training Loss Computation

Input: Number of activity classes L, Dataset {(x1, y1), (x2, y2), . . . , (xn, yn)}, feature extractor, fϕ

Output: Predicted class label ŷ, model loss J
1: Randomly divide dataset into K disjoint equal-sized fold
2: For m in 1: K do
loss, J = 0//Initialize loss
3: For batch_size in training set do
4: For class in classes {1 . . . L} do
5: x̂ = fϕ(batch_size; model parameter) ε R D (D is the dimension)

6: αij = Softmax (eij) =
exp(eij)
∑Tx

k=1 eik

7: ŷ = x̂. αij//Predicated label
8: end for

9: calculate cross-entropy, J (xi, yi) = −
L
∑

i=1
yi. log(ŷ)i

10: loss = reduce_mean (J (xi, yi))
11: J = J + 1

K log _so f tmax(loss)//loss update
12: end for
13: end for

5.4. Evaluation Metrics

The performance of the proposed HHI-AttentionNet model is evaluated on the popular
four performance metrics. One of them is the accuracy that reveals the model’s performance,
which indicates how many predictions the model can accurately identify from the total
predictions of the given dataset. However, accuracy is insufficient to show the model’s
efficiency if the datasets are not balanced. As a result, we also consider the other three
metrics: F1-score, Cohen’s kappa (k-score), and Matthews correlation coefficient (MCC).
These metrics are expressed mathematically in terms of the true-positive (TP: the actual
inspection indicates true facts, and experiments also identify true facts), the false-positive
(FP: the actual inspection indicates false facts, and experiments also identify false facts), the
true-negative (TN: the actual inspection indicates true facts, but experiments identify false
facts), and the false-negative (FN: the actual inspection indicates false facts, but experiments
identify true facts).

Accuracy =
TP + TN

TP + FP + TN + FN
(15)

F1− score = 2× Precision× Recall
Precision + Recall

(16)

MCC =
TP× TN − FP× FN√

(TP + FP)× (FN + TP)× (FP + TN)× (TN + FN)
(17)

where
Recall =

TP
TP + FN

(18)

Precision =
TP

TP + FP
(19)

Precision defines the number of predicted true facts from total actual true facts. Recall
identifies how frequently a model correctly detected from the true positive rate. F1-score is
known as the weighted mean of recall and precision. It is more beneficial than accuracy
when the dataset is uneven. It combines recall and precision for the calculation. Cohen’s
kappa (k-score) tells us how well the classifier is performing compared to the performance
of a classifier that randomly estimates the frequency of each class. Its value lies between
0 to 1. Matthews correlation coefficient (MCC) is another helpful performance metric that
is not affected by imbalance in datasets and is used to calculate the differences between
real and predicted values. Its value ranges from +1 to −1.
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6. Result and Discussion

This work provides the results for the two experiments that apply the proposed
HHI-AttentionNet on the CSI-based HHI dataset. We have found from the literature that
some authors [41,42] have considered steady-state (no activity) as a separate class while
some authors [23,38] have ignored steady-state, performed different experiments, and
demonstrated the accuracy of their proposed model. Inspired by both of them, we have
performed two sets of experiments (with steady-state [13 class] and without steady-state
[12 class]) to demonstrate the effectiveness of our proposed HHI-AttentionNet model.
Table 3 represents the resulting performance of the proposed model on the CSI-based HHI
dataset for classes 12 and 13, respectively, using the 10-fold CV technique. As we can see
from Table 3, our proposed model achieves an average accuracy of 94.55%, an F1-score
of 94.50%, k-score of 0.945%, and MCC of 0.945%, for 12 classes. Our proposed model
achieves an average accuracy of 95.47%, F1-score of 95.45%, k-score of 0.951%, and MCC
of 0.95%, for 13 classes, which is the best performing result for the recognition of HHIs to
date [41,42,50]. The close observation from Table 3, shows that the 10th fold achieves the
highest performance for 12 classes and the 6th fold achieves the highest performance for
13 classes among 10 fold.

Table 3. Performance result of the proposed model on the CSI-based HHI dataset with 10-fold CV.
All results are in percentages (%).

Number
of Class

Metrics
(%)

Fold
Average

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

12

Accuracy 94.60 94.74 95.00 94.85 94.44 94.60 94.56 94.26 94.23 95.04 94.55 ± 0.25

F1 Score 94.56 94.70 94.95 94.75 94.42 94.56 94.52 94.15 94.20 94.81 94.50 ± 0.24

k-score 0.945 0.947 0.948 0.946 0.944 0.945 0.945 0.941 0.942 0.948 0.945 ± 0.22

MCC 0.944 0.946 0.948 0.945 0.943 0.944 0.954 0.941 0.941 0.947 0.945 ± 0.38

13

Accuracy 95.44 95.58 95.23 95.51 95.23 95.77 95.53 95.67 95.18 95.60 95.47 ± 0.19

F1 Score 95.41 95.56 95.21 95.49 95.22 95.74 95.51 95.66 95.16 95.55 95.45 ± 0.19

k-score 0.950 0.951 0.948 0.951 0.947 0.954 0.951 0.953 0.947 0.953 0.951 ± 0.20

MCC 0.950 0.951 0.948 0.951 0.948 0.953 0.951 0.952 0.946 0.952 0.950 ± 0.20

A close observation of the performance of the proposed models from Table 3 shows
that our proposed model comparatively achieved better results for 13 classes. Two possible
reasons might be mentioned. Firstly, steady-state signal patterns are very similar; the
proposed model can detect them accurately and shows better accuracy. Secondly, adding a
steady-state increased the total number of data samples, and the proposed model learns
more perfectly, which may boost the accuracy.

Figure 4 shows the confusion matrix of the proposed model, where the main diagonal
represents the average recognition accuracy. Thus, all activities achieved more than 86%
accuracy for 13 classes. According to the confusion matrix, our proposed model accurately
recognizes pointing with handshaking interaction with 100% accuracy, although there were
some mis-classification errors in other interactions. There are two main reasons for the
mis-classification taking place. First, some HHI signal structures are relatively quite similar
to one another, and second, the beginning and finish of some interactions are identical to
steady-state interaction. We can see from Figure 4 that the maximum confusion arises from
the interaction between kicking with the left leg and kicking with the right leg interaction.
Similarly, the interaction between punching with the left hand and punching with the right
hand has also occurred some confusion.
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Figure 4. The confusion matrix of the HHI-AttentionNet model for HHIs recognition.

The number of parameters and time complexity are important factors for a deep learn-
ing model should one desire to apply it to real-world problems. Building a time-efficient
model without sacrificing model performance is challenging in deep neural networks.
Table 4 reports the total number of parameters, training time, and recognition time of all
the considered models. Our proposed model has about 1.7 million parameters, and takes
on average 3000 s seconds for training and validation. It also takes on average 0.000200 s
(time in average and standard deviation values) to evaluate a single HHI. Furthermore, the
proposed model uses DS-Conv that decreases computational cost and model size compared
to other CNNs [45]. Thus, the proposed model performs better than all selected models in
terms of parameters, training, validation, and recognition time.

Table 4. Parameters and times of the proposed HHI-AttentionNet model.

Model No. of Class
No. of Parameter Time (s)

Trainable Non-Trainable Total Training Recognition

HHI-AttentionNet
12 173,406 2944 176,350 1615 ± 1.9 0.000198 ± 0.000012

13 173,551 2944 176,495 3000 ± 1.4 0.000200 ± 0.000014

The accuracy and loss history of our proposed model over training epochs on the
training and validation sets on the CSI-based HHI dataset are shown in Figure 5. It is
observed from Figure 5 that the training of the proposed model converges very rapidly
within 45 epochs.
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To improve the interpretability and clarity of our proposed system, we have reduced
the number of dimensions of the feature representation both before and after mapping the
embedding space to two dimensions, and we have visualized the results by utilizing the
T-SNE algorithm.

We can see from Figure 6, that after the process, the distributions of features are quite
different and the samples or features that belong to the same class are clustered together,
whereas, before the process, the samples were congested and more challenging to identify
intuitively from each other. It indicates that the proposed HHI-AttentionNet model has a
highly generalized capability.
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Figure 6. T-SNE visualization of test data before (a) and after (b) the proposed model
learning representations.

When different models are not evaluated using the same dataset, making direct com-
parisons between them is extremely challenging and not rational, because the performance
of a model might vary depending on the dataset used for training and the quality of test
samples utilized to evaluate the model’s overall performance. Therefore, we have used
the same dataset, the CSI-based HHI dataset, to compare the robust performance of our
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proposed model with the different existing models. The performance comparison results
are tabulated in Table 5. Our proposed HHI-AttentionNet model has shown higher per-
formance than any existing work regarding HHI recognition from CSI signal compared to
existing work.

Table 5. Performance comparison of the proposed method with the existing methods on the CSI HHI
dataset. Boldface denotes the highest performance, (-) denotes non-available information.

Study Methodology
and Year

Metrics (%) Trainable
Parameters

Recognition Time(s)
Accuracy F1-Score k-Score MCC

Alazrai et al. [50] SVM (2021) 69.79 - - - - -

Alazrai et al. [41] E2EDLF (2020) 86.30 86.00 85.00 - 935,053 0.00022 ± 0.000018

Kabir et al. [42] CSI-IANet (2021) 91.30 91.27 89.42 - 546,321 0.00036 ± 0.000025

Proposed HHI-AttentionNet 95.47 95.45 95.05 95.06 176,495 0.000200 ± 0.000014

Authors [50] proposed a method to recognize HHIs from the CSI-based HHI dataset [43].
At first, they extracted eleven statistical features from the time domain and six features
from the frequency domain. After this, they fed the total extracted features into the SVM
classifier and achieved an overall recognition accuracy of 69.79%. On the other hand,
authors [41] proposed an E2EDLF to recognize HHIs using the same dataset. They first
converted the raw CSI signal into the 2-D gray image, then extracted time-domain and
spatial-domain features, and finally used CNN to classify HHIs using those extracted
features. Their proposed model shows an overall accuracy, and F1 score of 86.30% and
86%, respectively. However, E2EDLF requires 9.3 M trainable parameters and 0.00022 s to
recognize each HHIs. Moreover, authors [41] designed a DL-based CSI-IANet model and
they directly fed CSI signals to recognize HHIs after denoising. They claimed an average
recognition accuracy of 91.30% and F1 score of 93%. Although CSI-IANet requires total
of 4 M trainable and non-trainable parameters, which is less than E2EDLF, its recognition
time is more (0.00036 s) than E2EDLF. It can be observed (Table 5) that our model displays
a greater classification accuracy by over 4% compared to the existing best CNN models,
retaining the same number of classes. It can be observed (Table 5) that our model displays
a greater classification accuracy with about 9% better performance than E2EDLF [40] and
4% better than the CSI-IANet model [42], retaining the same number of classes. We also
compared the number of trainable parameters and recognition time. It also demonstrated
that our proposed model used 1.7 M trainable parameters which was either 5 times and
3 times less than the compared methods. Performance analysis thus shows that our model
is more suitable than any other existing model in HHI.

7. Conclusions

We have proposed a lightweight DL model (HHI-AttentionNet) for automatic recog-
nition of HHIs. Existing CNN models have been proposed for recognition of HHIs, but
most of them suffer from limited recognition accuracy, require many parameters, and have
high computational costs. HHI-AttentionNet uses the DS-Conv block as the key module to
build the network, which helps to reduce the model parameters and computational costs.
The combination of the DS-Conv block and the AFSAM increases the model’s ability to
focus on the most significant features, ignoring the irrelevant features and reducing the
impact of the complexity on the CSI signal; the accuracy of the proposed model improved.
The performance of the HHI-AttentionNet was evaluated on the CSI HHI dataset. The
experimental result shows that the HHI-AttentionNet model achieved an average accuracy
of 95.47%, which is more than 4% higher than the accuracy of the existing best model. The
comparisons demonstrated that the HHI-AttentionNet model is better than state-of-the-art
CNN-based methods in terms of accuracy, the number of parameters, and recognition time.

In the future, we would like to extend the work proposed in this study to recognize
HHIs performed by more than two individuals in a real environment. In that case, data
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annotation is a tedious and complex task. Adapting semi-supervised learning [51] could be
a good solution in this regard which could be the future research direction.
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