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Complete and accurate genome assemblies form the basis of most downstream genomic analyses and are of critical impor-

tance. Recent genome assembly projects have relied on a combination of noisy long-read sequencing and accurate short-

read sequencing, with the former offering greater assembly continuity and the latter providing higher consensus accuracy.

The recently introduced Pacific Biosciences (PacBio) HiFi sequencing technology bridges this divide by delivering long reads

(>10 kbp) with high per-base accuracy (>99.9%). Here we present HiCanu, a modification of the Canu assembler designed

to leverage the full potential of HiFi reads via homopolymer compression, overlap-based error correction, and aggressive

false overlap filtering. We benchmark HiCanu with a focus on the recovery of haplotype diversity, major histocompatibility

complex (MHC) variants, satellite DNAs, and segmental duplications. For diploid human genomes sequenced to 30× HiFi

coverage, HiCanu achieved superior accuracy and allele recovery compared to the current state of the art. On the effectively

haploid CHM13 human cell line, HiCanu achieved an NG50 contig size of 77 Mbp with a per-base consensus accuracy of

99.999% (QV50), surpassing recent assemblies of high-coverage, ultralong Oxford Nanopore Technologies (ONT) reads

in terms of both accuracy and continuity. This HiCanu assembly correctly resolves 337 out of 341 validation BACs sampled

from known segmental duplications and provides the first preliminary assemblies of nine complete human centromeric re-

gions. Although gaps and errors still remain within the most challenging regions of the genome, these results represent a

significant advance toward the complete assembly of human genomes.

[Supplemental material is available for this article.]

Genome assembly is the process of reconstructing continuous ge-

nomic regions from shorter overlapping fragments, called reads

(Miller et al. 2010; Nagarajan and Pop 2010). Recently, long-read

sequencing technologies have significantly simplified assembly

by generating multikilobase reads, which span most common ge-

nomic repeats (Chin et al. 2013; Koren et al. 2013; Koren and

Phillippy 2014; Gordon et al. 2016; Bickhart et al. 2017;

Kronenberg et al. 2018). Despite the per-base error rate of the input

reads exceeding 10%, state-of-the-art assemblymethods are able to

resolve instances of longer repeats with sequence divergence as

low as 2% (Koren et al. 2017; Kolmogorov et al. 2019). However,

a significant fraction of the human genome is represented by

long segmental duplications (SDs) of higher sequence identity.

According to the current annotation of the human reference

(Bailey et al. 2001, 2002),∼208Mbpof sequence is containedwith-

in repeats >20 kbp with sequence identity >98%. Low accuracy of

the long-read technologies has also made continuous reconstruc-

tion of individual haplotypes very challenging because humans

can average less than one heterozygous variant per 1 kbp.

Typical assembly strategies collapse the genome first and phase af-

terward by calling variants, partitioning the reads, and reassem-

bling (Chin et al. 2016; Seo et al. 2016). State-of-the-art methods

integrate different sequencing technologies (Chaisson et al.

2019; Kronenberg et al. 2019) or parental information (Koren

et al. 2018) to obtain chromosome-scale, haplotype-resolved as-

semblies. However, these approaches have the downside of col-

lapsing multicopy repeats in the assembly or not resolving alleles

that differ at only a few positions.

Recently, Pacific Biosciences (PacBio) introduced a new data

type, referred to as HiFi reads (Wenger et al. 2019). The process

of generatingHiFi reads involvesDNA fragmentation, adapter liga-

tion and fragment circularization, and multipass sequencing of

the circularized fragments. The resulting signal is then computa-

tionally processed to obtain an accurate consensus sequence for

each individual fragment. To ensure that each fragment undergoes

sufficient sequencing passes to obtain a high consensus accuracy,
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HiFi sequencing libraries are size selected for a target fragment size

(currently up to 25 kbp).

Although the resulting read lengths are modest by the mod-

ern long-read sequencing standards—PacBio CLR reads frequently

exceed 50 kbp, and ultralong Oxford Nanopore Technologies

(ONT) reads can exceed even 100 kbp (Jain et al. 2018b), HiFi is a

major leap forward in terms of long-read read accuracy. As the ac-

curacy of other long-read technologies have not exceeded 95%,

the median accuracy of current HiFi reads can exceed 99.9%

(>Q30), making them a promising data type for separating highly

similar repeat instances and alleles.

Early studies adoptingHiFi sequencing showed improved var-

iant calling and repeat resolution (Wenger et al. 2019; Vollger et al.

2020). However, these early assemblies were limited to resolving

repeats with >1% sequence divergence, owing to limitations of ex-

isting tools (Wenger et al. 2019). The recently developed Peregrine

assembler (Chin and Khalak 2019) greatly reduced assembly run-

time and improved consensus accuracy, removing the need for

postprocessing, but did not address the issue of suboptimal repeat

resolution or allele separation. Other recent work combined HiFi

sequencing with complementary data types, such as parental in-

formation (Wenger et al. 2019), Hi-C (Garg et al. 2019), and

Strand-seq (Porubsky et al. 2019), to obtain chromosome-scale,

haplotype-resolved assemblies.

In the following sections, we present HiCanu, a modification

of the Canu assembler (Koren et al. 2017) designed to take full ad-

vantage of the high accuracy of HiFi reads. We evaluate HiCanu’s

ability to resolve near-identical genomic repeats, with a focus on

centromeric repeats and SDs by comparing our results to other

HiFi and recent ultralong Oxford Nanopore-based human assem-

blies (Miga et al. 2020; Shafin et al. 2020). Furthermore, we evalu-

ate HiCanu’s ability to capture both alleles in large phase blocks in

a diploid human genome.

Results

HiCanu overview

HiCanu builds on the original Canu

pipeline, replacing or significantly modi-

fying its core methods. Here we provide

an overview of the new pipeline, high-

lighting the introduced changes, al-

though a more detailed description of

individual steps can be found in the

Methods section. Whereas the original

Canu pipeline starts with read self-cor-

rection, which can homogenize reads

from different alleles or near-identical re-

peat instances, HiCanu begins by com-

pressing all consecutive copies of the

same nucleotide to a single base (e.g.,

“AA…” becomes “A”). In accordance

with the earlier observation that misesti-

mation of homopolymer length is the

primary error mode of HiFi technology

(Wenger et al. 2019), the resulting homo-

polymer-compressed reads (or “com-

pressed reads” for short) accurately

encode the transitions between different

bases of the underlying genomic regions.

The compressed reads are then trimmed

based on their overlaps to other reads to remove any chimeric se-

quences or sequencing adapters (see overlap based trimming in

Koren et al. 2017), and the overlaps are recomputed on the

trimmed reads. The overlap error adjustment (OEA) module

(Holt et al. 2002; Koren et al. 2017) examines read overlap pileups

to identify remaining sequencing errors in the individual reads

and recomputes overlap alignment identities. Following our obser-

vation that microsatellite repeat arrays are also prone to HiFi read

errors, the OEA procedure was modified to ignore any differences

within these regionswhen computing the final alignment identity

of two overlapping reads. Comparedwith the initial reads (Fig. 1A),

homopolymer compression (Fig. 1B), pileup-based read correction

(Fig. 1C), and ignoring differences in microsatellite repeats (Fig.

1D) result in a drastic reduction of observed sequencing errors.

Draft contigs are then formed from the adjusted overlaps using

Canu’s Bogart module (Koren et al. 2017), modified to better han-

dle heterozygous variants and consider only high-identity read

overlaps. The final contig sequences are obtained by computing

a consensus across the original, uncompressed reads, arranged ac-

cording to the layout of their compressed versions. Similar to

many modern assemblers, when faced with a diploid genome,

HiCanu outputs contigs as “pseudohaplotypes” that preserve local

allelic phasing but may switch between haplotypes across longer

distances. A single set of contigs representing all resolved alleles

is output regardless of ploidy, and additional processing with a

tool such as Purge_dups (Guan et al. 2020) is required to partition

the contigs into primary and alternate allele sets.

Drosophila genome assembly

We first evaluated HiCanu on a 24-kbp HiFi library from a

Drosophila melanogaster F1 hybrid (ISO1×A4; see Data access). To

match typical coverage, the HiFi data set was down-sampled to

B
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Figure 1. Impact of HiCanu processing on observed read quality. (A) Two hypothetical reads are
shown with sequencing errors highlighted in red. (B) The first step of HiCanu is to compress homopoly-
mers, which obscures homopolymer length errors but retains enough information to accurately distin-
guish reads from different genomic loci. (C) Overlaps are then computed for the compressed reads,
and remaining errors are identified by examining the alignment pileups (gray rectangle). (D) Finally, after
correcting the identified errors (blue) and ignoring indels in regions of known systematic error (gray), the
resulting overlap is 100% identical. (Right) Sequence identity of reads from a 20-kbp HiFi library mea-
sured against the CHM13 Chromosome X reference sequence v0.7 (Miga et al. 2020) after each step
of HiCanu processing (Supplemental Note 1). Separate boxplots are shown for initial raw HiFi reads
(init), homopolymer-compressed reads (compressed), OEA-corrected reads (corrected), and corrected
reads after ignoring differences in microsatellite repeats (masked). The median read identity, indicated
by solid segments, increases from <99.9% to 100% (note the plot shows y-range of 99.65%–100%).
Supplemental Table S1 also shows how HiCanu processing increases the percentage of perfectly aligned
(100% identity) HiFi reads from <1% to >97%.
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40× and assembled with the HiFi-specific tools, HiCanu and

Peregrine (Chin and Khalak 2019), as well as the conventional

long-read assembler Canu. Canu was chosen as it was previously

shown to achieve the highest assembly continuity and superior re-

peat resolution among other popular long-read assemblers on HiFi

data (Wenger et al. 2019). For comparison, we also include a Canu

assembly of 200× PacBio single-pass reads (CLR) for the same or-

ganism. Contigs <50 kbpwere filtered from the assemblies in order

to exclude low-quality sequences consisting of only a few reads.

Total assembly size varied between HiCanu (301 Mbp), Canu

(293 Mbp), Peregrine (162 Mbp), and CLR (294 Mbp). Besides

Peregrine, the assembly sizes were more than twice that of the

144-Mbp D. melanogaster haploid reference genome (Hoskins

et al. 2015), suggesting that both haplotypes of the highly hetero-

zygous F1 were successfully assembled (heterozygosity estimated

at 0.7% by GenomeScope) (Supplemental Fig. S1; Vurture et al.

2017). The large fraction of duplicated BUSCO (Waterhouse et al.

2018) genes also supported the hypothesis that the assemblies cap-

tured alleles from both haplotypes (Supplemental Table S2). To fa-

cilitate like-for-like comparison of all assemblies, we ran

Purge_dups (Guan et al. 2020) to identify alleles and divide the as-

semblies into primary and alternate contig sets (Methods).

Assembly statistics were then computed for both contig sets and

the results summarized in Table 1. Per-base consensus accuracy

was estimated using Merqury (Rhie et al. 2020) with Illumina se-

quencing data from the D. melanogaster F1 parental strains

(Supplemental Table S2; Supplemental Note 2).

The primary contig sets across all assemblies reported high

BUSCO completeness (>98%). BUSCO duplication values were

<2% across all contig sets. The HiCanu primary contig set was no-

ticeablymore continuous than any other assembly asmeasured by

NG50 (N such that half the haploid genome size is represented by

contigs of this size or greater). Canu andHiCanu showed very sim-

ilar per-base consensus accuracy, radically improving on both

Peregrine and CLR assemblies. The Peregrine assembly collapsed

both haplotypes together and output few alternate contigs (total

length <21 Mbp). HiCanu improved over all other assemblies

with respect to the total size, BUSCO completeness, and continu-

ity of the alternate set (including a threefold improvement in

NG50 over Canu).

To assess the integrity of the assemblies, we used QUAST

v5.02 (Gurevich et al. 2013) to compare the assemblies against

the chromosome arms of the D. melanogaster ISO1 reference.

Because Purge_dups can split and/or trim the initial contigs but

has a negligible effect on continuity, we report structural correct-

ness of the original assemblies. Considering that one of the haplo-

types (derived from the A4 parental strain) is expected to differ

significantly from the reference, we adjusted QUAST’s parameters

to detect only large-scale genomic differences (Methods).

Although the HiCanu assembly reported threemore structural dis-

crepancies than Canu (seven vs. four), it maintained the highest

NG50 and alternate contig BUSCO completeness.

HiFi reads alone cannot be used to infer phasing across homo-

zygous regions longer than the read length, so the contigs pro-

duced by HiCanu (and Canu) represent “pseudohaplotypes,”

which may switch between haplotypes. However, for highly het-

erozygous genomes with short regions of homozygosity, HiCanu

is expected to produce a low number of haplotype switches and

mostly preserve long-range phasing. We used Merqury (Rhie

et al. 2020) to split the initial contigs into continuous phase

blocks, based on haplotype-specific k-mer markers inferred from

parental Illumina reads (Supplemental Note 2). As a baseline, we

considered a haplotype-resolved assembly produced by TrioCanu

(Koren et al. 2018) generated using a combination of CLR reads

and parental Illumina data. The HiCanu primary (alternate) contig

set has an estimated phase block NG50 of 7.62 Mbp (4.45 Mbp), a

maximal block length of 25.4 Mbp (10.1 Mbp), and a low percent-

age of discordant markers within predicted haplotype blocks

(switch rate) of 0.03% (0.02%). For comparison, the TrioCanu as-

sembly has a paternal-ISO (maternal-A4) phase block NG50 of

13.9 Mbp (21.39 Mbp), a max block size of 24.7 Mbp (27.7

Mbp), and an intra-block switch rate of 0.1% (0.04%). In contrast,

the phase blocks of all other considered assemblies are much less

continuous (at least a 3.5-fold drop in phase blockNG50 compared

to HiCanu) and, in the case of Peregrine and CLR assemblies, a

much higher switch error (Table 1).

Human genome assemblies

We next ran HiCanu, Canu, and Peregrine on three different hu-

man data sets (see Data access): a 20-kbp library of the completely

homozygous cell line CHM13 (Kronenberg et al. 2018; Miga et al.

2020; Vollger et al. 2020), a 15-kbp library of the Ashkenazic cell

line HG002 from the Personal Genome Project (Church 2005;

Wenger et al. 2019), and a combined library (12% 10 kbp, 62%

15 kbp, 26% 20 kbp) for the Puerto Rican cell line HG00733

from the 1000 Genomes Project (The 1000 Genomes Project

Consortium 2012; Porubsky et al. 2019). All data sets consist of

Table 1. D. melanogaster ISO1×A4 assembly benchmarking results for PacBio CLR and HiFi

Assembly
Size

(Mbp)
NG50
(Mbp)

Quality
(QV)

BUSCO
complete

Phase block NG50
(Mbp)

Intra-block switch
error

QUAST
(diffs per Mbp)

Canu + Purge_dups 141.81 14.09 37.4 98.5% 0.42 3.86% 0.018
CLR 128.15 0.31 35.5 86.7% 0.25 2.97%
Peregrine 141.59 12.68 32.9 98.2% 0.07 1.78% 0.062
HiFi 20.53 0.00 33.5 1.0% 0.00 3.71%
Canu + Purge_dups 145.19 13.72 51.9 98.7% 2.04 0.03% 0.015
HiFi 130.23 1.28 46.9 93.7% 1.26 0.03%
HiCanu + Purge_dups 146.27 20.16 51.0 98.8% 7.62 0.03% 0.025
HiFi 132.53 4.54 46.7 95.5% 4.45 0.02%

A genome size of 143,726,002 was used for NG50 computation. Only contigs ≥50 kbp were used for all analyses except QUAST. Each assembly is re-
ported after running Purge_dups, with the primary reported on top and alts on the bottom of each row. Phred-style consensus quality values are QV=
−10 log P(error); for example, QV40 =99.99% accuracy. QUAST diffs reports the number of large structural discrepancies observed between the assem-
blies before Purge_dups (and therefore have only one entry per assembly) and the D. melanogaster ISO1 reference genome normalized by the assembly
size (in Mbp). The best performing result for each genome in each metric is highlighted in bold.
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approximately 30× HiFi sequencing coverage. For the HG002 data

set, we reused the best assembly from a recent study (Wenger et al.

2019) as it reflects a Canu 1.7.1 assembly before HiCanu’s develop-

ment and the associated improvements to Canu’s core modules.

We additionally included themost continuous published (pseudo-

haplotype) assemblies of the same genomes, which relied on ultra-

long Oxford Nanopore reads to achieve state-of-the-art repeat

resolution (Miga et al. 2020; Shafin et al. 2020). As before, contigs

<50 kbp were excluded from analysis. As the sizes of HiCanu as-

semblies for the diploid data sets HG002 and HG00733 were

5.30 Gbp and 5.46 Gbp, respectively, compared with a haploid ge-

nome size of 3.1 Gbp, we again postprocessed all diploid assem-

blies with Purge_dups and computed statistics for both primary

and alternate contig sets.

Per-base consensus quality was again estimated by Merqury

(Rhie et al. 2020) using Illumina data from the corresponding ge-

nome (Supplemental Note 2; Supplemental Table S3). To assess

the structural correctness of the assemblies, we followed themeth-

odology of Shafin et al. (2020). Namely, structural differences re-

ported by QUAST v5.0.2 versus the human reference genome

GRCh38 (Schneider et al. 2017) were postprocessed to ignore

breakpoints in centromeric regions and annotated SDs, in order

to reduce the number of false positives (Methods; Supplemental

Table S3). As before, because Purge_dups may introduce or correct

misassemblies as it modifies the contigs, the structural correctness

assessment was performed on the original assemblies.

Primary contig summary statistics for the three human ge-

nomes are presented in Table 2. The continuity of HiCanu assem-

blies, as measured by NG50, exceeded that of all other HiFi-based

assemblies and even rivaled the continuity of Nanopore ultra-

long-read assemblies. Reported rates of structural differences for

HiCanu was on par with the other assemblies. For consensus accu-

racy, the HiCanu primary contig sets exceeded QV50 (99.999% ac-

curacy) and alternate contigs sets exceeded QV40 (99.99%

accuracy), whereas the unpolished Nanopore assemblies failed to

exceed QV30 (99.9%). Although Nanopore assemblies currently

require polishing with complementary technologies to maximize

consensus accuracy, we discourage polishing HiCanu HiFi assem-

blies, because the available polishing pipelines may map reads

back to the wrong repeat copies and actually introduce errors dur-

ing polishing.

The total length of the HiCanu alternate contig sets exceeded

2 Gbp, highlighting its ability to separate human alleles (corre-

sponding values across other assemblies did not exceed 400

Mbp). The following section, “Human haplotype phasing,” fur-

ther explores allele separation and phasing across these assemblies.

The drastic improvements in consensus accuracy and allele separa-

tion for Canu versus HiCanu assemblies of HG002 is likely owing

to Canu improvements and bug fixes made during the HiCanu de-

velopment process, whereas the CHM13 and HG00733 assemblies

represent the latest Canu version and the differences are less

pronounced.

For CHM13 and HG00733 genomes, we additionally validat-

ed the assemblies against long continuous fragments of the corre-

sponding genome, earlier reconstructed via bacterial artificial

chromosome (BAC) sequencing (see Data access; no BACs were

available for HG002). Many of these so-called “challenge” BACs

were deliberately selected from genomic regions that pose signifi-

cant assembly challenges (i.e., regions with SDs), making them

useful for assembly benchmarking (Chin and Khalak 2019; Miga

et al. 2020; Shafin et al. 2020; Vollger et al. 2020). Table 3 summa-

rizes howwell the challenge BACs are captured by different assem-

blies. To recognize a BAC as “resolved” within the assembly, we

required 99.5% of the BAC length to be aligned to a single contig

by minimap2 (Methods; Li 2018). Assembly sequence accuracy

was measured as the median alignment identity of resolved

Table 2. Human assembly benchmarking results for ultralong Oxford Nanopore and PacBio HiFi

Genome Assembly Size (Gbp) NG50 (Mbp) Quality (QV) QUAST (diffs per Gbp)

CHM13 ONTa 2.98 74.06 28.9 35.2
Peregrine 2.87 37.30 50.7 40.8
Canu 3.03 45.63 61.7 40.6
HiCanu 3.05 77.12 58.1 45.9

HG002 ONTb 2.83 32.34 23.2 59.0
0.07 0.00 23.4

Peregrine 2.82 32.09 46.0 35.7
0.04 0.00 33.5

Canuc 2.92 26.67 33.7 51.4
0.12 0.00 43.2

HiCanu 2.99 46.39 51.8 44.6
2.15 0.18 45.1

HG00733 ONTb 2.83 40.55 23.9 68.5
0.06 0.00 23.8

Peregrine 2.81 31.53 46.3 75.4
0.04 0.00 34.2

Canu 2.95 23.00 50.5 76.1
0.36 0.00 41.5

HiCanu 2.97 38.43 50.6 57.5
2.32 0.23 43.3

A genome size of 3,098,794,149 was used for computing NG statistics. As in Table 1, only contigs ≥50 kbp were used for all analyses except QUAST.
Each assembly is reported after running Purge_dups, with the primary reported on top and alts on the bottom of each row. Structural differences in
centromeric regions and SDs were ignored owing to instability in these regions, and diffs were normalized by assembly size (in Gbp). Supplemental
Table S4 includes results for a different 10-kbp HiFi library. Superscripts mark previously published assemblies: aMiga et al. (2020); bShafin et al. (2020);
cWenger et al. (2019). All ONT assemblies were generated by Canu, as it achieved the highest NG50 and BAC resolution. The best-performing result
for each genome in each metric is highlighted in bold. Statistics for assemblies from Garg et al. (2019) and Porubsky et al. (2019) are included in
Supplemental Tables S3 and S5.
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BACs. Note that HiCanu resolved the highest number of BACs

across all considered assemblies and also achieved the highest

BAC alignment quality (Table 3; Supplemental Tables S4, S5).

A deeper investigation of the unresolved CHM13 BAC se-

quences indicated that 11 BACs likely contain assembly errors or

cloning artifacts themselves (Supplemental Note 3; Supplemental

Figs. S2–S5). Manual inspection of HiFi read alignments did not re-

veal any standard misassembly signatures in the corresponding

regions of the HiCanu assembly, providing evidence that HiCanu

was correct in these cases and able to resolve 337 out of 341

(99%) of the CHM13 challenge BACs (Supplemental Table S6).

Although the challenge BACs are useful for validation, they

do not represent the full landscape of human repeats. To further

assess the ability of HiFi reads and different assemblers to resolve

genomic repeats, we used the method of Vollger et al. (2019) to

identify collapsed repeat instances in the CHM13 assemblies. We

identified∼21.7Mbp of collapsed repeats corresponding to at least

56 Mbp of unresolved repetitive sequence. The HiCanu assembly

had the lowest number of bases in regions identified as collapsed

repeats, as well as the smallest amount of repetitive sequence pre-

dicted to be missing from the assembly (Supplemental Table S7;

Supplemental Fig. S6). A complementary mapping-based analysis

confirmed the comparatively high completeness of theHiCanu as-

sembly and classified the majority (80%) of missing sequence as

satellite repeats, suggesting good recovery of all other human re-

peat classes (Supplemental Fig. S6).

Human haplotype phasing

When assembling a diploid genome, an assembler must choose to

either collapse alleles into a single sequence or preserve them as

two separate sequences. Collapsing heterozygosity results in a mo-

saic consensus that may not faithfully represent any allele and can

introduce frameshifting errors within coding sequence.

HiCanu assemblies of the diploid human genomes included

>2 Gbp of alternate contigs, with high BUSCO completeness for

both primary and alternate contig sets (>94% and >75%, respec-

tively) (Supplemental Table S8). We again used Merqury (Rhie

et al. 2020) to analyze the phase blocks using parental Illumina

data (Supplemental Note 2). The phase block NG50s of HiCanu

primary (0.6 Mbp) and alternate (0.1 Mbp) contig sets were the

highest across all considered assemblies (2.5-fold higher than

next best) (Supplemental Table S8). Note that the human phase

block NG50s are significantly shorter than for the D. melanogaster

F1 hybrid but are longer than a typical human gene. For compari-

son, Supplemental Table S8 also includes statistics for the recently

obtained haplotype-resolved assemblies of HG002 (Garg et al.

2019) and HG00733 (Porubsky et al. 2019). These recent studies

have shown that multimegabase NG50 phase blocks can be ob-

tained by integrating HiFi data with long-range linking informa-

tion derived from Hi-C (Garg et al. 2019) or Strand-seq data

(Porubsky et al. 2019).

To assess the phasing accuracy, we used a gold-standard vari-

ant set from the Genome in a Bottle (GIAB) consortium

(Supplemental Table S9; Zook et al. 2019). HiCanu has an F1 score

of 95.37%, which is >50% higher than the next best HiFi assembly

and similar to another assembly combining both HiFi and Hi-C

data (97.7%) (Garg et al. 2019). Finally, we validated the recovery

of complex, clinically relevant alleles; we compared assembly typ-

ing results for the six classical human leukocyte antigen (HLA)

genes (Dilthey et al. 2019) to the known alleles for HG002 and

HG00733, obtained by previous studies (Supplemental Table

S10; Chin et al. 2019; Shafin et al. 2020). Only HiCanu and

TrioCanuwere able to recover all alleles with 100% sequence iden-

tity (Supplemental Tables S10, S11). TheHiCanu contigs expected-

ly switch between the haplotypes, but there is only one switch in

the MHC region. The Hi-C-phased HG002 assembly from Garg

et al. (2019) is phased across the length of theMHC region but con-

tains consensus errors (e.g., both HLA-DRB1 alleles). The Strand-

seq–phased HG00733 assembly from Porubsky et al. (2019) is

also phased across the length of the MHC region but incorrectly

represents HLA-A and HLA-B as homozygous (with both alleles

in the assembly matching one ground-truth allele). Both the

Garg et al. (2019) and Porubsky et al. (2019) methods rely on ini-

tially collapsed assemblies that are then phased using the long-

range data. These results suggest that separation of haplotypes ear-

ly in the assembly process (rather than trying to recover them from

collapsed assemblies) may improve the accurate recovery of het-

erozygous variation.

Complex regions of the CHM13 human genome

The CHM13 HiCanu assembly (Tables 2, 3; Fig. 2) exceeded the

predictions of our prior model of human assembly continuity

(Supplemental Note 5; Supplemental Fig. S7). To validate this re-

sult, we focused on the performance of HiCanu within some of

the most difficult-to-assemble regions of the genome, namely,

centromeres and SDs. Unlike past assemblies of the human ge-

nome, including clone-based assemblies, HiCanu generated sever-

al contigs spanning mega-bases of satellite DNA. The CHM13

Table 3. “Challenge” BAC validation of human assemblies

Genome Assembly No. of BACs resolved Median QV

CHM13 ONTa 314/341 23.3
Peregrine 136/341 37.3
Canu 308/341 40.6
HiCanu 326/341 40.7

HG00733 ONTb 124/179 18.9
Peregrine 74/179 27.0
Canu 122/179 28.2
HiCanu 164/179 34.0

The criteria for considering a BAC “resolved” is described in the main text and Methods. The alignment identity of each resolved BAC was computed
individually and the median of these values reported as a Phred-style quality value. No validation BACs were available for HG002. Superscripts mark
previously published assemblies: aMiga et al. (2020); bShafin et al. (2020). All ONT assemblies were generated by Canu, as it achieved the highest
NG50 and BAC resolution. The best-performing result for each genome in each metric is highlighted in bold. Statistics for assemblies from Garg et al.
(2019) and Porubsky et al. (2019) are included in Supplemental Table S5.
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HiCanu assembly contains nine of 23 (39%) expected centromere

regions: Chromosomes 2, 3, 7, 8, 10, 12, 16, 19, and 20

(Supplemental Note 6; Supplemental Table S11). The structure of

these regions was consistent with an expectation of one or more

higher-order repeat (HOR) array(s) flanked by more divergent

tracts of monomeric satellite DNA (Willard and Waye 1987;

Schueler et al. 2001; She et al. 2004). Mapped read depth of both

HiFi and ultralong Oxford Nanopore data (Miga et al. 2020) across

these contigs shows relatively uniform sequence coverage that

spans the α-satellite HOR array(s) into the unique sequences on

the p- and q-arms (Fig. 3; Supplemental Note 6; Supplemental

Fig. S8). The structure and length of the centromeric HOR array

(s) in each contig is highly concordant with those reported in

the literature (for review, see McNulty and Sullivan 2018).

It is noteworthy that HiCanu generated a draft assembly of

the CHM13 Chromosome 19 centromere (Fig. 3). Historically,

this region has been considered to be one of the more challenging

centromeres to reconstruct because it carries multiple HOR tracts

and shares α-satellite sequences with the centromere regions

from Chromosomes 1 and 5 (Hulsebos et al. 1988; Baldini et al.

1989; Pironon et al. 2010; Sullivan et al. 2017; McNulty and

Sullivan 2018). HiCanu was not only able to assemble a contig

that completely spans this centromere but also accurately distin-

guished three distinct HOR tracts (D19Z1, D19Z2, and D19Z3)

(Supplemental Note 6; Supplemental Fig. S9). This contig revealed

amore complete representation of the HOR structure of the D19Z1

HOR unit (13-mer vs. 10-mer) (Supplemental Figs. S9A, S10;

Hulsebos et al. 1988; Puechberty et al. 1999), a Chromosome 19–

specific dimeric HOR (D19Z3) (Supplemental Figs. S9B, S10;

Baldini et al. 1989; Finelli et al. 1996), and two complex HORs (ex-

pected to represent D19Z2) (Supplemental Note 6; Supplemental

Fig. S10). Alignment of HiFi sequence data to the corresponding

HiCanu contig did not reveal any coverage anomalies (e.g., large

dips or spikes) that could indicate the presence of structural errors.

However, marker-assisted alignment of ultralong Oxford

Nanopore data (Miga et al. 2020), an orthogonal data set, showed

a coverage drop coinciding with the D19Z1 array. This may indi-

cate a misassembly, mismapping of the noisy sequencing data,

or biases in sequencing coverage. Because of the lack of a validated

truth set in such regions, this will require extensive wet-laboratory

validation and is left for future work.

Beyond the obvious challenge of centromere assembly, SDs

represent another significant impediment and have been estimat-

ed to account for 68%ofmisassemblies and contig breaks in recent

long-read genome assemblies, irrespective of the platform or as-

sembly algorithm (Porubsky et al. 2019). To estimate the effect

of SDs on the continuity of HiCanu assemblies, we aligned contigs

from the CHM13 genome assemblies to the human reference ge-

nome (GRCh38) and tested if the ends of contigs mapped within

SDs. Compared with the Canu, Peregrine, or ONT assemblies,

HiCanu had the fewest contig breaks within SDs (n= 95) and the

smallest overall fraction of contig ends mapping to SDs (49%)

(Table 4). Of these 95 regions, 59 (62%) correspond to the longest

(>10 kbp) and most identical (>98%) copy-number polymorphic

duplicated regions of the human genome (Supplemental Fig.

S11). These results indicate that SDs are better resolved using

HiCanu; however, SDs still contribute disproportionately to the

overall number of assembly breaks.

The defensin beta gene family, a set of copy-number variable

genes (e.g.,DEFB136,DEFB135, etc.) mapping to two locations on

Chromosome 8p23.1 (which we refer to as the defensin beta clus-

ter), is a case in point. This ∼6-Mbp region plays an important role

� � �

Figure 2. Visual representation of the most continuous HiFi-based and Nanopore-based assemblies of the CHM13 genome. HiCanu assembly of the 20-
kbp HiFi data set (left) and Canu assembly of an ultralongNanopore data set (right). White regions indicate gaps in the current reference genome, and each
gray and black block indicates a continuous contig alignment. Color switches from gray to black represent either the end of a contig or an alignment break.
Assemblies were aligned to GRCh38 using MashMap (Jain et al. 2018a), and plots were generated using coloredChromosomes (Böhringer et al. 2002) as
previously described (Berlin et al. 2015; Jain et al. 2018b). Note that some chromosomes (e.g., Chr X) are better resolved by the Nanopore assembly owing
to the presence of near-perfect repeats. At the same time, chromosomes containing more diverged repeats (e.g., Chr 7 and Chr 16) are better resolved by
the HiFi assembly. We note that some gaps in the HiFi assembly are caused by sequence-specific biases of current HiFi sequencing protocols (Supplemental
Note 4). The red box highlights the defensin beta gene family on Chromosome 8p23.1 which is split in both assemblies and detailed in Figure 4.
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in immune function and disease (Weinberg et al. 2012; Mohajeri

et al. 2016) and is known to be highly repetitive and difficult to as-

semble (Bakar et al. 2009). Previous reconstructions have relied on

a BAC-by-BAC assembly approach (Mohajeri et al. 2016), and the

first continuous assembly of this region in CHM13 was obtained

via an independent approach using ultralong Nanopore data

(GA Logsdon, MR Vollger, PH Hsieh, et al., in prep). Figure 4, A

and B illustrates self-alignment dot plots at different stringencies

of the defensin beta cluster from the T2T Chromosome 8 v3.0 as-

sembly. Figure 4C shows the de novo assembled contig alignment

and correctness against this draft. Both the Canu and HiCanu as-

semblies of the HiFi data consist of four contigs without structural

errors. In contrast, the complex inverted repeat structures resulted

in misassembled and fragmented contigs in all other evaluated

assemblies.

The rightmost contig breaks in the HiFi assemblies are likely

owing to the presence of long, nearly identical repeats, which

would require either longer reads or a careful examination of repeat

copy number to resolve.We also investigated the fragmentation of

HiCanu and Canu contigs at position 10.4 Mbp, which is not part

of any observed repeat structure. Alignment of the raw HiFi reads

onto this region with minimap2 (Li 2018) revealed the presence

of a 450-bp region covered by only two HiFi reads (Supplemental

Fig. S12), with a coverage drop present in both the 10- and 20-

kbp HiFi libraries. This coverage drop is flanked by a >250-bp sim-

ple-sequence repeat (AAAGG). Suspecting a possible bias in the

HiFi datatype, we further examined Chromosome X, for which

we have a complete CHM13 reference sequence available (Miga

Figure 3. HiCanu assembly of the CHM13 Chromosome 19 centromere. RepeatMasker (Smit et al. 2013) of tig00006497 reveals three α-satellite HOR
arrays that reside within the Chromosome 19 centromere (D19Z1, D19Z2?, and D19Z3; marked with black bars). These HOR arrays are 606 kbp, 289 kbp,
and 3.96 Mbp in length, respectively, and are composed of a 13-mer, a complex higher-order HOR, and a dimeric HOR unit, respectively. The HOR repeat
underlying D19Z2 shares limited sequence identity with the pG-A16 repeat previously described (Hulsebos et al. 1988; Choo et al. 1991; Finelli et al. 1996)
and, therefore, is designatedwith a questionmark. The α-satellite HOR arrays have relatively uniform coverage of HiFi and ultralongOxford Nanopore data,
except for a drop in Oxford Nanopore sequencing coverage over the D19Z1 array, which may be owing to a misassembly, read mismapping, or biases in
sequencing. The HiFi coverage plot shows fold coverage of the most common base (black) and the second most common base (red).

Table 4. CHM13 contig ends found within SDs

Genome Assembly

Total no.
of aligned
contig
ends

Total no.
of contig
ends

within SDs

Percentage of
contig ends
within SDs

CHM13 Canu ONTa 202 137 68%
Canu 322 170 53%
Peregrine 468 398 85%
HiCanu 192 95 49%

HG002 Canu ONTb 608 427 70%
Canu 1290 862 67%
Peregrine 862 741 86%
HiCanu 418 234 56%

HG00733 Canu ONTb 606 492 81%
Canu 842 421 50%
Peregrine 874 716 82%
HiCanu 376 181 48%

Previously published assemblies are indicated by superscripts: aMiga
et al. (2020), bShafin et al. (2020). All ONT assemblies were generated
by Canu, as it achieved the highest NG50 and BAC resolution. The best-
performing result for each genome in each metric is highlighted in bold.
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et al. 2020). On this chromosome, we identified at least four addi-

tional cases ofHiFi coverage dropout,with all four instances associ-

atedwith long, low-complexity (A/GorT/C-rich) sequences. As our

HiFi assembly of Chromosome X is split into just 13 large contigs

(Supplemental Fig. S13), this coverage bias appears to be a current

weakness of the HiFi chemistry.

Discussion

We have shown that HiCanu is capable of generating the most ac-

curate and complete human genome assemblies to date and is

able to achieve the resolution of repeats that are up to 99.99%

identical. As a result, HiCanu surpasses priorHiFi andNanopore ul-

tra-long-read assemblies in terms of both repeat resolution and

per-base consensus accuracy. HiFi data excels in resolving large

highly-similar (but nonidentical) repeat instances. The remaining

unresolved sequences seem to primarily represent satellite repeats

(Supplemental Fig. S6). In particular, Figure 2 illustrates that

HiCanu’s reconstruction of human Chromosomes 1, 7, 9, and 16

notably improves continuity over the previous assembly of ultra-

long Nanopore reads (Koren et al. 2017; Kolmogorov et al. 2019;

Shafin et al. 2020). These chromosomes contain several SDs ex-

ceeding 200 kbp in length, requiring high-fidelity reads to identify

variants and separate the individual copies. HiFi data further en-

abled draft assemblies of nine centromeric regions, which are

one of the final challenges of automated telomere-to-telomere as-

sembly. Assembly of other centromeric regions is likely limited by

a low frequency of unique markers compared with current HiFi

read lengths. In contrast, Chromosome X has the highest count

of large (>20 kbp) near-identical (>99.9%) repeats (Bailey et al.

2002) that were better resolved by long, spanningNanopore reads.

Thus, the two technologies are complementary at present, and the

best technology depends on the specific characteristics of the re-

peats and haplotypes being assembled.

HiCanu’s approach to read correction permits considering

only the highest identity overlaps during contig construction

and is general enough to be applied to other applications such as

metagenomic assembly. Although HiCanu is not as fast as some

of the competingmethods, we note that the number of CPUhours

required for assembly of a human genome is under 4000, which

could be completed on any modern cloud platform in less than a

day for a few hundred dollars. This is 30-fold less than recent

Oxford Nanopore assemblies that required more than 100,000

CPU hours (Jain et al. 2018b; Shafin et al. 2020). At the time of

writing, the most computationally expensive step of HiFi analysis

is generating the data itself, because each individual HiFi read rep-

resents a consensus of multiple, aligned sequences of the same

DNA molecule. Coupled with the instrument runtime and se-

quencing cost, HiCanu is a small fraction of the total project cost

and duration (Supplemental Note 7). Most prior long-read assem-

blers have also required a final “polishing” step to improve consen-

sus accuracy, which requires additional computation but can also

introduce errors in repeat instances owing to ambiguous readmap-

pings (Miga et al. 2020). Because of the initial accuracy of HiFi

reads and because of the precise resolution of allelic variants and

repeats, HiCanu assemblies do not require polishing.

WhenchoosingHiFi, the librarysize shouldalsobeconsidered

when beginning a sequencing project. Because HiFi read accuracy

BA

C

Figure 4. Chr 8 defensin beta cluster repeat structure and assembly comparison. (Top) NUCmer self-alignment dot plots (Kurtz et al. 2004) of the
CHM13 reference defensin beta cluster at different alignment stringencies (Methods): (A) >7 kbp repeats at 98% identity. (B) >7 kbp repeats at 99.9%
identity. Purple/blue indicates same/reverse strand matches. (C) Icarus (Mikheenko et al. 2016) visualization of contig alignments from both HiFi-based
(Canu, HiCanu, Peregrine) and ultralong Nanopore-based assemblies (Canu ONT and Flye ONT) (Kolmogorov et al. 2019) produced by QUAST
(Gurevich et al. 2013). White space in the alignment figure indicates the assembly was fragmented into short contigs (<50 kbp). Red color indicates mis-
assembled contigs. The HiCanu assembly breaks at two of three SD instances that share high sequence similarity (black arrows) and at a region of systematic
HiFi coverage depletion (red arrow).

Nurk et al.

1298 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263566.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263566.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.263566.120/-/DC1


depends on the size of the sequenced fragments (shorter equals

more passes and higher accuracy), one should consider the relative

importance of read length versus accuracy. Ametagenomic project

may aim for shorter, higher accuracy reads to confidently identify

low-abundance strains, whereas a vertebrate genome project may

benefit from longer reads to span midsized identical repeats. We

also identified an apparent bias in the current HiFi chemistry at

low-complexity A/G (T/C) repeats, leading to coverage drops and

assembly fragmentation. This issue warrants further investigation

and may limit the applicability of HiFi sequencing to genomes

with large stretches of such repeats. Thus, identifying optimal se-

quencing strategies and developing methods that can combine

multiple technologies remains an area for future research.

HiCanu’s diploid assemblies accurately capture both alleles in

long haplotype blocks of very high quality (QV50). In particular,

HiCanu consistently recovered both haplotypes for the six canon-

ical MHC typing genes in the human genome, improving upon re-

cently developed HiFi-based methods for haplotype-resolved

assembly (Garg et al. 2019; Porubsky et al. 2019). However, because

HiFi data alone do not provide long-range linking evidence,

HiCanu’s contigs represent pseudohaplotypes that typically re-

quire additional information and processing to achieve chromo-

some-scale phasing. Canu also does not assign contigs to

haplotypes and requires postprocessing with a tool such as

Purge_dups (Guan et al. 2020) to split the diploid assembly into

primary and alternate alleles. Although recent studies have suc-

cessfully integrated HiFi data with additional long-range linkage

information (Garg et al. 2019; Porubsky et al. 2019), we do not ex-

pect that significant improvements in phasing can be achieved by

HiFi-only assemblies without an increase of HiFi read lengths. One

option is postprocessing of HiCanu assemblies by a haplotype-

aware scaffolder, such as FALCON-Phase (Kronenberg et al.

2019), which could potentially correct haplotype switch events

and deliver further improvements to phasing accuracy and assem-

bly continuity. In general, we feel that HiFi contigs combinedwith

Hi-C phasing and scaffolding is a promising recipe for phased telo-

mere-to-telomere vertebrate genome assembly, and we plan to in-

tegrate these data types in future versions of Canu.

Methods

Mitigating errors in HiFi data

AlthoughHiFi reads are highly accurate comparedwith other long-

read sequencing technologies, they are not error free, which com-

plicates the identification of reads originating from the same geno-

mic loci during assembly. To identify and remove false read

overlaps, we sought to increase the accuracy of HiFi data via read

correction.

Wenger et al. (2019) observed that the majority of HiFi errors

are in homopolymers, where the number of individually repeating

nucleotides is incorrectly counted. To lessen the impact of such er-

rors, HiCanu modifies the input reads by compressing every ho-

mopolymer to a single nucleotide. Our approach is similar to

run-length encoding (RLE), which has been previously applied

to 454 (Miller et al. 2008), PacBio CLR (Li 2016, 2018; Ruan and

Li 2020), and Oxford Nanopore (Shafin et al. 2020) reads.

However, HiCanu does not explicitly store the lengths of the com-

pressed homopolymer stretches and instead reverts back to the un-

compressed reads when needed.

Although the transition to homopolymer-compressed se-

quence space can reduce the specificity of the read alignment

search, the corresponding reduction in the number of observed er-

rors in the reads allow for a more restrictive alignment identity

threshold (based on empirical analyses, we require a minimum

overlap identity of 99%). Subsequent steps are performed on the

homopolymer-compressed sequences, whereas the detailed corre-

spondence between positions of original and compressed versions

is generated on the fly when necessary. Compressed reads are first

subjected to overlap-based trimming (Koren et al. 2017). Although

this step only affected one human assembly during development

(HG002 sequel II system with pre-2.0 early access chemistry

15-kbp library available from https://github.com/human-

pangenomics/HG002_Data_Freeze_v1.0) and does not appear to

be necessary for newer HiFi data sets, we chose to enable it by de-

fault on all assemblies in this paper for consistency. This improve-

ment suggests that a significant fraction of reads was structurally

incorrect in thepoorlyperforming libraryowing toa low-quality se-

quencing library. Because other libraries did not show this prob-

lem, it is likely future versions of the HiCanu pipeline can skip

this step and reduce runtime by >60%.

To further reduce the influence of the errors in compressed

HiFi reads, we have updated the OEA module of Canu (Holt et al.

2002; Koren et al. 2017). This module identifies errors in individu-

al reads by jointly considering all of their overlapping reads. Every

such read votes for the nucleotides at the positions that it covers

based on the pairwise alignment of the overlapping regions. A

read’s position is considered erroneous if no other reads support

the original sequence and the majority of votes agree on a partic-

ular change (by default >50% and at least seven if there is a read

supporting the original sequence). After the corrections are intro-

duced, the alignment scores of the overlaps are recomputed, but

the actual read sequences storedwithin the assembler are notmod-

ified as doing sowould invalidate the previously computed overlap

coordinates. Although our naive approachmay not always be able

to correct errors within highly-similar genomic repeats, such

events are rare owing to the low number of errors in compressed

HiFi reads and the high identity threshold used for gathering can-

didate overlaps.

Manual investigation of read alignments during HiCanu de-

velopment revealed a previously unreported error mode in HiFi

reads: incorrect repeat unit counts within microsatellite repeat ar-

rays. Because the incorrect repeat counts are systematic and often

supported by multiple reads, the conservative strategy described

above is not able to correct them. Recognizing this, we modified

theOEAprocedure for recomputing overlap alignment scores to ig-

nore sequence differences flanked by a microsatellite repeat in ei-

ther read. Namely, the difference is ignored if five out of six

nonoverlapping flanking k-mers are the same for any k ranging be-

tween two and six on either side (starting at zero to k−1 bp from

the difference). We note that this phenomenon deserves a deeper

investigation, and our strategy can be improved to capture addi-

tional genomic differences, which are ignored by the current

approach.

We evaluated the contribution of each of the above correc-

tions using the recently completed CHM13 Chromosome X

(Miga et al. 2020) as a reference. Raw, compressed, corrected, and

masked 20-kbp HiFi reads were mapped and the mappings filtered

to retain high-confidence alignments (Supplemental Note 1).

Figure 1 shows the resulting alignment identity values, with

each correction step boosting the identity of the aligned sequence.

Each step (compression, correction, masking) contributes to this

improvement (Supplemental Table S1; Supplemental Fig. S14).

Although almost no (<1%) raw HiFi reads map error free, 97.23%

of the compressed, corrected, andmasked readsmapwithout a sin-

gle difference. Without correction (compression+masking only),

reads have similar median error to just compression, and less

than half have perfect alignment. As we did not control for reads
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mapping from other chromosomes and as the Chromosome X se-

quence itself is not error free, this likely represents a lower bound

on the percentage of error-free reads. To extend beyond Chr X, we

also estimated read accuracy using k-mers from short-read data for

all human genomes and found correction improved read accuracy

across all data sets (Supplemental Note 1).

Bogart modifications

The Bogart module constructs a set of draft contigs from read over-

lap information. A detailed description is given by Koren et al.

(2017). We describe here the modifications made for HiFi data.

Overlap identity threshold

Canu’s initial overlap search uses a relaxed identity threshold to

account for varying error rates between samples. Because overlap

identities are changed by OEA and because we wished to avoid

considering false-positive overlaps, Bogart first attempts to select

a higher overlap identity threshold. Previously, Canu computed

the identity of the best-scoring overlap on each side of every

read (where score is defined as the number of matching bases in

the overlap alignment) and set a threshold based on the median

and MAD of the computed values (Koren et al. 2017). However,

during the development, we realized that this way of computing

the threshold was not informative for highly accurate reads

because both the median and MAD were 100% across all tested

data sets. Additionally, with the number of matching bases as a

score, the read delivering the highest scoring overlap could come

from a different haplotype in genomes with low heterozygosity.

As a result, the selected threshold could inadvertently reflect the

heterozygosity level of the organism rather than the accuracy of

the reads. Based on empirical testing, we opted for an alternative

two-step procedure. First, all overlaps with identity below the fixed

value T (default 99.97% or three differences in 10,000 bp) are

dropped. This step is aimed at removing from consideration the

majority of the cross-haplotype overlaps even for low-heterozygos-

ity organisms, for example, human heterozygosity rate of 0.1%

(The 1000 Genomes Project Consortium 2012). Next, the identi-

ties of the highest scoring overlaps are collected as before, and

the final threshold is set as the 90th% percentile of this sample.

It is possible that 99.97% is too stringent given higher error reads.

We could detect this condition when the 90th percentile is too

close to 99.97% and rerun the overlap filtering. However, on all

data sets evaluated to date, the chosen identity threshold was

100%. To support the desired overlap filtering stringency, the

Canu codebase had to be modified to increase the precision with

which the overlap identity values are stored.

Handling heterozygous differences

Bogart uses the filtered overlaps to identify and eliminate the reads

likely representing sequencing artifacts and then constructs the

best overlap graph (Miller et al. 2008), using the same overlap scor-

ing function as before. This graph consists of the best-scoring over-

lap off both the 5′ and 3′ ends of each read, and the nonbranching

paths within this graph form the preliminary layouts (arrange-

ments of reads) that we refer to as greedy contigs. Bogart then in-

spects each greedy contig for long repeat instances that could

have been incorrectly traversed. Repeats are detected by consider-

ing overlaps between the reads within and outside of the contig. If

a suspected repeat has no reads spanning it or if there is a similar-

length alternate read overlap, it is broken at the repeat boundary to

avoid potential assembly errors as the method of Koren et al.

(2017) to form the final draft contigs.

HiCanu aims to reconstruct long pseudohaplotype contigs

(Vinson et al. 2005; Chin et al. 2016)—potentially switching be-

tween paternal and maternal alleles—and capture the alternative

regions as shorter contigs. Unfortunately, the original Bogart ap-

proach described above led to the classification of extended homo-

zygous regions within greedy contigs as unspanned repeats,

leading to fragmentation of the pseudohaplotypes (Supplemental

Fig. S15). In Canu, this behavior had been affecting only genomes

with >1% heterozygosity, because below this threshold most het-

erozygous differences were implicitly hidden by the relatively per-

missive threshold on overlap identity.With the high-accuracyHiFi

data, and a correspondingly high overlap identity threshold, this

overfragmentation became an issue even for human levels of

heterozygosity.

In HiCanu, Bogart has an additional step to identify contigs

representing alternative alleles within the set of greedy contigs,

which we refer to as bubble contigs. As suggested by the name,

the bubble contigs are related to the bubble subgraphs, typically

considered by most assemblers. Candidate bubbles are found by

identifying reads in each contig that have overlaps to some other,

larger, contig. A read within a smaller contig can be placed in the

larger contig if the overlaps between it and the reads in the larger

contig are below a specified threshold of similar quality to the pre-

viously incorporated overlaps (0.1% by default). If the placements

for both the first and last reads of a candidate contig are correctly

oriented and placed at approximately the correct distance in the

larger contig (75%–125% of the candidate contig size), the candi-

date contig is flagged as a bubble and its reads are excluded from

later repeat detection. This avoids fragmentation of otherwise

structurally correct pseudohaplotype contigs. Similar strategies

have previously been used in short-read assembly (Pevzner et al.

2001; Zerbino and Birney 2008; Li et al. 2010; Gnerre et al.

2011), scaffolding metagenomes (Koren et al. 2011; Ghurye et al.

2019), and long-read assembly (Chin et al. 2016). Bubble contigs

are also explicitly marked in the final output; however, because

placements are not always found, especially for longer, more het-

erozygous alleles, we recommend using a postprocessing tool

such as Purge_dups (Guan et al. 2020) to classify alternate alleles

and remove any false duplications.

Consensus calculation

A consensus sequence is computed for all contigs using the un-

compressed reads (trimmed to their good regions identified in

compressed space). Canu originally used the layout produced by

Bogart to estimate the position of each read within the contig

and align it only to that location. Because the read layouts are

now in homopolymer-compressed space, this strategy is unable

to locate the read in uncompressed space. Instead, we compute

the correspondence of each position in the compressed read to

the original. This is used to update the read positions within the

contig and expand the layout to uncompressed space. A modified

version of the PBdagcon algorithm (Chin et al. 2013), with im-

proved support for long contig sequences, is used to compute

the final consensus sequence.

Currently, HiCanu will exclude erroneous reads from large

contigs, but these erroneous reads may form their own short, low-

coverage contigs. This can slightly reduce average assembly accuracy

for homozygous genomes versus a more permissive strategy like

that in Canu. However, Canu’s more permissive approach will in-

correctly mix haplotypes and similar repeat copies. Further HiCanu

consensus gains are possiblewith better handlingof erroneous reads

and a more sophisticated approach for predicting homopolymer

run length, similar to MarginPolish (Shafin et al. 2020).
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Previously generated data and assemblies

When available, previously published assemblies were download-

ed and used. This included Oxford Nanopore UL Canu assemblies

presented by Shafin et al. (2020) for HG0002 (80× Guppy HAC

2.3.5) and HG00733 (50× Guppy HAC 2.3.5), Canu+Racon as-

sembly presented by Vollger et al. (2020), HG002 Canu assembly

of HiFi reads presented by Wenger et al. (2019), Oxford

Nanopore Canu assembly for CHM13 (40×+80× UL Guppy

HAC 3.1.5) presented by Miga et al. (2020), HiFi +Hi-C assem-

blies for HG002 presented by Garg et al. (2019), and HiFi +

Strand-seq assemblies for HG0733 presented by Porubsky et al.

(2019). In the remaining cases, assemblies were run locally on

the NIH Biowulf cluster.

The D. melanogaster HiFi data are available from NCBI

BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/)

at PRJNA573706 (SRR10238607; median: 24.4 kbp; mean: 24.4

kbp) and CLR (SRR9969843; median 13.3 kbp; mean: 17.2 kbp).

Because of the high coverage, this data set was down-sampled to

40× HiFi data and 200× CLR data. These coverages represent

∼25% of the full run output. Because the exact parents of the F1

were not available, we used the previously generated short-read se-

quencing for binning and analysis (A4: SAMN00849823; ISO1:

SRR6702604). The CHM13 Nanopore data are available at https://

s3.amazonaws.com/nanopore-human-wgs/chm13/nanopore/rel3/

rel3.fastq.gz and Illumina at GitHub (https://github.com/nano

pore-wgs-consortium/CHM13#10x-genomics-data). The HG002

Nanopore data are available at https://s3-us-west-2.amazonaws

.com/human-pangenomics/index.html, HiFi at SRX5327410.

HG002 and parent Illumina data are available from GIAB (Zook

et al. 2016) at GitHub (https://github.com/genome-in-a-bottle/

giab_data_indexes), we only used the 2×250 data sets. The

HG00733 Nanopore data are available at https://s3-us-west-2

.amazonaws.com/human-pangenomics/index.html, HiFi at

ERX3831682. The Illumina data for HG00733 and parents were

downloaded from the 1000 Genomes Project Consortium at https

://www.internationalgenome.org/data-portal/sample (The 1000

Genomes Project Consortium 2012). The CHM13 Chromosome 8

reference assembly is available at GitHub (https://github.com/

nanopore-wgs-consortium/CHM13#downloads).

Software commands

HiCanu was run using Canu branch hicanu_rc with the following

commands:

canu -assemble -p asm -d asm genomeSize=G -pacbio-
hifi reads.fastq.gz

with G=3.1 g for human and 150 m for D. melanogaster. This

required 131 CPU hours and 16 GB ofmemory forD. melanogaster,

2780 CPU hours and 66 GB of memory for the CHM13 10-kbp li-

brary, 5000 CPU hours and 119 GB of memory for the CHM13 20-

kbp library, 3999CPUhours and 62GB ofmemory forHG002, and

5233 CPU hours and 50 GB of memory for HG00733.

For the standard Canu assembles, Canu branch hicanu_rc ran

with the following command:

canu -p asm -d asm genomeSize=G corrected

ErrorRate=0.015 batOptions=“-eg 0.01 -eM 0.01 -dg
6 -db 6 -dr 1 -ca 50 -cp 5” -pacbio-corrected
reads.fastq.gz

with G=3.1 g for human and 150 m for D. melanogaster. This re-

quired 232 CPU hours and 12 GB of memory for D. melanogaster,

3524 CPU hours and 80 GB of memory for the CHM13 20-kbp li-

brary, and 3836 CPU hours and 47 GB of memory for HG00733.

For CLR data Canu branch hicanu_rcwas runwith the follow-

ing command:

canu -p asm -d asm genomeSize=150m corOut
Coverage=100 batOptions=“-dg 6 -db 6 -dr 1 -ca 500
-cp 50” -pacbio-raw reads.fastq.gz

All HiFi assemblies required less than 12 wall-clock hours on the

NIH Biowulf cluster quick partition with all jobs using <120 GB

RAM.We reran HG002 on our cluster limiting the maximum con-

currentCPUs to 288,which required 30h.We estimated the cost of

an AWS run using the c5d.18xlarge instance, which costs $3.456/

h. Assuming four reserved nodes (for a total of 72× 4=288 CPUs)

and an average runtime of 4200 CPU hours with perfect paralleli-

zation, the runwould complete in 14.5 h.We increase this by a fac-

tor of 2.0 to account for any nonparallelized steps based on the

experiments above for a cost of $3.456× 4×29= $401. We note

these estimates limited by differences in CPU and I/O between

our cluster and AWS, as well as the overhead of waiting for a job

to be scheduled on our cluster. The cost could also be reduced if ad-

ditional nodes were spun up on-demand for the parallel portions

of compute and spun down when not needed (as performed in

Canu’s DNAnexus implementation). We omit this from the esti-

mate for simplicity. We also note that the assemblies could be

completed faster if more nodes were allocated in parallel.

Peregrine assembler and SHIMMER ASMKit (0.1.5.3) was run

with the command

yes yes | python3 /data/korens/devel/Peregrine/
bin/pg_run.py asm \

chm13.list 24 24 24 24 24 24 24 24 24 \
‐‐with-consensus ‐‐shimmer-r 3 ‐‐best_-
n_ovlp 8 \

‐‐output ./

This required 7 CPU hours and 29 GB of memory for D. mela-

nogaster, 32 CPU hours and 347 GB of memory for the CHM13

10-kbp library, 58 CPU hours and 449 GB of memory for the

CHM13 20-kbp library, 55 CPU hours and 407 GB for HG0002,

and 63 CPU hours and 477 GB for HG00733.

Commands for defensin beta cluster and Chr X validation

HiCanu contigs flagged as bubbles were excluded from the analy-

sis. MUMmer (Kurtz et al. 2004) 3.23 was used to identify repeats

with the command:

nucmer ‐‐maxmatch ‐‐nosimplify
delta-filter -i 98 -l 10000

and high-stringency repeats

nucmer ‐‐maxmatch ‐‐noextend ‐‐nosimplify -l 500 -c
1000

delta-filter -i 99.9 -l 10000

QUAST alignments were generated as

quast.py -t 20 ‐‐large ‐‐skip-unaligned-mis-contigs
‐‐min-alignment 10000 ‐‐min-identity 98.0 ‐‐exten-
sive-mis-size 5000 ‐‐min-contig 50000

Icarus was patched not to show breaks at “small indels” and

“stretches of mismatches,” and used to visualize the resulting

alignments.

Commands for RepeatMasker

RepeatMasker version 4.1.0 was run with the commands
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RepeatMasker -pa 8 -q -species=mammal -xm -dir=-

asm.out asm.fasta

on each contig ≥50 kbp in the assembly. Centromeric arrays were

identified by taking all hits marked as Satellite/centr and merging

any hits within 100 bp of each other using BEDTools (Quinlan and

Hall 2010). Resulting arrays >800 kbp were reported. There were

nine internal arrays whose start and end coordinates were at least

500 kbp away from a contig end. These initial coordinates were

manually curated based on reference alignments and are reported

in Supplemental Table S12.

Commands for MHC typing

HLA∗LA version commit 24930adadb0d2b6bcd69a271401df-

c88a5d09f4d was run with the commands

HLA-ASM.pl ‐‐use_minimap2 1 ‐‐assembly_fasta $asm ‐‐

sampleID $prefix ‐‐workingDir ‘pwd‘/$prefix ‐‐truth

reference_HLA_ASM/$truth

where $asmwas the assembly, $prefix was a unique identifier, and

$truth was either truth_HG002.txt or truth_HG00733.txt.

Commands for Purge_dups

Purge_dups version commit 8f580b41e6aa20c99383d6ff19-

b8689e93d7490e was run with the commands

python pd_config.py asm.fasta ‘pwd‘ <pb folder>

<10x folder left blank> asm
minimap2 -I6G -xasm5 -DP asm.split asm.split >
asm.split.self.paf

minimap2 -I6G -xmap-pb asm.fasta $line > pb.$jo-
bid.paf (for each HiFi cell)

pbcstat pb.∗.paf
calcuts PB.stat > cutoffs 2>calcults.log
purge_dups -2 -T cutoffs -c PB.base.cov asm.split.-

self.paf > dups.bed 2> purge_dups.log
get_seqs dups.bed asm.fasta > purged.fa 2> hap.fa

For D. melanogaster, an incorrect threshold was computed for the

cutoffs owing to the entire genome being separated and so the cut-

offs were manually adjusted to be

50 1 1 115 2 200.

The purged.fa output was then used as the primary set reported in

the tables. To obtain the alternate set, we ran a second round of

Purge_dups using hap.fa as the input assembly instead. This re-

quired an average of 20CPUhours and 7MB ofmemory forD.mel-

anogaster, 59 CPU hours and 24 MB of memory for HG0002, and

74 CPU hours and 24 MB of memory for HG00733.

Commands for Merqury

Merqury version commit 154610d19ee6f4fead77da077af1e-

d7abdbe8866 was used. For each assembly and read set, canonical

k-mers were built using meryl available as a binary within Canu:

meryl count k=<k-size> <reads.fastq.gz> output

<genome>.k<k-size>.meryl

meryl count k=<k-size> <asm.fasta> output <asm>.k<k-

size>.meryl

using k=21 for humans and k=18 for D. melanogaster based on

(Fofanov et al. 2004). QV and k-mer completeness were obtained

with

eval/spectra_cn.sh

which converts k-mer Jaccard to distance as previously described

(Ondov et al. 2019) and to a Phred score (Ewing and Green

1998). Haplotype blocks were estimated by first building par-

ent-specific k-mer databases. K-mers in each parental data set

were counted as above, then subtracted to obtain parent-specific

k-mers, and finally intersected with the child (in the case of hu-

man data sets in which child Illumina data was available) with

trio/hapmers.sh
trio/phased_block.sh

For further information see Supplemental Note 2 and https://

github.com/marbl/merqury/wiki.

Commands used for QUAST

QUAST 5.0.2 ran with the command

quast.py <asm> -o quast_results/<asm> -r <refer-
ence> -t 16 -s ‐‐large

Variants were filtered using the pipeline from (Shafin et al. 2020)

to filter errors in varying sites, including known SVs (HG002

only available from GIAB) (Zook et al. 2020) at ftp://ftp-trace.-

ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/

NIST_SVs_Integration_v0.6/

HG002_SVs_Tier1plusTier2_v0.6.1.bed):

python3 reference/quast_sv_extractor.py -q quas-

t_results/<asm>/contigs_reports/all_align-
ments∗tsv -c reference/centromere.bed -d refer
ence/GRCh38_marked_regions.bed -s reference/

empty

and

python3 reference/quast_sv_extractor.py -q quas-
t_results/<asm>/contigs_reports/all_align-
ments∗tsv -c reference/centromere.bed -d refer

ence/GRCh38_marked_regions.bed -s reference/
HG002_SVs_Tier1plusTier2_v0.6.1.bed

for HG002. We used https://www.ncbi.nlm.nih.gov/assembly/

GCF_000001215.4 filtered to remove any unassigned sequences

for D. melanogaster (Chr 2L, Chr 2R, Chr 3L, Chr 3R, Chr 4, Chr

M, Chr X, Chr Y only) and https://hgdownload.soe.ucsc.edu/

goldenPath/hg38/bigZips/hg38.fa.gz filtered to exclude alts and

unaligned sequences (Chromosomes 1–22, X, Y, and MT only).

Because no filtering file was available for D. melanogaster, wemod-

ified QUAST parameters to try to avoid false-positive misassembly

counts with the command

quast.py <asm> -o quast_results/<asm> -r <refer-

ence> ‐‐large ‐‐min-alignment 20000 ‐‐extensive-mis-
size 500000 ‐‐min-identity 90

Commands for BAC validation

We used the BAC validation pipeline available at GitHub (at https

://github.com/skoren/bacValidation) runwith default parameters.

This pipeline aligns reads usingminimap2 (Li 2018) and parses the

SAM (Li et al. 2009) format to generate summary statistics. Output

BAC identity was computed as the median across all BACs marked

as correctly resolved. BAC libraries were downloaded from NCBI

(CHM13: https://www.ncbi.nlm.nih.gov/nuccore/?term=VMRC

59+and+complete, HG00733: https://www.ncbi.nlm.nih.gov/

nuccore/?term=VMRC62+and+complete). HiFi read alignments

to the assembly and BAC sequences were visualized with the

Integrative Genomics Viewer (IGV) (Robinson et al. 2011).
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Commands for variant analysis

We downloaded trio-phased GIAB (Zook et al. 2019) variant

calls for HG002 from ftp://ftp-trace.ncbi.nlm.nih.gov/Reference

Samples/giab/release/AshkenazimTrio/HG002_NA24385_son/NI

STv3.3.2/GRCh38/HG002_GRCh38_GIAB_highconf_CG-Illfb-Illse

ntieonHC-Ion-10XsentieonHC-SOLIDgatkHC_CHROM1-22_v.3.3.

2_highconf_triophased.vcf.gz.We randipcall followed by vcfeval to

estimate SNP sensitivity and precision (Supplemental Table S8)with

the commands

run-dipcall hg002_purge GRCh38_full_analysis_
set_plus_ decoy_hla.fa primary.fasta alts.fasta >
hg002.mak

make -j1 -f hg002.mak
# exclude chrX/Y since there are no GIAB variants on
them

gunzip -c hg002_purge.dip.vcf.gz |grep -v chrX |
grep -v chrY |bgzip -c > hg002_purge.dip_ nohom.

vcf.gz
# mark calls as homozygous alt in regions where only
primary calls a variant and no alts map

gunzip -c hg002_purge.dip_nohom.vcf.gz | sed ’s/
GAP2/./;s/1|\./1|1/;s/ID=\./ID=GAP2/’ | grep -v

’HET\|GAP\|DIP’ | bgzip -c > hg002_purge.dip.vcf.gz
tabix hg002_purge.dip_nohom.vcf.gz
tabix hg002_purge.dip.vcf.gz

# measure statistics
rtg vcfeval -b HG002_GRCh38_GIAB_highconf_CG-

Illfb-IllsentieonHC-Ion-10XsentieonHC-
SOLIDgatkHC_CHROM1-22_v.3.3.2_highconf_triopha-
sed.vcf.gz -c hg002_purge.dip.vcf.gz -e HG002_GRC

h38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-
10XsentieonHC-SOLIDgatkHC_CHROM1-
22_v.3.3.2_highconf_noinconsistent.bed -t GRCh38

_hs38d1.sdf -m annotate -o hom

To evaluate phasing, we evaluated the number ofmaternal and pa-

ternal variant calls out of the true positive calls in each contig and

reported the total fraction of misphased variants (Supplemental

Note 8).

Commands for identifying contig ends

Alignmentsweremade between assemblies andGRCh38 using the

following minimap2 command:

minimap2 ‐‐secondary=no -a ‐‐eqx -Y -x asm20 -s 200000

-z 10000,50 -r 50000 ‐‐end-bonus=100 -O 5,56 -E 4,1
-B 5

Contig ends that intersected SDs were identified by parsing the

CIGAR string to find the location of contig ends and then by inter-

secting these locations with annotated SDs plus 10 kbp on either

side from the UCSC Genome Browser using the following

commands:

bedtools slop -i {segdups.bed} -b 10000 | bedtools

merge -i - > {expanded.segdups.bed} && bedtools in-
tersect -a {contig.ends.bed} -b {expanded.

segdups.bed}

Data access

All raw and processed sequencing data generated in this study

have been submitted to the NCBI BioProject database (https

://www.ncbi.nlm.nih.gov/bioproject/) under accession number

PRJNA530776 (10 kbp: SRR9087597–SRR9087600; 20 kbp:

SRR11292120–SRR11292123).

We have posted the down-sampled data sets, generated as-

semblies, and corrected CHM13 BAC sequences at https://obj

.umiacs.umd.edu/marbl_publications/hicanu/index.html.

HiCanu is implemented within the Canu assembly framework

and is available as Supplemental Code and from GitHub (https

://github.com/marbl/canu).
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