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Abstract

HiC-Pro is an optimized and flexible pipeline for processing Hi-C data from raw reads to normalized contact maps. HiC-Pro

maps reads, detects valid ligation products, performs quality controls and generates intra- and inter-chromosomal

contact maps. It includes a fast implementation of the iterative correction method and is based on a memory-efficient

data format for Hi-C contact maps. In addition, HiC-Pro can use phased genotype data to build allele-specific contact

maps. We applied HiC-Pro to different Hi-C datasets, demonstrating its ability to easily process large data in a

reasonable time. Source code and documentation are available at http://github.com/nservant/HiC-Pro.
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Introduction

High-throughput chromosome conformation capture

methods are now widely used to map chromatin interac-

tions within regions of interest and across the genome.

The use of Hi-C has notably changed our vision of gen-

ome organization and its impact on chromatin and gene

regulation [1, 2]. The Hi-C technique involves sequen-

cing pairs of interacting DNA fragments, where each

mate is associated with one interacting locus. Briefly,

cells are crossed-linked, DNA is fragmented using a re-

striction enzyme [3] or a nuclease [4], and interacting

fragments are ligated together. After paired-end sequen-

cing, each pair of reads can be associated to one DNA

interaction.

In recent years, the Hi-C technique has demonstrated

that the genome is partitioned into domains of different

scale and compaction level. The first Hi-C application has

described that the genome is partitioned into distinct

compartments of open and closed chromatin [3]. Higher

throughput and resolution have then suggested the pres-

ence of megabase-long and evolutionarily conserved

smaller domains. These topologically associating domains

are characterized by a high frequency of intra-domain chro-

matin interactions but infrequent inter-domain chromatin

interactions [5, 6]. More recently, very large data sets with

deeper sequencing have been used to increase the Hi-C

resolution in order to detect loops across the entire

genome [7, 8].

As with any genome-wide sequencing data, Hi-C usu-

ally requires several millions to billions of paired-end se-

quencing reads, depending on genome size and on the

desired resolution. Managing these data thus requires

optimized bioinformatics workflows able to extract the

contact frequencies in reasonable computational time

and with reasonable resource and storage requirements.

The overall strategy to process Hi-C data is converging

among recent studies [9], but there remains a lack of

stable, flexible and efficient bioinformatics workflows to

process such data. Solutions such as the HOMER [10],

HICUP [11], HiC-inspector [12], HiCdat [13] and HiC-

box [14] pipelines are already available for Hi-C data

processing. HOMER offers several functions to analyze

Hi-C data but does not perform the mapping of reads

nor the correction of systematic biases. HiCdat, HiC-

inspector and HiCbox do not allow chimeric reads to be

rescued during the mapping of reads. HICUP provides a

complete pipeline until the detection of valid interaction

products. Using HICUP together with the SNPsplit pro-

gram [15] allows the extraction of allele-specific inter-

action products whereas all other solutions do not allow

allele-specific analysis. The HiCdat and HiCbox packages

offer a means of correcting contact maps for systematic
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biases. Finally, none of these software were designed to

process very large amounts of data in a parallel mode. The

hiclib package is currently the most commonly used solu-

tion for Hi-C data processing. However, hiclib is a Python

library that requires programming skills, such as know-

ledge of Python and advanced Linux command line, and

cannot be used in a single command-line manner. In

addition, parallelization is not straightforward and it has

limitations with regard to the analysis and normalization

of very high-resolution data (Table 1).

Here, we present HiC-Pro, an easy-to-use and complete

pipeline to process Hi-C data from raw sequencing reads

to normalized contact maps. HiC-Pro allows the process-

ing of data from Hi-C protocols based on restriction en-

zyme or nuclease digestion such as DNase Hi-C [4] or

Micro-C [16]. When phased genotypes are available, HiC-

Pro is able to distinguish allele-specific interactions and to

build both maternal and paternal contact maps. It is opti-

mized and offers a parallel mode for very high-resolution

data as well as a fast implementation of the iterative cor-

rection method [17].

Results

HiC-Pro results and performance

We processed Hi-C data from two public datasets:

IMR90 human cell lines from Dixon et al. [6] (IMR90)

and from Rao et al. [7] (IMR90_CCL186). The latter is

currently one of the biggest datasets available, used to

generate up to 5-kb contact maps. For each dataset, we

ran HiC-Pro and generated normalized contact maps at

20 kb, 40 kb, 150 kb, 500 kb and 1 Mb resolution. Nor-

malized contact maps at 5 kb were only generated for

the IMR90_CCL186 dataset. The datasets were either

used in their original form or split into chunks contain-

ing 10 or 20 million read pairs.

Using HiC-Pro, the processing of the Dixon’s dataset

(397.2 million read pairs split into 84 read chunks) was

completed in 2 hours using 168 CPUs (Table 2). Each

chunk was mapped on the human genome using four

CPUs (two for each mate) and 7 GB of RAM Processing

the 84 chunks in parallel allows extraction of the list of

valid interactions in less than 30 minutes. All chunks

were then merged to generate and normalize the

genome-wide contact map.

In order to compare our results with the hiclib library,

we ran HiC-Pro on the same dataset, and without initial

read splitting, using eight CPUs. HiC-Pro performed the

complete analysis in less than 15 hours compared with

28 hours for the hiclib pipeline. The main difference in

speed is explained by our two-step mapping strategy

compared with the iterative mapping strategy of hiclib,

which aligned the 35 base pair (bp) reads in four steps.

Optimization of the binning process and implementation

of the normalization algorithm led to a three-fold de-

crease in time to generate and normalize the genome-

wide contact map.

The IMR90 sample from the Rao dataset (1.5 billion

read pairs split into 160 read chunks) was processed in

parallel using 320 CPUs to generate up to 5-kb contact

maps in 12 hours, demonstrating the ability of HiC-Pro

to analyze very large amounts of data in a reasonable

time. At a 5-kb resolution, we observe the presence of

chromatin loops as described by Rao et al. [7] (Figure S1

in Additional file 1). The merged list of valid interactions

was generated in less than 7.5 hours. Normalization of

the genome-wide contact map at 1 Mb, 500 kb, 150 kb,

40 kb, 20 kb and 5 kb was performed in less than

4 hours. Details about the results and the implementa-

tion of the different solutions are available in Additional

file 1.

Finally, we compared the Hi-C processing results of

hiclib and HiC-Pro on the IMR90 dataset. Although the

processing and filtering steps of the two pipelines are not

exactly the same, we observed a good concordance in the

results (Fig. 1). Using default parameters, HiC-Pro is less

stringent than hiclib and used more valid interactions to

Table 1 Comparing solutions for Hi-C data processing

Mapping Detection of valid interactions Binning Correction of systematic noise Parallel implementation Allele-specific analysis

HOMER x x

HICUP x x x

HiC-inspector xa x x

HiC-Box xa x x x

HiCdat xa x x x

Hiclib x x x x

HiC-Pro x x x x x x

HOMER [10] offers several programs to analysis Hi-C data from aligned reads. aHiC-inpector [12], HiCdat [13] and HiC-Box [14] do not allow chimeric reads to be

rescued during the mapping. HICUP [11] provides a complete pipeline until the detection of valid interaction products. It can be used together with the SNPsplit

software [15] to extract allele-specific mapped reads. The hiclib Python library [17] can be applied for all analysis steps but requires good programming skills and

cannot be used in a single command-line manner. None of these software enable very large amounts of data to be processed easily in a parallel mode. Note that

HOMER, hiclib and HiCdat also offer additional functions for downstream analysis. In the case of HiC-Pro, the downstream analysis is supported by the HiTC

BioConductor package [28]
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build the contact maps. The two sets of normalized con-

tact maps generated at different resolutions are highly

similar (Fig. 1c). We further explored the similarity

between the maps generated by the two pipelines by

computing the Spearman correlation of the normalized

intra-chromosomal maps. The average correlation coeffi-

cient across all chromosomes at different resolutions was

0.83 (0.65–0.95). Finally, since the inter-chromosomal data

are usually very sparse, we summarized the inter-

chromosomal signal using two one-dimensional coverage

vectors of rows and columns [18, 19]. The average Spear-

man correlation coefficient of all coverage vectors between

hiclib and HiC-Pro inter-chromosomal contact maps was

0.75 (0.46–0.98).

Implementation of the iterative correction algorithm

We provide an implementation of the iterative correc-

tion procedure which emphasizes ease of use, perform-

ance, memory-efficiency and maintainability. We obtain

higher or similar performance on a single core compared

with the original ICE implementation from the hiclib li-

brary (Table 2) and from the HiCorrector package [20]

(Table 3).

The HiCorrector package provides a parallel version of

the iterative correction for dense matrices. We therefore

compared the performance of HiCorrector with the

HiC-Pro normalization at different Hi-C resolutions

(Table 3). All algorithms were terminated after 20 itera-

tions for the purpose of performance comparison, as

each iteration requires nearly the same running time.

Choosing dense or sparse matrix-based implementation

is dependent on the Hi-C data resolution and on the

depth of coverage. Although our implementation can be

run in either sparse or dense mode, the available data

published at resolutions of 5–40 kb are currently charac-

terized by a high degree of sparsity. At each level of Hi-

C contact map resolution, we compared our dense or

sparse implementation with the parallel and/or sequen-

tial version of HiCorrector. Our results demonstrate that

using a compressed sparse row matrix structure is more

efficient on high resolution contact maps (<40 kb) than

using parallel computing on dense matrices. As expected

for low resolution contact maps (1 Mb, 500 kb), using a

dense matrix implementation is more efficient in time,

although the gain, in practice, remains negligible.

The code for the normalization is available as a standa-

lone package (https://github.com/hiclib/iced) as well as

being included in HiC-Pro. Our implementation based on

sparse row matrices is able to normalize a 20-kb human

genome map in less than 30 minutes with 5 GB of RAM

(Table 3). Genome-wide normalization at 5 kb can be

achieved in less than 2.5 hours with 24 GB of RAM. Thus,

compared to existing solutions, our implementation sub-

stantially speeds up and facilitates the normalization of

Hi-C data prior to downstream analysis.

Allele-specific contact maps

We used HiC-Pro to generate allele-specific contact

maps for the human GM12878 cell line. Differences in

paternal and maternal X chromosome organization were

recently described, with the presence of mega-domains

on the inactive X chromosome, which are not seen in

the active X chromosome [7, 21, 22]. We used HiC-Pro

to generate the maternal and paternal chromosome X

contact maps of the GM12878 cell line using the Hi-C

dataset published by Selvaraj et al. [23]. Phasing data

were gathered from the Illumina Platinum Genomes

Project [24]. Only good quality heterozygous phased

Table 2 HiC-Pro performance and comparison with hiclib

Dataset IMR90 IMR90 IMR90 IMR90_CCL186

Number of reads 397,200,000 397,200,000 397,200,000 1,535,222,082

Pipeline hiclib HiC-Pro HiC-Pro parallel HiC-Pro parallel

Number of input files 10 10 84 160

Number of jobs 1 1 42 80

Number of CPUs per job 8 8 4 4

Maximum memory 10 7 7 24

Wall time 28:24 14:32 02:15 11:49

Mapping 22:03 10:31 00:21 05:56

Filtering 00:30 03:10 00:05 00:36

Merge 00:20 00:18 00:50

Contacts maps 01:45 00:15 00:15 00:42

Normalization 04:06 01:16 01:16 03:49

HiC-Pro was run on the IMR90 Hi-C dataset from Dixon et al. and Rao et al. in order to generate contact maps at resolutions of 20 kb, 40 kb, 150 kb, 500 kb and

1 Mb. Contact maps at 5 kb were also generated for the IMR90_CCL186 dataset. The CPU time for each step of the pipeline is reported and compared with the

hiclib Python library. The reported results include time of writing contact maps in text format. Times are minutes:seconds
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Fig. 1 (See legend on next page.)
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single-nucleotide polymorphisms (SNPs) were selected.

The final list contained 2,239,492 SNPs. We then

masked the human genome hg19 by replacing the SNP

position by an ‘N’ using the BEDTools utilities [25] and

generated the new bowtie2 indexes. In practice, the

allele-specific analysis can be easily performed by simply

specifying to HiC-Pro the list of SNPs and the N-

masked indexes for read alignment through the config-

uration file.

Among the initial 826 million read pairs, 61 % were

classified as valid interactions by HiC-Pro. Around 6 %

of valid interactions were then assigned to either the pa-

ternal or maternal genome and used to construct the

haploid maps. As expected, the inactive X chromosome

map is partitioned into two mega-domains (Fig. 2). The

boundary between the two mega-domains lies near the

DXZ4 micro-satellite.

Materials and methods

HiC-Pro workflow

HiC-Pro is organized into four distinct modules following

the main steps of Hi-C data analysis: (i) read alignment,

(ii) detection and filtering of valid interaction products,

(iii) binning and (iv) contact map normalization (Fig. 3).

Mapping

Read pairs are first independently aligned on the refer-

ence genome to avoid any constraint on the proximity

between the two reads. Most read pairs are expected to

be uniquely aligned on the reference genome. A few per-

cent, however, are likely to be chimeric reads, meaning

that at least one read spans the ligation junction and

therefore both interacting loci. As an alternative to the

iterative mapping strategy proposed by Imakaev et al.

[17], we propose a two-step approach to rescue and

align those reads (Fig. 4a). Reads are first aligned on the

reference genome using the bowtie2 end-to-end algo-

rithm [26]. At this point, unmapped reads are mainly

composed of chimeric fragments spanning the ligation

junction. According to the Hi-C protocol and the fill-in

strategy, HiC-Pro is then able to detect the ligation site

using an exact matching procedure and to align back on

the genome the 5′ fraction of the read. Both mapping

steps are then merged in a single alignment file. Low

mapping quality reads, multiple hits and singletons can

be discarded.

Detection of valid interactions

Each aligned read can be assigned to one restriction

fragment according to the reference genome and the se-

lected restriction enzyme. Both reads are expected to

map near a restriction site, and with a distance within

the range of molecule size distribution after shearing.

Fragments with a size outside the expected range can be

discarded if specified but are usually the result of ran-

dom breaks or star activity of the enzyme, and can

therefore be included in downstream analysis [17]. Read

pairs from invalid ligation products, such as dangling

end and self-circle ligation, are discarded (Fig. 4b). Only

valid pairs involving two different restriction fragments

are used to build the contact maps. Duplicated valid

pairs due to PCR artifacts can also be filtered out. Each

read is finally tagged in a BAM file according to its map-

ping and fragment properties (Figure S2 in Additional

file 1). In the context of Hi-C methods which are not

based on restriction enzyme digestion, no filtering of re-

striction fragments is applied. The uniquely mapped

read pairs are directly used to build the contact maps.

However, one way to filter out artifacts such as self-

ligation is to discard intra-chromosomal pairs below a

given distance threshold [4]. HiC-Pro therefore allows

these short range contacts to be filtered out.

(See figure on previous page.)

Fig. 1 Comparison of HiC-Pro and hiclib processing. a Both pipelines generate concordant results across processing steps. The fraction of uniquely

aligned read pairs is calculated on the total number of initial reads. Self-circle and dangling-end fractions are calculated on the total number of aligned

read pairs. Intra- and inter-chromosomal contacts are calculated as a fraction of filtered valid interactions. b Boxplots of the Spearman correlation

coefficients of intra- and inter-chromosomal maps generated at different resolutions by both pipelines. c Chromosome 6 contact maps generated by

hiclib (top) and HiC-Pro (bottom) at different resolutions. The chromatin interaction data generated by the two pipelines are highly similar

Table 3 Performance of iterative correction on IMR90 data

HiC-Pro – Iced (dense – 1 CPU) HiC-Pro – Iced (sparse – 1 CPU) HiCorrector – MES (dense – 1 CPU) HiCorrector – MEP (dense – 8 CPUs)

IMR90 1Mbp 00:00:12 00:00:25 00:00:25 00:00:06

IMR90 500 kbp 00:00:40 00:01:30 00:02:15 00:00:22

IMR90 150 kbp - 00:04:28 00:13:21 00:03:10

IMR90 40 kbp - 00:07:19 02:35:34 00:35:43

IMR90 2 0kbp - 00:08:36 12:57:17 02:34:05

HiC-Pro is based on a fast implementation of the iterative correction algorithm. We therefore compare our method with the MES (Memory-Efficient Sequential)

and MEP (Memory-Efficient Parallel) algorithms of the HiCorrector software [20] for Hi-C data normalization (hours:minutes:seconds). All algorithms were termi-

nated after 20 iterations (see Additional file 1 for details)
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Binning

In order to generate the contact maps, the genome is di-

vided into bins of equal size, and the number of contacts

observed between each pair of bins is reported. A single

genome-wide interaction map containing both raw intra-

and inter-chromosomal maps is generated for a set of

resolutions defined by the user in the configuration file.

Normalization

In theory, the raw contact counts are expected to be

proportional to the true contact frequency between two

loci. As for any sequencing experiment, however, it is

known that Hi-C data contain different biases mainly

due to GC content, mappability and effective fragment

length [18, 19]. An appropriate normalization method is

therefore mandatory to correct for these biases. Over

the last few years, several methods have been proposed

using either an explicit-factor model for bias correction

[19] or implicit matrix balancing algorithm [17, 27].

Among the matrix balancing algorithm, the iterative cor-

rection of biases based on the Sinkhorn-Knopp algo-

rithm has been widely used by recent studies due to its

conceptual simplicity, parameter-free nature and ability

to correct for unknown biases, although its assumption

of equal visibility across all loci may require further ex-

ploration. In theory, a genome-wide interaction matrix is

of size O(N2), where N is the number of genomic bins.

Therefore, applying a balancing algorithm on such a

matrix can be difficult in practice, as it requires a signifi-

cant amount of memory and computational time. The

degree of sparsity of the Hi-C data is dependent on the

bin size and on the sequencing depth of coverage. Even

for extremely large sequencing coverage, the interaction

frequency between intra-chromosomal loci is expected

to decrease as the genomic distance between them in-

creases. High-resolution data are therefore usually asso-

ciated with a high level of sparsity. Exploiting matrix

sparsity in the implementation can improve the per-

formance of the balancing algorithm for high-resolution

data. HiC-Pro proposes a fast sparse-based implementa-

tion of the iterative correction method [17], allowing

normalization of genome-wide high-resolution contact

matrices in a short time and with reasonable memory

requirements.

A

B

Fig. 2 Allele-specific analysis. a Allele-specific analysis of the GM12878 cell line. Phasing data were gathered from the Illumina Platinum Genomes

Project. In total, 2,239,492 high quality SNPs from GM12878 data were used to distinguish both alleles. Around 6 % of the read pairs were

assigned to each parental allele and used to build the allele-specific contact maps. b Intra-chromosomal contact maps of inactive and active X

chromosome of the GM12878 cell line at 500-kb resolution. The inactive copy of chromosome X is partitioned into two mega-domains which are

not seen in the active X chromosome. The boundary between the two mega-domains lies near the DXZ4 micro-satellite
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Quality controls

To assess the quality of a Hi-C experiment, HiC-Pro

performs a variety of quality controls at different steps

of the pipeline (Fig. 5). The alignment statistics are the

first available quality metric. According to the refer-

ence genome, a high-quality Hi-C experiment is usu-

ally associated with a high mapping rate. The number

of reads aligned in the second mapping step is also an

interesting control as it reflects the proportion of

reads spanning the ligation junction. An abnormal

level of chimeric reads can reflect a ligation issue dur-

ing library preparation. Once the reads are aligned on

the genome, the fraction of singleton or multiple hits

is usually expected to be low. The ligation efficiency

can also be assessed using the filtering of valid and in-

valid pairs. As ligation is a random process, it is ex-

pected that 25 % of each valid ligation class will be

defined by distinct read pair orientation. In the same

way, a high level of dangling-end or self-circle read

pairs is associated with a bad quality experiment, and

reveals a problem during the digestion, fill-in or

ligation steps.

Additional quality controls, such as fragment size distri-

bution, can be extracted from the list of valid interaction

products (Figure S3 in Additional file 1). A high level of

duplication indicates poor molecular complexity and a

potential PCR bias. Finally, an important metric is the

fraction of intra- and inter-chromosomal interactions, as

Fig. 3 HiC-Pro workflow. Reads are first aligned on the reference genome. Only uniquely aligned reads are kept and assigned to a restriction

fragment. Interactions are then classified and invalid pairs are discarded. If phased genotyping data and N-masked genome are provided, HiC-Pro

will align the reads and assign them to a parental genome. For the Hi-C protocol based on restriction enzyme digestion, the read pairs will then

be assigned to a restriction fragment and invalid ligation products will be filtered out. These first steps can be performed in parallel for each read

chunk. Data from multiple chunks are then merged and binned to generate a single genome-wide interaction map. For allele-specific analysis,

only pairs with at least one allele-specific read are used to build the contact maps. The normalization is finally applied to remove Hi-C systematic

bias on the genome-wide contact map. MAPQ Mapping Quality , PE paired end
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well as long-range versus short-range intra-chromosomal

interactions. As two genomic loci close on the linear

genome are more likely to randomly interact, a strong

diagonal is expected on the raw contact maps. A low qual-

ity experiment will result in a low fraction of intra-

chromosomal interactions depending on the organism

and the biological context. A high quality Hi-C experi-

ment on the human genome is typically characterized by

at least 40 % of intra-chromosomal interactions [9]. In the

same way, a high quality experiment is usually character-

ized by a significant fraction (>40 %) of long-range intra-

chromosomal valid pairs [7].

Speed and scalability

Generating genome-wide contact maps at 40 to 1 kb reso-

lution requires a sequencing depth of hundreds of millions

to multi-billions of paired-end reads depending on the or-

ganism [7, 8]. However, the main processing steps from

read mapping to fragment reconstruction can be optimized

using parallel computation of read chunks, significantly re-

ducing the time taken by the Hi-C data processing. Next,

all valid interactions are merged to remove the duplicates

and to generate the final contact maps.

The user can easily run the complete analysis work-

flow with a single command line either on a single lap-

top or on a computer cluster. Analysis parameters are all

defined in a single configuration file. In addition, HiC-

Pro is modular and sequential, allowing the user to focus

on a sub-part of the processing without running the

complete workflow. In this way, HiC-Pro can also be

used to complement other methods, for instance, by

running the workflow from already aligned files, or by

simply normalizing published raw contact maps.

The main steps of the pipeline are implemented in Py-

thon and C++ programming languages and are based on

efficient data structures, such as compressed sparse row

matrices for contact count data. Using an adequate data

structure allows the data processing to be sped up as well

circumvents memory limitations. In this way, HiC-Pro al-

lows a genome-wide iterative correction to be run at very

high resolution and in a short time. Our normalization

implementation exploits numpy’s dense array format and

fast operations, scipy’s sparse matrices representation and

Cython to combine C and Python to reach the perform-

ance of C executables with the ease of use and maintain-

ability of the Python language.

Fig. 4 Read pair alignment and filtering. a Read pairs are first independently aligned to the reference genome using an end-to-end algorithm. Then,

reads spanning the ligation junction which were not aligned in the first step are trimmed at the ligation site and their 5′ extremity is realigned on the

genome. All aligned reads after these two steps are used for further analysis. b According to the Hi-C protocol, digested fragments are ligated together

to generate Hi-C products. A valid Hi-C product is expected to involve two different restriction fragments. Read pairs aligned on the same restriction

fragment are classified as dangling end or self-circle products, and are not used to generate the contact maps. PE paired end, LS Ligation Site
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Contact map storage

Genome-wide contact maps are generated for resolu-

tions defined by the user. A contact map is defined as a

matrix of contact counts and a description of the associ-

ated genomic bins and is usually stored as a matrix, di-

vided into bins of equal size. The bin size represents the

resolution at which the data will be analyzed. For in-

stance, a human 20 kb genome-wide map is represented

by a square matrix of 150,000 rows and columns, which

can be difficult to manage in practice. To address this

issue, we propose a standard contact map format based

on two main observations. Contact maps at high reso-

lution are (i) usually sparse and (ii) expected to be sym-

metric. Storing the non-null contacts from half of the

matrix is therefore enough to summarize all the contact

frequencies. Using this format leads to a 10–150-fold re-

duction in disk space use compared with the dense for-

mat (Table 4).

Allele-specific analysis

HiC-Pro is able to incorporate phased haplotype infor-

mation in the Hi-C data processing in order to generate

allele-specific contact maps (Fig. 2). In this context, the

sequencing reads are first aligned on a reference genome

for which all polymorphic sites were first N-masked.

This masking strategy avoids systematic bias toward the

reference allele, compared with the standard procedure

where reads are mapped on an unmasked genome. Once

aligned, HiC-Pro browses all reads spanning a poly-

morphic site, locates the nucleotide at the appropriate

position, and assigns the read to either the maternal or

paternal allele. Reads without SNP information as well

as reads with conflicting allele assignment or unexpected

alleles at polymorphic sites are flagged as unassigned. A

BAM file with an allele-specific tag for each read is gen-

erated and can be used for further analysis. Then, we

classify as allele-specific all pairs for which both reads

Fig. 5 HiC-Pro quality controls. Quality controls reported by HiC-Pro (IMR90, Dixon et al. data). a Quality control on read alignment and pairing.

Low quality alignment, singleton and multiple hits are usually removed at this step. b Read pair filtering. Read pairs are assigned to a restriction

fragment. Invalid pairs, such as dangling-end and self-circle, are good indicators of the library quality and are tracked but discarded for subsequent

further analysis. The fractions of duplicated reads, as well as short range versus long range interactions, are also reported
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are assigned to the same parental allele or for which one

read is assigned to one parental allele and the other is

unassigned. These allele-specific read pairs are then used

to generate a genome-wide contact map for each paren-

tal genome. Finally, the two allele-specific genome-wide

contact maps are independently normalized using the it-

erative correction algorithm.

Software requirements

The following additional software and libraries are re-

quired: the bowtie2 mapper [26], R and the BioConductor

packages RColorBrewer, ggplot2, grid, Samtools (>0.1.19),

Python (>2.7) with the pysam, bx.python, numpy and scipy

libraries, and the g++ compiler. Note that a bowtie2 ver-

sion > 2.2.2 is strongly recommended for allele-specific

analysis, because, since this version, read alignment on an

N-masked genome has been highly improved. Most of the

installation steps are fully automatic using a simple com-

mand line. The bowtie2 and Samtools software are auto-

matically downloaded and installed if not detected on the

system. The HiC-Pro pipeline can be installed on a Linux/

UNIX-like operating system.

Conclusions

As the Hi-C technique is maturing, it is now important

to develop bioinformatics solutions which can be shared

and used for any project. HiC-Pro is a flexible and effi-

cient pipeline for Hi-C data processing. It is freely avail-

able under the BSD licence as a collaborative project at

https://github.com/nservant/HiC-Pro. It is optimized to

address the challenge of processing high-resolution data

and provides an efficient format for contact map sharing.

In addition, for ease of use, HiC-Pro performs quality

controls and can process Hi-C data from the raw se-

quencing reads to the normalized and ready-to-use

genome-wide contact maps. HiC-Pro can process data

generated from protocols based on restriction enzyme or

nuclease digestion. The intra- and inter-chromosomal con-

tact maps generated by HiC-Pro are highly similar to the

ones generated by the hiclib package. In addition, when

phased genotyping data are available, HiC-Pro allows the

easy generation of allele-specific maps for homologous

chromosomes. Finally, HiC-Pro includes an optimized ver-

sion of the iterative correction algorithm, which substan-

tially speeds up and facilitates the normalization of Hi-C

data. The code is also available as a standalone package

(https://github.com/hiclib/iced).

A complete online manual is available at http://nservant.

github.io/HiC-Pro. The raw and normalized contact maps

are compatible with the HiTC Bioconductor package [28],

and can therefore be loaded in the R environment for

visualization and further analysis.

Additional file

Additional file 1: The supplementary data file contains a

description of the dataset used for this study as well as details

about how the HiC-Pro, hiclib and HiCorrector software were used

in practice. It also includes supplementary figures about the HiC-Pro

results and output. (DOCX 1452 kb)
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