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aMTA Lendület Holographic QFT Group, Wigner Research Centre,

H-1525 Budapest 114, P.O.B. 49, Hungary
bInstitute of Physics, Jagellonian University,

ul. Reymonta 4, 30-059 Kraków, Poland

E-mail: bajnok.zoltan@wigner.mta.hu, romuald@th.if.uj.edu.pl,

wereszcz@th.if.uj.edu.pl

Abstract: We argue that the conventional method to calculate the OPE coefficients in

the strong coupling limit for heavy-heavy-light operators in the N = 4 Super-Yang-Mills

theory has to be modified by integrating the light vertex operator not only over a single

string worldsheet but also over the moduli space of classical solutions corresponding to the

heavy states. This reflects the fact that we are primarily interested in energy eigenstates

and not coherent states. We tested our prescription for the BMN vacuum correlator, for

folded strings on S5 and for two-particle states. Our prescription for two-particle states

with the dilaton leads to a volume dependence which matches exactly to the structure of

finite volume diagonal formfactors. As the volume depence does not rely on the particular

light operator we conjecture that symmetric OPE coefficients can be described for any

coupling by finite volume diagonal form factors.

Keywords: Supersymmetric gauge theory, AdS-CFT Correspondence, Integrable Field

Theories

ArXiv ePrint: 1404.4556

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2014)050

mailto:bajnok.zoltan@wigner.mta.hu
mailto:romuald@th.if.uj.edu.pl
mailto:wereszcz@th.if.uj.edu.pl
http://arxiv.org/abs/1404.4556
http://dx.doi.org/10.1007/JHEP09(2014)050


J
H
E
P
0
9
(
2
0
1
4
)
0
5
0

Contents

1 Introduction 1

2 Classical limit of quantum expectation values and classical solutions 3

3 Coherent states vs. energy eigenstates 5

4 HHL correlation functions 6

5 Three examples 8

5.1 The BMN vacuum correlator 8

5.2 The folded string on S5 9

5.3 A two-magnon solution in finite volume 11

6 Symmetric OPE coefficients and diagonal formfactors 17

7 A conjecture 20

8 Conclusions 20

A Finite volume diagonal form factors 22

A.1 One particle diagonal matrix elements 22

A.2 Two particle diagonal matrix elements 23

A.3 Form factors of special operators 25

1 Introduction

The integrability of string theory in AdS5×S5 spacetime opens up the fascinating possibility

of exactly solving a nontrivial interacting gauge theory — the supersymmetric N = 4

Super-Yang-Mills, through the use of the AdS/CFT correspondence [1]–[3].

Currently, we have a very detailed and refined understanding of the spectral problem

in N = 4 SYM, i.e. the structure of the anomalous dimensions of local gauge invariant

operators in the planar limit for, in principle, arbitrary value of the coupling constant [4]–

[18]. The key ingredient exploited here was the translation of this problem into the problem

of determining the energy levels of the integrable 2-dimensional worldsheet quantum field

theory of the string in AdS5×S5. The spectral problem for this integrable QFT, although

exhibiting numerous novel features, could be solved by following the main steps appear-

ing when solving analogous problems for relativistic integrable field theories, although

historically this did not happen exactly in this way, and the current most refined finite

reformulation of the exact infinite set of Thermodynamic Bethe Ansatz equations [14]–[18]

— the so-called Quantum Spectral Curve [19] does not have an analog in the conventional
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relativistic setting. However, the relativistic integrable QFT could (and did) serve as a

guideline for the much more complicated AdS5 × S5 spectral problem.

The second essential ingredient of a ‘solution’ of a conformal field theory, of which

N = 4 SYM is an example, is the determination of the OPE coefficients of local operators.

On the string side the OPE coefficients arise from string interactions and thus worldsheets

with 3 boundaries/asymptotic regions and basically we do not have any relativistic in-

tegrable QFT setting to act as a guideline. Thus, obtaining exact answers valid at any

coupling is extremely challenging.

Despite that, significant progress has been obtained both at weak coupling [20]–[29],

and at strong coupling.

In the latter case, it is fruitful to classify gauge theory operators into three broad

groups: Heavy operators, which correspond on the string side to classical string solutions,

Light operators which are typically protected and correspond to the supergravity modes

and Medium operators which correspond to short (massive) string states — the key example

being the Konishi operator.

Recent work concentrated either on the case of three heavy operators involving al-

gebraic curve constructions/Pohlmeyer reductions [30]–[33] and [34, 35], three medium or

light operators using vertex operators and local flat space approximations [36]–[37] and two

heavy and one light case [38]–[57] (HHL correlators). It is this last case which is at the

focus of the present paper.

The motivation for this paper, however, goes beyond just the strong coupling limit

and involves the search for a framework which would naturally allow for treatment at any

coupling. The most general framework for OPE coefficients would most probably be (light

cone) string field theory (SFT) [35, 58–60] (and numerous papers in the pp-wave era, in

particular [61–65]) as generically the sizes of the three strings would be different. However

it has been suggested [66, 67] that a simpler framework might be the formfactor formalism,

where the emission of the third string would be described in terms of a vertex operator

insertion on the worldsheet.

Although, the formfactor approach cannot certainly describe1 generic OPE coefficients

as the sizes of all the cylinders are distinct, it may be a good description of the case when

the third operator does not carry any J charge. In particular, the case of symmetric OPE’s,

where two of the three operators are identical/conjugate may be describable within this

framework. Let us note that, at the same time, this case is an extremely degenerate limit

of the potential string field theory description so the formfactor approach may be seen not

as an alternative to SFT but rather as a complement.

The formfactor approach in integrable relativistic field theories rapidly becomes more

and more complicated when the number of particles becomes large. For this reason the

initial motivation for this paper was to compute HHL OPE coefficients where the heavy

state is a classical two-particle state with O (1) momenta. This is quite in contrast to con-

ventional spinning strings which are multiparticle states with constitutents with momenta

of order O(1/
√
λ).

1At least as long as we remain within the context of the integrable worlsheet QFT of the AdS5 × S5

string quantized in uniform light-cone gauge.
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However when investigating this case, we encountered a problem with the commonly

accepted prescription for computing HHL correlators. The HHL prescription amounts to

integrating the vertex operator of the light state over the classical solution corresponding

to a 2-point correlation function of the Heavy operators.

The problem stems from the fact that there is always at least a 1-parameter family of

distinct classical solutions corresponding to the 2-point correlation function, namely

z(τ) =
R

coshκτ
x(τ) = x0 +R tanhκτ and XI(σ, τ − τ0) (1.1)

for arbitrary τ0, and the result of the standard HHL prescription depends on the value

of τ0.

The goal of this paper is twofold. Firstly, we show how to modify the HHL prescription

in order to overcome this problem, and moreover, we argue that this is a very general feature

of the classical computation of quantum expectation values in states with definite energy.

In addition, we argue that at least in the OPE context, the conventional use of coherent

states may be inappropriate.

Secondly, we compute, using the modified HHL prescription, the OPE of a two-particle

state with a dilaton/lagrangian density and argue that the obtained dependence on the size

of the cylinder is exactly of the structure expected for finite volume diagonal formfactors.

The plan of this paper is as follows. In section 2 we review the classical computation of

quantum expectation values in some simple quantum-mechanical systems. This brings us to

a comparision between coherent states and energy eigenstates in the classical context. Then

we move on to describe the modified HHL prescription in section 4, and, in the following

section, give three example computations: for the BMN vacuum correlator, the folded

S5 string and the two-particle classical solution. In section 6, we compare the structural

properties of the answer for two-particle states with the expectations from finite volume

diagonal formfactor approach. In section 7 we formulate a conjecture for the structure of

symmetric OPE coefficients and close the paper with conclusions. In an appendix we give

a brief self-contained review of diagonal finite volume form factors.

2 Classical limit of quantum expectation values and classical solutions

Suppose that we are interested in computing a quantum-mechanical expectation value of

some operator f(x̂) evaluated at time t in a state with definite energy

〈E|f(x̂)(t)|E〉 ≡ 〈ΨE(t)|f(x̂)|ΨE(t)〉 (2.1)

We will assume that the energy E is large enough so that the relevant state is semi-classical.

Clearly the above expectation value is t-independent. We would like to compute the above

expression in terms of classical solutions (of the corresponding classical system) with energy

E (see [69]). In the following it is important to note that we have always a (rather trivial)

family of classical solutions with energy E:

x(t) = xcl(t− t0) (2.2)

where t0 takes values within the period of the classical solution xcl(t).

Let us consider three simple examples.
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1D harmonic oscillator. The wavefunction for the nth eigenstate is

Ψn(x) =
1

2nn!

(
mω

π~

)1
4

e−
mωx2

2~ Hn

(√
mω

~
x

)
(2.3)

We are interested in states with n = E/~ω and we take the limit ~→ 0 with E fixed. Then

the wavefunction becomes

ΨE(x) ∼
√

2

π
(A2 − x2)−

1
4 cos

(√
2Em

~
x− nπ

2

)
(2.4)

where A =
√

2E/mω2 is the amplitude of the corresponding classical motion. Now taking

~→ 0 we get the following formula for the expectation value

〈E|f(x̂)(t)|E〉 =
1

π

∫ A

−A

f(x)dx√
A2 − x2

(2.5)

It is instructive to change variables in the above integral from x to t0 through x =

xcl(t− t0) = A sinω(t− t0). Then the above expectation value may be rewritten as

〈E|f(x̂)(t)|E〉 =
1

T0

∫ T0/2

−T0/2
f
(
xcl(t− t0)

)
dt0 (2.6)

where T0 = 2π/ω is the period. We see that the quantum mechanical expectation value is

realized on the classical level through a temporal integral with uniform measure over the

family of classical trajectories (2.2), or equivalently over the relevant periodic orbit.

Periodic motion in an arbitrary 1D potential. The above simple formula (2.6)

applies without change for an arbitrary 1D potential. Indeed let us take the WKB wave-

function with turning points x0 and x1:

ΨWKB(x) =
c√
p(x)

cos

(
1

~

∫
p dx

)
(2.7)

The normalization coefficient can be computed explicitly from

1 =

∫ x1

x0

1

2

c2

|p|
dx =

∫ x1

x0

1

2

c2

m|dxdt |
dx =

1

4

c2

m
T0 (2.8)

Here T0 is the period of the classical motion. Hence we have effectively (as long as we are

interested only in position observables)

|ΨWKB(x)|2 ∼ 2

T0

1

|vcl|
(2.9)

which allows us to change from a spatial to a temporal integral. Hence the quantum

mechanical expectation value in the classical limit becomes again

〈E|f(x̂)(t)|E〉 =
1

T0

∫ T0/2

−T0/2
f
(
xcl(t− t0)

)
dt0 (2.10)

exactly as for the harmonic oscillator considered before.
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2D harmonic oscillator. Let us finally consider a 2-dimensional harmonic oscillator, in

general with incommensurable periods. Two new features will appear in this case. Firstly,

the overall solution is no longer periodic and secondly, the moduli space of relevant classical

solutions becomes 2-dimensional. Indeed, the space of classical solutions corresponding to

the quantum state |E0, E1〉 is now parametrized by two independent shifts:

x(t) = xcl(t− t0) = A0 sinω0(t− t0) y(t) = ycl(t− t1) = A1 sinω1(t− t1) (2.11)

In order to overcome the first limitation, i.e. the lack of a common overall period, let us

note that we may write (2.6) without an explicit reference to the specific value of the period

through the substitution

1

T0

∫ T0/2

−T0/2
dt0 −→ lim

T→∞

1

T

∫ T/2

−T/2
dt0 (2.12)

Now it is immediate to use the preceeding results and obtain

〈E0, E1|x̂nŷm|E0, E1〉 = lim
T→∞

1

T 2

∫ T
2

−T
2

dt0

∫ T
2

−T
2

dt1
(
xcl(t− t0)

)n(
ycl(t− t1)

)m
(2.13)

A generic observable f(x̂, ŷ) follows by expansion in a power series.

To summarize, we see that a stationary state of given energy (and possibly other com-

muting quantum numbers) corresponds on the classical level to a moduli space of classical

solutions parametrized by time shifts, while quantum expectation values are related to

(temporal) averaging of the observable over this moduli space.

3 Coherent states vs. energy eigenstates

The above description is very much at odds (but of course not in contradiction!) with the

most commonly used way of looking at the classical limit in quantum mechanics, where we

typically use the notion of a coherent state. However the difference lies in quite different

physical questions that we are addressing. In the case of a coherent state, what we seek is a

quantum description of a single given classical trajectory — so that quantum expectation

values follow the given classical trajectory e.g.

〈Ψcoh(t)|f(x̂)|Ψcoh(t)〉 ∼ f
(
xcl(t)

)
(3.1)

The physical question addressed in the previous section deals, on the other hand, with a

classical description of a stationary quantum state in some given energy level. Then the

corresponding expectation value is clearly time independent

〈ΨE(t)|f(x̂)|ΨE(t)〉 ∼ const (3.2)

and the considerations reviewed in the previous section indicate that the constant may be

evaluated through an integral over the moduli space of classical solutions with the given

energy (and possibly other quantum numbers characterizing the given quantum state).

– 5 –
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Thus the question which picture to use really depends on whether we are focusing on a

given classical trajectory, or rather on a given quantum state with fixed energy. In the case

of correlation functions in AdS/CFT the relevant picture is in fact clearly the latter one.

Then following the arguments of the previous section, the dual description should really

be the full moduli space of appropriate classical solutions and not a single representative.

Nevertheless, for questions related e.g. to the spectral problem, a single representative

is clearly sufficient to obtain all information about the energy and charges of the corre-

sponding quantum state.2 The same conclusion holds for 2-point correlation functions. We

will show, however, that in the case of 3-point correlation functions the treatment of the

full moduli space is in fact neccessary.

4 HHL correlation functions

In two very important papers [38, 39], a proposal was formulated for computing 3-point

correlation functions in the case when two operators are Heavy (i.e. being described by

a classical string solution) and almost identical, while the third operator is Light and is

described by a supergravity field (or equivalently by an appropriate O (1) vertex operator

on the string worldsheet [40]).

The proposal amounts to integrating the light vertex operator over the classical solution

corresponding to the ‘heavy’ operators. The resulting expression has the form

CHHL = const ·
∫
dτ

∫
dσVL

[
xH(σ, τ), zH(σ, τ), XI

H(σ, τ)
]

(4.1)

where xH , zH is the AdS part of the classical solution of the heavy state3 and XI
H is the

S5 part. The relevant part of the AdS metric is ds2 = z−2(dz2 + dx2). VL is the vertex

operator of the light state. E.g. for the dilaton it is given by

V dil
L =

(
(x− x0)2 + z2

z

)−4[
∂x∂̄x+ ∂z∂̄z

z2
+ ∂XK ∂̄XK

]
(4.2)

while for the BMN vacuum trZk it takes the form

V BMN
L =

(
(x− x0)2 + z2

z

)−k
(X1 + iX2)k

[
∂x∂̄x− ∂z∂̄z

z2
− ∂XK ∂̄XK

]
(4.3)

where x0 is usually taken to 0. In the above formula (4.1), there is no contribution of the

Heavy vertex operators as it was argued that this contribution should cancel with analogous

contributions in a 2-point function when we express the OPE coefficient as a ratio of a 3-

point correlation function and 2-point correlation functions. This cancellation could indeed

be expected if there were just a single heavy state classical solution contributing to (4.1).

The discussion in the preceeding sections suggests, however, that we should be dealing

with a family of classical solutions corresponding to the heavy state.

2Note however that integration over collective coordinates was used in [34] to show the cancellation of

AdS volume with SL(2, C) volume to get a finite result for the string computation.
3This is a Wick rotated solution with Euclidean worldsheet signature.
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Indeed, for heavy operators with nontrivial charges only on the S5, there is always at

least a 1-dimensional family of relevant classical solutions:

x = R tanhκ(τ − τ0) z =
R

coshκ(τ − τ0)
and XI(σ, τ) (4.4)

Note that for each τ0 this is a distinct solution as we perform the shift by τ0 only in the

AdS part of the solution.4 Moreover, there may be additional moduli coming from the

S5 part of the solution. E.g. in the case of finite-gap solutions, the motion occurs on a

g+1-dimensional torus, and one is free to consider shifts in all the relevant angle variables.

Below we will write explicit formulas incorporating just the shift in (4.4). The con-

siderations in preceeding sections suggest that we should average over τ0 with uniform

measure. We are thus led to

CHHL = const · lim
T→∞

1

T

∫ T/2

−T/2
dτ0

∫
dτ

∫
dσVL

[
xH(σ, τ−τ0), zH(σ, τ−τ0), XI

H(σ, τ)
]

(4.5)

However this is not the whole story. Now, since we do not have a single saddle point but

rather a moduli space of saddle points parametrized by τ0, the contribution of the Heavy

vertex operators will not appear just as an overall factor and it will not cancel completely

with the one in 2-point functions.

In general we do not know the form of arbitrary vertex operators for classical solutions.

However, for operators with all charges on the S5, it seems that there is always a universal

relevant piece of the form(
(x±R)2 + z2

z

)−∆

−→ (2R)−∆e∓∆κ(τ−τ0) (4.6)

depending on the insertion point of the heavy operator which is either at x = −R or

x = +R. Now suppose that we regularize our worldsheet to extend from −τmax to τmax.

Performing the shift by τ0 will yield the following modifications w.r.t. the same vertex

operators evaluated on the unshifted solution:

(2R)−∆e−∆κ(−τmax−τ0) ∼ (2R)−∆e∆κτmaxeκ∆·τ0 (4.7)

(2R)−∆e∆κ(τmax−τ0) ∼ (2R)−∆e∆κτmaxe−κ∆·τ0 (4.8)

So we get an additional factor

e−(∆+∞−∆−∞)κτ0 (4.9)

which has to be included in (4.5). So the modified prescription should be

const · lim
T→∞

1

T

∫ T/2

−T/2
dτ0

∫
d2σVL

[
xH(σ, τ − τ0), zH(σ, τ − τ0), XI

H(σ, τ)
]
e−(∆+∞−∆−∞)κτ0

(4.10)

Note that in the case that the classical string solution has a higher dimensional moduli

space on the S5, we would need to include similar factors from the nontrivial S5 parts of

4Of course we could have equivalently made the shift on the S5 part.
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the unknown classical vertex operators of the heavy states. Similarly, for operators with

spin in AdS, the contribution of the heavy vertex operator has to be worked out case by

case. Unfortunately, we know the explicit form of the classical vertex operators only in a

few cases like the GKP string or a folded string with S, J 6= 0 [40]. Then the heavy vertex

correction factor (4.9) would have to be modified by terms involving the difference in the

spin between the initial and final heavy state. Unfortunately, currently we do not have

control over the generic finite-gap solution.

An important case when we may probably sidestep this issue is when the light operator

does not carry any conserved charges and the two heavy operators are identical. We will

call these OPE coefficients symmetric OPE’s and consider them in more detail in the final

part of the paper.

5 Three examples

In this section we will consider three examples involving the use of the modified HHL

prescription (4.10). Two of these examples involve spinning strings [38], while the third

one involves a classical two-magnon state. For the former case we find that, even though

the light vertex operator evaluated on the classical solution depends nontrivially on τ0,

the contribution of the heavy vertex operators5 cancels this τ0 dependence and we recover

previous results from the literature. On the other hand, for the two-magnon computation

the averaging over τ0 is absolutely crucial in order to obtain the correct result.

5.1 The BMN vacuum correlator

Let us consider the BPS correlator
〈
trZJ trZk tr Z̄J+k

〉
with J ∈ O(

√
λ) and k ∈ O (1).

The classical solution on S5 is given by φ1 = iκτ and φ2 = π
2 . Here, we treat tr Z̄J+k as

a ‘creation operator’ for the string which means that the ingoing (τ → −∞) heavy string

configuration caries ∆−∞ = J + k scaling dimension. The BMN vacuum vertex operator

is given by (4.3)

V BMN
L =

(
(x− x0)2 + z2

z

)−k
(X1 + iX2)k

[
∂x∂̄x− ∂z∂̄z

z2
− ∂XK ∂̄XK

]
(5.1)

Here
∂x∂̄x− ∂z∂̄z

z2
= κ2

[
2

cosh2 κ(τ − τ0)
− 1

]
∂XK ∂̄XK = −κ2 (5.2)

Hence the vertex operator evaluated on the solution (4.4) takes the form∫
dτ

∫ 2π

0
dσ

e−kκτ

cosh2+k κ(τ − τ0)
(5.3)

As it stands, we see a clear dependence of the formula on the value of the shift parameter τ0.

We should now add the contribution from the modification of the heavy vertex operators.

5At least to the level that we control it.
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Since the intermediate state carries very small charges, the difference in the energies of the

heavy states appearing in formula (4.10) can be computed using derivatives

− (∆+∞ −∆−∞)κτ0 −→ ∂∆(J)

∂J
k κτ0 (5.4)

Hence we will get an additional contribution ekκτ0 which transforms (5.3) into∫
dτ

∫ 2π

0
dσ

e−kκ(τ−τ0)

cosh2+k κ(τ − τ0)
(5.5)

Now we can redefine the τ integral by τ0, which then coincides with the integral in [38].

The leftover τ0 averaging trivializes.

lim
T→∞

1

T

∫ T/2

−T/2
dτ0 = 1 (5.6)

5.2 The folded string on S5

The folded string solution on S5 provides for us a more nontrivial example. Firstly it is

a genus 1 solution, so we may expect a higher dimensional moduli of classical solutions.

Secondly, the dependence of the anomalous dimension on the charges is now much more

complicated.

The nontrivial S5 part of the solution is given by

φ1 = iw1τ , φ2 = iw2τ , ψ = ψ(σ) (5.7)

where

ψ′2 + w2
1 cos2 ψ + w2

2 sin2 ψ = κ2 (5.8)

The conserved charges are

∆ =
√
λκ , J1 =

√
λw1

∫ 2π

0

dσ

2π
cos2 ψ , J2 =

√
λw2

∫ 2π

0

dσ

2π
sin2 ψ (5.9)

Hence,

J1 =
√
λw1

E(s)

K(s)
, J2 =

√
λw2

(
1− E(s)

K(s)

)
(5.10)

where

s ≡ κ2 − w2
1

w2
2 − w2

1

,
√
w2

2 − w2
1 =

2

π
K(s) (5.11)

where the last formula comes from the periodicity of the solution. The dimension ∆ can

be (implicitly) expressed in terms of J1, J2 as(
∆

K(s)

)2

−
(

J1

E(s)

)2

=
4λ

π2
s (5.12)(

J2

K(s)− E(s)

)2

−
(

J1

E(s)

)2

=
4λ

π2
(5.13)
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The solution (5.7) allows for independent shifts of φ1 and φ2. We will consider the light

vertex operator to again correspond to the BMN vacuum with charge J1 = k. Hence the

angular coordinate φ2 will not appear explicitly (i.e. without an accompanying τ derivative)

in the integrand of the light vertex operator. Also the two heavy states will have exactly

the same value of the charge J2. This suggests that the contribution of the shift of φ2 =

iw2τ → iw2(τ − τ2) will cancel between the two heavy vertex operators.6

As before, we will trade the overall shift on the S5 for a shift on the AdS part of the

solution. The light vertex operator integral then takes the form∫ ∞
−∞

dτ

coshk κ(τ − τ0)

∫ 2π

0
dσe−w1kτ sink ψ

[
κ2 tanh2 κ(τ − τ0) +

(
∂~n

∂τ

)2]
(5.14)

where (∂τ~n)2 is τ independent.

We now have to evaluate the contribution coming from the heavy vertex operators

(again the barred operator with ∆ = ∆(J1 + k, J2) is put at τ = −∞). The contribution

is given by

e−(∆+∞−∆−∞)κτ0 = e
∂∆(J1,J2)

∂J1
kκτ0 (5.15)

Due to the implicit dependence of the energy on the conserved charges, the computation

of the derivative
∂∆(J1, J2)

∂J1
(5.16)

is much more involved. First we act with ∂/∂J1 on (5.12), (5.13):

∆

K2(s)
∆J1 −

∆2

K3(s)
K ′(s)

∂s

∂J1
− J1

E2(s)
+

J2
1

E3(s)
E′(s)

∂s

∂J1
=

2λ

π2

∂s

∂J1
(5.17)

− J2
2(

K(s)− E(s)
)3 (K ′(s)− E′(s)) ∂s∂J1

− J1

E2(s)
+

J2
1

E3(s)
E′(s)

∂s

∂J1
= 0 (5.18)

From the last equation we find

∂s

∂J1
=

J1

E2(s)
(
J2

1E
′(s)

E3(s)
− J2

2
(K(s)−E(s))3

(
K ′(s)− E′(s)

)) (5.19)

and

∆

K2(s)
∆J1 =

J1

E2(s)
+

J1

(
2λ
π2 + ∆2

K3(s)
K ′(s)− J2

1
E3(s)

E′(s)
)

E2(s)
(
J2

1E
′(s)

E3(s)
− J2

2
(K(s)−E(s))3

(
K ′(s)− E′(s)

)) (5.20)

After a very lengthy computation using various identities between elliptic functions and

the relations

w2
2 =

4

π2
K2(s) + w2

1 , κ2 =
4

π2
K2(s)s+ w2

1 (5.21)

6We base this intuition on the expectation of the structure of the heavy vertex operator to be of the

form eiJ2φ2 multiplied by terms with derivatives of φ2.
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we find the very simple result
∂∆(J1, J2)

∂J1
=
w1

κ
(5.22)

Incorporating this term in the integral (5.14), we thus get∫ ∞
−∞

dτ

coshk κ(τ − τ0)

∫ 2π

0
dσe−w1k(τ−τ0) sink ψ

[
κ2 tanh2 κ(τ − τ0) +

(
∂~n

∂τ

)2]
(5.23)

Again we see, as in the previous case, that the dependence on τ0 can be undone in the τ

integral and we recover the previous result of [38].

At this stage one might get the impression that the averaging over the moduli space

together with the contribution of the heavy vertex operators is always trivial. However, as

the next example shows this is not always the case.

5.3 A two-magnon solution in finite volume

In this section we will consider a finite volume two particle state with the particle mo-

menta being of order O (1). Obtaining an exact finite-volume multi-magnon solution is

a formidable endeavour (cf. [67, 68]), but we may obtain significant simplification when

we neglect exponential corrections and concentrate on obtaining all power law finite size

corrections.

This will be analogous to the situation of a single giant magnon. In that case, the exact

finite volume solution [70] led just to the appearance of Lüscher exponential corrections [71].

If we would neglect them, we could just as well focus on the infinite volume solution.

The idea is thus to construct an approximate finite-volume two-particle solution by

taking the exact infinite volume two particle solution and performing periodic identifici-

ation with appropriate gluing. Since the large σ fall-off of the multi-magnon solution is

exponential, we can perform this procedure up to exponential accuracy so we should be

able to recover all finite size power law corrections.

The two magnon solution has been constructed7 in [72] (see also [73] for generalizations

to an arbitrary number of magnons). It is given explicitly by

X1 + iX2 = eit +
eit(R+ iI)

sin p1

2 sin p2

2 (1 + sinhu1 sinhu2)−
(
1− cos p1

2 cos p2

2

)
coshu1 coshu2

X3 =

(
cos p1

2 − cos p2

2

)(
sin p1

2 coshu2 − sin p2

2 coshu1

)
sin p1

2 sin p2

2 (1 + sinhu1 sinhu2)−
(
1− cos p1

2 cos p2

2

)
coshu1 coshu2

(5.24)

where

R =

(
cos

p1

2
− cos

p2

2

)2

coshu1 coshu2 (5.25)

I =

(
cos

p1

2
− cos

p2

2

)(
sin

p1

2
sinhu1 coshu2 − sin

p2

2
coshu1 sinhu2

)
7Although in principle it arises by Pohlmeyer reduction from the well known two-soliton solution in

sine-Gordon theory, obtaining the full explicit target space solution in S3 is far from trivial.
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and u1,2 are defined by

ui =
s− t cos pi2

sin pi
2

(5.26)

For the case at hand, we will be interested in a state with vanishing total momentum, which

is realized by taking p1 = p and p2 = 2π − p. This solution can be readily compactified as

X3 → 0 and X1 + iX2 → −eit when s→ ±∞.

Due to the fact that for correlation functions we need to deal with Wick rotated

solutions in Euclidean signature, it is convenient to analytically continue the momentum

to p = −iP and the size of the cylinder to purely imaginary values L→ −iL (this amounts

to taking s = −iσ in addition to t = −iτ). At the very end of the computation we may

take the final result and rotate back to physical values of the momentum and cylinder size.

The u1,2 now take the form

u1,2 =
σ ∓ τ cosh P

2

sinh P
2

(5.27)

In the present case we will compute the OPE coefficient with the Lagrangian density

since firstly, we will be able to check the answer due to a general formula derived in [39],

and secondly, since the corresponding vertex operator of the dilaton does not carry any R-

charges, the ingoing and outgoing classical states can coincide, and hence we will be dealing

with the symmetric OPE’s mentioned in section 4. This particular case of symmetric OPE’s

is of particular interest due to structural similarity with diagonal finite-volume form factors,

which we will describe in section 6.

The HHL formula with the dilaton vertex operator takes the form

CHHL = lim
T→∞

1

T

∫ T
2

−T
2

dτ0
3

16

∫
dτdσ

1

cosh4(τ − τ0)

[
1 + ∂XK ∂̄XK

]︸ ︷︷ ︸
F (σ,τ)

(5.28)

where the factor 3/16 is chosen in accordance with the normalization defined through

CHHL =
d

d
√
λ
π

E (5.29)

which will be convenient for us.

Let us first change the integrations for τ0 and τ together with their domains:

CHHL =
3

16
lim
T→∞

1

T

∫ T
2

−T
2

dτ0

∫ ∞
−∞

dτ
1

cosh4(τ − τ0)

∫
dσF (σ, τ)

=
3

16
lim
T→∞

1

T

∫ ∞
−∞

dτ

∫ T
2

−T
2

dτ0
1

cosh4(τ − τ0)

∫
dσF (σ, τ) (5.30)

Now let us focus on the integral over τ0 assuming T is large:∫ T
2

−T
2

dτ0
1

cosh4(τ − τ0)
(5.31)
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Its value will depend on the relative value of τ with respect to T . It is important to note

that the integrand is exponentially suppressed for τ0 away from τ . If |τ | is smaller than T/2,

then the integral essentially becomes independent of τ and is equal to a good accuracy to∫ ∞
−∞

dτ ′

cosh4 τ ′
(5.32)

If, on the other hand, |τ | > T/2, the integral (5.31) just picks the exponential tail and is

essentially zero. The above reasoning breaks down in a range in τ of width of order one

around ±T/2. Since in any case we will be taking the limit T → ∞ and multiplying by

1/T , the contribution of this transitional region will vanish in the limit. Hence in (5.30)

we may make the substitution∫ T
2

−T
2

dτ0
1

cosh4(τ − τ0)
−→

(∫ ∞
−∞

dτ ′

cosh4 τ ′

)
· θ
(
T 2

4
− τ2

)
(5.33)

Thus (5.30) will simplify to

CHHL =
3

16

∫ ∞
−∞

dτ ′

cosh4 τ ′
· lim
T→∞

1

T

∫ T
2

−T
2

dτ

∫
dσF (σ, τ)

=
1

4
lim
T→∞

1

T

∫ T
2

−T
2

dτ

∫
dσF (σ, τ) (5.34)

For the application to the two magnon solution we still have to incorporate an additional

factor of (−i) due to our analytical continuation of the spatial worldsheet coordinate.

Let us note that in the case of the two magnon state, we have in principle also a relative

time shift in the trajectories of the two individual particles (more precisely independent

shifts in the u1,2 variables). However the effect of this shift can be traded for a rigid

worldsheet space and time translation. The worldsheet spatial translation clearly acts

trivially in the HHL computation, especially as we are, in any case, integrating over the

light vertex operator insertion point. For the case of multimagnon states with more than

2 particles, these relative shifts have to be taken into account and a more complicated

structure emerges. We will consider this in detail in a forthcoming publication [76].

For the analytically continued two particle solution, the key expression entering for-

mula (5.30) turns out to be

F2p(σ, τ) =
32 cosh2 P

2 (S1 − S2)2(
(3 + coshP )C1C2 + 2 sinh2 P

2 (1 + S1S2)
)2 (5.35)

where we used the notation Ci = coshui and Si = sinhui. When τ is positive and large,

the 2-particle state becomes a superposition of two well separated magnons:

F2p(σ, τ)→ 2

cosh2(u1 − α)
+

2

cosh2(u2 + α)
(5.36)

with

sinhα =
sinh2 P

2

2 cosh P
2

; α = log cosh
P

2
(5.37)
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When τ is negative and large, we have on the other hand

F2p(σ, τ)→ 2

cosh2(u1 + α)
+

2

cosh2(u2 − α)
(5.38)

Each constituent particle moves with velocity v = cosh P
2 and suffers from a (negative) time

delay due to the 2-body interaction. Note that the rather unphysical details are due to our

analytical continuation involving imaginary momenta and worldsheet spatial coordinate.

Suppose we now compactify the plane to a cylinder of size L. Since the τ integral

in (5.30) will effectively pick out for us the period of motion T0 through

lim
T→∞

1

T

∫ T
2

−T
2

dτ −→ 1

T0

∫ T0
2

−T0
2

dτ (5.39)

let us now compute T0 explicitly.

The trajectory of the first particle for τ > 0 is approximately given by u1 + α = 0:

σ = τ cosh
P

2
− α sinh

P

2
(5.40)

The period T0 is determined by

L

2
=

(
T0

2
− 2∆T

)
cosh

P

2
(5.41)

where ∆T = α tanh P
2 (note that there are two interaction regions per period hence the

factor 2 in 2∆T — see figure 1). This gives

T0 =
L+ 4α sinh P

2

cosh P
2

(5.42)

Finally let us determine the relation between the size of the cylinder L in this setup and

a similar quantity appearing in a Bethe Ansatz computation. This requires some care since,

as already noted in [74], the giant magnon solution (and its multiparticle generalizations)

is written in a different string gauge than the uniform light cone gauge employed in the

Asymptotic Bethe Ansatz. Fortunately the relation is very simple. We get

(LBA ≡) J =

√
λ

2π
(−i)

(
L− 4 sinh

P

2

)
(5.43)

Note that at the classical level the 2-particle state exists for any value of L and P .

Bethe Ansatz quantization would only arise if we were to impose a WKB quantization

condition. It is intriguing, however, that the purely classical HHL computation with the

dilaton vertex operator will turn out to know about the precise form of the Bethe Ansatz

quantization.
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T
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2
L  

2
L

2
0T  

Figure 1. Schematic structure of the finite volume 2-particle state, arising from gluing together

various parts of the infinite volume 2-particle classical solutions. L is the circumference of the

worldsheet cylinder, while T0 is the period. The thick vertical lines represent the interaction regions,

while the dashed lines represent (approximate up to exponential corrections) free propagation of

the constituent particles.

The HHL computation for the 2-magnon state and the dilaton. Since the com-

pactified finite volume solution is periodic with period T0 given by (5.42), we have to

compute

CHHL =
−i
4

1

T0

∫ T0
2

−T0
2

dτ

∫
dσF2p(σ, τ) (5.44)

It is convenient to rewrite F2p(σ, τ) in the following way, adding and subtracting the simple

contributions of the individual constituent particles:

F2p(σ, τ) = F1p(u1 ± α) + F1p(u2 ∓ α) +
[
F2p(σ, τ)− F1p(u1 ± α)− F1p(u2 ∓ α)

]
(5.45)

where the upper sign holds for τ > 0 and

F1p(u) =
2

cosh2 u
(5.46)

The single particle integrals immediately yield

−i
4

1

T0

∫ T0
2

−T0
2

dτ

∫
dσ
[
F1p(u1 ± α) + F1p(u2 ∓ α)

]
= (−i)2 sinh

P

2
(5.47)

which is the infinite volume answer arising just from the dispersion relation of the two

constituent magnons, which, in our analytical continuation take the form

E = (−i)
√
λ

π

(
2× sinh

P

2

)
(5.48)

The expression in square brackets in (5.45) is concentrated only in the vicinity of the

interaction point and is exponentially suppressed away from it. Hence in order to compute
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the integral, we can just add 2 contributions from the two interaction regions in each

period and compute the contribution of a single interaction region extending the range of

integration in σ and τ to run from −∞ to ∞:

−i
4
· 2× 1

T0

∫ T0
2

−T0
2

dτ

∫ ∞
−∞

dσ
[
F2p(σ, τ)− F1p(u1 ± α)− F1p(u2 ∓ α)

]
=

−i
4
· 2× 1

T0

∫ ∞
−∞

dτ

∫ ∞
−∞

dσ
[
F2p(σ, τ)− F1p(u1 ± α)− F1p(u2 ∓ α)

]
(5.49)

We were unable to directly compute this integral analytically, however assuming that it

can be expressed in terms of the phase shift α through some simple functions, we guessed

the exact analytical answer from a numerical evaluation. Namely it is given by

−i
4
· 2× 1

T0

∫ ∞
−∞

dτ

∫ ∞
−∞

dσ
[
F2p(σ, τ)− F1p(u1 ± α)− F1p(u2 ∓ α)

]
=

−i
4
· 2× 1

T0

[
− 16α coshα(1 + tanhα)

]
(5.50)

Since coshα(1 + tanhα) = cosh P
2 , the final answer for the HHL computation is

CHHL = (−i)

[
2 sinhP −

8 cosh2 P
2 log cosh P

2

L+ 4 sinh P
2 log cosh P

2

]
(5.51)

The denominator in the above expression comes from averaging over the period (the 1/T0

term). Performing a large L expansion, this expression already includes a precise expression

for all power law finite size corrections.

Bethe ansatz prediction for CHHL. Let us now compare the result (5.51) with the

Bethe ansatz prediction taking into account the relation (5.29).

The energy of the two particle state is given by

E = E(p1) + E(p2) (5.52)

where we neglect any wrapping effects. The derivative w.r.t.
√
λ/π will get two contribu-

tions, one coming from the explicit dependence of the dispersion relation on the coupling,

and another, characteristic of finite size, coming from the change in the momenta implied

by the modification of the Bethe ansatz quantization

eipLBA+iδ(p,−p) = 1 (5.53)

through the dependence of the S-matrix (here parametrized in terms of the strong coupling

classical phase shift δ(p,−p)) on the coupling. The result of this computation is

E′(p1) + E′(p2)−
δ′ ∂E∂p1

LBA + δ1 − δ2
+

δ′ ∂E∂p2

LBA + δ1 − δ2
(5.54)

where the prime denotes derivative w.r.t.
√
λ/π and δi = ∂δ/∂pi. The giant magnon phase

shift is given by [74]

δHM(p1, p2) = −
√
λ

π

(
cos

p1

2
− cos

p2

2

)
log

sin2 p1−p2

4

sin2 p1+p2

4

(5.55)
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As explained in [74], the above formula applies when both momenta are positive. When

we want to make one of the momenta negative we should use the substitution p→ 2π− p.
Thus the relevant phase shift becomes

δ(p,−p) ≡ δHM(p, 2π − p) = −4

√
λ

π
cos

p

2
log cos

p

2
(5.56)

In the following we will use imaginary momenta and radii

p = −iP LBA = −iL̃ (5.57)

Then we have

δ′ = −4 cosh
P

2
log cosh

P

2
(5.58)

and

δ1 = −δ2 = −i
√
λ

π
sinh

P

2

(
1 + log cosh

P

2

)
(5.59)

The 2-particle prediction for CHHL in our normalization thus takes the form

(−i)

[
2 sinh

P

2
−

4 cosh2 P
2 log cosh P

2
π√
λ
L̃+ 2 sinh P

2 + 2 sinh P
2 log cosh P

2

]
(5.60)

Note that the BA length is identified with the J charge (any differences due to different

sectors can be neglected in the strong coupling limit).

Let us now go back to the result of our classical HHL computation (5.51). Using the

relations (5.57) and (5.43) we obtain

π√
λ
L̃ =

L

2
− 2 sinh

P

2
(5.61)

Under this identification, the Bethe Ansatz prediction (5.60) and our modified HHL compu-

tation (5.51) exactly coincide. Let us emphasize, that the averaging over τ0 was absolutely

crucial for obtaining the correct result, and the infinite set of power law finite size correc-

tions was encoded in the period appearing in the denominator coming from that averaging.

We will comment on the structural properties of the above solution in the following section.

6 Symmetric OPE coefficients and diagonal formfactors

We have seen in the previous sections that diagonal matrix elements of operators can be

calculated by averaging the operator over the moduli space of the classical solutions. We

argued that the classical limit of the OPE coefficient, CHHL, can be calculated by this

procedure and performed the average of the dilaton vertex operator for the 2-magnon case

explicitly. Integration over the moduli space resulted in the volume dependence of the

average and the result incorporated all polynomial finite size corrections. This average

in the quantum theory should correspond to the diagonal matrix element of the operator

between multiparticle states. As the states are in finite volume the finite volume diagonal

matrix elements are needed [77, 78]. In the following we summarize what is known about
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these matrix elements8 and point out the structural similarities with the OPE coefficients.

We restrict the investigations for one and two particle states as we calculated the structure

constants up to this level.

We denote the finite volume one particle state with momentum p as |p〉L. The diagonal

matrix element of a local operator O between this finite volume state up to exponentially

small corrections is given by

L〈p|O|p〉L =
1

ρ1(p)

(
FO1 (p) + ρ1(p)FO0

)
(6.1)

where FO0 is the infinite volume VEV, while FO1 is the infinite volume diagonal one particle

form factor. The volume dependence comes only from the density of one particle states:

ρ1(p) = L (6.2)

which is related to the normalization of the finite volume state.

A similar formula for a finite volume two particle state, labeled by |p1, p2〉L, is given by

L〈p2, p1|O|p1, p2〉L =
FO2 (p1, p2) + ρ1(p1)FO1 (p2) + ρ1(p2)FO1 (p1)

ρ2(p1, p2)
(6.3)

where we assumed that the VEV is vanishing and denoted the infinite volume two par-

ticle diagonal form factor by FO2 . The density of two-particle states is defined from the

asymptotic Bethe Ansatz equation as

ρ2(p1, p2) = det

[
L+ φ12 −φ21

−φ12 L+ φ21

]
= L(L+ φ21 + φ12) (6.4)

where φkl is the logarithmic derivative of the S-matrix:

φkl = −i∂ logS(pk, pl)

∂pk
= i

∂ logS(pl, pk)

∂pk
(6.5)

All the volume dependence of the matrix element come from the various densities, which

are related to the finite volume normalization of the states.

Let us emphasize that the expression for the finite volume diagonal matrix elements

eq. (6.1) and (6.3) in terms of the infinite volume form factors are quite general, valid for

any local operator O. In particular, the volume dependence always comes from the various

density of states in an operator independent way, which is controlled by the asymptotic

Bethe Ansatz equations. The difficult part is the calculation of the infinite volume form

factors from first principles. This programme should include the determination and classifi-

cation of the solutions of the form factor equations listed in [67, 68], which is very technical

and demanding, although a free field representation along the lines of [75] could help in

this problem.

The diagonal form factors, however, are much simpler than the general ones and we

might have a hope to determine them exactly. Additionally, if the operator is related

8A detailed and self-contained exposition can be found in appendix A.
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to some conserved charge then its diagonal form factors are easy to calculate, which we

demonstrate now.

Let us start with the form factor of the density of a conserved charge

Q =

∫ L

0
O(x, t)dx (6.6)

with the following explicitly known finite volume diagonal matrix element

L〈p1, . . . , pn|O|pn, . . . p1〉L =
1

L

∑
i

o(pi) (6.7)

Using the parametrization of the finite volume matrix element in terms of the infinite

volume form factors in eq. (6.1) and (6.3) we can systematically extract:

FO0 = 0 ; FO1 = o1 ; FO2 = (o1 + o2)(φ12 + φ21) (6.8)

where oi = o(pi).

A similar case is when the operator is related to the derivative of a conserved charge

w.r.t. some parameter. The dilaton is such an operator and we determine the form factors

of its density:

L〈p1, . . . , pn|D|pn, . . . p1〉L =
1

L

d

dg

∑
i

E
(
pi(g), g

)
=

1

L

∑
i

(
∂E

∂g
+
∂E

∂pi

dpi
dg

)
(6.9)

By exploiting the parametrizations in eq. (6.1) and (6.3) we obtained the following form

factors

FD0 = 0 ; FD1 =
∂E

∂g
(6.10)

FD2 =

(
∂E1

∂g
+
∂E2

∂g

)
(φ12 + φ21) +

(
ψ12

∂E2

∂p2
+ ψ21

∂E1

∂p1

)
where

− i∂g logS(pi, pj) = ψij = −ψji (6.11)

Using these finite volume form factors and the general expression (6.3) we can express the

diagonal two particle matrix element of the vertex operator of the dilaton. The result is

valid for any coupling and agrees in the strong coupling limit with the direct calculation

of the structure constant CHHL.

Based on the agreement between the dilaton diagonal matrix element and the structure

constant in the strong coupling limit we conjecture that the CHHL structure constants cor-

respond to diagonal finite volume form factors of the vertex operator of the light operator.

Thus, for any light operator with vertex operator O and heavy operator correponding to a

finite volume two magnon state with momentum p1 and p2 (satisfying the asymptotic BA

equation) the all loop result should take the form

CHHO =
FO2 (p1, p2) + LFO1 (p2) + LFO1 (p1)

L+ φ12 + φ21
(6.12)

where FO1 , FO2 are the infinite volume diagonal one an two particle form factors. This

expression contains all polynomial corrections in the inverse of the volume, but not the

exponentially small wrapping contributions.
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7 A conjecture

Based on our explicit calculation for the dilaton diagonal matrix elements sandwiched

between two particle states we conjecture that the CHHL structure constants correspond

to the diagonal finite volume form factors of the vertex operator of the light operator. Let

the heavy operator correspond to a multiparticle state in a finite — but large — volume

L, such that exponentially small vacuum polarization effects can be neglected. The energy

in this approximation comes from the dispersion relation

H|p1, . . . , pn〉L =
n∑
k=1

E(pk)|p1, . . . , pn〉L (7.1)

and the momenta are quantized by the asymptotic Bethe ansatz equations:

Φk = pkL− i
∑
j:j 6=k

logS(pk, pj) = 2πIk (7.2)

where we assumed that the particles scatter diagonally. We conjecture that for a light

operator with vertex operator O the structure constant is related to the final volume

diagonal matrix element as

CHHL = L〈p1, . . . , pn|O|pn, . . . p1〉L (7.3)

=
1

ρ{1, . . . , n}
∑

A⊆{1,...,n}

ρ{A}FO|Ā|{Ā}

=
FOn +

∑
i ρ{i}FOn−1{1, . . . , î, . . . n}+

∑
i,j ρ{i, j}FOn−2{1, . . . , î, . . . , ĵ, . . . , n}+ . . .

ρ{1, . . . , n}

where Ā is the complement of A i.e. Ā = {1, . . . , n} \ A. The volume dependence comes

only from the asymptotic BA equation via the normalization of the finite volume states

through the following subdeterminants:

ρ{i1, . . . , im} = det

[
∂Φik

∂pij

]
= det

[
∂

∂pij

{
pikL− i

m∑
l:l 6=k

logS(pik , pil)

}]
(7.4)

The diagonal form factors are defined as

FOk (i1, . . . , ik) = lim
ε→0
〈0|O(0, 0)|p̄ik , . . . , p̄i1 , pi1 + ε, . . . , pik + ε〉 (7.5)

and can (in principle) be calculated from an infinite volume axiomatic formulations [67, 68].

8 Conclusions

In this paper we focused on the determination of the OPE coefficients for heavy-heavy-light

operators in the N = 4 Super-Yang-Mills theory. Our goal was to develop a framework

which is valid not only in the weak coupling (spin-chain) or strong coupling (classical)

limiting cases but allow for an interpolation between them. In so doing we investigated
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how quantum expectation values on energy eigenstates show up in the classical limit. We

found that, in contrast to the coherent state approach when the time dependence of a single

classical solution is described, here we have to integrate the observable over the moduli

space of classical solutions with the given energy and other quantum numbers. We used

this modified prescription to calculate the HHL coefficients in the strong coupling limit

in three particular cases: for the BMN vacuum correlator, for folded strings on S5 and

for classical solutions with two particles. Our novel prescription reduces to the traditional

one [38, 39] for simple solutions but differs from it in general. In particular, implementing

the prescription for two-particle states with the dilaton/lagrangian density we obtained a

dependence on the volume (size of the cylinder), which is exactly of the structure expected

for finite volume diagonal formfactors. Moreover, this volume dependence arose in a way

manifestly independent of the light operator. Based on this observation we conjectured that

for heavy states corresponding to multiparticle states in large volume the CHHL structure

constants are related to the diagonal finite volume form factors of the vertex operator

of the light operator. Our conjecture is applicable for asymptotically large volumes and

incorporates all polynomial finite size corrections in the inverse of the volume, but neglects

the exponentially small wrapping effects.

Our investigation focused on a particular two particle state and used a novel prescrip-

tion to calculate the classical limit of the structure constant. It is desirable, however, to

extend the analysis for generic multiparticle states and compare the result with the generic

form of the finite volume diagonal multiparticle form factors. We have already initiated

research into this direction [76].

The structure constants in the weak coupling limit can be calculated from a spin chain

description [22]–[29]. As our results are conjectured to be valid for any coupling it is very

challenging to test them against these results.

Our conjecture relates the HHL structure constants to diagonal form factors. As the

theory of form factors was already initiated in [67, 68] for the AdS/CFT setting it would be

extremely interesting to determine the generic multiparticle form factors of the dilaton by

solving the form factor equations and to compare their diagonal limits to our expressions.

We showed in the WKB approximation that the quantum expectation value in an energy

eigenstate is related to the time average for the corresponding classical solution. It would

be interesting to extend this argumentation explicitly for the finite volume multiparticle

configurations of field theories.

Finally, it would be important to investigate whether such phenomena as averaging

over the moduli space would resurface in the case of three Heavy operators. The HHL

examples with spinning strings considered in the present paper seem to suggest that such

effects would probably cancel out but it would be interesting to verify this explicitly within

the setting of [33].
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A Finite volume diagonal form factors

In this appendix we review the theory of finite volume diagonal form factors with one and

two particles. The general theory and its relation to the classical solutions will be explained

in a forthcoming publication. We rely on [77], but see also [78]. In [77] the authors analyzed

the polynomial type finite size dependence of diagonal form factors and observed that the

volume dependence comes only from the normalization of states.

A.1 One particle diagonal matrix elements

We start to define infinite volume 1-particle states and form factors and then express the

finite volume quantities in terms of the infinite volume ones and the asymptotic Bethe

equations.

An infinite volume one particle state can be labeled by its momentum, p. It is the

eigenstate of the energy and momentum:

P |p〉 = p|p〉 ; H|p〉 = E(p)|p〉 (A.1)

States with different momenta are ortogonal, and we choose the following normalization9

〈p|p′〉 = 2πδ(p− p′) (A.2)

The diagonal matrix element of a local operator, O, is denoted as:

〈p|O|p〉 ≡ 〈p|O(x, t)|p〉 = 〈p|O(0, 0)|p〉 (A.3)

As the Hamiltonian generates time, while the momentum space translation, the diagonal

matrix element does not depend on the position of the insertion of the operator, it is a

function of the momentum of the external state only. The crossing equation of the form

factors tells us how we can move a particle from the final state into the initial one. In

doing so disconnected terms appear, which for the 1-particle case read

〈p|O|p′〉 = 〈0|O|p̄, p′〉+ 〈p|p′〉〈O〉 (A.4)

where we denoted by p̄ the crossed momentum. Clearly if the field has a VEV, FO0 ≡
〈O〉 6= 0, the diagonal matrix element is not well-defined with the normalization (A.2).

Nevertheless, we can introduce the finite part:

FO1 (p) = lim
ε→0
〈0|O|p̄, p+ ε〉 (A.5)

9In relativistic theories a more natural normalization would be 〈p|p′〉 = 2πE(p)δ(p− p′).
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so that formally we can write

〈p|O|p〉 = FO1 (p) + 〈p|p〉FO0 (A.6)

In the following we analyze the one particle state in a finite, but large volume, such

that the exponentially supressed vacuum polarization effects can be safely neglected. In

this approximation the dispersion relation is not changed, but the momentum is quantized

by the periodicity of the wavefunction

Φ1 = pL = 2πn (A.7)

The finite volume states can be labeled by the quantization number n and they are also

eigenvectors of the energy and momentum:

|p〉L := |n〉 ; P |p〉L = p|p〉L ; H|p〉L = E(p)|p〉L (A.8)

As the spectrum is discrete a natural normalization is different from the one we used in

infinite volume:

〈n|n′〉 = δn,n′ (A.9)

In the large volume limit the spectrum is very dense and we can relate the two normaliza-

tions via (A.7) ∑
n

|n〉〈n| ≈
∫

dp

2π
L|p〉L L〈p| =

∫
dp

2π
|p〉〈p| (A.10)

as

|p〉L =
1
√
ρ1
|p〉 ; ρ1(p) = L (A.11)

In very large volume the finite volume diagonal matrix element differs from the infinite

volume one only by the normalization of states:

L〈p|O|p〉L =
1

ρ1(p)

(
FO1 (p) + ρ1(p)FO0

)
(A.12)

so that all the volume dependence comes through the normalizations [77]. For the later

applications we assume that operators do not have any VEVs.

A.2 Two particle diagonal matrix elements

In infinite volume the initial and final states are special: as well separated particles do not

interact multiparticle states behave like free states. These states in the two particle case

are labeled by their momenta p1, p2. In the initial state the faster particle is on the left so

we denote this state by |p1, p2〉 assuming that p1 > p2. The final state, when the faster is

on the right, is denoted by |p2, p1〉. They are connected by the two particle S-matrix

|p1, p2〉 = S(p1, p2)|p2, p1〉 (A.13)

We can formally extend the fundamental domain of the scattering matrix from p1 > p2 by

maintaining the relation (A.13):

S(p1, p2)S(p2, p1) = 1 (A.14)
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Both the initial and final two particle states are energy eigenstates, which are normalized as

〈p2, p1|p′1, p′2〉 = (2π)2δ(p1 − p′1)δ(p2 − p′2) (A.15)

Here we assumed that p1 > p2 and p′1 > p′2.

The diagonal matrix element between initial and final states does not depend on the

insertion point:

〈p2, p1|O|p1, p2〉 ≡ 〈p2, p1|O(0, 0)|p1, p2〉 (A.16)

The crossing relation with the disconnected pieces reads as

〈p2, p1|O|p′1, p′2〉 = 〈p2|O|p̄1, p
′
1, p
′
2〉

+〈p1|p′1〉〈p2|O|p′2〉+ S(p′1, p
′
2)〈p1|p′2〉〈p2|O|p′1〉 (A.17)

Crossing the other term and keeping only those which survive in the diagonal limit we

obtain:

〈p2, p1|O|p′1, p′2〉 = 〈0|O|p̄2, p̄1, p
′
1, p
′
2〉

+〈p1|p′1〉〈0|O|p̄2, p
′
2〉+ 〈p2|p′2〉〈0|O|p̄1, p

′
1〉+ . . . (A.18)

In taking the diagonal limit we have to be careful. Firstly, the disconnected terms will

involve delta functions. Secondly, the first term depends on the way in which we take the

limit. Choosing the symmetric evaluation:

FO2 (p1, p2) = lim
ε→0
〈0|O|p̄2, p̄1, p1 + ε, p2 + ε〉 (A.19)

leads to the following formal expression for the diagonal two particle form factor:

〈p2, p1|O|p1, p2〉 = FO2 (p1, p2) + 〈p1|p1〉FO1 (p2) + 〈p2|p2〉FO1 (p1) (A.20)

We now give meaning to this formula by putting the system in a finite volume.

In a finite but large volume, the momenta are quantized by the Bethe-Yang equations:

Φ1 ≡ p1L− i logS(p1, p2) = 2πn1

Φ2 ≡ p2L− i logS(p2, p1) = 2πn2 (A.21)

The finite volume two particle state is a scattering state, symmetric in the momenta, which

is labeled by

|p1, p2〉L = |n1, n2〉 ; n1 > n2 (A.22)

and normalized as

〈n2, n1|n′1, n′2〉 = δn1n′1
δn2,n′2

(A.23)

The finite volume state is related to the infinite volume one via∑
n1>n2

|n1, n2〉〈n2, n1| ≈
∫ ∞
−∞

dp2

2π

∫ ∞
p2

dp1

2π
det

[
∂Φj

∂pi

]
|p1, p2〉L L〈p2, p1|

=

∫ ∞
−∞

dp2

2π

∫ ∞
p2

dp1

2π
|p1, p2〉〈p2, p1| (A.24)
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as10

|p1, p2〉L =
1√

S(p1, p2)ρ2(p1, p2)
|p1, p2〉 (A.25)

Here

ρ2(p1, p2) = det

[
L+ φ12 −φ21

−φ12 L+ φ21

]
= L(L+ φ21 + φ12) (A.26)

and

φkl = −i∂ logS(pk, pl)

∂pk
= i

∂ logS(pl, pk)

∂pk
(A.27)

The finite volume diagonal matrix element can be written in terms of the infinite volume

form factors as

L〈p2, p1|O|p1, p2〉L =
FO2 (p1, p2) + ρ1(p1)FO1 (p2) + ρ1(p2)FO1 (p1)

ρ2(p1, p2)
(A.28)

where the volume dependence comes only through the densities ρi.

A.3 Form factors of special operators

The calculation of the infinite volume form factors is a very technical and complicated

problem. One should start with the form factor equations listed in [67, 68] and find the

relevant solution for a given operator recursively in the particle number. If, however,

the operator is related to some conserved charge, its diagonal form factor is very easy to

calculate and in the following we focus on them.

As a starting point we consider the density of a conserved charge:

Q =

∫ L

0
O(x, t)dx (A.29)

with the following explicitly known finite volume diagonal matrix element11

L〈p1, . . . , pn|O|pn, . . . p1〉L =
1

L

∑
i

o(pi) (A.30)

We can thus systematically extract the infinite volume form factors as follows:

FO0 = 0 ; FO1 = o1 ; FO2 = (o1 + o2)(φ12 + φ21) (A.31)

where oi = o(pi).

We analyze now an operator which is related to the derivative of a conserved charge

w.r.t. some parameter, which we denote by g. We assume that the BY equations will

depend on this parameter and it affects the conserved charge via the momenta:12

L〈p1, . . . , pn|O|pn, . . . p1〉L =
1

L

d

dg

∑
i

o
(
pi(g)

)
=

1

L

∑
i

do(pi)

dpi

dpi
dg

(A.32)

10Similar normalization has been suggested in [26].
11Again valid up to exponential finite size corrections.
12If the operator depends on g explicitly the calculation of the ∂o/∂g part can be reduced to the previ-

ous case.
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The derivative of the momenta can be expressed from the derivative of the BY equations

w.r.t. g.

0 =
dΦi

dg
=
∂Φi

∂g
+
dpj
dg

∂jΦi (A.33)

We will assume that only the scattering matrix depends on the parameter g and denote its

derivatives by

− i∂g logS(pi, pj) = ψij = −ψji (A.34)

The diagonal form factors can be extracted as:

FO0 = FO1 = 0 ; FO2 = ψ12o
′
2 + ψ21o

′
1 (A.35)

In particular for the dilaton we have to combine the two descriptions as it is related to

derivative of the energy w.r.t. the coupling constant:

L〈p1, . . . , pn|LD|pn, . . . p1〉L =
d

dg

∑
i

E
(
pi(g), g

)
=
∑
i

(
∂E

∂g
+
∂E

∂pi

dpi
dg

)
(A.36)

Extracting the infinite volume form factors one obtains

FD0 = 0 ; FD1 =
∂E

∂g

FD2 =

(
∂E1

∂g
+
∂E2

∂g

)
(φ12 + φ21) +

(
ψ12

∂E2

∂p2
+ ψ21

∂E1

∂p1

)
(A.37)
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