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Abstract
We propose two Hybrid High-Order (HHO) methods for the incompressible Navier-Stokes
equations and investigate their robustness with respect to the Reynolds number. While both
methods rely on a HHO formulation of the viscous term, the pressure-velocity coupling is
fundamentally different, up to the point that the two approaches can be considered anti-
thetical. The first method is kinetic energy preserving, meaning that the skew-symmetric
discretization of the convective term is guaranteed not to alter the kinetic energy balance.
The approximated velocity fields exactly satisfy the divergence free constraint and continuity
of the normal component of the velocity is weakly enforced on the mesh skeleton, leading
to H-div conformity. The second scheme relies on Godunov fluxes for pressure-velocity
coupling: a Harten, Lax and van Leer approximated Riemann Solver designed for cell cen-
tered formulations is adapted to hybrid face centered formulations. The resulting numerical
scheme is robust up to the inviscid limit, meaning that it can be applied for seeking approxi-
mate solutions of the incompressible Euler equations. The schemes are numerically validated
performing steady and unsteady two dimensional test cases and evaluating the convergence
rates on h-refined mesh sequences. In addition to standard benchmark flow problems, specif-
ically conceived test cases are conducted for studying the error behaviour when approaching
the inviscid limit.
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1 Introduction

In this work we propose and numerically validate two Hybrid High-Order (HHO) methods
for the Incompressible Navier-Stokes (INS) equations, governing the flow of incompressible
fluids. For the sake of simplicity, we focus on a Newtonian fluid with uniform density. Given
a polygonal or polyhedral domain� ⊂ R

d , d ∈ {2, 3}, with boundary ∂�, the initial velocity
field u0 : � → R

d and a finite time tF the incompressible Navier-Stokes problem consists in
finding the velocity field u : �× (0, tF ) → R

d , and the pressure field p : �× (0, tF ) → R,
such that

∂u
∂t

+ ∇ · [(u ⊗ u) + p I − ν∇u] = f in� × (0, tF ), (1a)

∇ · u = 0 in� × (0, tF ), (1b)

u = gD on ∂�D × (0, tF ). (1c)

n · [p I − ν∇u] = gN on ∂�N × (0, tF ), (1d)

where n denotes the unit vector normal to ∂� pointing out of �, ν is the (constant) viscosity,
gD and gN denote, respectively, the prescribed velocity on theDirichlet boundary ∂�D ⊂ ∂�

and the prescribed traction on theNeumann boundary ∂�N := ∂�\∂�D, while f : � → R
d

is a given body force. It is assumed in what follows that both ∂�D and ∂�N have non-zero
(d−1)-dimensionalHausdorffmeasure (otherwise, additional closure conditions are needed).

HHO methods are gaining momentum in the field of continuum mechanics having been
successfully applied to nonlinear elasticity problems [1, 2], diffusion dominated incom-
pressible flow problems [3, 4], porous-media flows [5] and poro-elasticity problems [6, 7].
Similarly to Hybridizable Discontinuous Galerkin (HDG) methods, HHO formulations rely
on Degrees Of Freedom (DOFs) associated to polynomial functions defined over mesh ele-
ments and mesh faces, the so called elemental and skeletal DOFs. Since solely skeletal DOFs
are globally coupled, in particular the face based stencil consist of all mesh faces belonging
to the boundary of the two elements sharing the face, elemental degrees of freedom can be
eliminated by computing the Schur complement. This procedure is known as static conden-
sation and, in this context, Hybrid or Hybridizable implies that static condensation can be
applied to reformulate the problem in terms of skeletal DOFs.

Thanks to static condensations, HHO Jacobian matrices are sparse block matrices whose
block size is driven by the dimension of polynomial spaces in d−1 variables when con-
sidering a d-dimensional flow problem. Accordingly, when accuracy is improved by means
of higher-degree p-type expansions, the number of Jacobian matrix non-zero entries grows
slower than Discontinuous Galerkin (DG) methods, thereby reducing the computational cost
associated to matrix-vector products as well as matrices memory footprint. From the matrix
assembly viewpoint HHO methods are generally more expensive than DG methods, also
due to the computational cost of static condensation, nevertheless matrix assembly and static
condensation are intrinsically parallel tasks that are expected to show optimal scalability
on multicore and manycore architectures. Besides computational efficiency considerations,
HHO formulations have demonstrated to be robust with respect to mesh distortion and grad-
ing [8, 9]. These features are of crucial importance in the context of CFD applications, where
boundary layers are commonly employed to improve the resolution near wall.

Since the pioneeringworks [10–14] dating back to the late 1980s,DGmethods have gained
increased popularity in computational fluid mechanics, boosted by the 1997 landmark papers
[15, 16] on the viscous terms treatment. In the context of incompressible flow problems,
stabilized pressure-velocity was proposed by Cockburn et al.[17] while Bassi et al.[18]
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exploited the artificial compressibility idea of Chorin [19] to define suitable Godunov fluxes.
Shahbazi et al.[20] proposed a semi-explicit time integrationwith nonlinear terms handled by
means of local Lax–Friedrichs fluxes.We also mention segregated approaches employing the
PressurePoissonEquation (PPE) [21, 22]. The extensionofDGmethods to general polyhedral
meshes was theoretically conceived in [23] and [24], leading to adaptive mesh coarsening by
agglomeration [25] and high-order accurate geometry representation with arbitrarily coarse
meshes [26, 27]. hp-Versions and handling of meshes with small faces have been considered
in [28, 29]; see also the recent monograph [30]. More recently, Tavelli and Dumbser [31,
32] and Dumbser et al.[33] proposed to use staggered meshes, while Manzanero et al.[34]
devised an entropy-stable nodal DG spectral element method.

Since the seminal work ofNguyen et al.[35], later analyzed byCesmelioglu et al.[36], sev-
eral HDG discretizations of the incompressible Navier-Stokes equations have been proposed.
We mention in particular the energy stable and momentum conserving formulation devised
by Labeur et al.[37] and the superconvergent method by Qiu et al.[38]. More recently, Rhe-
bergen et al.[39] devised a pointwise divergence free formulation, later analysed by Kirk et
al.[40]. HHO discretizations of the Navier-Stokes equations have been originally considered
in [41, 42]. A kinetic energy preserving formulation was proposed by Botti et al.[43], see
also [44,Chapters 8 and 9] for further details. Robustness with respect to large irrotational
body forces was considered by Castanon et al.[45] while extension to non-Newtonian fluids
was consedered by Botti et al.[46].

In this work, we consider two HHO schemes that are novel variations of existing schemes
with improved features. In both cases, the Dirichlet condition on the velocity is enforced
weakly in the spirit of [43]. The first scheme, hereafter referred as HHO-Hdiv, borrows the
skew-symmetric convective term treatment proposed by Botti et al.[43], while the pressure-
velocity coupling is inspired by the Hybridizable Discontinuous Galerkin (HDG) method of
[39]. Likewise the latter HDG formulation, themethod is kinetic energy preserving and yields
an exactly divergence free H-div conforming velocity approximation. Pressure-robustness is
also guaranteed, meaning that the pressure error does not influence the velocity error. We use
polynomials of degree k + 1 and k to approximate the velocity and the pressure over mesh
elements, respectively. Polynomials of degree k+1, k+1 and k are employed to approximate
the numerical trace of the pressure on mesh faces, velocity on Neumann boundary faces and
velocity on internal and Dirichlet boundary faces, respectively. With respect to the HDG
formulation of [39], thanks toHHO treatment of the viscous terms in the spirit of [47] (see also
[44,Sect. 5.1]), improved orders of convergence are gained on simplicial meshes: in particular
we observe k + 2 and k + 1 convergence rate for the velocity and pressure error in L2 norm,
respectively. Note that the leading block size of the statically condensed Jacobian matrix
is driven by skeletal velocity DOFs, mostly associated to polynomials functions of degree
k. The second scheme, hereafter referred as HHO-HLL, targets robustness in the inviscid
limit. Indeed, as we shall demonstrate by means of numerical test cases, the formulation is
able to cope with the incompressible Euler equations. Inspired by DG methods based on
Godunov fluxes, see e.g., [18, 48–50] and following the ideas proposed by [51] we employ
an Harten, Lax and van Leer (HLL) approximated Riemann solver for designing pressure-
velocity coupling and convective term treatment. The scheme relies on polynomials of degree
k for both elemental and skeletal unknowns resulting in convergence rates of order k + 1
for both the velocity and pressure error in L2 norm. Moreover, in the diffusion dominated
regime, order k+2 for the velocity is recovered. For the reader convenience themost relevant
features of the schemes are summarized in Table 1.

The paper is organized as follows. After introducing the discrete settings and the HHOdis-
cretization of the viscous term that the two formulations share in common, see Sects. 2.1, 2.2,
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Table 1 HHO schemes features

HHO-Hdiv HHO-HLL

Pointwise divergence-free � −
Pressure robust � −
Kinetic energy preserving � −
Inviscid limit (Euler eq.) − �
Optimal convergence �� �+

Optimal convergence implies a convergence rate of k + 2 and k + 1 for the velocity and velocity gradient
error in L2 norm, respectively�� means that optimal convergence is achieved only on simplicial meshes, �+
means that optimal convergence is achieved only in the diffusion dominated regime

the HHO-Hdiv and HHO-HLL formulations of the incompressible Navier-Stokes equations
are provided in Sect. 2.4 and 2.5, respectively. Notable features of the proposed formulations
are outlined in Sect. 2.4.2, which focus on H-div conformity of HHO-Hdiv, and Sect. 2.5.2,
which outlines the derivation of the HLL-type Riemann solver which HHO-HLL is based
upon. In Sect. 3 we tackle several flow configurations, namely Kovasznay flow (Sect. 3.1),
LLMS pressure gradient (Sect. 3.2), Gresho-Chan vortex (Sect. 3.3), double shear layer (3.4),
and lid-driven cavity flow (Sect. 3.5).

2 Two HHOMethods for the Navier-Stokes Problem

2.1 Discrete Setting

The HHO formulations proposed in this work are capable of dealing with two and three
dimensional flow problems. Nevertheless, since numerical test cases focus on two space
dimensions, discrete settings are provided for the 2D case.We consider meshes of the domain
� corresponding to couples Mh := (Th,Fh), where Th is a finite collection of polygonal
elements such that h := maxT∈Th hT > 0 with hT denoting the diameter of T , while Fh

is a finite collection of line segments. It is assumed henceforth that the mesh Mh is shape
and contact regular, as detailed in [44,Definition 1.4]. For each mesh element T ∈ Th , the
faces contained in the element boundary ∂T are collected in the set FT , and, for each mesh
face F ∈ Fh , TF is the set containing the one or two mesh elements sharing F . We define
three disjoint subsets of the set FT : the set of Dirichlet boundary faces FD

T := {F ∈ FT :
F ⊂ ∂�D}; the set of Neumann boundary faces FN

T := {F ∈ FT : F ⊂ ∂�N}; the set of
internal faces F i

T := FT \ (FD
T ∪ FN

T

)
. For future use, we also let F i,D

T := F i
T ∪ FD

T . Using
the same arguments we define three disjoint subsets of the set Fh : FD

h , F
N
h , F

i
h and we let

F i,D
h := F i

h ∪ FD
h . For all T ∈ Th and all F ∈ FT , nT F denotes the unit vector normal to F

pointing out of T .
HybridHigh-Ordermethods hinge on local polynomial spaces onmesh elements and faces.

For given integers � ≥ 0 and n ≥ 1, we denote by P
�
n the space of n-variate polynomials of

total degree ≤ � (in short, of degree �). For X mesh element or face, we denote by P�(X)

the space spanned by the restriction to X of functions in P
�
d . When X is a mesh face, the

resulting space is isomorphic to P�
d−1 (see [44,Proposition 1.23]).
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Let again X denote a mesh element or face. The local L2-orthogonal projector π�
X :

L2(X) → P�(X) is such that, for all q ∈ L2(X),
∫

X
(q − π�

Xq)r = 0 ∀r ∈ P�(X).

Notice that, above and in what follows, we omit the measure from integrals as it can always
be inferred from the context. The L2-orthogonal projector on P�(X)d , obtained applying π�

X
component-wise, is denoted by π�

X .

2.2 HHO Discretization of the Laplace Operator

The HHO discretizations of the Navier-Stokes problem considered in this work hinge on
velocity reconstructions devised at the element level and obtained assembling diffusive poten-
tial reconstructions component-wise. In what follows, we let a mesh element T ∈ Th be fixed,
denote by k ≥ 0 the degree of polynomials attached to internal and Dirichlet mesh faces, by
t ∈ {k, k + 1} the degree of polynomials attached to mesh elements and by f ∈ {k, k + 1}
the degree of polynomials attached to Neumann faces. We remark that, the motivation for
choosing t and f one degree higher than k will be given in Sect. 2.4.2.

2.2.1 Scalar Potential Reconstruction

The velocity reconstruction is obtained leveraging, for each component, the scalar potential
reconstruction originally introduced in [52] in the context of scalar diffusion problems (see
also [47] and [44,Sect. 5.1] for its generalization to the case of different polynomial degrees
on elements and faces). Define the local scalar HHO space

V t,k, f
T :=

⎧
⎨

⎩
vT = (

vT , (vF )F∈FT

) :
vT ∈ P t (T ),

vF ∈ Pk(F) for all F ∈ F i,D
T ,

vF ∈ P f (F) for all F ∈ FN
T

⎫
⎬

⎭
. (2)

The scalar potential reconstruction operator pk+1
T : V t,k, f

T → Pk+1(T ) maps a vector of

polynomials of V t,k, f
T onto a polynomial of degree (k + 1) over T as follows: Given vT ∈

V t,k, f
T , pk+1

T vT is the unique polynomial in Pk+1(T ) satisfying ∀wT ∈ Pk+1(T ),
∫

T
∇pk+1

T vT · ∇wT =
∫

T
∇vT · ∇wT +

∑

F∈FT

∫

F
(vF − vT ) ∇wT · nT F

∫

T
pk+1
T vT =

∫

T
vT .

Computing pk+1
T for each T ∈ Th requires to solve a small linear system. This task shows

optimal scalability on parallel architectures and is performed using a Cholesky factorization.

2.2.2 Velocity Reconstruction

Define, in analogy with (2), the following vector-valued HHO space for the velocity:

V t,k, f
T :=

⎧
⎨

⎩
vT = (vT , (vF )F∈FT

) :
vT ∈ P t (T )d ,

vF ∈ Pk(F)d for all F ∈ F i,D
T

vF ∈ P f (F)d for all F ∈ FN
T

⎫
⎬

⎭
. (3)
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The velocity reconstruction Pk+1
T : V t,k, f

T → Pk+1(T )d is obtained setting

Pk+1
T vT := (

pk+1
T vT ,i

)
i=1,...,d ,

where, for all i = 1, . . . , d , vT ,i ∈ V t,k, f
T is obtained gathering the i th components of

the polynomials in vT , i.e., vT ,i := (
vT ,i , (vF,i )F∈FT

)
if vT = (vT ,i )i=1,...,d and vF =

(vF,i )i=1,...,d for all F ∈ FT .
The local interpolation operator I t,k, fT : H1(T )d → V t,k, f

T is defined as follows: For all
v ∈ H1(T )d ,

I t,k, fT v := (
π t
T v, (πk

Fv|F )F∈F i,D
T

, (π
f
Fv|F )F∈FN

T

)
. (4)

Following [44,Sect. 5.1.3], it is possible to demonstrate that the velocity reconstruction is
such that, for all v ∈ H1(T )d

∫

T

(∇Pk+1
T I t,k, fT v −∇v

) : ∇wT = 0 for allwT ∈ Pk+1(T )d and
∫

T
Pk+1

T I t,k, fT v =
∫

T
v.

(5)
The above result is of crucial importance for inferring the approximation properties of the
velocity reconstruction operator.

2.2.3 Face Residuals

Let T ∈ Th and F ∈ FT . The stabilization bilinear form for the HHO discretization of the
viscous term in the momentum equation (1a) hinges on the residual operator rkT F : V t,k, f

T →
V t,k, f

T defined as follows

rkT FvT := r
k, f
F vT − rtT vT

where the face residual rk, fF : V t,k, f
T → Pk, f (F) and the element residual rtT : V t,k, f

T →
P t (T ) such that, for all vT ∈ V t,k, f

T ,

r
k, f
F vT :=

{
πk
F

(
vF − pk+1

T vT
)

ifF ∈ F i,D
h

π
f
F

(
vF − pk+1

T vT
)

ifF ∈ FN
h

and rtT vT =:= π t
T

(
vT − pk+1

T vT
)
.

The vector residual Rk
T F : V t,k, f

T → V t,k, f
T is such that, for all vT ∈ V t,k, f

T :

Rk
T FvT := (

rkT FvT ,i

)
i=1,...,d .

2.3 Local and Global HHO Spaces for Velocity and Pressure Unknowns

In addition to the scalar and vector valued local velocity spaces V t,k, f
T and V t,k, f

T defined in
(2) and (3), respectively, we need to introduce local pressure spaces and global HHO spaces
for both velocity and pressure.

Let T ∈ Th and define the local HHO space for the pressure unknown

Qk,p
T

:=
{
q
T

= (
qT , (qF )F∈FT

) : qT ∈ Pk(T ) and qF ∈ P p(F) for all F ∈ FT

}
, (6)

where p ∈ {k, k+1}. The global HHO space for the pressure unknown is defined as follows

Qk,p
h

:=
{
q
h

= ((qT )T∈Th , (qF )F∈Fh

) : qT ∈ Pk(T ) for all T ∈ Th
qF ∈ P p(F) for allF ∈ Fh .

}
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For all q
h

∈ Qk,p
h

and all T ∈ Th , we denote by qT ∈ Qk,p
T

the restriction of q
h
to T .

To conclude, the global HHO space for the velocity unknown reads

V t,k, f
h :=

⎧
⎨

⎩
vh = (

(vT )T∈Th , (vF )F∈Fh

) :
vT ∈ P t (T )d for all T ∈ Th,
vF ∈ Pk(F)d for all F ∈ F i,D

h ,

vF ∈ P f (F)d for allF ∈ FN
h

⎫
⎬

⎭
.

For all vh ∈ V t,k, f
h and all T ∈ Th , we denote by vT ∈ V t,k, f

T the restriction of vh to T .

2.4 A Pointwise Divergence Free H-div Conforming HHO Scheme

2.4.1 Local and Global Residuals

We combine the HHO discretization of the viscous term with a hybrid approximation
of the pressure inspired by [39]. Given (uT , p

T
) ∈ V t,k, f

T × Qk,p
T , the local residuals

rmnt
I ,T ((uT , p

T
); ·) : V t,k, f

T → R of the space discrete momentum and rcntI ,T (uT ; ·) : Qk,p
T →

R of the discrete mass conservation equations are such that, for all vT ∈ V t,k, f
T and all

q
T

∈ Qk,p
T ,

rmnt
I ,T ((uT , p

T
); vT ) :=

∫

T

(
∂uT
∂t

− f
)

· vT +
∫

T
ν∇Pk+1

T uT : ∇Pk+1
T vT +

∑

F∈FT

ν

hF

∫

F
Rk

T FvT · Rk
T FvT

︸ ︷︷ ︸
viscous term discretization, see Sect. 2.2

+
∑

F∈FD
T

∫

F

[(−nT F · ν∇Pk+1
T uT

) · vF + (uF − gD) · (nT F · ν∇Pk+1
T vT

)] +
∑

F∈FD
T

ην

hF

∫

F
(uF − gD) · vF

︸ ︷︷ ︸
viscous term discretization (weak imposition of Dirichlet boundary conditions), see [43, Remark 6]

+ 1

2

⎛

⎝
∫

T
(uT · ∇uT ) · vT −

∫

T
(uT ⊗ uT ) : ∇vT +

∑

F∈FT

∫

F
(uF · nT F ) (uF · vT − uT · vF )

⎞

⎠

︸ ︷︷ ︸
convective trilinear term discretization, see [43]

+ 1

2

⎛

⎜
⎝

∑

F∈FD
T

∫

F
(uF · nT F ) gD · vF +

∑

F∈FN
T

∫

F
(uF · nT F ) uT · vF )

⎞

⎟
⎠

︸ ︷︷ ︸
convective trilinear term discretization (boundary conditions), see [43]

−
∑

F∈FN
T

∫

F
gN · vF

︸ ︷︷ ︸
Neumann BCs

−
∫

T
pT (∇ · vT ) +

∑

F∈FT

∫

F
pF (vT − vF ) · nT F +

∑

F∈FD
T

∫

F
pF (vF · nT F ),

︸ ︷︷ ︸
pressure-velocity coupling discretization, see Sect. 2.4.2

r cntI ,T (uT ; q
T
) :=

−
∫

T
(∇ · uT ) qT +

∑

F∈FT

∫

F
(uT − uF ) · nT F qF +

∑

F∈FD
T

∫

F

(
uF − gD

) · nT F qF .

︸ ︷︷ ︸
pressure-velocity coupling discretization, see Sect. 2.4.2

In the expression of rmnt
I ,T ((uT , p

T
); ·), η > 0 is required to ensure coercivity, see

[43,Remark 6] for details. The penalty term where the parameter η appears, along with
the consistency terms in the second line, are responsible for the weak enforcement of Dirich-
let boundary conditions for the velocity. In the numerical tests provided below, η is taken
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equal to 3. This choice leads to small but perceivable accuracy improvements as compared
with η equal to one.

The global residuals rmnt
I ,h ((uh, ph); ·) : V t,k, f

h → R and rcntI ,h(uh; ·) : Qk,p
h → R are

obtained by element-by-element assembly of the local residuals, i.e.: For all vh ∈ V t,k, f
h and

all q
h

∈ Qk,p
h ,

rmnt
I ,h

(
(uh, ph); vh

)
:=

∑

T∈Th

rmnt
I ,T

(
(uT , p

T
); vT

)
,

rcntI ,h(uh; qh) :=
∑

T∈Th

rcntI ,T (uT ; q
T
). (8)

The HHO scheme with pointwise divergence free H-div conforming velocity field is
obtained setting the polynomial degrees as t = f = p = k + 1.

Scheme 1 (HHO-Hdiv) Find (uh, ph) ∈ V k+1,k,k+1
h × Qk,k+1

h
such that

rmnt
I ,h ((uh, ph); vh) = 0 ∀vh ∈ V k+1,k,k+1

h ,

rcntI ,h(uh; qh) = 0 ∀q
h

∈ Qk,k+1
h

.
(9)

2.4.2 Discrete Mass Conservation and H-div Conformity

For each uh ∈ V t,k, f
h , rcntI ,h = 0 for all q

h
∈ Qk,p

h implies that

1. if qF = 0 for all F ∈ Fh , then
∫
T (∇ · uT ) qT = 0, for each T ∈ Th ;

2. if qT = 0 for all T ∈ Th , then
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫

F
(uT − uT ′) · nT F qF = 0, for each F ∈ F i

T ∩ F i
T ′ with T , T ′ ∈ Th, T = T ′;

∫

F
(uT − uF ) · nT F qF = 0, for each T ∈ Th, F ∈ FN

T ;
∫

F
(uT − gD) · nT F qF = 0, for each T ∈ Th, F ∈ FD

T .

Setting t = f = p = k + 1, it is straightforward to conclude that

∇ · uT = 0, ∀x ∈ T , ∀T ∈ Th; (10)

(uT − uT ′) · nT F = 0, ∀x ∈ F, for each F ∈ F i
T ∩ F i

T ′ with T , T ′ ∈ Th, T = T ′;
(11)

(uT − uF ) · nT F = 0, ∀x ∈ F, for each T ∈ Th, F ∈ FN
T ; (12)

(uT − πk+1
F gD) · nT F = 0, ∀x ∈ F, for each T ∈ Th, F ∈ FD

T . (13)

Remark 1 (Polynomial degree of velocity unknowns over Neumann faces) When t = p =
k + 1, choosing f = k + 1 is mandatory to ensure H-div conformity on Neumann faces
without constraining velocity unknowns over mesh elements. Note in particular that setting
f = k would imply that, according to (12), uT |F ∈ Pk(F) for each F ∈ FN

h . We also
remark that setting f = k is perfectly fine if gN is a constant, in particular traction-free
boundary conditions commonly employed on outflow sections of channel flows can be dealt
with without raising the polynomial degree on outflow faces.
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Remark 2 (h-Convergence rates on simplicial and general meshes) The HHO-Hdiv formu-
lations show convergence rates of order k + 1 for the pressure error in L2 norm on both
simplicial and general meshes. Convergence rates of order k + 2 and k + 1 for the veloc-
ity and velocity gradients error in L2 norm, respectively, are attained on simplicial meshes,
while, on general meshes, convergence rates are reduced by one order. Choosing t = k + 1
and f = p = k allows to recover optimal convergence rates for the velocity on general
meshes but H-div conformity and pressure-robustness are lost. Indeed, (11)-(12)-(13) are
replaced by the following looser conditions on the normal trace of the velocity

(πk
FuT − πk

FuT ′) · nT F = 0, ∀x ∈ F, for each F ∈ F i
T ∩ F i

T ′ with T , T ′ ∈ Th, T = T ′;
(14)

(πk
FuT − uF ) · nT F = 0, ∀x ∈ F, for each T ∈ Th, F ∈ FN

T (15)

(πk
FuT − πk

F gD) · nT F = 0, ∀x ∈ F, for each T ∈ Th, F ∈ FD
T (16)

Since (10) holds, the method yields a pointwise divergence free velocity field. The HHO
scheme with pointwise divergence free velocity and optimal convergence properties on gen-
eral meshes is outlined in what follows for the sake of completeness.

Scheme 2 (HHO-DivFree) Find (uh, ph) ∈ V k+1,k,k
h × Qk,k

h
such that

rmnt
I ,h ((uh, ph); vh) = 0 ∀vh ∈ V k+1,k,k+1

h ,

rcntI ,h(uh; qh) = 0 ∀q
h

∈ Qk,k+1
h

.
(17)

2.5 A HHO Formulation Robust in the Inviscid Limit

2.5.1 Local and Global Residuals

Given (uT , p
T
) ∈ V t,k, f

T ×Qk,p
T , the local residuals rmnt

I I ,T ((uT , p
T
); ·) : V t,k, f

T → R of the

space discrete momentum and rcntI I ,T (uT ; ·) : Qk,p
T → R of the discrete mass conservation

equations are such that, for all vT ∈ V t,k, f
T and all q

T
∈ Qk,p

T ,

rmnt
I I ,T ((uT , pT ); vT ) :=

∫

T

(
∂uT
∂t

− f
)

· vT +
∫

T
ν∇Pk+1

T uT : ∇Pk+1
T vT +

∑

F∈FT

ν

hF

∫

F
Rk

T F vT · Rk
T F vT

︸ ︷︷ ︸
viscous term discretization, see Sect. 2.2

+
∑

F∈FD
T

∫

F

[(−nT F · ν∇Pk+1
T uT

) · vF + (uF − gD) · (nT F · ν∇Pk+1
T vT

)] +
∑

F∈FD
T

ην

hF

∫

F
(uF − gD) · vF

︸ ︷︷ ︸
viscous term discretization (weak imposition of Dirichlet boundary conditions), see [43, Remark 6]

−
∫

T
(uT ⊗ uT ) : ∇vT +

∑

F∈FT

∫

F
(uF · nT F ) uF · vT +

∑

F∈FT

∫

F
s+(uT − uF ) · (vT − vF )

︸ ︷︷ ︸
convective trilinear term discretization, see Sect. 2.5.2

−
∫

T
pT (∇ · vT ) +

∑

F∈FT

∫

F
pF (vT · nT F )

︸ ︷︷ ︸
pressure-velocity coupling, see Sect. 2.5.2

+
∑

F∈FD
T

∫

F
s−(gD − uF ) · vF

︸ ︷︷ ︸
convective trilinear term (Dirichlet BCs)

−
∑

F∈FN
T

∫

F
(gN − pF nT F ) · vF ,

︸ ︷︷ ︸
Neumann BCs (viscous contribution)

rcntI I ,T (uT ; qT ) :=
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−
∫

T
uT · ∇qT +

∑

F∈FT

∫

F
uF · nT F qT +

∑

F∈FT

∫

F

s+
a2

(pT − pF ) (qT − qF )

︸ ︷︷ ︸
pressure-velocity coupling, see Sect. 2.5.2

+
∑

F∈FN
T

∫

F

s−
a2

(
(gN + nT F · ν∇Pk+1

T uT ) · nT F − pF
)
qF

︸ ︷︷ ︸
Neumann boundary conditions (inviscid contribution)

,

where

s± = 1

2

(
uF · nT F ±

√
(uF · nT F )2 + 4a2

)
(19)

and a is the artificial compressibility parameter. In the numerical tests provided below, a is
taken as a unit velocity. In the expression of rmnt

I I ,T ((uT , p
T
); ·), η > 0 is required to ensure

coercivity, see [43][Remark 6] for details. In the numerical tests provided below, η is taken
equal to 3. This choice leads to small but perceivable accuracy improvements as compared
with η equal to one.

The global residuals rmnt
I I ,h((uh, ph); ·) : V t,k, f

h → R and rcntI I ,h(uh; ·) : Qk,p
h → R are

obtained by element-by-element assembly of the local residuals, i.e.: For all vh ∈ V t,k, f
h and

all q
h

∈ Qk,p
h ,

rmnt
I I ,h

(
(uh, ph); vh

)
:=

∑

T∈Th

rmnt
I I ,T

(
(uT , p

T
); vT

)
,

rcntI I ,h(uh; qh) :=
∑

T∈Th

rcntI I ,T (uT ; q
T
). (20)

The HHO scheme based on the HLL Riemann solver is obtained setting the polynomial
degrees as t = f = p = k.

Scheme 3 (HHO-HLL) Find (uh, ph) ∈ V k,k,k
h × Qk,k

h
such that

rmnt
I I ,h((uh, ph); vh) = 0 ∀vh ∈ V k,k,k

h ,

rcntI I ,h(uh; qh) = 0 ∀q
h

∈ Qk,k
h

.
(21)

2.5.2 Artificial Compressibility Based HLL-type Numerical Flux

In order to outline the convective term and pressure-velocity coupling formulations we focus
on the inviscid framework and, for the sake of conciseness, we assume that periodic boundary
conditions are imposed over ∂�. Accordingly, the local residuals for theHHO-HLLdiscretiza-
tion of the Euler equations on a periodic domain reads: given (uT , p

T
) ∈ V k,k,k

T × Qk,k
T

, for

all vT ∈ V k,k,k
T and all q

T
∈ Qk,k

T

rmnt
I I ,T ((uT , p

T
); vT ) =

∫

T
(uT ⊗ uT + pT I) : ∇vT +

∫

T

(
∂uT
∂t

− f
)

· vT

+
∑

F∈FT

∫

F

[
(uF ⊗ uF + pF I) · nT F + s+(uT − uF )

] · (vT − vF ),

(22)

rcntI I ,T (uT ; q
T
) = −

∫

T
uT · ∇qT +

∑

F∈FT

∫

F

[
uF · nT F + s+

a2
(pT − pF )

]
(qT − qF ).

(23)
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The termswithin square brackets are the, so called, numerical fluxes of the HHO formulation.
In order to outline the trace conditions enforced over mesh faces we now consider the

global residuals of the Euler equations with Dirichlet and Neumann boundary conditions
imposed over ∂�. For each (uh, ph) ∈ V k,k,k

h × Qk,k
h

, rmnt
I I ,h = 0 for all vh ∈ V k,k,k

h such
that vT = 0 for all T ∈ Th , implies that

∫

F

[
s+(uT − uF ) − s−(uT ′ − uF )

] · vF = 0, for each F ∈ F i
T ∩ F i

T ′ with T , T ′ ∈ Th , T = T ′;
∫

F
s+(uT − uF ) · vF = 0, for each T ∈ Th , F ∈ FN

T ;
∫

F

[
s+(uT − uF ) − s−(gD − uF )

] · vF = 0, for each T ∈ Th , F ∈ FD
T .

For each uh ∈ V k,k,k
h , rcntI I ,h = 0 for all q

h
∈ Qk,k

h
such that qT = 0 for all T ∈ Th , implies

that
∫

F

[
s+(pT − pF ) − s−(pT ′ − pF )

]
qF = 0, for each F ∈ F i

T ∩ F i
T ′ with T , T ′ ∈ Th , T = T ′;

∫

F

[
s+(pT − pF ) − s− (

gN · nT F − pF
)]

qF = 0, for each T ∈ Th , F ∈ FN
T

∫

F
s+(pT − pF ) qF = 0, for each T ∈ Th , F ∈ FD

T .

Accordingly, the intermediate state at each F ∈ F i
T ∩ F i

T ′ is the weighted average between
the two neighbour element (T , T ′) states, i.e.,

πk
F

(
(s+ − s−)uF

) = πk
F

(
s+uT − s−uT ′

)
,

πk
F

(
(s+ − s−)pF

) = πk
F

(
s+ pT − s− pT ′

)
. (24)

The HHO-HLL formulation falls into the generalized framework of Riemann solvers for
hybrid DG methods proposed by Vila-Pérez et al.[51] and is based on the Exact Riemann
Solver (ERS) for variable density incompressible flows devised in [49]. In particular, follow-
ing [53], the ERS based HLL Riemann solver can be derived: the flux� in the star region
delimited by the two external acoustic waves reads

(u ⊗ u + p I)� · nFT = sT ′ (uT ⊗ uT + pT I) − sT (uT ′ ⊗ uT ′ + pT ′ I)
sT ′ − sT

· nFT

+ sT ′sT
sT ′ − sT

(uT ′ − uT ) ,

(u)� · nFT = sT ′uT − sT uT ′

sT ′ − sT
· nFT + sT ′sT

sT ′ − sT

1

a2
(pT ′ − pT ) .

The two external acoustic wave speeds are

sT ′ = 1

2

(
uT ′ · nT F +

√
(uT ′ · nT F )2 + 4a2

)
,

sT = 1

2

(
uT · nT F −

√
(uT · nT F )2 + 4a2

)
,

regardless of the compressive or expansive nature of the acoustic waves, see Appendix B4
in [49] for details. Defining the intermediate state as

uF = sT ′uT − sT uT ′

sT ′ − sT
and pF = sT ′ pT − sT pT ′

sT ′ − sT
,
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and performing some trivial algebraic manipulations, the flux� can be written as follows

(u ⊗ u + p I)� · nFT = (uF ⊗ uT + pF I) · nFT + sT ′ (uT − uF )

− sT
sT ′ − sT

uT ′ [(uT ′ − uT ) · nT F ] ,

(u)� · nFT = uF · nFT + sT ′
1

a2
(pT − pF ) .

In order to decouple neighboring elements, the continuity of the normal component of the
velocity is assumed by hypothesis, namely uT · nT F = uT ′ · nT F = uF · nT F . Thus, the
numerical fluxes in Equations (22)-(23) as well as the interface conditions in (24) and the
wave speeds in (19) are directly obtained. We remark that, according to the HLL machinery,
see [53] for details, unique definition of numerical fluxes follows from the observation that
sT ′ > 0 and sT < 0.

3 Numerical Results

We open the section discussing the numerical setup of test cases presented in what follows,
in particular we briefly mention about numerical integration, basis function and solution
strategy choices.

We consider computational meshes composed of triangular and quadrilateral mesh ele-
ments and line segment mesh faces. Numerical integration over mesh elements and mesh
faces is performed over standardized polygons of reference (reference triangle and reference
square) and over the standardized segment, respectively, based on Gaussian quadrature rules.
Reference-to-physical-frame mappings from reference entities to mesh entities are defined
by means of Lagrange polynomials. Discrete polynomial spaces over mesh elements and
mesh faces are spanned by orthonormal modal bases. Since all the computational meshes
considered in this work feature affine reference-to-physical frame mappings, note that bilin-
ear trapezoidal elements are avoided, the exact same accuracy can be obtained using either
reference or physical frame basis functions, see [54] for details. That being said, our preferred
setup, in the context of HHO formulations, consist in relying upon physical frame polyno-
mial spaces over mesh elements and reference frame polynomial spaces over mesh faces, as
proposed in [55]. Orthogonalization in the physical frame is performed element-by-element
starting from a monomial basis defined in a local reference frame aligned with the principal
axes of inertia of each mesh element, as described in [25].

Steady state numerical solutions are sought by means of pseudo-transient continuation,
an established Newton’s method globalization strategy [56]. Unsteady computations are
advanced in time by means of a second-order accurate backward differentiation formula.
At each time step the nonlinear equations system is solved using Newton’s method, see for
example [57]. At eachNewton iteration the linearised equations system is solved using the LU
factorization implementation provided by the Intel oneAPI Math Kernel Library (oneMKL).
We remark that static condensation is performed element-by-element duringmatrix assembly
in order to reduce the dimension of the global systemmatrix, accordingly the LU factorization
is applied to the statically condensed equations system. Our computational framework allows
to perform matrix assembly and static condensation in parallel based on a shared memory
paradigm. In this work solely unsteady computations are run in parallel. We mention that
also oneMKL is multithreaded.
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3.1 Kovasznay Flow

Steady flow behind a grid made of equally spaced parallel rods is described by the following
exact solution of the incompressible Navier–Stokes equations (see [58])

u = [
1 − eκx cos (2π y)

]
i + κ

2π
eκx sin (2π y) j ,

p = p0 − 1

2
e2κx ,

(25)

where p0 ∈ R is an arbitrary constant and the parameter κ depends on the Reynolds number

κ = Re

2
−
√
Re2

4
+ 4π2.

The Kovasznay flow problem is defined on the bi-unit square computational domain � =
(−0.5, 1.5) × (0, 2) and solved bymeans of theHHO-Hdiv andHHO-HLL schemes. Bound-
ary conditions are derived from the Kovasznay analytical solution (25) at Re = 1

ν
= 40.

In particular, a Neumann boundary condition is imposed at the outflow boundary (right side
of the square domain) while Dirichlet boundary conditions are imposed on the remaining
boundaries.

In order to numerically validate the proposed HHO schemes, we consider h-refined mesh
sequences composed of regular triangular and quadrilateral elements, and several polynomial
degrees k = {1, 2, 3, 4}. Quadrilateral elements meshes are obtained doubling the number
of mesh elements in each Cartesian direction at each refinement step, while triangular ele-
ments meshes are obtained by means of the Delaunay algorithm. For the triangular elements
mesh sequence the four fold increase of the mesh cardinality is approximately replicated.
Errors in L2-norm and h-convergence rates are tabulated for the approximated pressure,
divergence of the velocity, velocity, and velocity gradients fields. Results over triangular
elements meshes are reported in Tables 2 and 3 for HHO-Hdiv and HHO-HLL schemes,
respectively. Results over quadrilateral elements meshes are reported in Tables 4 and 5 for
HHO-Hdiv and HHO-HLL schemes, respectively. As a general observation it can be noticed
that, although the level of accuracy provided by the two schemes proposed is comparable,
the HHO-Hdiv scheme takes the lead over triangular elements meshes while HHO-HLL is
to be preferred over quadrilateral meshes.

Since the flow is diffusion dominated at this Reynolds number, the HHO-HLL scheme
shows an asymptotic convergence rate of k+2 for the velocity and k+1 for pressure, velocity
divergence andvelocity gradients. The convergence rates obtainedover quadrilateral elements
meshes are slightly better than those on triangular elementsmeshes, at all polynomial degrees.
Notice that, at the same mesh sequence refinement step, quadrilateral meshes have twice the
number of elements as compared to triangular meshes.

HHO-Hdiv scheme shows asymptotic convergence rates of order k + 1 for the pressure
unknown on both triangular and quadrilateral meshes. The incompressibility constraint is
exactly satisfied, note that the velocity divergence errors settle around the machine preci-
sion. Convergence rates for the velocity and the velocity gradients differs when applying
HHO-Hdiv on triangular and quadrilateral elements meshes. On triangular meshes we
observe the optimal rates of k + 2 and k + 1 for the velocity and the velocity gradients,
respectively, while on quadrilateral meshes the convergence tops at k+1 and k, respectively.
Accordingly, a full order of convergence is lost. We refer to the work of Kirk et al. [40] for
additional clues regarding improved convergence rates on simplexes.
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As remarked in Sect. 2.4.2, we verify that optimal convergence rates on quadrilateral
meshes can be recovered by lowering the degree of polynomials employed to approximate
the numerical trace of the pressure on mesh faces. Results for the HHO-DivFree scheme on
the quadrilateral mesh sequence are reported in Table 6. Since the HHO-DivFree scheme is
not H-div conforming and has demonstrated to be less robust than HHO-HLL in convection-
dominated flow regimes, it will not be further investigated in subsequent test cases.

In order to provide a baseline for evaluating the accuracy of HHO formulations in the
diffusion dominated flow regime, we numerically solve the Kovasznay test case by means
of the Discontinuos Galerkin formulation proposed and analysed by Di Pietro and Ern [23],
here denoted with the acronym DG-SkewSymm. Similarly to the HHO-Hdiv formulation,
DG-SkewSymm employs a skew-symmetric trilinear convective term discretization and is
kinetic energy preserving. The pressure-velocity coupling formulation can be traced back
to the approach proposed in [18], where Riemann solvers for the artificial-compressibility
perturbation of the Stokes and Navier-Stokes problems were derived and employed for han-
dling numerical fluxes on the mesh skeleton. The viscous term discretization is based on
the Bassi-Rebay BR2 formulation [16]. We remark that, also a DG discretization based the
HLL flux of HHO-HLL has been implemented and tested. Nevertheless, since the numerical
results are comparable with those of DG-SkewSymm , we decided to favor the scheme for
whom rigorous theoretical analysis is available.

The numerical results over triangular and quadrilateral mesh sequences, reported in
Tables 7 and 8, respectively, confirm the error analysis results of [23]: order k+1 is observed
for the velocity error in L2 norm and order k is attained for both the pressure error and
the velocity gradient error in L2 norm. For the sake of comparison we consider the same
polynomial degrees and mesh sequences employed for HHO-Hdiv and HHO-HLL. Indeed,
in what follows, we consider the polynomial degree leading the dimension of the Jacobian
matrix and the size of Jacobian matrix blocks as a reference to compare the convergence
rates. We remind that, in case of DG, k is the degree of polynomial spaces in d variables
defined over mesh elements. We remark that in case of HHO, thanks to static condensation,
only the polynomial degree of polynomial spaces defined over mesh faces influences the size
of the global matrix.

Comparing Tables 3–7 and 5–8, it can be appreciated that HHO-HLL improves
DG-SkewSymm convergence rates by one order over triangular and quadrilateral mesh
sequences, for both velocity, pressure and velocity gradients. L2 errors of HHO formula-
tions are smaller on coarse meshes and approximately one order of magnitude tinier on fine
meshes, thanks to the improved rate of convergence. HHO-Hdiv provides better results than
HHO-HLL on triangular meshes, accordingly, both HHO formulations are able to improve
DG results on simplexes. As opposite, since HHO-Hdiv loses superconvergence on quadri-
lateral meshes, it is possible to appreciate that the velocity error levels are on pair with those
of DG-SkewSymm , see Tables 4–8. Nevertheless, we remark that pressure errors provided
by HHO-Hdiv are better than those of HHO-HLL and up to two orders of magnitude smaller
than those of DG-SkewSymm on fine meshes, over both triangular and quadrilateral mesh
sequences. This latter observations suggests that a divergence-free velocity field is beneficial
in terms of pressure accuracy.

3.2 LLMS Pressure Gradient Test Case

In order to investigate pressure-robustness, i.e., velocity solution accuracy in the presence of
strong pressure gradients [39, 59], we consider the test case proposed by Lederer, Linke,Mer-
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Fig. 1 LLMS pressure gradient. Horizontal velocity component (u) and pressure (p) fields (p0 = −0.25)

don and Schöberl (LLMS) [59], hereinafter referred to as LLMS pressure gradient test case.
We impose boundary conditions and forcing term f according to the following analytical
velocity and pressure fields

u = ∇ × ζ and p = p0 + x7 + y7,

with arbitrary p0 ∈ R and ζ = x2 (x − 1)2 y2 (y − 1)2. In case of HHO-Hdiv we impose
Dirichlet boundary conditions on all but one side of the unit square domain� = (0, 1)×(0, 1),
where a Neumann boundary is set. In order to ensure stability in the inviscid limit, in case
of HHO-HLL we impose both Dirichlet and Neumann boundary conditions on all sides,
leading to the so called given boundary conditions. We remark that, according to given
BCs, HLL Riemann problems on boundary faces utilize both the analytical pressure and
velocity solutions for the definition of external boundary states. We also remark that, in the
context of real-life applications involving the Euler equations, suitable external states should
be defined on boundary faces. The approach can be borrowed from DG methods based on
Godunov fluxes, where external states on boundary elements are usually computed based on
the method of characteristics, see e.g., [60,Chapter 19], exploiting the hyperbolic nature of
the artificial compressibility perturbation of the Euler equation.

Figure 1 shows the horizontal velocity component (u · i) and pressure behavior over the
computational domain. Notice the presence of a strong pressure gradient near the top-right
corner of the square.

In order to numerically validate convergence rates in the diffusion dominated and con-
vection dominated flow regimes we consider ν = 1 and ν = 10−4, respectively. The
computational domain is discretized bymeans of increasingly fine regular triangular elements
meshes, doubling the number of elements in each Cartesian direction at each refinement step,
and we focus on k = 3 HHO formulations. We remark that triangles are obtained by cutting
square elements in two halves. Tables 9-12 summarize the convergence analysis consider-
ing errors in L2-norm for the velocity, the velocity gradients and the pressure fields. In the
diffusion dominated regime both HHO-Hdiv and HHO-HLL deliver the same convergence
rates, i.e., order k + 2 for the velocity and k + 1 for pressure and velocity gradients. In the
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Table 9 LLMS pressure gradient. Errors and h-convergence rates for k = 3 HHO-Hdiv with ν = 1

card(Th) ‖∇uT − ∇u‖L2 Order ‖uT − u‖L2 Order ‖pT − p‖L2 Order

32 7.22e-04 – 1.02e-05 – 3.07e-04 –

128 5.34e-05 3.76 4.05e-07 4.65 1.93e-05 3.99

512 3.60e-06 3.89 1.43e-08 4.82 1.18e-06 4.03

2048 2.34e-07 3.94 4.74e-10 4.91 7.20e-08 4.03

8192 1.49e-08 3.97 1.53E-11 4.95 4.43e-09 4.02

Table 10 LLMS pressure gradient. Errors and h-convergence rates for k = 3 HHO-HLL with ν = 1

card(Th) ‖∇uT − ∇u‖L2 Order ‖uT − u‖L2 Order ‖pT − p‖L2 Order

32 4.59e-04 – 1.14e-05 – 4.50e-04 –

128 2.85e-05 4.01 3.63e-07 4.97 2.94e-05 3.94

512 1.72e-06 4.05 1.14e-08 4.99 1.86e-06 3.98

2048 1.04e-07 4.05 3.59e-10 4.99 1.16e-07 4.00

8192 6.41e-09 4.02 1.13e-11 4.99 7.23e-09 4.00

Table 11 LLMS pressure gradient. Errors and h-convergence rates for k = 3 HHO-Hdiv with ν = 10−4

card(Th) ‖∇uT − ∇u‖L2 Order ‖uT − u‖L2 Order ‖pT − p‖L2 Order

32 1.59e-03 – 1.86e-05 – 2.58e-04 –

128 8.18e-05 4.28 5.51e-07 5.08 1.67e-05 3.95

512 6.62e-06 3.63 2.28e-08 4.59 1.05e-06 3.99

2048 4.72e-07 3.81 8.30e-10 4.78 6.60e-08 3.99

8192 3.09e-08 3.93 2.75e-11 4.92 4.13e-09 4.00

Table 12 LLMS pressure gradient. Errors and h-convergence rates for k = 3 HHO-HLL with ν = 10−4

card(Th) ‖∇uT − ∇u‖L2 Order ‖uT − u‖L2 Order ‖pT − p‖L2 Order

32 2.15e-02 – 5.77e-04 – 2.65e-04 –

128 2.22e-03 3.28 2.45e-05 4.56 1.72e-05 3.95

512 2.50e-04 3.15 1.24e-06 4.30 1.09e-06 3.98

2048 2.88e-05 3.12 6.85e-08 4.18 6.82e-08 4.00

8192 3.24e-06 3.15 3.88e-09 4.14 4.27e-09 4.00

convection dominated regime, only HHO-Hdiv maintains the aforementioned convergence
rates, while the HHO-HLL scheme loses an order on velocity and velocity gradients fields.

Figure 2 depicts the pressure and velocity errors in L2-norm over the 2k triangular ele-
ments mesh for different viscosities values, i.e., ν = {1, 10−1, 10−2, 10−3, 10−4}. The
fact that velocity errors are almost unaltered while varying the viscosity confirms that the
HHO-Hdiv formulation is pressure-robust. Note that the velocity errors provided by the
HHO-HLL scheme increase by two orders of magnitude while decreasing the viscosity by
four orders of magnitude.
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Fig. 2 LLMS pressure gradient. k = 3 HHO-Hdiv and HHO-HLL formulations on a 2048 triangular elements
mesh. Left and right: Velocity and pressure errors in L2-norm, respectively, while changing the viscosity (ν)

We next investigate robustness in the inviscid limit considering k = 3 and k = 4 HHO
formulations over triangular and quadrilateralmeshes and varying the viscosity in one order of
magnitude steps from1 to 10−14. The error analysis reported inFigs. 3 and4 for differentmesh
densities, see figures captions for details, shows that pressure-robustness does not guarantee
robustness in the inviscid limit. Indeed, only the HHO-HLL formulation is stable in the limit
of vanishing viscosity. The velocity errors provided by the HHO-Hdiv formulation tend
to dramatically increase for ν < 10−5. Moreover, due to convergence failure of Newton’s
methodglobalization strategy [56], the numerical solutions are not available for ν < 10−7.We
verified that even using the L2-projection of the exact solution as initial guess the simulation
blows up. Interestingly, the HHO-HLL formulation shows to be resilient in the inviscid limit:
notice that the velocity error reaches a plateau while decreasing the viscosity below 10−10

and also the pressure error is well behaved. In case of k = 4 HHO-HLL formulations over
the 8k triangular and the 4k quadrilateral mesh, the velocity errors increase by three orders
of magnitude moving from the diffusion dominated regime to the inviscid limit, while the
pressure error stays almost constant around 10−11.

3.3 Gresho-ChanVortex

Originally proposed byGresho&Chan [61],who named it ‘triangular vortex’, this viscous 2D
model problem is designed to study the schemes capability of preserving vortical structures.
Our analysis relies on the numerical set-up described by Gauger et al.[62]: time integration
is carried out over a double periodic unit squared domain � = (0, 1) × (0, 1) based on the
following initial conditions

(u, v, p) = (u0, v0, p0)+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
− 5ỹ, 5x̃,

25

2
r2
)

, if 0 ≤ r < 0.2,
(

− 2
ỹ

r
+ 5ỹ, 2

x̃

r
− 5x̃, 4 ln 5r + 25

2
r2 − 20r + 4

)
, if 0.2 ≤ r < 0.4

(
0, 0, 4 ln 2 − 2

)
, if 0.4 ≤ r;

,
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Fig. 3 LLMSpressure gradient. Robustness in the inviscid limit, k = 3HHO-Hdiv (solid lines) andHHO-HLL
(dashed lines) formulations. Left and right: velocity and pressure error in L2-norm, respectively. In each row,
from top to bottom, increasingly dense triangular (triangular marks) and quadrilateral (square marks) meshes
are considered
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Fig. 4 LLMSpressure gradient. Robustness in the inviscid limit, k = 4HHO-Hdiv (solid lines) andHHO-HLL
(dashed lines) formulations. Left and right: velocity and pressure error in L2-norm, respectively. In each row,
from top to bottom, increasingly dense triangular (triangular marks) and quadrilateral (square marks) meshes
are considered
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Fig. 5 Gresho-Chan vortex.
Radial distribution of the initial
circumferential velocity and
vorticity fields for the ‘standing
vortex problem’ (u0 = v0 = 0)

where u0, v0, p0 are user-defined real parameters. Notice that a local coordinate system
x̃ = x− x0 is employed to define the radial distance r = (̃x2 + ỹ2)0.5 from the vortex center
x0 = [0.5 0.5]ᵀ at the initial simulation time.

Figure 5 shows the initial circumferential velocity uθ and vorticity ω = ∇ × u fields as
function of the radial distance from the vortex center in case of a ‘standing vortex problem’,
i.e., u0 = v0 = 0. Notice the peculiar triangular distribution of the circumferential velocity,
from whom the test name originates. Interestingly, the velocity field yields a discontinuous
vorticity field: a rigid body rotation core (r < 0.2) with constant counter-clockwise vorticity
comes in contact with an annular region (0.2 ≤ r < 0.4) with radially increasing clockwise
vorticity followed by an external region (0.4 ≤ r ) with fluid at rest (null vorticity).

The numerical investigation is performed imposing u0 = v0 = 1/3 (moving vortex),
p0 = 0 and setting the viscosity as ν = 10−5. BDF2 implicit time integration [63] with a
constant step size �t = tF/104 is adopted to advance the solution up to the dimensionless
end time tF = 3, resulting in the simulation of one period of the moving vortex.

We consider k = 4 and k = 7HHO-Hdiv andHHO-HLL formulations on a regular 32×32
quadrilateral elements mesh. The higher polynomial degree is considered as a reference to
evaluate the behavior of the lowest order discretization with respect to the evolution of kinetic
energy K and enstrophy E , defined as follows

K = 1

2

∫

�

u · u, E = 1

2

∫

�

ω · ω.

All the simulations performed provide an accurate picture of kinetic energy evolution, see
Fig. 6. Notice in particular that the kinetic energy decays are superimposed for both schemes
and both polynomial degrees. Some differences might be appreciated in terms of enstrophy
behavior: while the HHO-HLL and HHO-Hdiv curves are almost superimposed at k = 7, at
k = 4 the HHO-HLL scheme underestimates the enstrophy by a more significant amount.

Figure 7 depicts the vorticity fields at the initial and final simulation times. Because of
the discontinuous nature of the initial vorticity field, local over/under-shoots are present at
initialization, nonetheless, the final solution looks smoother and the vortex is well resolved.
The results suggest that both schemes are capable of satisfactorily preserving vortical struc-
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Fig. 7 Gresho-Chan vortex. Vorticity fields (color coded andwarped by vorticity magnitude) at k = 4. Left and
right: initial and final simulation times, respectively. Top and bottom: HHO-Hdiv and HHO-HLL schemes,
respectively

tures. Note however that HHO-Hdiv shows some high-frequency oscillations that are absent
in the final HHO-Hdiv solution.

3.4 Double Shear Layer

The double shear layer problem devised by Bell et al.[64] focuses on inviscid (ν = 0)
unsteady flow modelling capabilities. Time integration is performed over a double periodic
unit square domain� = (0, 1)×(0, 1) bymeans of the BDF2 scheme. The initial horizontal
and vertical velocity components are set as

u =

⎧
⎪⎪⎨

⎪⎪⎩

tanh

(
y − 0.25

ξ

)
y ≤ 0.5

tanh

(
0.75 − y

ξ

)
y > 0.5

, and v = δ sin (2πx),
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Fig. 8 Double shear layer.HHO-HLLkinetic energy relative error at thefinal time.Left and right: in dependence
of the mesh spacing and of the DOFs of the discretized system, respectively

respectively. The pressure field is uniform and the free parameters are set as ξ = 1/30 and
δ = 1/20.

We consider k = {1, 2, 3, 4} HHO-HLL formulations on a h-refined regular quadrilateral
elements mesh sequence such that card(Th) = 64 ∗ 4i , i = 0, 1, 2, 3, 4. Time integration is
carried out in the time interval (t0 = 0, tF = 2] utilizing a constant time step �t = 10−3.
Upon time integration completion, the relative kinetic energy error, defined as

K(t0) − K(tF )

K(t0)
,

is a measure of the amount of numerical dissipation introduced by the scheme. Due to its
lack of robustness in the inviscid limit, HHO-Hdiv fails to complete the test case, regardless
of the polynomial degree and the mesh density, the simulation blows up at early stages.
Accordingly only HHO-HLL results are presented hereafter.

In Fig. 8 the relative kinetic energy error is plotted against mesh spacing and DOFs. As
expected, finer meshes and higher polynomial degrees provide increasingly small numerical
dissipation. Moreover, increasing the polynomial degree is always beneficial in terms of
error versus DOFs. Considering the finest two grids of the h-refined mesh sequence, the
kinetic energy error convergence rates are {1.76, 2.13, 2.73, 2.71} for k = {1, 2, 3, 4},
respectively. Probably, due to the high accuracy required to capture all the flow features, finer
meshes and smaller time-steps would be required to reach asymptotic convergence rates.
Indeed, as depicted in Fig. 9 in case of k = 4 HHO-HLL formulations, only the finest mesh
allows to satisfactorily represent the tiniest vortical features. This behaviour testifies about
the challenges involved in the simulation of the double shear layer.

3.5 Lid-driven Cavity Flow

We consider the well-known lid-driven cavity flow problem over a unit square domain � =
(0, 1) × (0, 1) at Reynolds Re = 1

ν
= 104. Dirichlet boundary conditions are imposed on

the sliding top wall and the remaining stationary walls. In order to evaluate the robustness
of HHO formulations with respect to the mesh distortion we consider a 12768 triangular
elements mesh featuring anisotropic and stretched simplexes, see Fig. 10. k = 4 HHO-HLL
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Fig. 9 Double shear layer. Vorticity field at the final time obtainedwith k = 4HHO-HLL . Themesh cardinality,
i.e., 256, 1024, 4096 and 16384 elements, is reported within round brackets

and HHO-Hdiv discretizations are applied for seeking steady state solutions starting from
fluid at rest.

In Fig. 11 the horizontal (u) and vertical (v) velocity components are plotted along vertical
(y = 0.5) and horizontal (x = 0.5) centerlines of the cavity, respectively. The two HHO
formulation provide perfectly superimposed velocity profiles and are in very good agreement
with reference solutions available from the literature [65, 66].

For the sake of comparison, in Fig. 12 we report the warp of the velocity magnitude fields
obtained with HHO-Hdiv and HHO-HLL . It is interesting to remark that the most noticeable
difference between the two numerical solutions is related to the behavior at the top-left and
top-right corners of the cavity, where the velocity is discontinuous and the pressure gradient
is steeper. In particular, at the top-left corner, the HHO-Hdiv velocity solution shows a less
good agreement with the weakly imposed no-slip boundary condition.
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Fig. 10 Lid-driven cavity. Computational mesh. Left and right: global and detailed views, respectively

Fig. 11 Lid-driven cavity at Re = 10k. Comparison with reference solutions based on horizontal and vertical
velocity profiles over vertical and horizontal centerlines, respectively

4 Conclusions

We numerically validated two original Hybrid High-Order formulations designed for seeking
approximate solutions of incompressible flow problems. The formulations allows to cope
with Dirichlet and Neumann boundary conditions and, in particular, Dirichlet boundary
conditions can be imposed weakly. Pressure-robustness and robustness in the inviscid limit
are investigated performing especially conceived test cases. The HHO-HLL scheme, thanks
to the introduction of Godunov fluxes based on HLL Riemann Solvers, can be employed
for seeking approximate solution of the incompressible Euler equations. The HHO-Hdiv
scheme is pressure-robust, kinetic energy preserving and yields mass conservation up to
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Fig. 12 Lid-driven cavity at Re = 10k. Warp of the velocity magnitude field. Left and right: HHO-Hdiv and
HHO-HLL formulation, respectively

machine precision but is not stable in the inviscid limit. Robustness with respect to mesh
distortion and grading is demonstrated for both formulations by solving the lid-driven cavity
problem at high-Reynolds number over randomly distorted triangular elements meshes. The
choice between HHO-Hdiv and HHO-HLL might be driven by the targeted flow regime:
HHO-Hdiv is best suited for low-to-moderate Reynolds number flows, thanks to pressure
robustness and exact mass conservation, while HHO-HLL is able to cope with moderate-to-
high Reynolds number flows, hence rivaling DG discretizations based on Godunov fluxes.

If h-convergence rates are provided in terms of k, that is the degree of polynomial spaces
leading the dimension of the Jacobian matrix and the size of Jacobian matrix blocks, both
HHO formulations provide improved convergence rates with respect to state-of-the-art dis-
continuous Galerkin discretizations. Let’s consider a d-dimensional problem, since velocity
is a vector unknown and pressure is a scalar unknown, it is reasonable to associate k with
the degree of polynomial spaces employed for the discretization of the velocity unknown.
In case of DG, k is the degree of polynomial spaces in d variables defined over mesh ele-
ments and convergence rates of order k + 1 and k, respectively, are typically expected for
the velocity and pressure error in L2 norm. In the context of HHO discretizations, thanks
to static condensation, elemental unknowns can be eliminated from the global matrix and
the problem can be reformulated in terms of skeletal DOFs. Accordingly, k is the degree
of polynomial spaces in d − 1 variables defined over mesh faces. The convergence rates of
HHO discretizations are as follows:

i) both HHO-HLL and HHO-Hdiv provide k+1 h-convergence rates for the pressure error
in L2 norm;

ii) in the diffusion dominated flow regime, HHO-HLL provides k + 2 h-convergence rates
for the velocity error in L2 norm;

iii) at both low and moderately-high Reynolds numbers over triangular mesh sequences,
HHO-Hdiv provides k + 2 h-convergence rates for the velocity error in L2 norm,
optimal convergence is lost on general meshes.

The preliminary comparison proposed in this work based on the Kovasznay test case suggest
that significant gains can be expected in terms of pressure accuracy. The advantages in terms
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of velocity accuracy are promising but require a more systematic comparison considering
additional test cases and diverse flow regimes.

Besides convergence rates, the Jacobian matrix dimension and sparsity favors HHO dis-
cretizations over DG formulations when increasing the polynomial degree k. Comparing d
and d − 1 variables polynomial spaces, it is clear that the dimension of the latter grows a
slower pace with respect to k. This observation suggests that matrix-vector products evalu-
ations required by iterative solution strategies are less expensive in case of high-order HHO
formulations.Wemention that this advantage is downturned by the cost of static condensation
and back solving, that is reverting the static condensation back, which is happening at each
Newton iterations in case of nonlinear problems. The comparison of p-multilevel solution
strategies for HHO and DG formulations of the Stokes problem proposed in [67] provides
additional clue in this regard.

While in this work we focused on 2D test cases, the formulations are well suited to be
applied in 3D. Future works tackling 3D computations will require further research efforts for
improving the efficiency of the solution strategy. Indeed, while 2D computations can be effec-
tively carried out relying on direct solvers, state-of-the-art preconditioned iterative solvers
are required for tackling h-refined 3D mesh sequences. A more comprehensive comparison
between HHO and DG formulations for incompressible flow problems, encompassing both
accuracy and computational expense, is also planned.
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