

King’s Research Portal

DOI:
10.1109/TCAD.2016.2547919

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Balsamo, D., Weddell, A. S., Das, A., Arreola, A. R., Brunelli, D., Al-Hashimi, B. M., Merrett, G. V., & Benini, L.
(2016). Hibernus++: A Self-Calibrating and Adaptive System for Transiently-Powered Embedded Devices. Ieee
transactions on computer-Aided design of integrated circuits and systems, 35(12), 1968-1980.
https://doi.org/10.1109/TCAD.2016.2547919

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 16. Aug. 2022

https://doi.org/10.1109/TCAD.2016.2547919
https://kclpure.kcl.ac.uk/portal/en/publications/hibernus(334301c9-3896-4d0d-b70b-b2574df40cfb).html
https://kclpure.kcl.ac.uk/portal/en/persons/bashir-alhashimi(c2f9ff89-3413-42f3-8d15-f287dbb7a559).html
https://kclpure.kcl.ac.uk/portal/en/publications/hibernus(334301c9-3896-4d0d-b70b-b2574df40cfb).html
https://kclpure.kcl.ac.uk/portal/en/journals/ieee-transactions-on-computeraided-design-of-integrated-circuits-and-systems(be4d1edf-c649-451d-8c2b-8de69cc60ea9).html
https://kclpure.kcl.ac.uk/portal/en/journals/ieee-transactions-on-computeraided-design-of-integrated-circuits-and-systems(be4d1edf-c649-451d-8c2b-8de69cc60ea9).html
https://doi.org/10.1109/TCAD.2016.2547919

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 1

Hibernus++: A Self-Calibrating and Adaptive System for

Transiently-Powered Embedded Devices

Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez Arreola,

Davide Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett and Luca Benini

Abstract—Energy harvesters are being used to power au-
tonomous systems, but their output power is variable and
intermittent. To sustain computation, these systems integrate
batteries or supercapacitors to smooth out rapid changes in
harvester output. Energy storage devices require time for charg-
ing and increase the size, mass and cost of systems. The
field of transient computing moves away from this approach,
by powering the system directly from the harvester output.
To prevent an application from having to restart computation
after a power outage, approaches such as Hibernus allow these
systems to hibernate when supply failure is imminent. When
the supply reaches the operating threshold, the last saved state
is restored and the operation is continued from the point it
was interrupted. This work proposes Hibernus++ to intelligently
adapt the hibernate and restore thresholds in response to source
dynamics and system load properties. Specifically, capabilities
are built into the system to autonomously characterize the
hardware platform and its performance during hibernation in
order to set the hibernation threshold at a point which minimizes
wasted energy and maximizes computation time. Similarly, the
system auto-calibrates the restore threshold depending on the
balance of energy supply and consumption in order to maximize
computation time. Hibernus++ is validated both theoretically and
experimentally on microcontroller hardware using both synthe-
sized and real energy harvesters. Results show that Hibernus++

provides an average 16% reduction in energy consumption and
an improvement of 17% in application execution time over state-
of-the-art approaches.

Index Terms—IEEEtran, journal, LATEX, paper, template.

I. INTRODUCTION

RECENT momentum of the Internet-of-Things (IoTs) is

driving the need for embedded systems comprising of

one or more ultra low-power and resource constrained sen-

sors [1]. Power management of these devices is emerging as

a primary challenge for system designers as they typically

have to last for many years, without intervention to charge

or replace batteries [2]–[4]. Energy harvesting (EH) offers the

Manuscript received Mmmmmm dd, yyyy. This work was supported by
EPSRC Grants EP/L000563/1 and EP/K034448/1 (the PRiME Programme
www.prime-project.org). It was also supported by a Telecom Italia s.p.a. PhD
grant and PHIDIAS (EU 7th Framework Programme CA 318013).

Experimental data used in this paper can be found at
DOI:10.5258/SOTON/389749 (http://dx.doi.org/10.5258/SOTON/389749).

D. Balsamo, A. Das, A. S. Weddell, A. R. Arreola, G. V. Merrett and
B. M. Al-Hashimi are with the Pervasive Systems Centre, Electronics and
Computer Science, University of Southampton, UK. D. Brunelli is with the
Department of Industrial Engineering, University of Trento, Italy. L. Benini
is with the Department of Electrical, Electronic and Information Engineering
“Guglielmo Marconi” (DEI), University of Bologna, Italy.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.201x.xxxxxxx

-6.0

-3.0

0.0

3.0

6.0

0 2 4 6 8

V
o
lt

a
g
e

(V
)

Time (seconds)

a) micro-wind turbine

290.0

340.0

390.0

440.0

00:00:00 06:00:00 12:00:00 18:00:00 00:00:00

C
u

rr
en

t
(µ

A
)

Time (hh:mm:ss)

b) photovoltaic module

Fig. 1. Example outputs from energy harvesters: voltage of a wind harvester
over one ‘gust’, and current from an indoor photovoltaic module over a day

potential for low-power systems to operate without batteries,

by generating electrical power from environmental sources in-

cluding light, vibration, motion or temperature differences [5]–

[7].

A primary challenge in developing IoT systems with micro-

power environmental energy harvesters is the unpredictable

nature of the sources. The power obtained from energy har-

vesters is dependent on the harvester, deployment location, and

often on other factors such as weather, time of day, or machine

activity. Kinetic or wind energy harvesters typically give an

AC output relative to the frequency of vibration or rotation,

while photovoltaic modules or thermoelectric generators typi-

cally give a more slowly-varying DC output. To highlight this

transient nature, Figure 1 plots the output of (a) a micro wind

turbine, and (b) a photo-voltaic cell. As can be seen from this

figure, the output from the micro wind turbine has a very high

power-cycle frequency (supply falling below 0 V at intervals

of the order of milliseconds). On the other hand, the output

current from the photovoltaic cell is slowly varying, with a

low power-cycle frequency.

The load profile of embedded computing systems is typ-

ically bursty. These systems remain in a low power mode,

waking up to take measurements or perform calculations or

communication. The variability and typically low level of

power output from energy harvesters (Figure 1) implies that

systems powered directly from their output would result in

repeated power-cycling, restarting program execution from the

beginning. To address this, storage devices are typically used

to buffer energy so that systems can operate continuously

and avoid unstable operation. However, energy storage devices

require time to charge up to a usable voltage, and increase the

size, mass and cost of the system. As an example, the twoCopyright c©2015 IEEE. Personal use of this material is permitted.
However, permission to use this material or any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 2

Time

M
ic

ro
co

n
tr

o
ll

er
 V

cc
Vmax

Vmin

Restore

Hibernate

OFF Active OFF Active OFF Act.

Hiber.

Restore

Hiber.Hiber.

OFFActive

Restore

0V

VH

VR

Fig. 2. Operation of a transiently-powered system

AA-sized batteries on a Crossbow Telos mote [8] occupy over

half of its overall volume.

For IoT devices that have constrained dimensions, such

as implantable wearable bio-sensors [9], personalized health-

care [10], home and building automation [11] and RFID

devices [12], it is desirable to power systems directly from the

energy harvester without using any energy storage other than

decoupling and parasitic capacitance. However, this makes

systems susceptible to frequent power interruptions and resets

caused by the transient supply. Clearly, these two cases (con-

ventional energy storage to buffer continued operation, vs zero

energy storage) represent two extremes of a continuum, where

an intermediate solution incorporating some capacitance may

provide improved behaviour. However, our research focuses

on the extreme case where systems have no additional energy

storage. To address this, we developed Hibernus [13]: an

approach to enable computation to be sustained in systems

powered directly from energy harvesters. The principle behind

Hibernus is to save a system snapshot (RAM and CPU

registers) to non-volatile memory and suspend operation when

power supply failure is imminent, i.e. when the supply voltage

falls below a predefined threshold. Similarly, when the supply

voltage increases above a restore threshold, Hibernus restores

the last snapshot to continue operation from the point it

was suspended. Figure 2 shows the generic operation of

Hibernus; the voltage across the microcontroller is plotted

in the figure. When the voltage falls below VH , the system

stores a snapshot and hibernates. When the voltage rises above

VR, the system restores a snapshot and continues operation.

A further extension to Hibernus considered the addition of

Dynamic Frequency Scaling (DFS) to modulate consumed

power in response to available power [29]. The main limitation

of Hibernus is that it requires an off-line characterization to

fix VH and VR, specific to the platform being used.

In this paper we develop Hibernus++ an adaptive version of

Hibernus, which adjusts the hibernate and restore thresholds

dynamically in response to the system power consumption,

the on-board decoupling capacitance and the dynamics of

the energy harvester (Figure 1). The objective is to sustain

operation for a longer duration within the constrained power

budget. Following are the novel contributions of this work:

• the ability to self-configure the hibernate and the restore

thresholds on-the-fly, depending on the dynamics of the

power source and system power consumption;

• theoretical formulation of the approach, including charac-

terizing the hibernate and restore thresholds for a specific

energy harvester source; and

����

�������	�
�
��������������
�	�������

�������	�
�
��������������
�	�������

�� ���� ��

�

�� ��

Fig. 3. Task execution with and without checkpoints

• a thorough practical validation using both synthesized and

real EH sources on an FRAM-based microcontroller with

a range of applications.

We discuss the current state of research in this field and

the dynamics of energy harvesters in Section II. We then

develop a model to represent the operation of transiently-

powered systems in Section III. The approach is explored

mathematically in Section IV and then practically validated in

Section V: firstly using synthesized energy harvesting signals

(to enable comparison between methods), and then through the

use of real energy harvesters. Finally, in Section VI a cold-

start circuit is proposed which enables operation of the system

with ultra-low input currents.

II. BACKGROUND AND RELATED WORK

A new paradigm, which addresses computing challenges

with transient power sources such as energy harvesting, is of

‘transiently-powered computing’ [14]. This typically borrows

from the concept of checkpointing, which has been used

in large-scale computing for decades to provide robustness

against errors or hardware failure [15]. This technique involves

systematically saving data to non-volatile memory (NVM).

State-of-the-art embedded systems use a variety of classic and

advanced NVM structures to save their state. Examples of

memories used for state retention are flash [16] or battery-

backed SRAM memories [17].

To recover from a failure, systems roll back to the previous

valid checkpoint, before continuing operation. Figure 3 shows

task execution (a) without and (b) with n checkpoints. The

task’s execution time T is divided into (n + 1) intervals. At

each interval, the task is executed for a duration Tc =
T

(n+1) . In

the figure, To represents the time overhead of checkpointing,

i.e., saving the system state. To does not include the restore

time, which needs to be considered as it introduces a sig-

nificant overhead that depends on the chosen checkpointing

policy. Thus, the task execution time with n checkpoints is

(n + 1)(Tc + To) = (T + (n+ 1)To). However, a drawback

of checkpointing is that it is impossible to predict the exact

time of failures, so computation time will be wasted by (1)

taking unnecessary checkpoints, and (2) rolling back to the

last checkpoint if power failure occurs towards the end of a

checkpoint interval.

Attempts have been made to optimize systems to address

these problems, for example by assuming different failure

distributions. Recently, the checkpointing concept has been

applied to embedded devices with unstable power supplies,

to avoid power-cycling causing loss of computation. Check-

pointing enables systems to save their state so that, when

their power supply resumes, they can continue operation from

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 3

the last valid checkpoint. As shown in Figure 2, this allows

computation to continue across several power-cycles, which

would conventionally have caused a system to reset repeatedly.

Prominent works in this area include Mementos [18], QuickRe-

call [19] and Hypnos [20]. Mementos saves the system state to

non-volatile memory (NVM) periodically, which enable it to

return to a previous checkpoint after a power failure. A number

of compile-time checkpoint placement heuristics are proposed,

including at the beginning of every function-call or before any

loop. Disadvantages of this approach include the use of flash

memory (which is slow and power-hungry); the fact that many

checkpoints will be taken (most of which will be redundant);

and that space must be reserved in non-volatile memory for

two complete snapshots in case a power interruption occurs

whilst a snapshot is being taken. Mementos is also selective

about the data it saves. A similar selective snapshot approach,

where the snapshot contains only data which has changed since

the last snapshot, has also been proposed in other work [14].

This offers behaviour complementary to the approaches pre-

sented in this paper, permitting a reduction in the time (and

hence energy) required to hibernate. The complete system

state (e.g. the peripherals) cannot be restored as it takes too

much time with flash memory. This limits its applicability

to purely computational applications, rather than embedded

systems which may need to interface with other devices. A few

recently published papers show that the time and energy cost

of distributed state-retentive logic elements can be lowered

by orders of magnitude with respect to traditional flash-based

approaches using alternative technology such as FRAM [21]

and ReRAM [22].

QuickRecall [19] proposed a refinement to the Mementos

technique, involving the use of a microcontroller with FRAM

non-volatile memory, hence reducing the overheads of saving a

snapshot. Their approach also used FRAM as unified memory,

so that the system’s RAM was not used for storing variables.

QuickRecall ensures checkpointing by setting an appropriate

trigger voltage to interrupt the normal program execution and

save a snapshot. Furthermore, it exploits an external power

management unit that uses hysteresis to turn on and off the

supply when the operating voltage is above or below two

fixed thresholds. A disadvantage of QuickRecall is that it uses

an inflexible fixed voltage threshold to prompt an interrupt

to take a snapshot. It also relies on the use of a processor

with unified FRAM. However, by only utilizing this type of

memory the system consumes more energy than with SRAM,

especially for write operations, introducing a significant over-

head in active mode. Finally, there is an overhead due to

the initialization of the microcontroller and the peripherals,

which varies depending on the application, meaning that it is

not application agnostic. Hypnos [20] proposed an ultra-low

power sleep mode for micro-controllers that overcomes the

limitations of both these approaches. This technique is based

on the observation that the on-chip SRAM in a microcontroller

exhibits data retention even at a much lower supply voltage

(as much as 10x lower) than the typical operating voltage

of the microcontroller. Hypnos exploits this observation by

performing extreme voltage scaling when the microcontroller

is in sleep mode. However, this solution suffers from a

Y N

Save snapshot to

non-volatile memory

Snapshot
saved OK?

Restore

state

Restart

application

System calibrated?

Normal Operation

until supply drops

Interrupt

Y

N

Supply available

 Interrupt

Supply fails

Loss of supply

Sleep until supply recovers

Self-Calibration

Supply Test

Interrupt

Fig. 4. Operation of Hibernus++

data retention problem in cases where the power source is

unavailable for a prolonged period of time.

Recently, a number of hardware approaches to transient

computing have been proposed, which explore Non-Volatile

Processor (NVP) architectures [25] to optimise behaviour.

Wang et al. [26] proposed a NVP using ferroelectric flip-

flops that incorporate both volatile and non-volatile elements

for checkpointing; Bartling et al. [27] presented an ARM-

based NVP, exploiting SoC FRAM-based logic arrays for

state retention, and Sakimura et al. [28] presented a 16-

bit RISC CPU based on MeRAM. The major advantage of

customized NVPs such as these is the significant reduction in

time and energy for data retention. However, these solutions

are currently still experimental research platforms based on

technologies and NVMs that are not available on the market;

hence their power consumption, performance and cost are not

well understood. In contrast, Hibernus++ can be applied to

conventional off-the-shelf NVM processors, and use software

approaches to create NVPs.

III. HIBERNUS++: ENABLING COMPUTATION WITH

INTERMITTENT POWER SUPPLIES

An ideal transiently-powered system hibernates at the last

possible moment before supply failure, and resumes at the

earliest optimal point so that the maximum amount of compu-

tation can be carried out before the next power failure. The aim

of our approach is to maximize the useful computation that

can be carried out by transiently-powered systems with a given

power source, without the need to add energy storage. We aim

for systems to be able to use power whenever it is available;

this may be for periods as short as a single cycle from EH

with an alternating current (AC) output, or continuously with

minimal overheads if the output of the EH is sufficient to

continuously power the system.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 4

A. Principle of Operation

The following terms are introduced here to aid understand-

ing of the operating principles:

• Snapshot: copying the system state (RAM, processor and

peripheral registers) into non-volatile memory.

• Checkpoint: a point in the application execution when

the supply voltage is polled to decide whether a snapshot

should be taken.

• Hibernate: save a snapshot and enter in low-power mode.

• Restore: restore a system state from non-volatile memory

and continue operation.

Figure 4 outlines the operation of Hibernus++. When power

is first applied to the system (in other words, the supply voltage

rises above the minimum operating voltage), the system checks

whether it has been calibrated: if not, it runs the calibration

routine, which sets the voltage threshold for hibernation (VH)

by evaluating the rate of voltage drop in the case of a sudden

loss of supply. Next, the system tests its supply and (1)

continues if the supply provides sufficient power to sustain

the system’s operation in active mode, or (2) sleeps, for lower-

power supplies, until the supply voltage reaches a sustainable

value. If a snapshot was attempted but failed, VH is increased

by 0.1V and the application is restarted from the beginning.

If a valid snapshot has previously been stored in memory,

the system restores the snapshot and continues operation.

Otherwise, execution is started from the beginning. Following

these routines, normal operation of the system continues until

the supply voltage drops below VH , at which point the system

hibernates. If the supply voltage recovers without dropping

below the microcontroller’s minimum operating voltage, Vmin,

the system resumes operation without the need to restore its

state. Otherwise, if the supply voltage has dropped below Vmin

causing the volatile memory contents to be lost, the system

restores its state, provided that it was saved successfully.

B. Hibernation Strategy and Calibration Routine

As seen in Figure 3, checkpointing involves a timing over-

head (To). It is also associated with an energy cost (represented

as Eo) for storing a snapshot in the non-volatile memory. With

n checkpoints, the total execution time and energy overheads

are (n + 1) · To and (n + 1) · Eo, respectively. Clearly, the

fewer checkpoints there are, the lower the time and energy

overheads. Conversely, when a power outage occurs, the

checkpointing system rolls back to the last valid checkpoint.

In the worst case, the loss in useful computation is Tc =
T

(n+1)
(corresponding to the case where the outage occurs at the end

of a checkpointing segment, during or just before the process

of saving the snapshot). Clearly, the fewer checkpoints there

are, the higher the loss of computation during outage.

For systems with checkpointing operating from transient

sources, an error condition refers to the state where the power

supply drops below the minimum operating voltage of the

microcontroller. The power failure probability can be very high

for some energy harvesting sources (with the frequency being

many Hz), so a trade-off exists for selecting the number of

checkpoints. To address this, Hibernus++ uses an adaptive

approach, where the system saves a snapshot and hibernates

only when a power failure is imminent.

Operating in an ‘ideal’ manner, i.e. hibernating at the last

possible moment, is the most efficient strategy but it is risky.

The consequences of a untimely hibernation may be severe: it

may mean that the system is unable to restore its state, losing

valuable data that was stored in volatile memory, and has to

restart its computation from the very beginning.

In general, the remaining operational time Tχ (before power

loss) for a given system can be expressed by:

Tχ =
(V − Vmin)C

Il − Ih
− Th (1)

with initial supply voltage V , minimum operating voltage

of the microcontroller Vmin, supply capacitance C, and time

for hibernation Th. In order to compute this accurately, the

harvested current Ih and load current Il must be known. This

may be used to identify the optimal time for a hibernation

operation to be triggered, but assumes that the load and

hibernation currents are constant. Moreover, if only one non-

volatile memory block is used for snapshot, a power loss

during a snapshots is likely to result in the loss of all data up

to that point. If two memory blocks are used (and the system

alternates between saving to each of them), see Mementos

[18], or if the power loss occurs before a snapshot starts, all

data since the last successful snapshot will be lost. If there

is a “repetitive” power failure caused by the dynamics of the

power supply (i.e. a sinusoidal waveform input) and the load

behavior, the system could repeatedly fail to save state and get

‘stuck’. This means that a substantial amount of computation

time can be lost from an incomplete or missed snapshot.

To minimize the loss of computation, it is necessary for the

system to operate conservatively or adaptively in response to

the power supply dynamics.

The dynamics of a power source can be learned to predict

the moment at which power is likely to be lost. However,

given the natural variability of energy harvesting this would

be imperfect, resource-intensive, and would incur significant

energy and computation cost. We address this by designing

Hibernus++ to operate with the conservative assumption that

the incoming power may drop to zero at any time, and so the

system should be able to hibernate using only the energy stored

in the system’s internal capacitance. To enable this, a cali-

bration routine is used to determine the hibernation threshold,

VH . An interrupt is configured to cause a snapshot to be saved

when the supply voltage drops below this threshold, i.e., saving

state once per power interruption. Moreover, this calibration

strategy makes the hibernate transparent and portable across

multiple systems by adapting VH at run-time considering the

decoupling capacitance.

Figure 5 shows the self-calibration routine, which is used

to determine VH . It waits for the supply voltage to reach the

calibration start voltage (Vcal). Once this voltage is reached,

the harvesting source is disconnected or short-circuited by

closing the switch in Figure 6, and a complete snapshot is

saved to non-volatile memory. At this stage, in the worst case

scenario every significant peripheral should be enabled to take

into account their power consumption.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 5

Fig. 5. Self-calibration of the hibernation voltage threshold, VH

Fig. 6. Hibernation self-calibration circuit

The drop in supply voltage due to hibernation (the process

of storing the snapshot) is given by Vcal − Vmeas, where

Vmeas is the voltage measured at the end of the hibernation

process. To ensure that the microcontroller has sufficient time

for hibernation before the voltage drops below the minimum

operating voltage Vmin, the hibernation threshold is set as

VH = Vmin + (Vcal − Vmeas) (2)

If selective snapshots were also utilized [14], simple modula-

tion of VH by the fraction of state changed could be performed,

hence minimizing the time required to hibernate.

If the calibration does not succeed, the capacitance C is

not large enough to allow hibernation (equation 3). Therefore,

extra capacitance needs to be added to the system.

Cmin ≥
Ih · Th

(Vmax − Vmin)
(3)

Equations 2 and 3 are derived based on the assumption that

the current drawn is approximately constant across the range of

supply voltages from Vmin to the microcontroller’s maximum

voltage Vmax. To investigate the validity of this assumption,

the current draw of a TI MSP430FR5739 microcontroller

between 2.0 and 3.6 V was measured, and found to vary by

less than 10%. In our experimental setup, Vcal is initially set

to VMCUon (microcontroller on), while the microcontroller is

switched off once Vdd drops below VMCUoff (microcontroller

off). For the MSP430FR5739, the typical values for VMCUon

and VMCUoff are 1.94V and 1.88V, respectively.

Fig. 7. Calculated voltage drop (Vcal - Vmeas) with different Vcal

If the calibration routine fails, Vcal has to be increased (see

Fig. 5). Vcal is first set as low as possible (Vcal = VMCUon)

to determine the lowest value of VH . Therefore, an increased

Vcal results in a higher VH than necessary (see Figure 7).

C. Restore/Wake-up Strategy and Triggering

As with the calibration routine, the restore strategy is also

important in order to adapt the system to the dynamics of the

energy harvesting source. We present a restore strategy that

classifies the type of input source at run-time and enables the

system to adapt, taking full advantage of the available source.

To determine this optimal restore point, we first consider

the system as a transducer, which extracts energy from the

environment and uses this energy to directly power the load

without any energy storage. This system can operate at time

t when

Ps(t) ≥ Pc(t) (4)

where Ps(t) is the power output from the energy source

at time t and Pc(t) is the power consumed at that time.

However, with small energy storage (e.g. on-board decoupling

capacitance), the above equation expands to

∫ T

0

Ps(t)dt ≥

∫ T

0

Pc(t)dt+ Eo ∀ T ≥ 0 (5)

where Eo is the initial energy stored in the on-board

decoupling capacitance. The system tests the supply, using a

short segment of code, and classifies it as either:

• High-power (Ps(t) ≥ Pc(t)): the energy harvester is able

to supply enough power to sustain the operation of the

microcontroller in active mode (high Pc(t)). An example

of this is an AC-output harvester such as a wind energy

harvester; these usually supply large amounts of power

but in short bursts.

• Low-power (Ps(t) < Pc(t)): the energy harvester is un-

able to supply enough power to directly run the microcon-

troller in active mode. Small photovoltaic cells operating

from indoor light belong to this category.

If the source is classified as ‘high-power’, the system will

restore immediately to take advantage of the abundant power.

Conversely, if the supply is classified as ‘low-power’, and the

system tries to restore immediately after the supply crosses the

minimum voltage, the power drawn by the microcontroller will

result in the supply dropping below this minimum value caus-

ing it to hibernate. This will cause repeated cycling between

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 6

Did previous
attempt fa il?

Begin supply tes t

Increase

test start V (Vte st)

Y

Sleep until supply V ≥
test start V (Vtest)

N

Check supply V (Vchec k)

Interrupt

Vsupply ≥ Vchec k?N

Y

End supply test

Execute test program

Stable voltage

detection

Fig. 8. The Hibernus++ supply classification procedure

hibernate and restore operations, wasting useful operating

time. To avoid this, in the ‘low-power’ state, we allow the

voltage across the decoupling capacitance to charge to a higher

voltage before restoring.

The supply test process illustrated in Figure 8 highlights

the classification process. The system sleeps until an inter-

rupt is triggered when the supply voltage rises above the

classification start voltage, Vclass. After this, the system logs

the supply voltage (Vcheck) and executes a short reference

segment of code1 The voltage is checked again on completion.

If Vsupply ≥ Vcheck, the harvester is supplying at least as

much power as is being consumed by the microcontroller in

active mode; the source is classified as a ‘high-power’ source,

and the microcontroller is allowed to restore. Alternatively,

if Vsupply < Vcheck at the end of the test, then the system

classifies the source as ‘low-power’, and enters the ‘stable

voltage detection’ process. During this process, the system

waits until the rate of increase of the supply is below a given

threshold, implying that there is no benefit in waiting longer to

charge the capacitance any further. To do this, the system sets

up two separate interrupts: (1) to detect increasing voltage,

and (2) to act as a time-out. As the supply voltage continues

to increase, the system resets the timer; when the voltage

stops increasing, the timer interrupt intervenes. This allows the

system to detect when the capacitance has stopped charging.

The system will then restore.

IV. MATHEMATICAL ANALYSIS

In this section, we model a microcontroller’s behavior to

estimate the energy overheads associated with hibernation and

restore operations. Figure 9 represents the example system

architecture, where the EH output is half-wave rectified and

1This segment of code consists of a mock restore, which copies 100 bytes
from FRAM to RAM. The number of bytes is determined by two factors: time
and ADC resolution to capture correctly a voltage increment or decrement.

Fig. 9. Schematic of the system architecture for our simplified model

Fig. 10. Current consumption during execution of FFT algorithm at 2.5V

used to power an autonomous device, represented as a constant

current sink. This architecture is implemented later in this

paper (Sec. V), and parameters from this hardware platform

are used in this analysis. In Figure 9, the microcontroller

input (S2) is connected to the output of the energy harvester

(S1) through a diode, which prevents back-flow of charge

to the harvester. Figure 10 plots the current drawn by the

microcontroller during the execution of a test case, which

represents a common long-running task for energy harvesting

systems: a Fast Fourier Transform (FFT) analysis of three

arrays, each holding 128 8-bit samples of accelerometer data.

The maximum current variation is 20 µA which is less than

3% of the mean current of 0.715 mA. For all our analysis in

this section, this variation is ignored and the microcontroller

is represented using a constant current load for a given

application, as shown in Figure 9. This may be considered an

artificial workload and, in practice, real workloads can exhibit

greater variation. However, this model represents a simplified

transient computing system, which allows the exploration of

our approach under controlled conditions. In Section V we

explore our approach with both synthesized and real sources

and compare results with this model.

A. Energy Overhead of Hibernation and Restore

The Hibernus++ algorithm is intended to sustain com-

putation despite power interruption. Initial modelling and

controlled experiments at the start of Section V use sinusoidal

signals as a proxy for a transient source with controllable

ON-time and regularity of interruption, before subsequently

validating using real synthesized harvester performance. To

estimate the energy overhead, fsource denotes the frequency

of a sinusoidal signal powering the microcontroller. The time

for which the microcontroller is active is the sum of the time

to charge the capacitance to its peak value and the time to

discharge. The charging time is approximately

tcharge = t2 − t1 =
1

4 · fsource
−

sin−1
(

VR

Vmax

)

2π · fsource
(6)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 7

0

0.5

1

1.5

2

2.5

3

Time

V
o

lt
a

g
e

 (
V

in
t)

in
 V

o
lt
s

t
1

t
3

t
2

t
2

V
R

V
H

Fig. 11. Behavior with a transient input (in blue). The response is shown in
red, which is the voltage measured after the schottky diode in Figure 9

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (ms)

V
o
lt
a
g
e
 (

V
)

Input Voltage
Hibernus ++

RestoreHibernate

Fig. 12. Microcontroller response to a fully rectified sinusoidal signal

where the first term in the above equation is the rise time of the

input source to its peak value Vmax. The second term, which

represents the time the input signal takes to reach the restore

voltage VR, is discounted from the first term to highlight

the fact that the microcontroller starts its operation when the

supply voltage reaches the threshold VR. Assuming a constant

current sink model, the discharge time is given by

tdischarge = t3 − t2 =
C (Vmax − VH)

IO
(7)

where VH is the hibernate threshold. The total on-time of the

microcontroller using this input source of frequency fsource is

tON = t3 − t1 =
1

4 · fsource
−

sin−1
(

VR

Vmax

)

2π · fsource
+

C (Vmax − VH)

IO
(8)

Let Tapp denote the uninterrupted execution time of an

application powered by a constant voltage source. If this

application is executed by a microcontroller powered using a

full-wave rectified source of frequency fsource, the execution

time is extended by an amount ∆t, which depends on the

number of times the microcontroller hibernates and restores

in this interval. The microcontroller’s response to this full-

wave rectified signal is shown in red in Figure 12. The flat

line in Figure 12 is due to our model assuming zero power

consumption and capacitor leakage in low power mode.

As seen from Equation 8, during the application execution

of duration tON , the microcontroller restores and hibernates

once. The number of restores and hibernates in the entire

application execution duration is given by

Nr = Nh = ⌈
Tapp

tON

⌉ (9)

0 5 10 15 20 25
0

50

100

150

200

Frequency (Hz)

E
n

e
rg

y
 O

v
e

rh
e

a
d

 (

J
)

ActiveActive -> LPM -> Off Active -> LPM

Fig. 13. Energy overhead of hibernate/restore, at various input frequencies

The energy overhead is given by

Eoverhead = Nr · tr · Pr +Nh · th · Ph (10)

where tr and Pr represent the time taken and power con-

sumption for restoring a snapshot, respectively. Similarly, th
and Ph represent the time taken and power consumption for

storing a snapshot, respectively. From equations 8-10 it can

be seen that, as the frequency of the input source increases,

there is an increase in the number of restores and hibernates

leading to an increase in the energy overhead. However, with

an increase in frequency, the time period of the input source

decreases. After a certain frequency, the capacitance starts

charging before the voltage across it drops below VH . This

causes the microcontroller to be continually on, reducing the

energy overhead of restore and hibernate to zero. To find

this break-even frequency beyond which the microcontroller

is continually on, we consider the time from the peak of one

half-wave pulse to the restore threshold of the next pulse. This

interval is given by

tinterval =
1

4 · fsource
+

sin−1
(

VR

Vmax

)

2π · fsource
(11)

where the first term is the time for the input source to drop

from Vmax to 0 and the second term is the time for the input

source to rise from 0 to VR. The microcontroller will be always

on when the discharge voltage during this interval is greater

than the restore threshold VR i.e.,

Vmax −
IO · tinterval

C
≥ VR (12)

Figure 13 plots the energy overhead for the microcontroller

as the frequency of the input source is varied from 1 Hz

to 25 Hz, covering the range of source frequencies typically

generated using a micro wind turbine. As can be seen, the en-

ergy overhead first increases with the frequency (as discussed

before). The model indicates that, at frequencies above 15 Hz,

the microcontroller never drops below Vmin after hibernation,

thus doesn’t need to restore. This results in a sudden drop in

the energy overhead. It is important to note that, when the

microcontroller is alternating between active and low-power

modes, the energy overhead due to hibernation is significant

and therefore rises with increasing input frequency. Above

23 Hz, the microcontroller voltage never drops below VH ,

meaning that the system is permanently powered-on, and

reduces the energy overhead of hibernation/restore to zero.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 8

CC

outin

Fig. 14. Schematic of the test platform and input regulation circuitry

Fig. 15. Schematic of the external comparator circuitry

V. PRACTICAL VALIDATION

The system has been validated with both synthesized and

real EH sources, allowing the overheads of the scheme to be

verified and compared against the state-of-the-art techniques,

Mementos, Hibernus and QuickRecall [23].

Mementos places static checkpoints after function calls

or before loops, referred to as “function” and “loop”. For

a fair comparison, our implementation of Mementos saves

the complete system state (rather than a limited subset) to

non-volatile memory. QuickRecall uses a lightweight, in-situ

checkpointing technique, exploiting FRAM as unified memory.

The experimental set-up is shown in Figure 14. The test

platform uses a Texas Instrument MSP-EXP430FR5739 mi-

crocontroller [24], which is chosen because of its low-power

features as well as its built-in FRAM memory. The EH output

is passed through a Schottky diode: for DC-output EHs,

this acts to prevent the back-flow of current; for AC-output

harvesters, this acts to rectify their output. This is then passed

through a low drop-out (LDO) voltage regulator, which limits

the maximum supply voltage to protect the microcontroller.

The system depends on an external comparator circuit

(Figure 15) which enables interrupts to be triggered when the

supply voltages surpasses threshold set by the microcontroller.

This additional circuit has 8 digital inputs to set the voltage

threshold, and one digital output. It is based on a comparator

(with built-in 1.18 V reference), two analog switches, and a

bank of resistors. This additional circuit is powered by the en-

ergy harvester, and the external comparator has a propagation

delay of 5µs. For this platform, this provides correct behaviour

for source currents < 2.4A; currents of this magnitude and

greater are not practical in energy harvesting systems of this

scale. It draws 1.0 µA at 2.0 V; the power consumption is

over an order of magnitude lower than the microcontroller’s

built-in comparator and reference circuits.

Mementos uses an ADC to measure voltage when making

checkpointing decisions, comparing Vcc to a threshold voltage

TABLE I
MEMENTOS PERFORMANCE WITH TWO DIFFERENT VALUES OF Vm

(Vm). Mementos is not disadvantaged through the use of

the ADC rather than our external comparator circuit (we

chose it to replicate their approach [18]): FFT execution at

2.8V with the ADC circuitry consumes 0.996 mA, while

with the external comparator consumes 0.997 mA. Above Vm,

Mementos assumes that it does not need to save a snapshot; a

voltage lower than Vm is an indicator that a power failure is

imminent and a snapshot needs to be saved. For Mementos, the

checkpoint threshold can be calculated considering a constant

current draw I so that the time ∆t between two voltage levels

V and Vmin is ∆t = C(V − Vmin)/I . In this specific case,

an MSP430 draws ∼ 0.8mA in active mode, fails to write

a snapshot to FRAM below 1.9V, and needs 1.4ms to write

a snapshot, so that Mementos should start check-pointing at

latest when supply falls to 2.1V. However, Mementos’ ability to

precisely save a checkpoint depends on the distribution of the

trigger points, which estimate available energy. So we set Vm

higher than 2.1V i.e., at Vm = 2.4V , assuming that no energy

will be harvested between a trigger point and a power failure.

However, Mementos is more stable with higher Vm, but the

performance decreases due to the large number of snapshots,

as shown in Table I.

For a fair comparison, our implementation of QuickRecall

uses the same external comparator utilized for Hibernus++

(Figure 15), configured with a trigger voltage Vtrig of 2.03V

and a hysteresis of 100mV for restoring.

A. Comparing Hibernus++ with Mementos for ideal sources

Figure 16(a) compares the number of hiberna-

tions/checkpoints executed by Hibernus++ and Mementos

during the execution of the case study FFT algorithm.

A range of supply frequencies (2-20 Hz, and DC) were

chosen to represent the intermittent power output that may

be expected from a high-power EH source. We did not

consider frequencies higher than this because the decoupling

capacitance of our system meant that VCC never decays

below Vmin, and hence transient operation is redundant.

As can be seen, Hibernus++ modulates the number of times

that snapshots are executed as a function of the supply inter-

ruption frequency and hence does not perform any redundant

checkpoints (i.e. exhibits ideal behaviour). Mementos executes

a static number of checkpoints (12 and 27 times), although

some are repeated when Vcc < Vmin during a snapshot.

It is important to note that Mementos operates unstably at

frequencies higher than 6 Hz due to the static and uneven

placement of checkpoints at compile time: checkpoints are

only inserted at function calls or loops. In cases where the

supply is interrupted in the period between a restore and

the next snapshot being saved, the system can get ‘stuck’,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 9

Fig. 16. Comparison of Hibernus++ with Mementos and QuickRecall,
showing performance when executing an FFT (averaged over 3 executions):
(a) number of checkpoints made, (b) number of snapshots saved, (c) number
of snapshots restored, (d) energy overhead

i.e. executes the same portion of code from the last saved

checkpoint before Vcc < Vmin without reaching or being able

to save a snapshot at the next checkpoint. As a result, the data

for these frequencies are missing for the Mementos approach

in the above Figure 16.

Figure 16(b) compares the number of snapshots that are

saved by Hibernus++ and Mementos. Hibernus++ saves a

snapshot every time the hibernate routine is executed without

making any redundant checkpoints, while Mementos saves a

snapshot only when Vcc < Vmin. The number of snapshots

with Mementos depends on the checkpoint placement, the

value of Vmin and the supply interruption frequency; while

for Hibernus++ it only depends on the supply interruption

frequency. Figure 16(c) shows that Hibernus++ and Mementos

complete execution of the FFT over the same number of

power interruptions at frequencies lower than 14 Hz. However,

frequencies higher than 14Hz, Hibernus++ will always stay in

ON mode (MCU always ON), alternating between active and

low-power states, so that the number of restores will always be

zero and hence does not perform any redundant restores. This

is because of the on-board decoupling capacitance which is big

enough to maintain the system ON after saving a snapshot.

This can also be seen from Figure 16(d), which compares

the energy overheads of running Hibernus++ and Mementos.

The energy overhead of Hibernus++ is always lower than

Mementos (both function and loop mode) by average 16%.

With frequencies higher than 14Hz, Hibernus++ significantly

outperforms Mementos by achieving an average 26% energy

Fig. 17. Experimental results showing basic hibernate/restore operation

TABLE II
COMPARISON OF EXECUTION TIME FOR THE FFT APPLICATION

saving.

Figure 17 illustrates the system behaviour with a 6Hz supply

interruption frequency. Signals S1 and S2 on this figure refer

to the unrectified and rectified supply inputs, respectively. The

other parts of the figure compare the operation of Hibernus++

against Mementos (loop and function). For Hibernus++, the

figure demonstrates hibernate, restore, calibration and classifi-

cation times. For Mementos, the figure shows checkpoints and

restores only. It is to be noted from the figure that Hibernus++

self-calibrates only once, and classifies the source as either

low- or high-power after each interruption.

Table II reports the execution time of Hibernus++ in

comparison with Mementos for the FFT application. The

FFT execution itself takes 100 ms using a DC source. The

table reports the execution time for a range of input supply

frequencies, including the result corresponding to a DC source.

As can be seen from the table, the execution time for the

FFT increases with the input frequency for Mementos. The

increase in execution time ranges from 5-45% for Mementos

(loop), and 9-65% for Mementos (function). In comparison

to these, Hibernus++ increases execution time by only 3-

22% . The overall improvement of this approach with respect

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 10

TABLE III
COMPARISON BETWEEN HIBERNUS (VH=2.17V AND VR=2.27),

QUICKRECALL (Vtrig=2.03V), AND HIBERNUS++ WITH DYNAMIC VH

TABLE IV
EXPERIMENTALLY MEASURED PARAMETERS

to Mementos is on average 13% (1-23%) and 17% (5-33%)

compared to the loop and function modes respectively.

B. Comparing Hibernus++ with Hibernus and QuickRecall

for ideal sources

Table III shows the total time taken by our earlier proposed

approach, Hibernus, QuickRecall, and our current approach,

Hibernus++, executing the FFT application (using an external

sinusoidal signal of 3V input at 6Hz frequency). Results are

reported for four different values of decoupling capacitance.

The hibernate and restore thresholds for Hibernus are man-

ually characterized for a constant decoupling capacitance of

20µF, and therefore the execution time of Hibernus is lower

than Hibernus++ for this capacitance due to the overhead

of the automatic calibration (2.2ms) and classification (1ms).

Similarly, QuickRecall sets the trigger voltage for a constant

decoupling capacitance. Hibernus++ self calibrates the hiber-

nate and restore thresholds dynamically, resulting in a lower

FFT execution time than Hibernus and QuickRecall for other

capacitance values. Hibernus++’s efficiency improvements

outweigh the overheads. It is important to note that Hibernus

and QuickRecall do not work for capacitance values lower

than the one it is designed for (20µF in this case). So they are

not able to execute the FFT application with less than 20µF.

Hibernus++ calibrates the hibernate and restore thresholds

dynamically based on the value of decoupling capacitance,

and therefore is able to execute the FFT application for all

capacitance values (subject to meeting Equation 3).

QuickRecall only relies on the use of a processor with

unified FRAM memory. However, by utilizing this type of

memory, the system introduces a significant energy overhead.

Figure 19 shows the energy overhead for QuickRecall and

Hibernus++, with the FFT application, as a function of

the supply interruption frequency. QuickRecall has a higher

energy overhead due to the higher current consumption in

active mode. However, the energy overhead of Hibernus++

Fig. 18. Three synthetic traces of real harvesters used in Section V-B

Fig. 19. Energy overhead comparison between Hibernus++ and QuickRecall

due to the restore/hibernate strategy has a greater impact as

the frequency increases. At frequencies higher than 14Hz,

Hibernus++ significantly outperforms QuickRecall.

C. Results with Synthesized Energy Harvesters

Table IV shows experimentally obtained values for synthe-

sized EHs (Figure 18): a wind turbine, a wearable kinetic

watch (Seiko watch), a micro PV and a constant current

source. Due to limitations of the power analyser (which

captures power traces and allows them to be replayed as a

synthesized source), we could only collect 20 s of indoor PV

behaviour during which lights are turned on and off twice.

These traces were obtained from real EHs and replayed via a

source-measurement unit. It shows the time and energy over-

head with each scheme powered by these sources, confirming

that Hibernus++ modulates its behavior dependent on the

dynamics of the EH. In particular, the wind turbine and the

kinetic harvesters have been classified as high-power sources

while the micro PV and the constant current source have been

classified as low-power sources. In the first case (wind-turbine

and kinetic) the system behaves as already shown with the

sinusoidal sources (see Figure 17), while in the second case

(micro PV and constant current source) the system Vcc never

drops below Vmin. This means that it only needs to classify

the source once, and never needs to restore its state, despite

the increase in the time spent in low-power mode.

Table V reports measured data to compare the earlier pro-

posed Hibernus and the current work Hibernus++ for the three

synthetic traces of real harvesters in Figure 18. Results are

compared in terms of the number of hibernations, number of

restores and the total execution time. As can be seen from this

table, Hibernus++ results in fewer restores and hibernations

than Hibernus, resulting in a reduction of execution time of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 11

TABLE V
COMPARISON BETWEEN HIBERNUS AND HIBERNUS++ USING SYNTHETIC

HARVESTERS

36%. On the other hand, for the wind turbine the number of

restores and hibernations using Hibernus++ are higher than

the Hibernus approach; however, there is still an improvement

of 12% in execution time. This is due to the execution time

improvement using dynamic thresholds in Hibernus++ as

compared to fixed thresholds in Hibernus. It is also important

to note that Hibernus is not able to sustain operation with

sources having very high internal resistance (e.g. PV and

constant current source), which causes fast voltage drops when

a load is applied. This is because, every time the voltage across

the decoupling capacitance increases above the micocontroller

minimum voltage, the microcontroller is turned on to restore

a snapshot, draining more current and bringing the voltage

below the minimum. Hibernus++, on the other hand, first

checks if the power source is high enough to sustain a full

restore before actually restoring it. By waiting for the supply

to reach a safe voltage level before continuing operation,

Hibernus++ is able to execute the FFT with different energy

harvesting sources.

D. Results with Real Energy Harvesters

Finally, Hibernus++ has been verified operating directly

from real EHs: a micro-wind turbine (high-power source) and

a micro photovoltaic module (low-power source). Figure 20

shows the activity of the system when powered by a real

wind harvester. The operating parameters of the system are

shown: hibernate and restore operations, the calibrate and

classify operations, and the time for the FFT execution and

the system in ON mode. As already shown in Figure 17, the

system saves and restores a snapshot once per interruption.

Moreover, it classifies the source (as low-power or high-

power) once per interruption, while it only self-calibrates

once (at the beginning). The total time for executing the FFT

is approximately 440ms while the system is on for 225ms.

During this time, the system saves and restores 10 snapshots.

Figure 21 shows the activity of the system when powered by

a real PV module. This illustrates the behavior of Hibernus++

with a current source. In this case, the system is always on,

alternating between low-power and active modes. The system

calibrates and classifies the source only once (at the beginning)

and it never restores. The total FFT execution time is 670ms,

and it saves five unused snapshots (although it never needs to

restore). This is the first case considered where Hibernus++

makes unnecessary snapshots, and therefore does not exhibit

Fig. 20. System activity powered by a real wind harvester

Fig. 21. System activity with high-current input from real PV module

improved behaviour. This has occurred because, after hiber-

nating, the power consumed is less than that harvested, and

VCC recovers without state being lost (i.e. a restore required).

VI. ENABLING ULTRA-LOW CURRENT OPERATION

The system cannot start up reliably with supply currents

below 100 µA. This is because the microcontroller draws high

levels of current when its supply voltage is below its Vmin

and slowly ramping up. Several techniques were explored to

mitigate this effect. External supervisory circuits to hold the

microcontroller in reset until V > Vmin were ineffective, as

the current draw in reset was found to be substantial. Instead,

a cold-start circuit (Figure 22) has been developed which can

reliably start the system with lower current levels. This cold-

start circuit guarantees a reliable start by detecting the input

voltage and only turning on the supply to the microcontroller

when its input voltage is above a threshold (Vin−H), and

switching it off when the voltage drops below a minimum

voltage (Vin−L). In practice, for reliable operation, Vin−L

must be slightly higher than Vmin. This is enabled by a

pair of microcurrent voltage monitors, which are configured

in a MOSFET latch arrangement. As with the schematic in

Figure 14, it incorporates an LDO voltage regulator to limit

the supply voltage to the microcontroller, and the harvester

short-circuit arrangement for the self-calibration routine. These

extra components draw 2 µA at 2V.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 12

out

Voltage

Monitor

Vin-H

Voltage

Monitor

Vin-L

pull-up

ext in

Fig. 22. Schematic of the cold-start arrangement, to allow ultra low-current
start-up. The ‘Test Platform’ is as shown in Figure 14

TABLE VI
EXPERIMENTALLY MEASURED PARAMETERS

Fig. 23. Result: Activity of system with 30µA input from real PV module

A complication of this scheme is that the microcontroller

platform used for our validation has a substantial level of

decoupling capacitance (approximately 16 µF). If there is

insufficient capacitance on the input, or hysteresis between

Vin−H and Vin−L, the system will oscillate as it will not be

able to power the microcontroller for long enough to allow

it to initialize and enter a low-power mode. Therefore, the

cold start circuit incorporates additional capacitance and two

voltage detectors set to provide hysteresis between Vin−H and

Vin−L. Because of this additional capacitor, the time-overhead

will be higher compared to the system without any cold-start

circuitry and it depends on the input current. This can be seen

in Figure 23, which shows the system working with a very-

low input current (30 µA). However, the energy overhead will

be improved. Table VI shows experimentally obtained values

for a constant current source. In particular, it shows that the

system can start reliably also with currents below 100 µA (in

this case 70 µA). Moreove, it shows that, with a current input

of 200 µA (see Table II), the energy overhead has improved

using the cold-start circuit.

VII. CONCLUSION

A new approach for sustaining computation during inter-

mittent supply, Hibernus++, has been proposed. This man-

ages transient computation dynamically, using different energy

harvesting sources and intelligently adapts the hibernate and

restore thresholds in response to system properties and dynam-

ics. This allows a new class of embedded systems - “transient

computing systems” - to sustain computation through power

outages, which are common in energy-harvesting systems, and

to adapt their behaviour. This allows operation without using

any external energy buffer. The system has been validated

with both synthesized and real EH sources, demonstrating

experimentally that it has a lower energy and time overhead

than recently proposed approaches. This contributes to the

development of future energy harvesting transient systems.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] A. Sinha and A. Chandrakasan, “Dynamic power management in wire-
less sensor networks,” IEEE Design & Test of Computers, 2001.

[3] H. Jayakumar, K. Lee, W. S. Lee, A. Raha, Y. Kim, and V. Raghunathan,
“Powering the internet of things,” in Proceedings of the 2014 Interna-
tional Symposium on Low Power Electronics and Design. ACM, 2014,
pp. 375–380.

[4] J. A. Khan, H. K. Qureshi, and A. Iqbal, “Energy management in wire-
less sensor networks: A survey,” Computers & Electrical Engineering,
vol. 41, pp. 159–176, 2015.

[5] S. Beeby and N. White, Energy harvesting for autonomous systems.
Artech House, 2014.

[6] S. Roundy and J. Tola, “Energy harvester for rotating environments
using offset pendulum and nonlinear dynamics,” Smart Materials and
Structures, vol. 23, no. 10, p. 105004, 2014.

[7] K. Ylli, D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, and
Y. Manoli, “Energy harvesting from human motion: exploiting swing
and shock excitations,” Smart Materials and Structures, vol. 24, no. 2,
p. 025029, 2015.

[8] “Crossbow telos mote datasheet:.” [Online]. Available: http://www.
willow.co.uk/TelosB Datasheet.pdf

[9] P. D. Mitcheson, “Energy harvesting for human wearable and im-
plantable bio-sensors,” in Engineering in Medicine and Biology Society
(EMBC), 2010 Annual International Conference of the IEEE. IEEE,
2010, pp. 3432–3436.

[10] G. Acampora, D. J. Cook, P. Rashidi, and A. V. Vasilakos, “A survey on
ambient intelligence in healthcare,” Proceedings of the IEEE, vol. 101,
no. 12, pp. 2470–2494, 2013.

[11] D. Balsamo, G. Paci, L. Benini, and B. Davide, “Long term, low cost,
passive environmental monitoring of heritage buildings for energy effi-
ciency retrofitting,” in Environmental Energy and Structural Monitoring
Systems (EESMS), 2013 IEEE Workshop on. IEEE, 2013, pp. 1–6.

[12] S. Naderiparizi, A. N. Parks, Z. Kapetanovic, B. Ransford, and J. R.
Smith, “Wispcam: A battery-free rfid camera,” in RFID (RFID), 2015
IEEE International Conference on. IEEE, 2015.

[13] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems,” Embedded Systems
Letters, IEEE, vol. 7, no. 1, pp. 15–18, 2015.

[14] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient en-
ergy harvesting nonvolatile processors,” in High Performance Computer
Architecture (HPCA). IEEE, 2015, pp. 526–537.

[15] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for dis-
tributed systems,” Software Engineering, IEEE Transactions on, no. 1,
pp. 23–31, 1987.

[16] H. Asano, “Flash non-volatile memory,” Apr. 11 1995, US Patent
5,406,529.

[17] H. Kim, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Building fully
functional instant on/off systems by making use of non-volatile ram,”
in Consumer Electronics (ICCE), 2011 IEEE International Conference
on. IEEE, 2011, pp. 675–676.

[18] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-
running computation on rfid-scale devices,” ACM SIGPLAN Notices,
vol. 47, no. 4, pp. 159–170, 2012.

[19] H. Jayakumar, A. Raha, W. S. Lee and V. Raghunathan, “QuickRecall:
A HW/SW Approach for Computing across Power Cycles in Transiently
Powered Computers,” in J. Emerg. Technol. Comput. Syst., August 2015.

[20] H. Jayakumar, A. Raha and V. Raghunathan, “Hypnos: An ultra-low
power sleep mode with SRAM data retention for embedded micro-
controllers,” in Int’l Conf. Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pp. 1-10, 12-17 Oct. 2014.

http://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH 20XX 13

[21] M. Qazi, A. Amerasekera, and A. P. Chandrakasan, “A 3.4-pj feram-
enabled d flip-flop in 0.13-cmos for nonvolatile processing in digital
systems,” IEEE Journal of Solid-State Circuits, 2014.

[22] S. Onkaraiah, M. Reyboz, F. Clermidy, J.-M. Portal, M. Bocquet,
C. Muller, C. Anghel, A. Amara et al., “Bipolar reram based non-volatile
flip-flops for low-power architectures,” in New Circuits and Systems
Conference (NEWCAS). IEEE, 2012, pp. 417–420.

[23] A. Rodriguez, D. Balsamo, A. Das, A. Weddell, D. Brunelli, B. Al-
Hashimi, and G. Merrett, “Approaches to transient computing for energy
harvesting systems: A quantitative evaluation,” in Int’l Workshop Energy
Harvesting and Energy Neutral Sensing Systems (ENSsys), 2015.

[24] TI, “Msp430fr5739 fram experimenter board,” 2013. [Online]. Available:
http://www.ti.com/lit/ug/slau343b/slau343b.pdf

[25] K. Ma, X. Li, S Li, Y. Liu, J. J. Sampson, Y. Xie and V. Narayanan,
“Nonvolatile Processor Architecture Exploration for Energy-Harvesting
Applications,” in Micro, IEEE, vol. 35, no. 5, pp. 32-40, Sept.-Oct. 2015.

[26] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M. Chiang, Y. Yan, B. Sai
and Huazhong Yang, “A 3us wake-up time nonvolatile processor based
on ferroelectric flip-flops,” in ESSCIRC (ESSCIRC), 2012 Proceedings
of the, pp.149-152, 17-21 Sept. 2012.

[27] S. C. Bartling, S. Khanna, M. P. Clinton, S. R. Summerfelt, J. A.
Rodriguez and H. P. McAdams, “An 8MHz 75A/MHz Zero-Leakage
Non-Volatile Logic-Based Cortex-M0 MCU SoC Exhibiting 100%
Digital State Retention at VDD=0V with <400ns Wakeup and Sleep
Transitions,” ISSCC, pp. 432-433, 2013.

[28] N. Sakimura, Y. Tsuji, R. Nebashi, H. Honjo, A. Morioka, K. Ishihara,
K. Kinoshita, S. Fukami, S. Miura, N. Kasai, T. Endoh, H. Ohno, T.
Hanyu and T. Sugibayashi, “10.5 A 90nm 20MHz fully nonvolatile
microcontroller for standby-power-critical applications,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE
International, pp.184-185, 9-13 Feb. 2014.

[29] D. Balsamo, A. Das, G. V. Merrett, A. S. Weddell, D. Brunelli, L. Benini
and B. M. Al-Hashimi, “Graceful Performance Modulation for Power-
Neutral Transient Computing Systems,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, to be published.

Domenico Balsamo received the Master degree in
Electronics Engineering from University of Modena
and Reggio Emilia, Italy, in 2008. He received his
Ph.D. degree in computer engineering in the area of
embedded systems from the University of Bologna,
Italy, in 2015. He is currently a post-doctoral re-
search fellow at the University of Southampton. His
research interests are in high-performance and ultra-
low power embedded systems.

Alex S. Weddell received the MEng (Hons) degree
in Electronic Engineering (2005) followed by a PhD
(2010) from the University of Southampton, where
he is now Lecturer in Electronic and Electrical
Engineering. He has authored over 30 papers, and
has special interests in the areas of energy-aware
systems and energy harvesting.

Anup Das received the B.Eng. degree in Electronics
and Telecommunication Engineering from Jadavpur
University, India, in 2004. He received the Ph.D.
degree in computer engineering in the area of em-
bedded systems from the National University of
Singapore, in 2014. He is currently a post-doctoral
research fellow at the University of Southampton.
His research interests include reliability and energy-
aware system architecture.

Alberto Rodriguez Arreola received his MSc. de-
gree in System on Chip from the University of
Southampton, in 2015. He is currently a PhD student
in Electronics and Computer Science, University of
Southampton. His research interests include energy
harvesting and transient computing embedded sys-
tems.

Davide Brunelli (M’10) received the M.S. (cum
laude) and Ph.D. degrees in electrical engineering
from the University of Bologna, Italy, in 2002 and
2007, respectively. He has been an Assistant Profes-
sor with the University of Trento, Italy, since 2010.
His research interests include smart grids and the de-
velopment of new techniques of energy scavenging
for wireless sensor networks and embedded systems.

Bashir M. Al-Hashimi (M’99-SM’01-F’09) is a
Professor of Computer Engineering and Dean of
the Faculty of Physical Sciences and Engineering
at the University of Southampton, UK. He is ARM
Professor of Computer Engineering and Co-Director
of the ARM-ECS research centre. His research in-
terests include methods and tools for low-power
design and test of embedded computing systems. He
has published over 300 technical papers, authored
or co-authored 5 books and has graduated 33 PhD
students.

Geoff V. Merrett (GSM06-M09) received the BEng
degree (Hons) in Electronic Engineering and the
PhD degree from the University of Southampton,
UK, in 2004 and 2009 respectively. He was ap-
pointed as a Lecturer in energy-efficient electronic
systems at the University of Southampton in 2008,
and was promoted to Associate Professor in 2014.
He has research interests in energy-efficient embed-
ded systems and low-power pervasive computing,
and has published over 100 scientific papers in
journals and refereed conference proceedings.

Luca Benini is the chair of digital circuits and
systems at ETHZ and a Full Professor at the Uni-
versity of Bologna. He has served as Chief Architect
for the Platform2012/STHORM project in STmicro-
electronics, Grenoble. Dr. Benini’s research interests
are in energy-efficient system design and Multi-
Core SoC design. He is also active in the area of
energy-efficient smart sensors and sensor networks
for biomedical and ambient intelligence applications.
He has published more than 700 papers in peer
reviewed international journals and conferences, four
books and several book chapters.

http://www.ti.com/lit/ug/slau343b/slau343b.pdf

	Introduction
	Background and Related Work
	Hibernus++: Enabling Computation with Intermittent Power Supplies
	Principle of Operation
	Hibernation Strategy and Calibration Routine
	Restore/Wake-up Strategy and Triggering

	Mathematical Analysis
	Energy Overhead of Hibernation and Restore

	Practical Validation
	Comparing Hibernus++ with Mementos for ideal sources
	Comparing Hibernus++ with Hibernus and QuickRecall for ideal sources
	Results with Synthesized Energy Harvesters
	Results with Real Energy Harvesters

	Enabling Ultra-Low Current Operation
	Conclusion
	References
	Biographies
	Domenico Balsamo
	Alex S. Weddell
	Anup Das
	Alberto Rodriguez Arreola
	Davide Brunelli
	Bashir M. Al-Hashimi
	Geoff V. Merrett
	Luca Benini

