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HHV-6A infection induces amyloid-beta
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Abstract

Background: The control of viral infections in the brain involves the activation of microglial cells, the macrophages

of the brain that are constantly surveying the central nervous system, and the production of amyloid-beta (Aβ) as

an anti-microbial molecule. Recent findings suggest a possible implication of HHV-6A in AD. We evaluated the

effect of HHV-6A infection on microglial cell expression Aβ and the activation status, determined by TREM2, ApoE,

cytokines, and tau expression.

Methods: We have infected microglial cells (HMC3, ATCC®CRL-3304), in monolayer and human peripheral blood

monocyte-derived microglia (PBM-microglia) spheroid 3D model, with HHV-6A (strain U1102) cell-free virus inocula

with 100 genome equivalents per 1 cell. We collected the cells 1, 3, 7, and 14 days post-infection (d.p.i.) and

analyzed them for viral DNA and RNA, ApoE, Aβ (1-40, 1-42), tau, and phospho-tau (Threonine 181) by real-time

immunofluorescence and cytokines by immunoenzymatic assay.

Results: We observed a productive infection by HHV-6A. The expression of Aβ 1-42 increased from 3 d.p.i., while no

significant induction was observed for Aβ 1-40. The HHV-6A infection induced the activation (TREM2, IL-1beta,

ApoE) and migration of microglial cells. The secretion of tau started from 7 d.p.i., with an increasing percentage of

the phosphorylated form.

Conclusions: In conclusion, microglial cells are permissive to HHV-6A infection that induces the expression of Aβ

and an activation status. Meanwhile, we hypothesize a paracrine effect of HHV-6A infection that activates and

induces microglia migration to the site of infection.
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Introduction
Alzheimer’s disease (AD) is multifactorial and character-

ized by early neuronal loss. In AD brains, two pathological

characteristics are observed: extracellular insoluble senile

plaques formed by amyloid-β (Aβ) peptide and intraneur-

onal neurofibrillary tangles (NFT) formed by tau protein

[1]. Aβ, thought to be primarily produced by neurons, can

activate an inflammatory response that ultimately drives

microglia and astrocytes to uptake and clear it from the

brain [2, 3].

The elevation of intracellular soluble Aβ leads to an

abnormal phosphorylation of tau that is relocated from

axons to the somatodendritic compartments of neurons

[4]. Here, tau can bind and sequester the Src tyrosine

kinase, fyn, altering its localization [5] and the phosphor-

ylation and stabilization of excitatory GluN2B NMDA

receptors. This enhances glutamate signaling and causes

an intracellular flood of Ca2+, which enhances Aβ toxicity

[5–7]. Calcium-induced excitotoxicity can damage post-

synaptic sites and cause mitochondrial Ca2+ overload,

membrane depolarization, oxidative stress, and apoptotic

cell death [6, 8].

Interestingly, Aβ plaques and NFT are not unique to

AD. Other central nervous system conditions, including

chronic infections, develop with the production of these

specific histopathologic hallmarks [9]. Recent studies show

the possibility that infections may be associated with AD

and indicate the crucial role of neuroinflammation in the

etiopathogenesis of AD [10, 11]. The inflammatory re-

sponse is a typical reaction during most infectious diseases

that might stimulate activation of microglia, specialized
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macrophages resident in the central nervous system (CNS),

where they remove damaged neurons and infections. Re-

cent findings have shown that infections may induce Aβ

production and deposition in the brain with an anti-

microbial activity [11]. Aβ fibrilization pathway seems to

be an innate immune response that protects against viral,

fungal, and bacterial infections. Aβ oligomers bind herpes-

virus surface glycoproteins, accelerating β-amyloid depos-

ition and leading to protective viral entrapment activity in

5XFAD mouse and 3D human neural cell culture infection

models against neurotropic herpes simplex virus 1 (HSV1)

and human herpesvirus 6A and B [12]. HHV-6 has been

examined for its potential role in AD pathogenesis [10, 13].

Human herpesvirus 6 (HHV-6) is a betaherpesvirus that

exists as two closely related species, HHV-6A and HHV-

6B [14]. HHV-6A has not been etiologically linked to any

disease; HHV-6B is the causative agent of exanthema subi-

tum (ES), a childhood disease characterized by high fever

and a mild skin rash, occasionally complicated by seizures

or encephalitis. The term HHV-6 remains in usage and

collectively refers to the two species. HHV-6 exhibits wide

cell tropism in vivo and, as with other herpesviruses,

induces a lifelong latent infection in humans. HHV-6

preferentially replicates in activated CD4+ T lymphocytes

[15, 16] and uses specific cell receptors permitting virus

anchorage to the cell surface: HHV-6A uses CD46, a regu-

lator of complement activation expressed on all nucleated

cells, while CD134 (also called OX40), a member of the

tumor necrosis factor (TNF) receptor superfamily present

only on activated T lymphocytes, functions as a specific

entry receptor for HHV-6B [17, 18]. In vitro experimenta-

tion has shown that in addition to CD4+ T lymphocytes,

HHV-6 can infect CD8+ T lymphocytes (only with HHV-

6A), fibroblasts, natural killer (NK) cells [19], liver cells,

epithelial cells, endothelial cells, microglial cells, astrocytes,

and oligodendrocytes [15, 19–26]. The in vivo host tissue

range appears to be broader than expected from in vitro

studies and includes the brain, salivary glands, tonsils, kid-

neys, lymph nodes, liver, heart, gastrointestinal tract, lungs,

and monocytes/macrophages [15, 27–29]. The preferential

sites for latency are suspected to be monocytes/macro-

phages, bone marrow progenitors, and central nervous

system cells [30–32]. Fecal-oral spread, a common trans-

mission route among young children, has not been docu-

mented for HHV-6, although stool specimens were found

positive for HHV-6 DNA [33]. Thus, the most probable

route for HHV-6B transmission is through saliva [34]. Very

little is known about the epidemiology of HHV-6A, which

is acquired later in life, is not typically found in the saliva,

and has an unknown mechanism of transmission. Inter-

estingly, HHV-6 DNA can be integrated into the subte-

lomeric region of host chromosomes as an inherited,

chromosomally integrated HHV-6 variant (iciHHV-6),

which is present in about 1% of the general population

and is passed through generations via vertical transmis-

sion [35].

Carbone and colleagues analyzed DNA isolated from

PBL and brain samples for the presence of EBV, HHV-6,

and CMV [36]. DNA of HSV1, EBV, and HHV-6, but

not CMV, was found. Interestingly, HHV-6 was found in

70% of AD brains vs 40% of controls, while HSV-1 was

found at high levels in both. In this prospective study,

increases in EBV-positive or HHV-6-positive PBL were

noted in patients who developed clinical AD. Readhead

and co-authors have determined that genes involved

with AD overlap with those involved in fighting viral

infection [10]. They found HHV-6A and HHV-7 to be

more abundant in Alzheimer’s brains and singled out

HHV-6A as a key modulator of the genes involved in

amyloidosis and neuronal death. HHV-6A and HHV-7

DNA transcription was increased among AD patients,

and this was observed across multiple brain regions and

multiple cohorts with a lower abundance in healthy

aging controls. Host genes affected by HHV-6A were

associated with Alzheimer’s traits and risk genes. Also,

HHV-6A correlated strongly with dementia scores, neur-

onal death, and intensity of amyloid plaque.

On the one hand, Aβ neuritic plaques are surrounded

by activated microglial cells that could contribute to Aβ

phagocytosis and/or compaction [37, 38]. On the other

hand, HHV-6A infection might induce Aβ deposition as

an innate immune response. Since the major cell com-

ponent with a role in innate immune response in the

brain, we aimed to evaluate the effect of HHV-6A infec-

tion on microglia status. In particular, we will evaluate if

HHV-6A infection induces Aβ also in microglial cells

and the effect on their activation status. Microglial acti-

vation and survival are associated with the expression of

different molecules as triggering receptor expressed in

myeloid cells 2 (TREM2) that seems to perform a pivotal

role in the AD-associated immune response [39, 40].

TREM2 is a lipid and lipoprotein sensor that, through

its adapter molecule DAP12, supports reactive micro-

gliosis [41]. Furthermore, it has been recently demon-

strated that TREM2, interacting with apolipoprotein E

(ApoE—a major genetic risk factor for AD), regulates

the transcriptional activation of microglial cells [42].

Meanwhile, the expression of tau by microglia cells

themselves was also shown to promote their activation

[43]. It was found that the expression of tau promoted

microglia migration and phagocytosis, and the secretion

of several cytokines, including interleukin (IL)-1β, IL-6,

IL-10, and tumor necrosis factor-α, suggesting a role of

tau in microglial activation. An inappropriate immune

response in the brain may be engaged in the neurodes-

tructive processes involved in AD [44]. In fact, chronic

microglial activation could improve AD pathology by re-

ducing the Aβ levels in APP-based models. However, the
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inflammatory response associated with glial activation

has been associated with detrimental neurotoxic effects

mediated by the release of pro-inflammatory cytokines/

chemokines and neurotoxins [45–47]. Increasing patho-

logical Aβ deposits activate glial cells (microglia and as-

trocytes), lymphocytes, and macrophages, which in turn

release large amounts of inflammatory mediators such as

cytokines, chemokines, neurotransmitters, and reactive

oxygen species (ROS) [48]. Reactive microglia and astro-

cytes induce neuronal apoptosis and blood-brain barrier

(BBB) dysfunction. Next, this process leads to the re-

cruitment of peripheral blood leukocytes (PBL) through

the BBB and their active participation in local inflammation

in the brain tissue. Leukocytes release more inflammatory

factors (cytokines), escalate the inflammatory state, and

exacerbate other AD pathologies [49].

We will analyze the effect of HHV-6A infection on

microglial cell status, evaluating the expression of genes as-

sociated with microglial activation and AD pathogenesis.

The identification of an association between HHV-6A

infection and microglial cell status in AD would set the

stage for new therapeutic interventions. A positive find-

ing would also lead to a better understanding of the role

of microbiota in AD, allowing our study to serve as a

“springboard” to a more general use of anti-microbial or

immunomodulatory therapies in AD practice.

Materials and methods
Study subjects

We recruited five healthy members of societies for

retired people for the cognitively normal control group.

Only ethnic Italians without known dementia in first de-

gree relatives were included. The study was approved by

the Ethics Committee of the University of Ferrara, and

the subjects consented to the study in accordance with

the Declaration of Helsinki.

Peripheral blood monocyte-derived microglia

To obtain monocytes (adherent PBMC), the isolated

blood cells were cultured in T25 tissue culture flasks

(2 × 10^6 to 5 × 10^6 cells/ml) using RPMI-1640 Gluta-

max medium (Invitrgen, Italy) supplemented with 1%

antibiotics/antimycotic (10,000 units/ml penicillin G so-

dium, 10,000 g/ml streptomycin sulfate, and 25 g/ml

Amphotericin B, Invitrogen). After overnight incubation,

non-adherent cells will be separated by washing with

PBS (Invitrogen) and the fresh adherent cells, which are

mainly monocytes (> 90%), will be used for the gener-

ation of microglia (M-MG). To induce the differentiation

of PBM-microglia, adherent PB will be cultured in 6-well

tissue culture plates (Sarstedt; Germany) using RPMI-1640

Glutamax supplemented with1% antibiotic/antimycotic

(serum-free condition) and a mixture of human recombin-

ant cytokines, including M-CSF (10 ng/ml; PeproTech,

USA), GM-CSF (10 ng/ml; PeproTech), beta-nerve growth

factor (NGF-beta 10 ng/ml; PeproTech), and CCL2 (100

ng/ml) for up to 14 day. The generation of PBM-microglia

was confirmed by morphology evaluation and immune-

phenotype characterization for the expression of substance

P with anti-substance P FITC mouse monoclonal anti-

bodies (mAb) and induced the expression of Iba1 by anti-

Iba-1 PE mAb [50].

3D cultures: microglial spheroid generation

PBM-microglia were seeded in 96-well plate coated with

1.5% agarose to allow the spheroid formation. The micro-

glial spheroids had a 100–250-μm-diameter spheroid at

2–4 days of culture, using 3 × 104 cells/ml medium [51].

Then, spheroids were picked up, transferred into new

wells, and used for further experiments.

HHV-6 infection

The human T cell line J-Jhan was cultured in RPMI-

1640 (Gibco BRL, Invitrogen Corporation, Carlsbad, CA,

USA) with 10% FCS supplemented with 100 U/ml each

of penicillin and streptomycin and maintained at 37 °C

in humidified atmosphere of 5% CO2. The human im-

mortalized microglial cell line human microglial clone 3

cell line, HMC3, (ATCC®CRL-3304) was maintained in

EMEM supplemented with 10% fetal bovine serum

supplemented with 100 U/ml each of penicillin and

streptomycin and maintained at 37 °C in humidified

atmosphere of 5% CO2. J-Jhan and HMC3 cells were

infected with a HHV-6A (U1102) cell-free inoculum as

previously described [52] at a 100:1 m.o.i. The cells were

harvested at the experimental time point to perform the

analysis.

HHV-6 analysis

HHV-6 DNA viral load was analyzed by real-time quan-

titative (qPCR) in duplicate, as described [19].

RNA cell extraction was performed using the RNeasy kit

(Qiagen, Hilden, Germany). No DNA contaminated the

RNA samples, as shown by control β-actin PCR without ret-

rotranscription [53]. Reverse transcription was performed by

the RT2 First strand kit (Qiagen, Hilden, Germany). cDNA

aliquots corresponding to 200 ng RNA were used for virus

transcription analysis, performed by qPCR detecting the ex-

pression of U42 gene, as previously reported [52].

Immunofluorescence assay

Immunofluorescence for HHV-6 antigen expression was

performed with a mAb against glycoprotein gp116 (late

antigen) of HHV-6 A and B (ABI, Columbia, MD, USA),

as previously described [53]. Microglial cells were stained

with anti-substance P FITC (NC1/34HL) mAb anti-Iba-1

PE (1022-5) mAb, anti-TREM2 PE mAb (B-3) (Santa Cruz

Biotechnology, USA), anti-Aβ 1-40 (NBP1-44047; Novus

Bortolotti et al. Alzheimer's Research & Therapy          (2019) 11:104 Page 3 of 11



Biologicals; Italy), and Aβ 1-42 moAb (ab10148; Abcam;

UK).

APOE and TREM2 expression

Microglial cells, infected with HHV-6A (U1102), were

harvested after 1, 3, 7, and 14 days post-infection. Total

RNA was extracted (RNeasy kit, Qiagen, Hilden,

Germany) and checked for the absence of contaminating

DNA and for RNA integrity, and we analyzed only the

samples with RIN > 8. RNA reverse transcription was

performed as described above. ApoE and TREM2 ex-

pression analysis was performed on DNA aliquots corre-

sponding to 200 ng RNA using Applied Biosystems gene

expression analysis (Hs00171168_m1 and Hs01003898_

m1, respectively) [54].

Cytokine ELISA assay

IL-1α, IL-1β, IL-6, IL-10, and tumor necrosis factor-α

levels in microglial culture supernatants were evaluated

by single ELISA kit assays (myBiosource, USA) following

the customer’s protocols.

Tau ELISA assay

Total tau and phosphorylated (p) tau (Threonine 181,

T181) were analyzed by ELISA assay (KHB0041 and

KHO0631, respectively; Invitrogen; Italy) on cell lysates.

Briefly, cell lysates were obtained using a specific lysis

buffer prepared adding to RIPA Buffer 1X protease in-

hibitor cocktail (Roche; Italy), 1% Triton X-100 (Sigma),

1% sodium orthovanadate (Sigma; UK), and 1% PMSF

(Sigma). Cell lysates were quantified by the Bradford

assay (Biorad; Italy), and then, 20 μg of the total lysate

was diluted in 50 or 100 μl of the specific ELISA diluent

and seeded into pre-coated wells. The presence of both

total tau and ptau (T181) in the samples was revealed by

colorimetric reaction and read at 450 nm, and concen-

tration determined through interpolation to standard

curve and reported as picograms per milliliter.

Cell migration assay system

Test J-Jhan cells were plated on the bottom wells (2 ×

105 cells/well) of 24 multiwell plates (Falcon; USA) into

which FluoroBlock cell culture inserts (BD Biosciences;

USA) were to be inserted. These inserts are designed for

the plating of cells on a membrane which contains pores

of defined size. The base of the membrane blocks all

fluorescence transmission, such that when using live cell

fluorescence analysis with an inverted microscope, any

fluorescence signal originates only from cells that mi-

grated through the pores onto the bottom side of the

membrane. We used 8 μm pores. The bottom cell mono-

layers in the 24-well plates were mock infected or

infected with HHV-6A (U1102) cell-free inoculum as

previously described [52] at a 100:1 m.o.i. After 1 h of

adsorption in serum-free media, the inoculum was

removed, and medium containing 2% FBS was added.

The inserts, which had been separately plated with

HMC3 cells, pre-stained with Syto9 label (Thermo

Fisher Scientific; Italy), at a density of 2 × 104 cells/insert,

were then placed into the 24-well plates containing the

mock infected or infected monolayers. At different times

after initial infection, the inserts were removed and ana-

lyzed by fluorescence microscopy. Average total Syto 9

staining (pixel density) of target cells after thresholding

removed the defined background signal. Values were

obtained from three random low-power fields for each

condition in each of the duplicated samples.

Statistical analysis

Data were analyzed by using Student’s t test (Stat View

software (SAS Institute Inc)). Statistical significance was

assumed for p < 0.05 (two tailed).

Data availability

Data are available upon request.

Results
Microglial cells are permissive to HHV-6A infection

We evaluated the ability of HHV-6A to infect microglial

cells. Microglia were seeded at 60–70% confluence and

infected with HHV-6A cell-free inoculum with a m.o.i.

of 100:1. HHV-6A infection was evaluated at 1, 3, 7, and

14 days post-infection (d.p.i.) by performing RT-qPCR

for immediate early (IE) U42 viral mRNA and immuno-

fluorescent staining for the expression of HHV-6A

gp116 late viral antigen. As shown in Fig. 1a, we ob-

served an increase in U42 IE viral gene expression that is

maintained during the 14 d.p.i. Similarly, the immuno-

fluorescence of gp116 confirmed microglial permissivity

to HHV-6A infection (Fig. 1b). The results obtained by

gp116 immunofluorescence showed a temporal shift

with respect to RT-qPCR data on the IE viral gene, due

to the time lapse between IE and late gene expression.

HHV-6A infection of microglial cells induces beta-amyloid

expression

Aβ is the major constituent of neural plaques, representing

one of the more important molecules associated with AD

pathogenesis. It has been shown that the presence of HSV-1

and HHV-6 rapidly induces amyloid plaque production

within 24 to 48 h [11, 55]. These results support the hypoth-

esis that Aβ deposition and fibrillization might be an innate

immune response to pathogens which could protect the

brain under normal circumstances. For this reason, we eval-

uated the effect of HHV-6A on the expression of the two

Aβ isoforms more associated with AD (Aβ1-40 and Aβ1-

42) [56]. We observed increased expression of Aβ1-42 and

a slight increase in expression of Aβ1-40 during HHV-6A
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infection (Fig. 2a). Interestingly, the immunofluorescence

analysis showed a co-localization of gp116 late viral antigen

with Aβ1-42 protein expression (Fig. 2b), suggesting a dir-

ect effect of HHV-6A infection on Aβ1-42 induction.

As a proof of principle, we infected spheroid 3D models,

which were created using PBM-microglial cells from

healthy subjects, with HHV-6A. We characterized the

PBM-microglia, evaluating the levels of substance P (known

to exacerbate neuroinflammation) and Iba-1 (ionized cal-

cium binding adaptor molecule 1; a microglia-specific

marker). We observed an increased expression of both sub-

stance P and intracellular Iba-1, suggestive of microglial

phenotype (Additional file 1: Figure S1A).

HHV-6A spheroid infection was monitored by gp116

expression. We confirmed the permissivity of microglial

cells to HHV-6A infection, as documented by the in-

creased transcription of the U42 IE viral gene and the ex-

pression of gp116 late viral antigen (Fig. 2c–e). Analysis

also showed increased Aβ1-42 expression (Fig. 2d) follow-

ing the increase in gp116 expression. Interestingly, with a

higher magnification, it is possible to observe Aβ depos-

ition, which is evident at 14 d.p.i. (Fig. 2e, left panel).

HHV-6A infection induces microglia activation status

Microglial activation status might be induced by HHV-

6A infection. We evaluated the expression of TREM2, a

marker of microglial reactive status, in microglial cells

infected with HHV-6A. We observed a significant in-

crease in TREM2 expression, with a 40-fold increase at

14 d.p.i. (Fig. 3a, b). Since it has been recently demon-

strated that TREM2, interacting with ApoE, regulates

the transcriptional activation of microglial cells [42], we

analyzed also ApoE expression in microglial cells.

Figure 1c shows that HHV-6A infection also induces

ApoE expression in microglial cells. The increase in

ApoE expression was 2-fold at 3 d.p.i. and reached a 45-

fold increase at 14 d.p.i. The evaluation of pro-

inflammatory and anti-inflammatory cytokines (IL-1α,

IL-1β, IL-6, IL-10, tumor necrosis factor-α) showed a

significant decrease in IL-10 expression (p = 0.012; Stu-

dent’s t test) and an increase in IL-1beta expression (p <

0.001; Student’s t test) (Fig. 3c). Since IL-1beta is detect-

able at abnormal levels in AD, with a dose-dependent

correlation between ApoE and the levels of pro-

inflammatory cytokines [57], we correlated IL-1beta and

ApoE expression with HHV-6A infection. The analysis

of IL-1beta expression showed a significant increase dur-

ing HHV-6A infection, with a 2-fold increase at 3 d.p.i.,

after which it plateaued (Fig. 3a). During the first 6 d.p.i.,

the IL-1beta expression followed ApoE increase (Fig. 3a).

HHV-6A infection of microglial cells induces tau

phosphorylation

Tau is one of the microtubule-associated proteins that

regulate the stability of tubulin assemblies. In AD brains,

tau is accumulated in a hyper-phosphorylated state in the

pathological inclusions [58, 59]. The expression of tau by

microglial cells themselves was also shown to promote their

activation and secretion of several cytokines [43]. We inves-

tigated total-tau and p-tau (T181) levels in healthy donor

PBM-microglial cells infected with HHV-6A. HHV-6A

infection was associated with an increase of both total-tau

(Fig. 4a, p < 0.0001, Student’s t test) and p-tau (T181) (Fig.

4b, p < 0.0001, Student’s t test), particularly 7 and 14 d.p.i.

HHV-6A infection induces microglial cell migration

Using a cell migration assay system (see the “Materials and

methods” section), we assessed whether there was evidence

that HHV-6A infection could induce microglial cell migra-

tion at the site of infection. Target microglial cells were

plated in the upper chamber insert on a membrane support

with defined 8-μm pores (Fig. 5a). The insert was then

Fig. 1 HHV-6A infection of microglial cells. a Microglial cells were infected at a multiplicity of infection of 100 genome equivalent/cell. Virus

transcription (RNA) was evaluated by RT-qPCR performed on the U42 virus gene, at 1, 3, 7, and 14 d.p.i., as already detailed. Results are expressed

in log target molecules referred to duplicates of 2 independent assays. b HHV-6A-infected microglial cells (m.o.i. 100:1; 1, 3, 7, 14 d.p.i.) were

stained with Hoechst and anti-gp116 FITC moAb. Images were taken in fluorescence (Nikon Eclipse TE2000S) equipped with a digital camera.

Original magnification × 20
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placed in a dish of test cells (lower chamber) that were ei-

ther mock infected or infected with 100:1m.o.i. We con-

firmed that the upper target cells remained uninfected

(Additional file 1: Figure S1B). Cell migration was then

monitored by the presence of cells on the lower side of

the membrane support by live cell staining. The results

demonstrated a very clear increase in target cell migration

with infected test cells compared to uninfected test cells

(Fig. 5b, c). This could be readily seen in the images of tar-

get cell migration (Fig. 5b) and in the quantitation of the

Fig. 2 Beta amyloid expression in HHV-6-infected microglial cells. a Expression of the two Abeta isoforms more associated to AD (Aβ1-40 and

Aβ1-42) was evaluated in monolayer microglial cells infected at a multiplicity of infection of 100 genome equivalent/cell at 1, 3, 7, and 14 d.p.i.

The results are reported as percentage of the isoform on the total expression. b HHV-6A-infected microglial cells (m.o.i. 100:1; 3, 14 d.p.i.) were

stained with Hoechst, anti-gp116 FITC, and anti Abeta 1-42 PE moAbs. Images were taken in fluorescence (Nikon Eclipse TE2000S) equipped with

a digital camera. Original magnification × 20. Spheroid 3D models obtained with PBM-microglial cells from healthy subjects. c Microglial cells

were infected at a multiplicity of infection of 100 genome equivalent/cell. Virus transcription (RNA) was evaluated by RT-qPCR performed on U42

virus gene, at 1, 3, 7, and 14 d.p.i., as already detailed. Results are expressed in log target molecules referred to duplicates of 2 independent

assays. d Expression of Aβ1-42 and gp116 was evaluated in spheroid 3D microglial cells infected at a multiplicity of infection of 100 genome

equivalent/cell at 1, 3, 7, and 14 d.p.i. The results are reported as percentage of the isoform on the total expression. e HHV-6A-infected spheroid

3D microglial cells (m.o.i. 100:1; 3; 14 d.p.i.) [14] were stained with Hoechst, anti-gp116 FITC, and anti Abeta 1-42 PE moAbs. Images were taken in

fluorescence (Nikon Eclipse TE2000S) equipped with a digital camera. Original magnification: × 20, left panels; × 40, right panels
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Fig. 3 a mRNA apoE, IL-1beta, and TREM2 expression was evaluated in microglial cells at 1, 3, 7, and 14 d.p.i. b HHV-6A-infected microglial cells

(m.o.i. 100:1; 14 d.p.i.) were stained with anti-Iba-1 FITC and TREM2 PE moAbs. Images were taken in bright field (left panel) or fluorescence (right

panels) (Nikon Eclipse TE2000S) equipped with a digital camera. Original magnification × 20. c IL-1α, IL-1β, IL-6, IL-10, and tumor necrosis factor-α

expression in uninfected (white histogram) and in HHV-6-infected microglial cells (gray histogram). *p value < 0.0001, obtained by Student’s t test.

Each experiment was performed in triplicate

Fig. 4 Tau and phosphorylated tau (ptau) expression in HHV-6-infected microglial cells. a Expression of tau and b phosphorylated tau (ptau) was

evaluated in monolayer microglial cells infected at a multiplicity of infection of 100 genome equivalent/cell at 1, 3, 7, and 14 d.p.i. The results are

reported as mean ± SD pg/ml. *p value < 0.01, obtained by Student’s t test. Each experiment was performed in triplicate
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data (Fig. 5c). Identical results were obtained in repeated

experiments and in experiments using inserts with a 3-μm

pore size instead of 8 μm (data not shown). This system

suggests a paracrine effect of HHV-6A infection, since the

cells are not in direct contact with one another.

Discussion
There is increasing evidence of a possible role for viral in-

fections in the progression of AD, in addition to known

risk factors. To date, the most studied viruses in correl-

ation to AD development are herpesviruses [60], since

they have the ability to undergo latency and then reacti-

vate, causing persistent infection and neuroinflammation,

which is observed in AD [61]. Recent findings have shown

that infections may induce Aβ production and deposition

in the brain with an anti-microbial activity [11]. Aβ fibrili-

zation pathway seems to be an innate immune response

that protects against viral, fungal, and bacterial infections.

Aβ oligomers bind herpesvirus surface glycoproteins, ac-

celerating β-amyloid deposition and leading to protective

viral entrapment activity [11, 12]. One such infection is

that of HHV-6, which has been examined for its potential

role in AD pathogenesis [10, 13].

The aim of this study was to evaluate the role of HHV-6A

infection of CNS accessory cells (microglia) in AD patho-

genesis. We developed an in vitro model of the human

microglial cells, using both monolayer and spheroid cultures,

in order to evaluate the effects of HHV-6A infection on Aβ

expression and on activation status.

HHV-6A can productively infect microglial cells both

in monolayer and spheroid conformation, as confirmed

by the increased transcription and expression of viral

proteins (Figs. 1a; 2c, e; and 3a).

HHV-6A predominantly induces expression of Aβ1-42

(Fig. 2a, b), which is co-localized with HHV-6A infection

sites (Fig. 2b). The recent discovery that Aβ is an anti-

microbial peptide (AMP) acting against bacteria, fungi,

and viruses gives increased credence to an infection hy-

pothesis in the etiology of AD [62–64]. The production

of Aβ as an AMP will be beneficial on first microbial

challenge but will become progressively detrimental as

the infection becomes chronic and reactivates from time

to time [65]. It has been shown that HSV-1 and HHV-6

catalyze the aggregation of the amyloid β-peptide

(Aβ42), a major constituent of amyloid plaques in Alz-

heimer’s disease, in vitro and in animal models. The viral

protein corona seems to be critical for viral-host interac-

tions and illustrates a mechanistic convergence between

viral and amyloid pathologies [55].

HHV-6A infection induced the activation of microglial

cells as shown by the increased expression of TREM2. It is

already known that a soluble form of TREM2 (sTREM2)

derived from proteolytic cleavage of the cell surface recep-

tor is increased in the preclinical stages of AD, positively

Fig. 5 Cell migration of HHV-6-infected microglial cells. a Cell migration assay system where target microglial cells were plated in the upper chamber

insert on a membrane support with defined 8-μm pores. The insert was then placed in a dish of test cells (lower chamber) that were either mock

infected or infected with 100:1m.o.i. b Representative images of target microglial cells stained with Syto 9. c Average total Syto 9 staining (pixel

density) of target cells after thresholding to remove the defined background signal (image in Fig. 4b). Values were obtained from three random low-

power fields for each condition in each of the duplicated samples. The experiment was repeated three times with similar results

Bortolotti et al. Alzheimer's Research & Therapy          (2019) 11:104 Page 8 of 11



correlates with the amounts of total and phosphorylated

tau in the cerebrospinal fluid, promotes microglial survival

in a PI3K/Akt-dependent manner, and stimulates the pro-

duction of inflammatory cytokines depending on NF-κB.

The TREM2-ApoE pathway is important for facilitating

the microglial response to damage in the brain, and a func-

tional consequence of activation of the TREM2-ApoE

pathway is that microglia lose the ability to regulate brain

homeostasis [42]. Previous studies suggested a link be-

tween virus-perturbed lipids and TREM2 that modulates

pathogenesis upon viral infection [66], suggesting a pos-

sible link between the ApoE-TREM2 pathway and activa-

tion of HHV-6A-infected microglial cells. We observed a

significant increase in ApoE expression 3 d.p.i. (Fig. 3a),

confirming our previous data on ApoE [54]. Similarly, we

observed an increase in IL-1beta expression, suggesting the

involvement of HHV-6A in microglial activation and IL-

1beta secretion, which may be involved in the induction of

CNS neuroinflammation in AD [60]. Many studies now

point to the involvement of neuroinflammation playing a

fundamental role in the progression of the neuropatho-

logical changes that are observed in AD [67], where IL-1

elevated levels seem to be responsible for the increased

APP production and Aβ load [68]. Meanwhile, Parajuli and

coauthors described that soluble oligomeric amyloid-β

(oAβ) increased the processing of pro-IL-1β into mature

IL-1β in microglia via ROS-dependent activation of NLRP3

inflammation [69]. In addition, Aβ has been reported to ac-

tivate microglia, leading to increased synthesis and release

of neurotoxic secretory products, pro-inflammatory cyto-

kines such as IL-1β, and ROS [70]. Based on these findings,

we can hypothesize a feedback loop between Aβ deposits

and IL-1β expression in AD patients.

The analysis of total-tau and p-tau (T181) showed an

increase in both total and phosphorylated proteins in the

presence of HHV-6A infection. It has been previously

shown that viral infection-induced acute or chronic in-

flammation significantly exacerbates tau pathological

characteristics, and that the chronic inflammation leads

to impaired spatial memory in mice [71].

HHV-6A infection can induce microglial cell migration

to the site of infection. We believe these results indicate

that HHV-6A-infected cells release a soluble mediator that

can stimulate microglial cell migration. This paracrine ef-

fect of HHV-6A infection might in part explain the activa-

tion status of microglial cells in AD patients. Microglia, the

resident innate immune cells in the brain, have long been

implicated in the pathology of neurodegenerative diseases

[72]. Accumulating evidence points to activated microglia

as a chronic source of multiple neurotoxic factors, includ-

ing IL-1beta, driving progressive neuron damage. Microglia

can become chronically activated by stimuli (e.g., HHV-6A

infection), resulting in chronic neuroinflammation exacer-

bated by the TREM2-ApoE pathway and IL-1beta

expression. Interestingly, Liddelow and coauthors showed

that the activation of microglia might precede the activation

of astrocytes, which in turn appear to be responsible for

neuronal cell death [73].

Conclusions
In conclusion, this study showed the permissivity of micro-

glial cells to HHV-6A infection, supporting the hypothesis

of HHV-6A involvement in AD pathogenesis. Its ability to

induce Aβ1-42 supports the role of this molecule as anti-

microbial agent. TREM2, ApoE, IL-1beta, and p-tau (T181)

are suggestive of a direct effect of HHV-6A infection on

microglial cell activation that should be evaluated carefully.

Moreover, the ability of HHV-6A infection to induce mi-

gration of microglial cells strengthens the hypothesis of

HHV-6A playing an important role in AD. Further studies

on the mechanism at the basis of HHV-6A-mediated con-

trol of the microglial gene expression profile are needed to

identify potential antiviral therapies for AD management.
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