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HIBAG—HLA genotype imputation with attribute bagging
X Zheng1, J Shen2, C Cox3, JC Wakefield1, MG Ehm2, MR Nelson2 and BS Weir1

Genotyping of classical human leukocyte antigen (HLA) alleles is an essential tool in the analysis of diseases and adverse drug
reactions with associations mapping to the major histocompatibility complex (MHC). However, deriving high-resolution HLA types
subsequent to whole-genome single-nucleotide polymorphism (SNP) typing or sequencing is often cost prohibitive for large
samples. An alternative approach takes advantage of the extended haplotype structure within the MHC to predict HLA alleles using
dense SNP genotypes, such as those available from genome-wide SNP panels. Current methods for HLA imputation are difficult to
apply or may require the user to have access to large training data sets with SNP and HLA types. We propose HIBAG, HLA
Imputation using attribute BAGging, that makes predictions by averaging HLA-type posterior probabilities over an ensemble of
classifiers built on bootstrap samples. We assess the performance of HIBAG using our study data (n¼ 2668 subjects of European
ancestry) as a training set and HLA data from the British 1958 birth cohort study (nE1000 subjects) as independent validation
samples. Prediction accuracies for HLA-A, B, C, DRB1 and DQB1 range from 92.2% to 98.1% using a set of SNP markers common to
the Illumina 1M Duo, OmniQuad, OmniExpress, 660K and 550K platforms. HIBAG performed well compared with the other two
leading methods, HLA*IMP and BEAGLE. This method is implemented in a freely available HIBAG R package that includes pre-fit
classifiers for European, Asian, Hispanic and African ancestries, providing a readily available imputation approach without the need
to have access to large training data sets.
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INTRODUCTION
The human leukocyte antigen (HLA) system, located in the
major histocompatibility complex (MHC) on chromosome 6p21.3,
is highly polymorphic. This region has been shown to be
important in human disease, adverse drug reactions and organ
transplantation.1 HLA genes have a role in the immune system
and autoimmunity as they are central to the presentation of
antigens for recognition by T cells. As they have to provide
defense against a great diversity of environmental microbes, HLA
genes must be able to present a wide range of peptides.
Evolutionary pressure at these loci has given rise to a great deal of
functional diversity. For example, the HLA-B locus has 1898 four-
digit alleles listed in the April 2012 release of the IMGT-HLA
Database2 (http://www.ebi.ac.uk/imgt/hla/).
Classical HLA genotyping methodologies have been predomi-

nantly developed for tissue typing purposes, with sequence-based
typing (SBT) approaches currently considered the gold standard.
Although there is widespread availability of vendors offering HLA
genotyping services, the complexities involved in performing this
to the standard required for diagnostic purposes make using a SBT
approach time-consuming and cost-prohibitive for most research
studies wishing to look in detail at the involvement of classical
HLA genes in disease. Previous studies have suggested that the
existence of some HLA alleles can be predicted by a single-
nucleotide polymorphism (SNP)-based tagging approach.3,4

However, SNP-based tagging does not offer a definitive solution
to HLA genotyping by prediction as many HLA alleles are found on
multiple haplotype backgrounds5 that differ among populations.
An alternative to tagging is to use more SNP information to

impute HLA types. Multiple methods have been developed for this

problem, including LDMhc,5,6 as well as applying general genotype
imputation methods such as BEAGLE.7 To be effective, these
methods require access to a large and ethnically diverse training
data set with both SNP and HLA alleles genotyped. To impute HLA
types from multiple SNP markers, Leslie et al.5 used an identity-by-
descent model based on approximate coalescent models8 to
develop their LDMhc algorithm, and used a leave-one-out cross-
validation scheme for SNP selection. Dilthey et al.6 subsequently
developed integrated software HLA*IMP for imputing classical HLA
alleles from SNP genotypes based on LDMhc, with a modified SNP
selection function that leads to pronounced increases in call rate. A
training set of SNP haplotypes with known HLA alleles are required
by LDMhc, as well as a fine genetic map of the region,6

whereas most experimental techniques for determining SNPs
provide genotypes rather than haplotypes. Inferring haplotypes
from genotypes can be done with the statistical method of
approximating coalescent models, PHASE,9 or newer algorithms
like fastPHASE,10 MACH11 and IMPUTE2.12

BEAGLE, an alternative imputation method to the approximate
coalescent approach, allows for the prediction of multiallelic loci.7

It locally clusters the observed haplotypes at each position, based
on similarity of the haplotypes at markers in the local vicinity.13 It
is a computationally efficient approach with high accuracy for
thousands of samples and markers. Recently, it was used for
HLA imputation in a genetic association analysis.14 That study
illustrates how imputation of functional variation can help
fine-map association signals in the MHC.
Here we propose a new method for HLA Imputation using

attribute BAGging, HIBAG, that is highly accurate, computationally
tractable and can be used with published parameter estimates,
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eliminating the need to access large training samples. It combines
the concepts of attribute bagging with haplotype inference from
unphased SNPs and HLA types. Attribute bagging is a technique
for improving the accuracy and stability of classifier ensembles
deduced using bootstrap aggregating and random subsets of
variables,15–17 as shown in Figure 1. In this case, individual
classifiers are created that utilize a subset of SNPs to predict HLA
types and haplotype frequencies estimated from a training data
set of SNPs and HLA types. Each of the classifiers employs a
variable selection algorithm with a random component to select a
subset of the SNPs. HLA-type predictions are determined by
maximizing the average posterior probabilities from all classifiers.
Compared with LDMhc and BEAGLE, HIBAG has only the minimal
assumption of Hardy–Weinberg equilibrium (HWE).
We investigate the overall performance of HIBAG using HLA

types and SNP genotypes from HapMap, the British 1958 birth
cohort data of the Wellcome Trust Case Control Consortium
(WTCCC) and HLARES data from GlaxoSmithKline (GSK) clinical
trials. We compare HIBAG with two leading methods, HAP*IMP
and BEAGLE v3.3. We provide parameter estimates based on our
HLA data and software, implementing our method in the freely
available HIBAG R package.

MATERIALS AND METHODS
The numbers of individuals with available four-digit HLA types and the
numbers of observed HLA alleles are summarized in Table 1 for the
HapMap, WTCCC and HLARES, respectively. Note that sample sizes vary
among HLA loci due to missing data. Descriptions of these data follow.

HapMap data
The HapMap Phase 2 SNP data set consists of (1) 30 parent–offspring trios
of Yoruban ancestry from Ibadan in Nigeria, YRI; (2) 30 CEPH trios of
European ancestry from Utah, CEU; (3) 45 unrelated Han Chinese from
Beijing, CHB; and (4) 45 unrelated individuals from Tokyo in Japan, JPT. The
HapMap SNP genotypes (release #28) were downloaded from http://
hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseIIþ III/for-
ward/. The data set was created by combining genotyping data from
several platforms: Affymetrix, Illumina, Perlegen, and so on. When
Mendelian errors were detected in a trio, all genotypes for that SNP in
that trio were set to missing. SNP markers were selected within the
extended MHC (xMHC)18 on chromosome 6 ranging from 025759242 to

033534827 bp. With a missing call rate threshold of 10%, there were
16 241, 17 160 and 16 896 SNP markers in the xMHC for CEU, YRI and
CHBþ JPT, respectively.
High-resolution classical HLA data for HLA-A, B, C, DRB1, DQA1, DQB1 and

DPB1 were derived by combining genotypes previously published for these
samples3 with SBT data generated by Conexio Genomics (Perth, WA, Australia).

WTCCC data
SNP and HLA genotypes for the British 1958 birth cohort (http://www.
b58cgene.sgul.ac.uk/) were downloaded from the European Genotype

Figure 1. Overview of the HIBAG prediction algorithm. HIBAG is an ensemble classifier consisting of individual classifiers (Ck) with human
leukocyte antigen (HLA) and single-nucleotide polymorphism (SNP) haplotype probabilities estimated from bootstrapped samples (Bk) and
SNP subsets (Sk). The SNP subsets are determined by a variable selection algorithm with a random component. HLA-type predictions are
averaged over the posterior probabilities from all classifiers.

Table 1. The numbers of individuals with four-digit HLA types and the
observed number of HLA alleles for each locus

HLA type

A B C DRB1 DQA1 DQB1 DPB1

Individuals genotyped
HapMap
CEU 90 68 90 90 90 90 90
YRI 90 88 88 89 90 88 12
CHBþ JPT 89 89 89 88 89 87 58

WTCCC
European 884 1532 840 1129 0 1004 0

HLARES
European 1857 2572 1866 2436 1740 1924 1624
Asian 517 624 522 608 495 525 469
Hispanic 298 430 300 420 269 312 263
African 80 112 80 102 74 78 69

Unique HLA alleles
European 48 88 37 55 17 21 26
Asian 43 72 34 49 17 19 29
Hispanic 41 85 31 44 14 17 26
African 36 45 24 30 13 17 23
Total 85 144 49 80 19 27 49

Abbreviations: HLA, human leukocyte antigen; WTCCC, Wellcome Trust
Case Control Consortium.
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Archive (http://www.ebi.ac.uk/ega/). Candidate SNP markers from Illumina
Human1M-Duo platform19 were selected within the xMHC with a 10%
threshold of missing SNP genotypes. The final data set included 2922
unrelated individuals and 7601 SNP markers. The HLA data description is
available at https://www-gene.cimr.cam.ac.uk/todd/public_data/HLA/
HLA.shtml. Five HLA loci, HLA-A, B, C, DRB1 and DQB1, were typed to
four digits using the Sequence Specific Oligonucleotide (SSO) and
Sequence Specific Primer (SSP) methodologies.

HLARES data
SNP data from the xMHC typed using the Illumina 1M and 1M Duo
platforms and HLA data were aggregated from several GlaxoSmithKline
clinical trials, including subjects of European (n¼ 2668), Asian (n¼ 720),
Hispanic (n¼ 439) and African (n¼ 173) ancestries. There were 7976 xMHC
SNP markers available with o10% missing data. HLA data for GSK clinical
trial samples were generated by Conexio Genomics, HistoGenetics
(Ossining, NY, USA) and LabCorp (Burlington, NC, USA) using the SBT,
SSO and SSP methodologies for HLA-A, B, C, DRB1, DQA1, DQB1 and DPB1.

Data for performance assessment
To assess HIBAG performance and build broadly applicable classifiers
included in the HIBAG R package, a set of 1564 SNP markers within the
xMHC were selected that were available in all the three samples and
common to the Illumina 1M Duo, OmniQuad, OmniExpress, 660K and 550K
platforms. In the sensitivity analysis, 5316 SNPs within the xMHC
genotyped on Illumina 1M Duo platform were used.
The individuals of this study were self-reported as being of European,

Asian, Hispanic or African descent. HLA and SNP genotypes for performance
assessment (hereafter referred to as ‘STUDY Data’) consist of (1) HLARES
data of European ancestry, (2) HLARES data of Asian ancestry and HapMap
CHBþ JPT, (3) HLARES data of Hispanic ancestry, and (4) African American
HLARES data and 60 African parents from HapMap YRI.

THE HIBAG METHOD
We propose the HIBAG algorithm to impute HLA types, using the
bagging method developed by Breiman,15,20 with improvements
of variable subset suggested by Breiman16 and Bryll et al.,17

applied to a haplotype-based classifier. By randomly sampling sets
of individuals from a training data set and randomly selecting
SNPs from the available SNPs (as is done in the random forest
method), we end up with an ensemble classifier that performs well
in predicting HLA types. Here we provide a heuristic description of
the process and leave algebraic and algorithmic details in the
Appendix. We describe how we develop a set of classifier
predictors and then how a user may apply these predictors for a
particular individual.
We begin with a set of individuals T that have both HLA alleles

and SNPs genotyped in the xMHC and we take a series of K
bootstrap samples (with replacement), Bk, of individuals from this
set, k¼ 1, 2, y, K. Each Bk is of size n, including some individuals
from T who appear more than once and some who do not appear
at all. Unselected samples form an ‘out-of-bag’ set for the kth
selection. Breiman21 pointed out that about 1/eE37% of T are
out-of-bag for any Bk. We construct a classifier Ck for Bk that
estimates HLA types using an optimal subset, Sk, of the SNPs. In
the following sections, we describe construction of the classifiers
Ck and selection of the SNP set Sk.

Individual classifiers
HLA and SNP genotypes available for individuals for each
bootstrap sample Bk from T are used to form haplotypes and
their estimated frequencies (Figure 1) using the EM algorithm
assuming HWE22 as extended to multiple loci:23,24 multi-locus
genotype frequencies are assumed to be the products of
haplotype frequencies. As the number of possible resolutions of
phase increases exponentially with the number of heterozygous
loci, a progressive ligation computational strategy25 is used, in

which rare haplotypes with frequency o10� 5 are ignored in
order to achieve a computationally tractable algorithm.
The individual classifier Ck is built using the probability of all

possible HLA types given the SNP profile observed at Sk. The
conditional probability follows from the joint probability of an HLA
type and the SNP genotypes, and this, in turn, is the sum, over all
pairs of haplotypes that are consistent with the observed
genotypes, of the products of frequencies of those two
haplotypes. For example, HLA heterozygote A1A2 and one-locus
SNP heterozygote profile s1s2 requires summation over two pairs
of haplotypes (A1s1,A2s2) and (A1s2,A2s1).

SNP selection
In building each classifier, we select a subset Sk of SNPs for
predicting HLA types to reduce overfitting and assure a
computationally tractable method. The selection of Sk includes a
random and a deterministic component, iteratively sampling a
subset mtry of the m total SNPs at random, adding each of the mtry

SNPs to Ck one at a time, and adding the SNP that results in the
highest out-of-bag prediction accuracy to Sk. This process is
repeated, adding one SNP at a time to Sk, until no further
improvement in prediction of HLA types is achieved by adding
additional SNPs. In our study, the size of Sk ranged from 24 to 56
SNPs.
We set mtry to be much less than m (the total number of SNPs)

to increase the independence of individual classifiers and reduce
the variance of the ensemble by distributing classifiers semi-
randomly over all SNPs. If mtry is too small compared with m, the
variable selection approach is likely to select less-informative SNP
markers. Although this would not necessarily reduce accuracy, it
would require larger numbers of classifiers. In general, reducing
mtry reduces both the correlation and the strength of individual
classifiers, whereas increasing it increases both. We have found a
value of mtry¼

ffiffiffiffi
m
p

to perform well, as shown in Supplementary
Table S1. This rule is a recommendation of the random forest
method (Hastie et al.,26, Section 15.3).

Bootstrap aggregation
HIBAG is an ensemble classifer that employs bootstrap aggrega-
tion, known as bagging. The ensemble classifier is created from K
bootstrap samples, each using a different set Sk of SNPs to build a
single classifier Ck. We have found that K¼ 25 is generally
sufficient to provide good performance, although we use K¼ 100
below in Results to maximize or stabilize prediction accuracies. A
comparison of accuracies among different model parameters mtry

and K is shown in Supplementary Table S1.
Application of HIBAG to a subject with the observed SNP

genotypes estimates the probability of each possible HLA type for
all K classifiers. The process of aggregating (averaging over) the K
predictors results in greater precision in the prediction probabil-
ities. In this study, we choose the HLA type with the highest
probability averaged over the K probabilities as the final predicted
genotype for estimating measures of prediction quality. However,
in other applications, such as in the analysis of genotype–
phenotype relationships, the vector of genotype probabilities may
be preferred.

Implementation
We implemented the algorithm in an R package—HIBAG, which is
available at R CRAN (http://cran.r-project.org/web/packages/
HIBAG/index.html). To facilitate future use of this method, we
have prepared pre-built classifiers based on STUDY Data
(described in ‘Data for performance assessment’), which can be
used to impute HLA alleles in new SNP data, which are available at
http://www.biostat.washington.edu/bsweir/HIBAG/. These classi-
fiers were constructed using the training data sets, as reported
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in this paper with supporting test results. This enables users to
apply the HIBAG method without needing access to a training
data set. Alternatively, the software can build new classifiers from
training data supplied by the user, and HIBAG is computationally
feasible for much large training samples. As the construction of
individual classifiers is independent from each other, building an
ensemble model in parallel is possible. As an example, it takes
about 52min to build an individual classifier of HLA-A on the
training samples of European ancestry data (n¼ 1504) with 273
SNP markers on average. More details are shown in
Supplementary Table S2. The computation time while using the
published parameters is much less, for example, the algorithm
takes at most 41min for predicting 100 new individuals at HLA-B
locus, as no training is needed.

RESULTS
We evaluated the performance of HIBAG by building the classifier
using a training sample and imputing HLA types in an
independent testing sample and compared the imputed geno-
types with experimentally determined HLA types. As a further
evaluation, we compared the performance of HIBAG with HLA*IMP
and BEAGLE.

Measures of prediction quality
Prediction accuracy was used to assess overall model perfor-
mance, defined as ‘the number of chromosomes with HLA alleles
predicted correctly’ over ‘the total number of chromosomes’. In
addition, sensitivity, specificity, positive predictive value and
negative predictive value were used to evaluate the predictive
performance for each HLA allele. These standard statistical
quantities are defined in Supplementary Figure S1. HIBAG
produces a posterior probability for each possible HLA type.
Placing a minimum threshold on the posterior genotype
probability can increase prediction accuracy at the expense of
reducing call rates. ‘Call’ and ‘No Call’ were determined by
whether the posterior probability is greater or less than a call
threshold (CT).

Accuracy of imputed HLA types on individuals of European
ancestry
We compared imputed with experimentally determined HLA types
for European ancestries. The HIBAG models were built using the
HLARES samples of European ancestry as the training data, and
the imputation accuracy was assessed with the independent
testing data of the British 1958 birth cohort study. We used the set
of 1564 MHC SNPs in common among several Illumina platforms
for this analysis. Flanking regions from 50 to 1000 kb were
evaluated to identify an appropriate size for predicting HLA alleles,
and we conservatively chose to use a 500-kb flanking region,
including 1042 SNPs, for our published pre-fit classifiers
(Supplementary Figure S2).
The locus-specific calling accuracies were estimated from

independent testing data sets (Table 2). In Europeans, without
any CT (CT¼ 0) the accuracies range from 92.2% to 98.1% at the
five HLA loci. HLA-A and DQB1 yielded the highest prediction
accuracies, closely followed by B and C. The lowest accuracy was
observed for DRB1. We next investigated the influence that setting
CTs on posterior probabilities has on calling accuracy and the
trade-off this imposes on call rates. The prediction accuracies
can be improved by taking the HIBAG posterior genotype
probabilities into account with an appropriate CT, and the
improvement in accuracy comes at a cost of lower genotype call
rates (94.6–99.5%).
In order to compare the performance with the Oxford HLA

imputation framework, HLA*IMP, HLARES data of European
ancestry were employed as independent validation samples.

The HLA*IMP method is implemented in a web-based application
with access to a training data set consisting of HapMap 30 CEU
trios, the British 1958 birth cohort data of WTCCC and a small
number of additional samples from other projects.6 Furthermore,
using the Illumina 1M option for HLA*IMP, we were able to
identify SNPs used for prediction (Supplementary Table S4).
To enable a fair comparison, the training data set for HIBAG
was limited to the HapMap 30 CEU trios and the British 1958
birth cohort data with the 191 SNPs selected by HLA*IMP for
prediction. To illustrate the advantages of utilizing additional
SNPs, we provide accuracy results for all the Illumina 1M SNPs
using the same training subjects. Results are summarized in
Table 3. On the same set of 191 SNPs, HIBAG outperformed
HLA*IMP at each locus, especially for HLA-A (accuracy¼ 96.7%
versus 91.0%, respectively). As expected, using more SNP
predictors yielded more accurate predictions, although the gains
were fairly modest.

Table 2. Summary of the four-digit prediction accuracies (call rates)
for HLARES of European ancestry, using four-digit HLA data from the
British 1958 birth cohort study as independent validation samples

HLA type

A B C DRB1 DQB1

No. of
SNPsa

273 341 356 327 356

No. of
training
samples

1857 2572 1866 2436 1924

No. of
validation
samples

884 1532 840 1129 1004

HLARES training data of European ancestry, the published pre-fit classifiers:

CT¼ 0 98.1 (100) 96.9 (100) 96.5 (100) 92.2 (100) 97.8 (100)
CT¼ 0.5 98.2 (99.4) 97.4 (97.3) 96.6 (99.5) 94.0 (94.6) 98.0 (99.0)

Abbreviations: CT, call threshold; HLA, human leukocyte antigen; SNP,
single-nucleotide polymorphism.
HIBAG CT of 0 and 0.5 were used. aSNP markers common to the Illumina
1M Duo, OmniQuad, OmniExpress, 660K and 550K platforms within a
flanking region of 500 kb were used.

Table 3. The comparison of four-digit accuracies for HIBAG and
HLA*IMP on HLARES data of European ancestry with no call threshold

HLA type

Method A B C DRB1 DQB1

No.of validation
samples

1787 2471 1830 2383 1917

Using 191 markers on Illumina 1M platform as selected by HLA*IMPa

No.of SNPs 50 39 27 50 34
HLA*IMP (%) 91.0 94.4 98.4 87.9 96.2
HIBAG b (%) 96.7 94.8 98.7 90.0 98.6

Using all the xMHC markers on Illumina 1M platformc

No. of SNPs 489 562 554 474 447
HIBAGb (%) 97.7 95.1 98.7 91.8 98.4

Abbreviations: HLA, human leukocyte antigen; MHC, major histocompat-
ibility complex; SNP, single-nucleotide polymorphism.
aThe full SNP list is shown in Supplementary Table S4. bThe training
samples are HapMap 30 CEU trios plus WTCCC samples. cThe SNP markers
within a flanking region of 250 kb are used.
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Cross-validation of accuracy for four ancestries
Except for the 1958 birth cohort study, we did not have more data
for independent validation; therefore cross-validation was also
conducted with respect to each ethnic group: European, Asian,
Hispanic and African. For each ethnicity, we divided STUDY Data
(defined in ‘Data for performance assessment’) into equal-sized
training and validation data sets. The random partitioning strategy
produced training and validation data sets with approximately the
same numbers of copies of chromosomes with the same HLA
alleles. A set of 1564 MHC SNPs in common among several
Illumina platforms was used for this analysis. We evaluated
flanking regions from 50 to 1000 kb to identify an appropriate size
for predicting HLA alleles. In subjects of European ancestry, the
average accuracies reach their maximum values by 250 kb
(Supplementary Figure S3). We conservatively chose to use a
500-kb flanking region, including 1042 SNPs, for subsequent
imputation of all ancestries.
We next investigated the influence that setting CTs on posterior

probabilities has on calling accuracy and the trade-off this
imposes on call rates. Using 500 kb of flanking markers around
each HLA locus, mtry¼

ffiffiffiffi
m
p

as the number of markers randomly

sampled in building each classifier and K¼ 100 bootstrap samples,
we built the HIBAG models with European, Asian, Hispanic and
African ancestry training data sets, respectively. As shown in
Table 4, in Europeans where we have the largest sample size,
without any CT (CT¼ 0) the accuracies range from 92.1% to 98.8%.
HLA-C and DQB1 yielded the highest prediction accuracies, closely
followed by A, DQA1 and B. The lowest accuracies were observed
for DPB1 and DRB1. Among non-Europeans, per locus accuracies
were uniformly lower than in Europeans and varied substantially
from locus to locus. On average, the prediction accuracy was the
lowest in subjects of African ancestry. These patterns are due to
the differences in training sample size and several aspects of allelic
heterogeneity, including the number of alleles, their frequency
distribution and the degree of haplotypic mosaicism within four-
digit alleles.5 The results using all Illumina 1M MHC markers were
not noticeably better than the intersection across several
commonly used Illumina genome-wide panels (Supplementary
Table S3). We therefore focused on the intersection as a more
broadly applicable panel.
The prediction accuracy can be improved by taking the HIBAG

posterior genotype probabilities into account, as those with

Table 4. Summary of the four-digit prediction accuracies (call rates) stratified by ancestries and HLA loci

HLA type

A B C DRB1 DQA1 DQB1 DPB1

European ancestry
No. of SNPsa 273 341 356 327 349 356 279

HIBAG
CT¼ 0.0 98.2 (100) 96.6 (100) 98.8 (100) 92.1 (100) 97.3 (100) 98.8 (100) 93.8 (100)
CT¼ 0.5 98.7 (98.8) 97.8 (94.2) 99.2 (98.0) 94.9 (90.1) 97.8 (97.9) 99.2 (97.9) 94.8 (96.0)

BEAGLEb 98.1 (100) 95.5 (100) 97.7 (100) 92.9 (100) 96.4 (100) 97.9 (100) 94.7 (100)

Asian ancestry
No. of SNPsa 259 334 346 319 341 348 272

HIBAG
CT¼ 0.0 92.1 (100) 87.5 (100) 96.6 (100) 88.7 (100) 86.8 (100) 96.0 (100) 89.8 (100)
CT¼ 0.5 93.8 (91.7) 94.7 (71.0) 97.8 (93.9) 95.8 (71.5) 90.0 (80.8) 98.1 (96.3) 95.3 (82.8)

BEAGLEb 93.8 (100) 83.7 (100) 94.5 (100) 87.7 (100) 86.7 (100) 97.3 (100) 91.2 (100)

Hispanic ancestry
No. of SNPsa 274 341 356 326 348 355 278

HIBAG
CT¼ 0.0 93.4 (100) 75.0 (100) 96.2 (100) 82.0 (100) 93.8 (100) 95.7 (100) 93.1 (100)
CT¼ 0.5 96.0 (82.5) 93.8 (37.5) 98.4 (87.4) 93.5 (50.8) 95.8 (90.8) 98.9 (90.0) 97.5 (81.5)

BEAGLEb 89.1 (100) 75.0 (100) 92.3 (100) 78.7 (100) 94.6 (100) 96.3 (100) 91.9 (100)

African ancestry
No. of SNPsa 266 335 349 325 343 351 269

HIBAG
CT¼ 0.0 92.4 (100) 76.8 (100) 88.5 (100) 77.1 (100) 80.0 (100) 79.4 (100) 74.2 (100)
CT¼ 0.5 100 (74.6) 96.7 (21.1) 96.5 (66.2) 100 (22.2) 97.2 (27.7) 97.7 (34.9) 75.0 (12.9)

BEAGLEb 93.2 (100) 71.1 (100) 86.9 (100) 81.2 (100) 79.2 (100) 76.2 (100) 79.0 (100)

Abbreviations: HLA, human leukocyte antigen; SNP, single-nucleotide polymorphism.
STUDY data were divided into training and validation sets with equal sizes. HIBAG call thresholds (CTs) of 0 and 0.5 were used. aSNP markers common to the
Illumina 1M Duo, OmniQuad, OmniExpress, 660K and 550K platforms within a flanking region of 500 kb are used. bNo call threshold.

HLA imputation
X Zheng et al

196

The Pharmacogenomics Journal (2014), 192 – 200 & 2014 Macmillan Publishers Limited



higher probabilities have a higher likelihood of being a correct
call. An empirical relationship between posterior probability and
overall accuracy is shown in Supplementary Figure S4. The
improvement in accuracy comes at a cost of lower genotype call
rates, as illustrated in Figure 2 and Supplementary Figure S5. All
seven loci can achieve 499% calling accuracy with sufficiently
stringent choices of posterior probabilities; however, this would
lead to call rates o60% in the case of DRB1 and DPB1. The best
choice of CT for each locus will vary based on study criteria. We
have selected a threshold of 0.5 as a value that has modest effects
on both call rate and accuracy. At this threshold, the accuracy
range in Europeans increases from 94.8% to 99.2%, with call rates
between 90.1% and 98.8%. Among the non-Europeans, in some
instances this threshold led to dramatic improvements in
accuracies with corresponding decreases in call rates. For example,
the accuracy of HLA-B types in subjects of African ancestry
improved from 76.8% to 96.7%, but with a call rate of only 21.1%.
This highlights the importance of careful CT selection.
The performance summaries by HLA locus presented above are

an average of the accuracies of each of the alleles observed in the
testing data set, weighted by their corresponding frequencies.
Details of the predictive characteristics of each HLA allele using a
CT of 0.5 are summarized in Supplementary Tables S5–8. Some
alleles have very high accuracies, whereas others are much lower.
Alleles with low accuracy tend to have lower frequencies, as
illustrated in Supplementary Figure S6. Our study confirms that
having 10 copies of an allele in the database is generally sufficient
to provide high sensitivity (490% except for HLA-B and DRB1).5

We found that in most instances where alleles are miscalled, there
is one particular allele that is substituted for the correct one
(Supplementary Table S5). For example, HLA–DRB1*01:01 has an
8% allele frequency in Europeans and is miscalled just over 5.6%
of the time. In every instance that DRB1*01:01 is miscalled, it is
called as DRB1*01:02. This miscall is reasonable as DRB1*01:01 and
DRB1*01:02 both belong to the same serological antigen carried
by an allotype DRB1*01.
BEAGLE is commonly used for genotype imputation and is

unique among commonly used methods by accommodating
multi-allelic variants.7 It has been used to impute HLA types.14 We
therefore compared the performance of HIBAG with BEAGLE v3.3
(Table 4 and Supplementary Table S3). The default settings for
BEAGLE were used, except that we increased the number of
iterations from 10 to 50, which improves prediction accuracies.
Note that the manner of applying BEAGLE in this study is different

from that in Raychaudhuri et al.14 We applied BEAGLE to impute
HLA alleles gene by gene with flanking SNPs, as the efficiency of
BEAGLE could be improved by restricting the number of SNPs that
are possibly included in the model.
As BEAGLE does not provide posterior probabilities for

predicted HLA types, we compared BEAGLE’s imputed HLA types
with HIBAG’s HLA types assuming no CT. As shown in Table 4, the
prediction accuracies of HIBAG and BEAGLE are similar. For
samples of European ancestry, BEAGLE yields higher prediction
accuracies than HIBAG at HLA–DRB1 and DPB1 (92.9% versus
92.1% and 94.7% versus 93.8%, respectively). However, HIBAG
performed better at all other loci. For the non-European
ancestries, the accuracies of BEAGLE and HIBAG are similar. A
clear advantage of HIBAG over BEAGLE in the context of imputing
HLA types is that HIBAG can be run efficiently using published
classifiers, whereas BEAGLE requires a training data set.

DISCUSSION
We propose HIBAG, an ensemble classifier, for the imputation of
HLA types from dense SNP data. The HIBAG classifier consists of
individual classifiers and makes a prediction by averaging HLA-
type posterior probabilities over the collection. Our comparisons
indicate that HIBAG performs marginally better than HLA*IMP
developed by Dilthey et al.6 and is comparable with BEAGLE.
HIBAG prediction accuracies for individuals of European ancestry
range from 94.8% to 99.2% when using a CT of 0.5 with a subset of
SNPs common to several popular Illumina platforms.
Studies that identify significant associations within the MHC

may be limited by the high cost of typing required to investigate
the contributions of underlying HLA alleles. Our SNP-based
method provides an efficient way of imputing HLA types using
genome-wide genotype data. A previous study has indicated that
MHC-class-I-mediated events, principally involving HLA-B*39,
contribute to the etiology of type 1 diabetes.27 HLA alleles are
associated with some of the strongest adverse drug reactions, for
example, B*57:01 with Abacavir, which is used to treat HIV and
AIDS,28 and B*58:01 with Allopurinol used primarily to treat
hyperuricemia.29 Our results show that the predictions of B*57:01
and B*58:01 have 100% sensitivities and specificities with call rates
495% for Europeans.
HIBAG produces the posterior probability of each HLA type. A

direct application is to use the best-guess genotypes and CT in
downstream association analysis, such as an additive logistic
regression model.14 As shown in Supplementary Figure S4,
individuals with higher posterior probabilities have a higher
likelihood of being a correct call, and a CT of 0.5 approximately
corresponds to a prediction accuracy of 80%. An alternative could
be to model the uncertainty of prediction via posterior
probabilities.
Our method and parameter estimates are freely available in the

HIBAG R package. A typical parameter file for imputing HLA types
contains only haplotype frequencies at different SNP subsets
rather than individual training genotypes. Further, unlike the web-
implemented HLA*IMP, HIBAG does not require the uploading of
genotype information to a website, which could raise concerns
over data privacy, or having access to large training HLA data sets.
To facilitate future use of this method, we have prepared pre-fit
classifiers based on STUDY Data (defined in ‘Data for performance
assessment’), which can be used to impute HLA types in new SNP
data. The SNP markers selected in the pre-fit classifiers are
common to the Illumina 1M Duo, OmniQuad, OmniExpress, 660K
and 550K platforms within a 500-kb flanking region of each HLA
gene.
In our published pre-fit classifiers, we selected 1042 SNPs in

total. However, it is possible to find a smaller set of SNPs without
sacrificing accuracy using our method. HLA*IMP has developed a
selection approach to identify a small set of most informative SNPs
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Figure 2. The relationship between accuracy and call rate when
HLARES data for individuals of European ancestry are divided into
training and validation sets with equal sizes. On the curve for each
HLA (human leukocyte antigen) locus, the 0.5 call threshold is
indicated by �.
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for predicting HLA types. With respect to HIBAG, variable selection
is implicitly incorporated during the construction of each
individual classifier, and more important SNP markers tend to be
used more frequently in the ensemble. This use of selection
frequency for SNPs provides information to identify a small set of
SNPs. The use frequencies of SNPs in the published pre-fit
classifiers are shown in Supplementary Figure S8. SNPs with low
importance do not tend to contribute to accuracy. For example, a
threshold of 25 classifiers was used to filter out less important
SNPs for European ancestry, and the total number of SNP
predictors for HLA-A, B,..., DPB1 changes from 1042 to 779 without
reducing accuracy (data not shown).
When HLARES data of European ancestry were investigated, the

overall accuracies increase with the training sample size but are
only slightly improved after 500 training samples, as shown in
Figure 3. Rare alleles with frequency o1% have significantly lower
prediction accuracies than the common alleles. The size of sample
sets required to accurately type rare alleles using an imputation
methodology is impractical. Although we observed 144 unique
HLA-B alleles in our total study population (n¼ 5515), typing of
428 000 individuals for HLA-B by the Nation Marrow Donor
Program30 identified only 184 unique HLA-B alleles, still
representing o10% of the 1898 four-digit HLA-B alleles currently
identified by IMGT.
The accuracies of common alleles for HLA-A, B, C and DQB1 are

499%, whereas that of DPB1 is the lowest (B97%). Possible
reasons for imperfect predictions on the alleles of 41% frequency
are data quality of genotypes, the ambiguity of HLA alleles due to
typing approach, missing SNPs and loss of distinguishable SNP
patterns. Leslie et al.5 did observe chromosomes that have nearly
identical SNP patterns, yet carry different HLA alleles.5 Denser SNP
markers, especially those SNPs in an HLA gene, may increase
overall accuracies.
A simulation study indicates that the HIBAG method is robust to

missing SNP markers with a fraction up to 50%, as shown in
Supplementary Figure S7. The missing SNP fraction of the original
validation set is very small (o0.1%). For each simulation run, we
randomly remove a fraction of the SNP predictors used in the
ensemble classifier (for example, 10, 20%) for the validation set
where every validation sample has the same missing SNPs and
repeat this procedure 100 times. The box plots of accuracies
(CT¼ 0 and 0.5) and call rate are shown. The missing SNPs do not
significantly reduce the accuracies for missing fractions o80%,
but it does decrease the call rates.
Whether the HIBAG algorithm is sensitive to deviations from

HWE was assessed with multi-ethnic samples where HWE does not
hold. For each ethnicity, STUDY data were divided into training

and validation sets with equal sizes as described in the previous
section. A multi-ethnic HIBAG model was built using all training
samples from multiple ethnicities, and then the accuracies were
calculated for each validation set. As shown in Supplementary
Table S9, the prediction accuracies of multi-ethnic models were
similar to those of ethnic-specific models without significant
decrease; there was even some improvement on accuracies.
Furthermore, our algorithm imputes new study subjects one by
one; thereby the imputed HLA type of an individual is not affected
by the other new subjects. These results indicate that our method
is robust to departures from HWE.
HLA*IMP relies on high-quality haplotypes in the training data,5

which contain the HLA locus of interest and SNP predictors.
However, most experimental techniques for determining SNPs do
not provide haplotype information, and the quality of
computational phasing of unrelated individuals may not be
satisfactory. On the other hand, BEAGLE assumes variable-length
Markov chains besides HWE to represent linkage disequilibrium,31

which is a bias–variance tradeoff in a possibly very high-
dimensional problem.32 As linkage disequilibrium in the xMHC
typically follows a complex pattern, HIBAG does not make any
assumption except HWE and is possibly more suitable to the
complex MHC region than methods with additional assumptions.
It is important to realize the potential limitations, and our

findings should be interpreted with caution. The numbers of HLA
alleles documented in the IMGT-HLA database2 are much larger
than the numbers investigated in our study. For example, the
numbers of four-digit HLA alleles from IMGT are 1365, 1898 and
1006 at the HLA-A, B and C loci, respectively, and new alleles are
routinely being discovered, but we have only 85, 144 and 49
alleles, respectively, in our training samples. The prediction
accuracies reported here are computed from restricted
validation samples whose HLA alleles are present in the training
set. Quite large training sets might be required to successfully
predict most of HLA alleles in the IMGT-HLA data set, as 10 copies
of an allele in the training database are generally thought to be
required to provide high sensitivity.5

In summary, we propose a new method for HLA type
imputation with performance similar to existing methods, includ-
ing HLA*IMP and BEAGLE, with several differentiating factors. The
HIBAG and BEAGLE utilize all the available SNPs in the region,
which results in increased accuracy for these methods versus
HLA*IMP. The freely available HIBAG method and accompanying
parameter estimates (published in this paper) enable the method
to be applied without the need to upload data to an external
website (that is, HLA*IMP) or to have access to a training data set
(BEAGLE).
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APPENDIX

Individual classifier
Let y denote an HLA allele, x a SNP allele and g a SNP genotype.
An HLA type at a specified locus is denoted as an unordered pair
of alleles yð1Þ; yð2Þ

� �
. Let n be the total number of samples, m be

the total number of candidate SNPs and the index j (1p j p m)
the jth SNP marker. An individual classifier Ck (k¼ 1, 2,y, K) is built
from the posterior probabilities of HLA types given by the SNP
genotypes at a set of loci Sk:

Ck : Prðhyð1Þ; yð2Þi j gj; :::8j 2 SkÞ / Prðhyð1Þ; yð2Þi; gj ; :::8j
2 SkÞ ð1Þ

where K is the total number of classifiers.
The joint probability over SNP genotypes for an HLA type

Prðhyð1Þ; yð2Þi; gj; :::8j 2 SkÞ can be estimated from training geno-
types via haplotype frequencies. As unexpected haplotypes
sometimes are observed in the genotypes of new individuals
due to genotyping error, SNP mutation or rare haplotypes with
o10� 5 frequency, an error rate per locus (10� 5) is used. Under
the HWE assumption, the joint probability is the summation of

frequencies of two associated haplotypes:

Prðhyð1Þ; yð2Þi; gj ; :::8j 2 SkÞ¼
X

O

ffy0; x0j ;:::8j2Skgffy00; x00j ;:::8j2Skg

ð2Þ

where the set O represents all haplotype pairs of fy0; x0j ; :::8j 2 Skg
and fy00; x00j ; :::8j 2 Skg whose genotypes are consistent with the
observed ones fhyð1Þ; yð2Þi; gj ; :::8j 2 Skg, and ffy; xj ;:::8j2Skg
denotes the frequency of a haplotype fy; xj; :::8j 2 Skg.
The haplotype frequencies f̂fy;xj ;:::8j2Skg are estimated from the

training data T and lead to estimated conditional probabilities of
genotypes

P̂rkðhyð1Þ; yð2Þi j gj; :::8j 2 SkÞ ð3Þ

in equation (1). For a new individual with SNP profile
fgnew1 ; :::; gnewm g, the prediction of Tk is

argmax Prkðhyð1Þ; yð2Þi j gnewj ; :::8j 2 SkÞ
hyð1Þ; yð2Þi

ð4Þ
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Box 1 The attribute bagging algorithm

1. For k¼ 1 to K:

J Draw a bootstrap sample Bk of size n (no. of training
samples) with replacement from the training data, and Bk
contains all candidate SNPs.

J Build an individual classifier Ck on Bk by variable
selection with a random component (in Box 2), where
Ck uses only a small set of SNPs Sk.

2. Output the ensemble of individual classifiers C¼fCkgK1 .
3. To predict the HLA type of a new individual with SNP profile
fgnew1 ; :::; gnewm g, we average the posterior probabilities
P̂rkðhyð1Þ; yð2Þi j gnewj ; :::8j 2 SkÞ among all Ck. The prediction
is

argmax
hyð1Þ ; yð2Þi

1
K

XK

k¼ 1

Pr
k
ðhyð1Þ; yð2Þi j gnewj ; :::8j 2 SkÞ ð5Þ

Attribute bagging algorithm

The attribute bagging algorithm is shown in Boxes 1 and 2. K is
the total number of individual classifiers, and mtry is the
number of variables randomly sampled as candidates for
selection (mtry¼

ffiffiffiffi
m
p

by default). For each step of adding a new
predictor, mtry variables are re-drawn randomly from the
candidate SNPs.
We find in our experiments that K¼ 25 is sufficient to

give a highly accurate and stable ensemble classifier, and
this number of bootstrap replicates was also used by Breiman.15

The prediction accuracy is not sensitive to mtry as all of SNP
markers are determined whether or not they are included in
the SNP set for each construction of individual classifier.
The motivation for selecting mtryom is to increase the
independence of individual classifiers and reduce the variance
of the ensemble by distributing classifiers randomly over all SNPs.
However, if mtry is too small compared with m (for example,
mtry¼ 1), the variable selection approach is likely to select non- or
less-informative SNP markers. Although this would not necessarily
reduce accuracy, it would require larger numbers of classifiers. In
general, reducing mtry reduces both the correlation and the
strength of individual classifiers, and increasing it increases both,
therefore the optimal range of mtry could be usually quite wide. In
our experiments, the parameter setting mtry¼

ffiffiffiffi
m
p

is appropriate
for both a small set as well as hundreds of SNP predictors after
taking the computational burden into account. In this study, we
used the parameter settings K¼ 100, mtry¼

ffiffiffiffi
m
p

for all the tables
and figures.

Box 2 The algorithm of variable selection with a random
component for an individual classifier CK

1. The set of loci for estimating haplotype frequencies is initially
set to Sk ¼f+g.

2. Build an individual classifier Ck on the bootstrapped data Bk, by
recursively repeating the following steps from (i) to (iii) until it is
not possible to reduce the losses1:

(i) Select mtry SNP markers at random without replacement
from the m total candidate SNPs (mtryo m) except the
marker(s) in Sk.

(ii) Select the best SNP marker j* based on the criteria of
losses1 among mtry.

(iii) Add the selected SNP marker to the set Sk  Sk þfj�g.

3. Output Ck and Sk.

1: reduce both the 0–1 loss and log likelihood loss of Ck (see the
section ‘Details of the loss criteria’).

Details of the loss criteria:
Each bootstrap sample Bk leaves out 1/eE37% of the training samples,
and these left-out samples can be used to form accurate estimates
(called out-of-bag estimation).21 The 0–1 loss of Ck is calculated from
the out-of-bag samples to avoid over-fitting of that individual classifier.
We minimize the 0–1 loss first, and if the 0–1 losses equal each other
then choose the SNP marker with the lowest log likelihood loss. We
add SNP markers until it is not possible to further reduce both the
losses. Unlike the traditional variable selection with a penalty for the
number of parameters, for example, the Akaike criterion, our approach
adds as many SNP predictors as possible to avoid variable searching
stopping too early. Although more variables in an individual classifier
result in greater computational complexity and larger variance of
estimates, bagging and use of different variable subsets help to
improve the stability of ensemble classifier.17,15 We therefore control
model over-fitting twice, first at the level of the individual classifier and
then at the level of aggregation in the ensemble.
The 0–1 loss of Ck is calculated from the out-of-bag samples to

avoid over-fitting of that individual classifier,

0� 1 loss¼ 1� accuracy of outofbag samples

and the log likelihood loss of Ck is computed to assess fitting the
model of haplotype frequencies with the assumption of HWE
using the in-bag samples Bk,

log likelihood loss¼ � 2�
Xn

i¼ 1

lnP̂rkðhyð1Þ; yð2Þii j gj;i; :::8j 2 SkÞ

where the subscript i indicates the ith individual in Bk.
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